1
|
Peng Z, Duan Y, Zhong S, Chen J, Li J, He Z. RNA-seq analysis of extracellular vesicles from hyperphosphatemia-stimulated endothelial cells provides insight into the mechanism underlying vascular calcification. BMC Nephrol 2022; 23:192. [PMID: 35597927 PMCID: PMC9123672 DOI: 10.1186/s12882-022-02823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Hyperphosphatemia (HP) is associated with vascular calcification (VC) in chronic kidney disease (CKD). However, relationship between HP-induced-endothelial extracellular vesicles (HP-EC-EVs) and VC is unclear, and miR expression in HP-EC-EVs has not been determined. Methods We isolated HP-EC-EVs from endothelial cells with HP and observed that HP-EC-EVs were up-taken by vascular smooth muscle cells (VSMCs). HP-EC-EVs inducing calcium deposition was characterized by Alizarin Red S, colourimetric analysis and ALP activity. To investigate the mechanism of HP-EC-EVs-induced VSMC calcification, RNA-sequencing for HP-EC-EVs was performed. Results We first demonstrated that HP-EC-EVs induced VSMC calcification in vitro. RNA-seq analysis of HP-EC-EVs illustrated that one known miR (hsa-miR-3182) was statistically up-regulated and twelve miRs were significantly down-regulated, which was verified by qRT-PCR. We predicted 58,209 and 74,469 target genes for those down- and up-regulated miRs respectively through miRDB, miRWalk and miRanda databases. GO terms showed that down- and up-regulated targets were mostly enriched in calcium-dependent cell–cell adhesion via plama membrane cell-adhesion molecules (GO:0,016,338, BP) and cell adhesion (GO:0,007,155, BP), plasma membrane (GO:0,005,886, CC), and metal ion binding (GO:0,046,914, MF) and ATP binding (GO:0,005,524, MF) respectively. Top-20 pathways by KEGG analysis included calcium signaling pathway, cAMP signaling pathway, and ABC transporters, which were closely related to VC. Conclusion Our results indicated that those significantly altered miRs, which were packaged in HP-EC-EVs, may play an important role in VC by regulating related pathways. It may provide novel insight into the mechanism of CKD calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02823-6.
Collapse
Affiliation(s)
- Zhong Peng
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yingjie Duan
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuzhu Zhong
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230002, China
| | - Jianlong Li
- Department of Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.,Department of Pediatrics, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhangxiu He
- The First Affiliated Hospital, Department of Nephrology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Tintut Y, Honda HM, Demer LL. Biomolecules Orchestrating Cardiovascular Calcification. Biomolecules 2021; 11:biom11101482. [PMID: 34680115 PMCID: PMC8533507 DOI: 10.3390/biom11101482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 01/12/2023] Open
Abstract
Vascular calcification, once considered a degenerative, end-stage, and inevitable condition, is now recognized as a complex process regulated in a manner similar to skeletal bone at the molecular and cellular levels. Since the initial discovery of bone morphogenetic protein in calcified human atherosclerotic lesions, decades of research have now led to the recognition that the regulatory mechanisms and the biomolecules that control cardiovascular calcification overlap with those controlling skeletal mineralization. In this review, we focus on key biomolecules driving the ectopic calcification in the circulation and their regulation by metabolic, hormonal, and inflammatory stimuli. Although calcium deposits in the vessel wall introduce rupture stress at their edges facing applied tensile stress, they simultaneously reduce rupture stress at the orthogonal edges, leaving the net risk of plaque rupture and consequent cardiac events depending on local material strength. A clinically important consequence of the shared mechanisms between the vascular and bone tissues is that therapeutic agents designed to inhibit vascular calcification may adversely affect skeletal mineralization and vice versa. Thus, it is essential to consider both systems when developing therapeutic strategies.
Collapse
Affiliation(s)
- Yin Tintut
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Henry M. Honda
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
| | - Linda L. Demer
- Department of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA; (Y.T.); (H.M.H.)
- Department of Physiology, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- The David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-2677
| |
Collapse
|
3
|
Kutikhin AG, Feenstra L, Kostyunin AE, Yuzhalin AE, Hillebrands JL, Krenning G. Calciprotein Particles: Balancing Mineral Homeostasis and Vascular Pathology. Arterioscler Thromb Vasc Biol 2021; 41:1607-1624. [PMID: 33691479 PMCID: PMC8057528 DOI: 10.1161/atvbaha.120.315697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anton G. Kutikhin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Lian Feenstra
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Alexander E. Kostyunin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Arseniy E. Yuzhalin
- Laboratory for Vascular Biology, Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation (A.G.K., A.E.K., A.E.Y.)
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (L.F., J.-L.H.), University Medical Center Groningen, University of Groningen, the Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology (L.F., G.K.), University Medical Center Groningen, University of Groningen, the Netherlands
- Sulfateq B.V., Admiraal de Ruyterlaan 5, 9726 GN, Groningen, the Netherlands (G.K.)
| |
Collapse
|
4
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
5
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
6
|
Choi B, Kim EY, Kim JE, Oh S, Park SO, Kim SM, Choi H, Song JK, Chang EJ. Evogliptin Suppresses Calcific Aortic Valve Disease by Attenuating Inflammation, Fibrosis, and Calcification. Cells 2021; 10:E57. [PMID: 33401457 PMCID: PMC7824080 DOI: 10.3390/cells10010057] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) accompanies inflammatory cell infiltration, fibrosis, and ultimately calcification of the valve leaflets. We previously demonstrated that dipeptidyl peptidase-4 (DPP-4) is responsible for the progression of aortic valvular calcification in CAVD animal models. As evogliptin, one of the DPP-4 inhibitors displays high specific accumulation in cardiac tissue, we here evaluated its therapeutic potency for attenuating valvular calcification in CAVD animal models. Evogliptin administration markedly reduced calcific deposition accompanied by a reduction in proinflammatory cytokine expression in endothelial nitric oxide synthase-deficient mice in vivo, and significantly ameliorated the mineralization of the primary human valvular interstitial cells (VICs), with a reduction in the mRNA expression of bone-associated and fibrosis-related genes in vitro. In addition, evogliptin ameliorated the rate of change in the transaortic peak velocity and mean pressure gradients in our rabbit model as assessed by echocardiography. Importantly, evogliptin administration in a rabbit model was found to suppress the effects of a high-cholesterol diet and of vitamin D2-driven fibrosis in association with a reduction in macrophage infiltration and calcific deposition in aortic valves. These results have indicated that evogliptin prohibits inflammatory cytokine expression, fibrosis, and calcification in a CAVD animal model, suggesting its potential as a selective therapeutic agent for the inhibition of valvular calcification during CAVD progression.
Collapse
Affiliation(s)
- Bongkun Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Young Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Ji-Eun Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Soyoon Oh
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Si-On Park
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sang-Min Kim
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hyuksu Choi
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Kwan Song
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Eun-Ju Chang
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (B.C.); (E.-Y.K.); (J.-E.K.); (S.O.); (S.-O.P.); (S.-M.K.); (H.C.)
- Stem Cell Immunomodulation Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Biochemistry, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
7
|
Tani M, Tanaka S, Oeda C, Azumi Y, Kawamura H, Sakaue M, Ito M. SLC37A2, a phosphorus-related molecule, increases in smooth muscle cells in the calcified aorta. J Clin Biochem Nutr 2020; 68:23-31. [PMID: 33536709 PMCID: PMC7844665 DOI: 10.3164/jcbn.19-114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/04/2020] [Indexed: 11/24/2022] Open
Abstract
Vascular calcification is major source of cardiovascular disease in patients with chronic kidney disease. Hyperphosphatemia leads to increased intracellular phosphorus influx, which leads to an increase in osteoblast-like cells in vascular smooth muscle cell. PiT-1 transports phosphate in vascular smooth muscle cell. However, the mechanism of vascular calcification is not completely understood. This study investigated candidate phosphorus-related molecules other than PiT-1. We hypothesized that phosphorus-related molecules belonging to the solute-carrier (SLC) superfamily would be involved in vascular calcification. As a result of DNA microarray analysis, we focused on SLC37A2 and showed that mRNA expression of these cells increased on calcified aotic smooth muscle cells (AoSMC). SLC37A2 has been reported to transport both glucose-6-phosphate/phosphate and phosphate/phosphate exchanges. In vitro analysis showed that SLC37A2 expression was not affected by inflammation on AoSMC. The expression of SLC37A2 mRNA and protein increased in calcified AoSMC. In vivo analysis showed that SLC37A2 mRNA expression in the aorta of chronic kidney disease rats was correlated with osteogenic marker genes. Furthermore, SLC37A2 was expressed at the vascular calcification area in chronic kidney disease rats. As a result, we showed that SLC37A2 is one of the molecules that increase with vascular calcification in vitro and in vivo.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Chihiro Oeda
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yuichi Azumi
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Hiromi Kawamura
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
8
|
Varennes O, Mentaverri R, Duflot T, Kauffenstein G, Objois T, Lenglet G, Avondo C, Morisseau C, Brazier M, Kamel S, Six I, Bellien J. The Metabolism of Epoxyeicosatrienoic Acids by Soluble Epoxide Hydrolase Is Protective against the Development of Vascular Calcification. Int J Mol Sci 2020; 21:ijms21124313. [PMID: 32560362 PMCID: PMC7352784 DOI: 10.3390/ijms21124313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
This study addressed the hypothesis that soluble epoxide hydrolase (sEH), which metabolizes endothelium-derived epoxyeicosatrienoic acids, plays a role in vascular calcification. The sEH inhibitor trans-4-(4-(3-adamantan-1-yl-ureido)-cyclohexyloxy)-benzoic acid (t-AUCB) potentiated the increase in calcium deposition of rat aortic rings cultured in high-phosphate conditions. This was associated with increased tissue-nonspecific alkaline phosphatase activity and mRNA expression level of the osteochondrogenic marker Runx2. The procalcifying effect of t-AUCB was prevented by mechanical aortic deendothelialization or inhibition of the production and action of epoxyeicosatrienoic acids using the cytochrome P450 inhibitor fluconazole and the antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), respectively. Similarly, exogenous epoxyeicosatrienoic acids potentiated the calcification of rat aortic rings through a protein kinase A (PKA)-dependent mechanism and of human aortic vascular smooth muscle cells when sEH was inhibited by t-AUCB. Finally, a global gene expression profiling analysis revealed that the mRNA expression level of sEH was decreased in human carotid calcified plaques compared to adjacent lesion-free sites and was inversely correlated with Runx2 expression. These results show that sEH hydrolase plays a protective role against vascular calcification by reducing the bioavailability of epoxyeicosatrienoic acids.
Collapse
Affiliation(s)
- Olivier Varennes
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Romuald Mentaverri
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Department of Biochemistry, Amiens-Picardie University Hospital, 80054 Amiens, France
| | - Thomas Duflot
- Department of Pharmacology, Rouen University Hospital, CEDEX 1, 76031 Rouen, France;
- INSERM U1096, Normandy University, UNIROUEN, F-76000 Rouen, France
| | | | - Thibaut Objois
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Gaëlle Lenglet
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Carine Avondo
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Christophe Morisseau
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
| | - Michel Brazier
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
| | - Saïd Kamel
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Department of Biochemistry, Amiens-Picardie University Hospital, 80054 Amiens, France
| | - Isabelle Six
- MP3CV, EA7517, CURS (Centre de Recherche Universitaire en Santé), University of Picardie Jules Verne, 80025 Amiens, France; (O.V.); (R.M.); (T.O.); (G.L.); (C.A.); (M.B.); (S.K.)
- Correspondence: (I.S.); (J.B.); Tel.: +33-2-32-88-90-30 (J.B.); Fax: +33-2-32-88-91-16 (J.B)
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital, CEDEX 1, 76031 Rouen, France;
- INSERM U1096, Normandy University, UNIROUEN, F-76000 Rouen, France
- Correspondence: (I.S.); (J.B.); Tel.: +33-2-32-88-90-30 (J.B.); Fax: +33-2-32-88-91-16 (J.B)
| |
Collapse
|
9
|
Chen Y, Zhao X, Wu H. Arterial Stiffness: A Focus on Vascular Calcification and Its Link to Bone Mineralization. Arterioscler Thromb Vasc Biol 2020; 40:1078-1093. [PMID: 32237904 DOI: 10.1161/atvbaha.120.313131] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the association between vascular calcification and arterial stiffness, highlighting the important genetic factors, systemic and local microenvironmental signals, and underlying signaling pathways and molecular regulators of vascular calcification. Elevated oxidative stress appears to be a common procalcification factor that induces osteogenic differentiation and calcification of vascular cells in a variety of disease conditions such as atherosclerosis, diabetes mellitus, and chronic kidney disease. Thus, the role of oxidative stress and oxidative stress-regulated signals in vascular smooth muscle cells and their contributions to vascular calcification are highlighted. In relation to diabetes mellitus, the regulation of both hyperglycemia and increased protein glycosylation, by AGEs (advanced glycation end products) and O-linked β-N-acetylglucosamine modification, and its role in enhancing intracellular pathophysiological signaling that promotes osteogenic differentiation and calcification of vascular smooth muscle cells are discussed. In the context of chronic kidney disease, this review details the role of calcium and phosphate homeostasis, parathyroid hormone, and specific calcification inhibitors in regulating vascular calcification. In addition, the impact of the systemic and microenvironmental factors on respective intrinsic signaling pathways that promote osteogenic differentiation and calcification of vascular smooth muscle cells and osteoblasts are compared and contrasted, aiming to dissect the commonalities and distinctions that underlie the paradoxical vascular-bone mineralization disorders in aging and diseases.
Collapse
Affiliation(s)
- Yabing Chen
- From the Departments of Pathology (Y.C.), The University of Alabama at Birmingham.,Birmingham Veterans Affairs Medical Center, Research Department, AL (Y.C.)
| | - Xinyang Zhao
- Biochemistry (X.Z.), The University of Alabama at Birmingham
| | - Hui Wu
- Pediatric Dentistry (H.W.), The University of Alabama at Birmingham
| |
Collapse
|
10
|
Icariin Promotes the Osteogenic Action of BMP2 by Activating the cAMP Signaling Pathway. Molecules 2019; 24:molecules24213875. [PMID: 31661767 PMCID: PMC6864436 DOI: 10.3390/molecules24213875] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
Icariin (ICA) is the main active flavonoid glucoside from herbs of the genus Epimedium; in traditional Chinese medicine, these herbs have long been prescribed for the treatment of bone fractures and osteoporosis. Several studies have shown that treatment with ICA can increase osteogenic differentiation and reduce bone loss in vivo and in vitro. However, the definite signaling pathway of this osteogenic effect remains unclear. In this study, we selected bone morphogenetic protein 2 (BMP2)-induced osteoblastic differentiation of multipotent mesenchymal progenitor C2C12 cells as a model of osteoblast differentiation. We investigated the effects of ICA on C2C12 cells osteogenic differentiation and the underlying molecular mechanisms. We found that ICA could enhance BMP2-mediated osteoblastic differentiation of C2C12 cells in a dose-dependent manner. Treatment with ICA activated the cAMP/PKA/CREB signaling axis in a time-dependent manner. Blocking cAMP signaling using the PKA selective inhibitor H89 significantly inhibited the stimulatory effect of ICA on osteogenesis. Therefore, the osteoinductive potential and the low cost of ICA indicate that it is a promising alternative treatment or promoter for enhancing the therapeutic effects of BMP2.
Collapse
|
11
|
Abstract
Understanding of vitamin D physiology is important because about half of the population is being diagnosed with deficiency and treated with supplements. Clinical guidelines were developed based on observational studies showing an association between low serum levels and increased cardiovascular risk. However, new randomized controlled trials have failed to confirm any cardiovascular benefit from supplementation in the general population. A major concern is that excess vitamin D is known to cause calcific vasculopathy and valvulopathy in animal models. For decades, administration of vitamin D has been used in rodents as a reliable experimental model of vascular calcification. Technically, vitamin D is a misnomer. It is not a true vitamin because it can be synthesized endogenously through ultraviolet exposure of the skin. It is a steroid hormone that comes in 3 forms that are sequential metabolites produced by hydroxylases. As a fat-soluble hormone, the vitamin D-hormone metabolites must have special mechanisms for delivery in the aqueous bloodstream. Importantly, endogenously synthesized forms are carried by a binding protein, whereas dietary forms are carried within lipoprotein particles. This may result in distinct biodistributions for sunlight-derived versus supplement-derived vitamin D hormones. Because the cardiovascular effects of vitamin D hormones are not straightforward, both toxic and beneficial effects may result from current recommendations.
Collapse
Affiliation(s)
- Linda L Demer
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.) .,Physiology (L.L.D., Y.T.).,Bioengineering (L.L.D.)
| | - Jeffrey J Hsu
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.)
| | - Yin Tintut
- From the Departments of Medicine (L.L.D., J.J.H., Y.T.).,Physiology (L.L.D., Y.T.).,Orthopaedic Surgery (Y.T.), University of California, Los Angeles
| |
Collapse
|
12
|
Anttila E, Balzani D, Desyatova A, Deegan P, MacTaggart J, Kamenskiy A. Mechanical damage characterization in human femoropopliteal arteries of different ages. Acta Biomater 2019; 90:225-240. [PMID: 30928732 PMCID: PMC6532398 DOI: 10.1016/j.actbio.2019.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022]
Abstract
Endovascular treatment of Peripheral Arterial Disease (PAD) is notorious for high failure rates, and interaction between the arterial wall and the repair devices plays a significant role. Computational modeling can help improve clinical outcomes of these interventions, but it requires accurate inputs of elastic and damage characteristics of the femoropopliteal artery (FPA) which are currently not available. Fresh human FPAs from n = 104 tissue donors 14-80 years old were tested using planar biaxial extension to capture elastic and damage characteristics. Damage initiation stretches and stresses were determined for both longitudinal and circumferential directions, and their correlations with age and risk factors were assessed. Two and four-fiber-family invariant-based constitutive models augmented with damage functions were used to describe stress softening with accumulating damage. In FPAs younger than 50 years, damage began accumulating after 1.51 ± 0.13 and 1.49 ± 0.11 stretch, or 196 ± 110 kPa and 239 ± 79 kPa Cauchy stress in the longitudinal and circumferential directions, respectively. In FPAs older than 50 years, damage initiation stretches and stresses decreased to 1.27 ± 0.09 (106 ± 52 kPa) and 1.26 ± 0.09 (104 ± 59 kPa), respectively. Damage manifested primarily as tears at the internal and external elastic laminae and within the tunica media layer. Higher body mass index and presence of diabetes were associated with lower damage initiation stretches and higher stresses. The selected constitutive models were able to accurately portray the FPA behavior in both elastic and inelastic domains, and properties were derived for six age groups. Presented data can help improve fidelity of computational models simulating endovascular PAD repairs that involve arterial damage. STATEMENT OF SIGNIFICANCE: This manuscript describes inelastic, i.e. damage, behavior of human femoropopliteal arteries, and provides values for three constitutive models simulating this behavior computationally. Using a set of 104 human FPAs 14-80 years old, we have investigated stress and stretch levels corresponding to damage initiation, and have studied how these damage characteristics change across different age groups. Presented inelastic arterial characteristics are important for computational simulations modeling balloon angioplasty and stenting of peripheral arterial disease lesions.
Collapse
Affiliation(s)
- Eric Anttila
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel Balzani
- Continuum Mechanics, Ruhr-University Bochum, Bochum, Germany
| | - Anastasia Desyatova
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Deegan
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason MacTaggart
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Bone Regenerative Engineering Using a Protein Kinase A-Specific Cyclic AMP Analogue Administered for Short Term. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0063-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
de Castro BBA, do Carmo WB, de Albuquerque Suassuna PG, Carminatti M, Brito JB, Dominguez WV, de Oliveira IB, Jorgetti V, Custodio MR, Sanders-Pinheiro H. Effect of cross-linked chitosan iron (III) on vascular calcification in uremic rats. Exp Biol Med (Maywood) 2018; 243:796-802. [PMID: 29763365 DOI: 10.1177/1535370218775035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cross-linked chitosan iron (III) is a chitin-derived polymer with a chelating effect on phosphorus, but it is untested in vascular calcification. We evaluated this compound's ability to reduce hyperphosphatemia and its effect on vascular calcification in uremic rats using an adenine-based, phosphorus-rich diet for seven weeks. We used a control group to characterize the uremia. Uremic rats were divided according the treatment into chronic kidney disease, CKD-Ch-Fe(III)CL (CKD-Ch), CKD-calcium carbonate, or CKD-sevelamer groups. We measured creatinine, phosphorus, calcium, alkaline phosphatase, phosphorus excretion fraction, parathyroid hormone, and fibroblast growth factor 23. Vascular calcification was assessed using the aortic calcium content, and a semi-quantitative analysis was performed using Von Kossa and hematoxylin-eosin staining. At week seven, rats in the chronic kidney disease group had higher creatinine, phosphorus, phosphorus excretion fraction, calcium, alkaline phosphatase, fibroblast growth factor 23, and aortic calcium content than those in the Control group. Treatments with cross-linked chitosan iron (III) and calcium carbonate prevented phosphorus increase (20%-30% reduction). The aortic calcium content was lowered by 88% and 85% in the CKD-Ch and CKD-sevelamer groups, respectively. The prevalence of vascular changes was higher in the chronic kidney disease and CKD-calcium carbonate (62.5%) groups than in the CKD-Ch group (37.5%). In conclusion, cross-linked chitosan iron (III) had a phosphorus chelating effect similar to calcium carbonate already available for clinical use, and prevented calcium accumulation in the aorta. Impact statement Vascular calcification (VC) is a common complication due to CKD-related bone and mineral disorder (BMD) and is characterized by deposition of calcium in vessels. Effective therapies are not yet available but new phosphorus chelators can prevent complications from CV. We tested the effect of chitosan, a new phosphorus chelator, on the VC of uremic animals. It has recently been proposed that chitosan treatment may be effective in the treatment of hyperphosphataemia. However, its action on vascular calcification has not been investigated yet. In this study, we demonstrated that chitosan reduced the calcium content in the aorta, suggesting that this may be a therapeutic approach in the treatment of hyperphosphatemia by preventing CV.
Collapse
Affiliation(s)
- Barbara Bruna Abreu de Castro
- 1 Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Reproductive Biology Center (CBR), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036900, Brazil.,2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| | - Wander Barros do Carmo
- 1 Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Reproductive Biology Center (CBR), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036900, Brazil.,2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| | - Paulo Giovani de Albuquerque Suassuna
- 1 Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Reproductive Biology Center (CBR), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036900, Brazil.,2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| | - Moises Carminatti
- 2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| | - Julia Bianchi Brito
- 1 Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Reproductive Biology Center (CBR), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036900, Brazil.,2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| | - Wagner Vasques Dominguez
- 3 Laboratory of Renal Physiopathology, University of São Paulo Medical School, University of São Paulo, São Paulo 01246903, Brazil
| | - Ivone Braga de Oliveira
- 3 Laboratory of Renal Physiopathology, University of São Paulo Medical School, University of São Paulo, São Paulo 01246903, Brazil
| | - Vanda Jorgetti
- 3 Laboratory of Renal Physiopathology, University of São Paulo Medical School, University of São Paulo, São Paulo 01246903, Brazil
| | - Melani Ribeiro Custodio
- 3 Laboratory of Renal Physiopathology, University of São Paulo Medical School, University of São Paulo, São Paulo 01246903, Brazil
| | - Helady Sanders-Pinheiro
- 1 Laboratory of Experimental Nephrology (LABNEX) and Interdisciplinary Nucleus of Laboratory Animal Studies (NIDEAL), Reproductive Biology Center (CBR), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036900, Brazil.,2 Interdisciplinary Nucleus for Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF), Juiz de Fora 36036330, Brazil
| |
Collapse
|
15
|
Shen J, Zhang N, Lin YN, Xiang P, Liu XB, Shan PF, Hu XY, Zhu W, Tang YL, Webster KA, Cai R, Schally AV, Wang J, Yu H. Regulation of Vascular Calcification by Growth Hormone-Releasing Hormone and Its Agonists. Circ Res 2018; 122:1395-1408. [PMID: 29618597 DOI: 10.1161/circresaha.117.312418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.
Collapse
Affiliation(s)
- Jian Shen
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Ning Zhang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yi-Nuo Lin
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - PingPing Xiang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Xian-Bao Liu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | | | - Xin-Yang Hu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Wei Zhu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yao-Liang Tang
- Vascular Biology Center, Georgia Regents University, Augusta (Y.-l.T.)
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
| | - Renzhi Cai
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Andrew V Schally
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Jian'an Wang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Hong Yu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| |
Collapse
|
16
|
Leszczynska A, Murphy JM. Vascular Calcification: Is it rather a Stem/Progenitor Cells Driven Phenomenon? Front Bioeng Biotechnol 2018; 6:10. [PMID: 29479528 PMCID: PMC5811524 DOI: 10.3389/fbioe.2018.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular calcification (VC) has witnessed a surge of interest. Vasculature is virtually an omnipresent organ and has a notably high capacity for repair throughout embryonic and adult life. Of the vascular diseases, atherosclerosis is a leading cause of morbidity and mortality on account of ectopic cartilage and bone formation. Despite the identification of a number of risk factors, all the current theories explaining pathogenesis of VC in atherosclerosis are far from complete. The most widely accepted response to injury theory and smooth muscle transdifferentiation to explain the VC observed in atherosclerosis is being challenged. Recent focus on circulating and resident progenitor cells in the vasculature and their role in atherogenesis and VC has been the driving force behind this review. This review discusses intrinsic cellular players contributing to fate determination of cells and tissues to form ectopic cartilage and bone formation.
Collapse
Affiliation(s)
- Aleksandra Leszczynska
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - J Mary Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
17
|
Kamenskiy A, Poulson W, Sim S, Reilly A, Luo J, MacTaggart J. Prevalence of Calcification in Human Femoropopliteal Arteries and its Association with Demographics, Risk Factors, and Arterial Stiffness. Arterioscler Thromb Vasc Biol 2018; 38:e48-e57. [PMID: 29371245 DOI: 10.1161/atvbaha.117.310490] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Arterial calcification and stiffening increase the risk of reconstruction failure, amputation, and mortality in patients with peripheral arterial disease, but underlying mechanisms and prevalence are unclear. APPROACH AND RESULTS Fresh human femoropopliteal arteries were obtained from n=431 tissue donors aged 13 to 82 years (mean age, 53±16 years) recording the in situ longitudinal prestretch. Arterial diameter, wall thickness, and opening angles were measured optically, and stiffness was assessed using planar biaxial extension and constitutive modeling. Histological features were determined using transverse and longitudinal Verhoeff-Van Gieson and Alizarin stains. Medial calcification was quantified using a 7-stage grading scale and was correlated with structural and mechanical properties and clinical characteristics. Almost half (46%) of the femoropopliteal arteries had identifiable medial calcification. Older arteries were more calcified, but small calcium deposits were observed in arteries as young as 18 years old. After controlling for age, positive correlations were observed between calcification, diabetes mellitus, dyslipidemia, and body mass index. Tobacco use demonstrated a negative correlation. Calcified arteries were larger in diameter but had smaller circumferential opening angles. They were also stiffer longitudinally and circumferentially and had thinner tunica media and external elastic lamina with more discontinuous elastic fibers. CONCLUSIONS Although aging is the dominant risk factor for femoropopliteal artery calcification and stiffening, these processes seem to be linked and can begin at a young age. Calcification is associated with the presence of certain risk factors and with elastic fiber degradation, suggesting overlapping molecular pathways that require further investigation.
Collapse
Affiliation(s)
- Alexey Kamenskiy
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| | - William Poulson
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Sylvie Sim
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Austin Reilly
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jiangtao Luo
- From the Department of Surgery, University of Nebraska Medical Center, Omaha
| | - Jason MacTaggart
- From the Department of Surgery, University of Nebraska Medical Center, Omaha.
| |
Collapse
|
18
|
Wang C, Zhou Y, Guan X, Yu M, Wang H. β-Estradiol antagonizes the inhibitory effects of caffeine in BMMSCs via the ERβ-mediated cAMP-dependent PKA pathway. Toxicology 2017; 394:1-10. [PMID: 29154944 DOI: 10.1016/j.tox.2017.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/27/2022]
Abstract
Caffeine negatively mediates bone homeostasis to cause bone loss and even osteoporosis. This phenomenon occurs in postmenopausal women with estrogen deficiency but not in healthy young women. In this study, we determined whether the effects of caffeine on bone homeostasis were antagonized by estrogen and the underlying mechanisms. In particular, because high levels of cAMP, an important second messenger, have been observed in postmenopausal women suffering from osteoporosis, we examined the role of cAMP in the effects of caffeine on bone homeostasis. In vivo study showed that caffeine accelerated bone loss in osteoporotic rats, whereas β-estradiol blunted the negative effect of caffeine on bone. In vitro study, we harvested bone marrow-derived mesenchymal stromal cells (BMMSCs) from osteoporotic rats. We found that caffeine and β-estradiol inversely affected BMMCSs proliferation, apoptosis, osteogenic lineage commitment, extracellular matrix synthesis and mineralization. These parameters were assessed according to the expression levels of osteogenic markers, alkaline phosphatase activity and Alizarin red staining. The deleterious effects of caffeine on BMMSCs were blunted by β-estradiol. The cAMP-dependent PKA pathway was found to be involved in regulating caffeine/β-estradiol-mediated cell growth, survival and osteogenesis. Additionally, after estrogen receptor (ER) β knockdown, the antagonistic effects of β-estradiol on caffeine were nearly abolished. These results indicated that by binding to ERβ, β-estradiol antagonizes the negative impacts of caffeine on cell growth and osteogenic differentiation in BMMSCs through the cAMP-dependent PKA signaling pathway.
Collapse
Affiliation(s)
- Chaowei Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou, 310000, China
| | - Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou, 310000, China.
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou, 310000, China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou, 310000, China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou, 310000, China.
| |
Collapse
|
19
|
Msx2 is required for vascular smooth muscle cells osteoblastic differentiation but not calcification in insulin-resistant ob/ob mice. Atherosclerosis 2017; 265:14-21. [DOI: 10.1016/j.atherosclerosis.2017.07.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/11/2017] [Accepted: 07/27/2017] [Indexed: 11/20/2022]
|
20
|
Ifegwu OC, Awale G, Rajpura K, Lo KWH, Laurencin CT. Harnessing cAMP signaling in musculoskeletal regenerative engineering. Drug Discov Today 2017; 22:1027-1044. [PMID: 28359841 PMCID: PMC7440772 DOI: 10.1016/j.drudis.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/20/2017] [Indexed: 01/28/2023]
Abstract
This paper reviews the most recent findings in the search for small molecule cyclic AMP analogues regarding their potential use in musculoskeletal regenerative engineering.
Collapse
Affiliation(s)
- Okechukwu Clinton Ifegwu
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Guleid Awale
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT 06030, USA
| | - Komal Rajpura
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA
| | - Cato T Laurencin
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA.
| |
Collapse
|
21
|
Byon CH, Heath JM, Chen Y. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 2016; 9:244-253. [PMID: 27591403 PMCID: PMC5011184 DOI: 10.1016/j.redox.2016.08.015] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS), which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2) exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC) undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.
Collapse
Affiliation(s)
| | - Jack M Heath
- Department of Pathology, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Hsu JJ, Lim J, Tintut Y, Demer LL. Cell-matrix mechanics and pattern formation in inflammatory cardiovascular calcification. Heart 2016; 102:1710-1715. [PMID: 27406839 DOI: 10.1136/heartjnl-2016-309667] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022] Open
Abstract
Calcific diseases of the cardiovascular system, such as atherosclerotic calcification and calcific aortic valve disease, are widespread and clinically significant, causing substantial morbidity and mortality. Vascular cells, like bone cells, interact with their matrix substrate through molecular signals, and through biomechanical signals, such as traction forces transmitted from cytoskeleton to matrix. The interaction of contractile vascular cells with their matrix may be one of the most important factors controlling pathological mineralisation of the artery wall and cardiac valves. In many respects, the matricrine and matrix mechanical changes in calcific vasculopathy and valvulopathy resemble those occurring in embryonic bone development and normal bone mineralisation. The matrix proteins provide a microenvironment for propagation of crystal growth and provide mechanical cues to the cells that direct differentiation. Small contractions of the cytoskeleton may tug on integrin links to sites on matrix proteins, and thereby sense the stiffness, possibly through deformation of binding proteins causing release of differentiation factors such as products of the members of the transforming growth factor-β superfamily. Inflammation and matrix characteristics are intertwined: inflammation alters the matrix such as through matrix metalloproteinases, while matrix mechanical properties affect cellular sensitivity to inflammatory cytokines. The adhesive properties of the matrix also regulate self-organisation of vascular cells into patterns through reaction-diffusion phenomena and left-right chirality. In this review, we summarise the roles of extracellular matrix proteins and biomechanics in the development of inflammatory cardiovascular calcification.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Jina Lim
- Department of Pediatrics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Orthopaedic Surgery, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine, Division of Cardiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Physiology, University of California, Los Angeles (UCLA), Los Angeles, California, USA Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
23
|
Li X, Lim J, Lu J, Pedego TM, Demer L, Tintut Y. Protective Role of Smad6 in Inflammation-Induced Valvular Cell Calcification. J Cell Biochem 2016; 116:2354-64. [PMID: 25864564 DOI: 10.1002/jcb.25186] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/01/2015] [Indexed: 12/23/2022]
Abstract
Calcific aortic vascular and valvular disease (CAVD) is associated with hyperlipidemia, the effects of which occur through chronic inflammation. Evidence suggests that inhibitory small mothers against decapentaplegic (I-Smads; Smad6 and 7) regulate valve embryogenesis and may serve as a mitigating factor in CAVD. However, whether I-Smads regulate inflammation-induced calcific vasculopathy is not clear. Therefore, we investigated the role of I-Smads in atherosclerotic calcification. Results showed that expression of Smad6, but not Smad7, was reduced in aortic and valve tissues of hyperlipidemic compared with normolipemic mice, while expression of tumor necrosis factor alpha (TNF-α) was upregulated. To test whether the effects are in response to inflammatory cytokines, we isolated murine aortic valve leaflets and cultured valvular interstitial cells (mVIC) from the normolipemic mice. By immunochemistry, mVICs were strongly positive for vimentin, weakly positive for smooth muscle α actin, and negative for an endothelial cell marker. TNF-α upregulated alkaline phosphatase (ALP) activity and matrix mineralization in mVICs. By gene expression analysis, TNF-α significantly upregulated bone morphogenetic protein 2 (BMP-2) expression while downregulating Smad6 expression. Smad7 expression was not significantly affected. To further test the role of Smad6 on TNF-α-induced valvular cell calcification, we knocked down Smad6 expression using lentiviral transfection. In cells transfected with Smad6 shRNA, TNF-α further augmented ALP activity, expression of BMP-2, Wnt- and redox-regulated genes, and matrix mineralization compared with the control cells. These findings suggest that TNF-α induces valvular and vascular cell calcification, in part, by specifically reducing the expression of a BMP-2 signaling inhibitor, Smad6.
Collapse
Affiliation(s)
- Xin Li
- Department of Medicine, University of California, Los Angeles, California
| | - Jina Lim
- Departments of Pediatrics, University of California, Los Angeles, California
| | - Jinxiu Lu
- Department of Physiology, University of California, Los Angeles, California
| | - Taylor M Pedego
- Department of Medicine, University of California, Los Angeles, California
| | - Linda Demer
- Department of Medicine, University of California, Los Angeles, California.,Department of Physiology, University of California, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Yin Tintut
- Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
24
|
Vasuri F, Fittipaldi S, Pacilli A, Buzzi M, Pasquinelli G. The incidence and morphology of Monckeberg's medial calcification in banked vascular segments from a monocentric donor population. Cell Tissue Bank 2016; 17:219-23. [PMID: 26757897 DOI: 10.1007/s10561-016-9543-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Little is known about the real incidence and the clinical relevance of the enigmatic Monckeberg's medial calcification in the patency of the femoral artery allograft. Here we present a retrospective study on 143 multiorgan donors (mean age 38 years, range 14-59 years), to describe the incidence and the morphological features of vascular calcifications in banked femoral arteries suitable for clinical use. In the present series, focal vascular calcifications were present in 36 (25 %) cases, 23 cases localized in the intima, 7 in the media, and 6 were mixed. No correlation was found between the incidence of calcifications and the classical cardiovascular clinical risk factors (n = 9); only hypertension correlated with the medial localization, but not with the incidence, of the calcification (P = 0.017). While the macroscopic exclusion criteria of vascular grafts include atheromatous and not-atheromatous lesions, we ignore the actual impact of Monckeberg's medial calcification on vessel transplantation and allograft life. In our opinion this is a very important topic, since when the histological criteria for Monckeberg's calcification diagnosis are used, 25 % of our young donors population was affected. Whether Monckeberg's medial calcification is a stable arterial condition, apparently underestimated in the general population, or a dynamic process evolving with age and atherosclerosis, or a banking-related vascular alteration, still remain an open issue deserving further studies with subjects of different ages.
Collapse
Affiliation(s)
- Francesco Vasuri
- Unit of Surgical Pathology, Department of Specialty, Diagnostic and Experimental Medicine (DIMES), S.Orsola-Malpighi Hospital, Bologna University, via Massarenti 9, 40138, Bologna, Italy
| | - Silvia Fittipaldi
- Unit of Surgical Pathology, Department of Specialty, Diagnostic and Experimental Medicine (DIMES), S.Orsola-Malpighi Hospital, Bologna University, via Massarenti 9, 40138, Bologna, Italy
| | - Annalisa Pacilli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marina Buzzi
- Service of Immunohematology and Transfusional Medicine, S.Orsola-Malpighi Hospital, Bologna University, Bologna, Italy
| | - Gianandrea Pasquinelli
- Unit of Surgical Pathology, Department of Specialty, Diagnostic and Experimental Medicine (DIMES), S.Orsola-Malpighi Hospital, Bologna University, via Massarenti 9, 40138, Bologna, Italy.
| |
Collapse
|
25
|
Davaine JM, Quillard T, Chatelais M, Guilbaud F, Brion R, Guyomarch B, Brennan MÁ, Heymann D, Heymann MF, Gouëffic Y. Bone Like Arterial Calcification in Femoral Atherosclerotic Lesions: Prevalence and Role of Osteoprotegerin and Pericytes. Eur J Vasc Endovasc Surg 2015; 51:259-67. [PMID: 26652270 DOI: 10.1016/j.ejvs.2015.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/05/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE/BACKGROUND Arterial calcification, a process that mimics bone formation, is an independent risk factor of cardiovascular morbidity and mortality, and has a significant impact on surgical and endovascular procedures and outcomes. Research efforts have focused mainly on the coronary arteries, while data regarding the femoral territory remain scarce. METHODS Femoral endarterectomy specimens, clinical data, and plasma from a cohort of patients were collected prospectively. Histological analysis was performed to characterize the cellular populations present in the atherosclerotic lesions, and that were potentially involved in the formation of bone like arterial calcification known as osteoid metaplasia (OM). Enzyme linked immunosorbent assays and cell culture assays were conducted in order to understand the cellular and molecular mechanisms underlying the formation of OM in the lesions. RESULTS Twenty-eight of the 43 femoral plaques (65%) displayed OM. OM included osteoblast and osteoclast like cells, but very few of the latter exhibited the functional ability to resorb mineral tissue. As in bone, osteoprotegerin (OPG) was significantly associated with the presence of OM (p = .04). Likewise, a high plasma OPG/receptor activator for the nuclear factor kappa B ligand (RANKL) ratio was significantly associated with the presence of OM (p = .03). At the cellular level, there was a greater presence of pericytes in OM+ compared with OM- lesions (5.59 ± 1.09 vs. 2.42 ± 0.58, percentage of area staining [region of interest]; p = .04); in vitro, pericytes were able to inhibit the osteoblastic differentiation of human mesenchymal stem cells, suggesting that they are involved in regulating arterial calcification. CONCLUSION These results suggest that bone like arterial calcification (OM) is highly prevalent at femoral level. Pericyte cells and the OPG/RANK/RANKL triad seem to be critical to the formation of this ectopic osteoid tissue and represent interesting potential therapeutic targets to reduce the clinical impact of arterial calcification.
Collapse
Affiliation(s)
- J-M Davaine
- INSERM, UMR 957, Nantes F-44035, France; Service de Chirurgie Vasculaire, Centre Hospitalier René-Dubos, Pontoise, France; Service de Chirurgie Vasculaire, CHU Pitié-Salpêtrière, Paris, France
| | | | - M Chatelais
- INSERM, UMR 957, Nantes F-44035, France; Université de Nantes, Nantes Atlantique Universités, Nantes F-44035, France
| | - F Guilbaud
- INSERM, UMR 957, Nantes F-44035, France; Université de Nantes, Nantes Atlantique Universités, Nantes F-44035, France; Centre Hospitalier Universitaire, Nantes, France
| | - R Brion
- INSERM, UMR 957, Nantes F-44035, France; Université de Nantes, Nantes Atlantique Universités, Nantes F-44035, France; Centre Hospitalier Universitaire, Nantes, France
| | - B Guyomarch
- Centre Hospitalier Universitaire, Nantes, France; Institut du Thorax, Nantes, France
| | | | - D Heymann
- INSERM, UMR 957, Nantes F-44035, France; Université de Nantes, Nantes Atlantique Universités, Nantes F-44035, France; Centre Hospitalier Universitaire, Nantes, France
| | - M-F Heymann
- INSERM, UMR 957, Nantes F-44035, France; Department of Medical Oncology, University of Sheffield, Sheffield, UK.
| | - Y Gouëffic
- Centre Hospitalier Universitaire, Nantes, France; Institut du Thorax, Nantes, France.
| |
Collapse
|
26
|
Li C, Wang W, Xie L, Luo X, Cao X, Wan M. Lipoprotein receptor-related protein 6 is required for parathyroid hormone-induced Sost suppression. Ann N Y Acad Sci 2015; 1364:62-73. [PMID: 25847683 DOI: 10.1111/nyas.12750] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 02/05/2023]
Abstract
Parathyroid hormone (PTH) suppresses the expression of the bone formation inhibitor sclerostin (Sost) in osteocytes by inducing nuclear accumulation of histone deacetylases (HDACs) to inhibit the myocyte enhancer factor 2 (MEF2)-dependent Sost bone enhancer. Previous studies revealed that lipoprotein receptor-related protein 6 (LRP6) mediates the intracellular signaling activation and the anabolic bone effect of PTH. Here, we investigated whether LRP6 mediates the inhibitory effect of PTH on Sost using an osteoblast-specific Lrp6-knockout (LRP6-KO) mouse model. An increased level of Sost mRNA expression was detected in femur tissue from LRP6-KO mice, compared to wild-type littermates. The number of osteocytes expressing sclerostin protein was also increased in bone tissue of LRP6-KO littermates, indicating a negative regulatory role of LRP6 on Sost/sclerostin. In wild-type littermates, intermittent PTH treatment significantly suppressed Sost mRNA expression in bone and the number of sclerostin(+) osteocytes, while the effect of PTH was much less significant in LRP6-KO mice. Additionally, PTH-induced downregulation of MEF2C and 2D, as well as HDAC changes in osteocytes, were abrogated in LRP6-KO mice. These data indicate that LRP6 is required for PTH suppression of Sost expression.
Collapse
Affiliation(s)
- Changjun Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weishan Wang
- Department of Orthopaedics, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Liang Xie
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xianghang Luo
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
27
|
Mahmut A, Boulanger MC, Bouchareb R, Hadji F, Mathieu P. Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor. Cardiovasc Res 2015; 106:109-20. [PMID: 25644539 DOI: 10.1093/cvr/cvv027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS In this study, we sought to determine the role of ecto-nucleotidases and adenosine receptors in calcific aortic valve disease (CAVD). The expression of ecto-nucleotidases, which modify the levels of extracellular nucleotides/nucleosides, may control the mineralization of valve interstitial cells (VICs). We hypothesized that expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1), which generates AMP, and 5'-nucleotidase (CD73), an enzyme using AMP as a substrate to produce adenosine, may co-regulate the mineralization of the aortic valve. METHODS AND RESULTS We have investigated the expression of NPP1 and 5'-nucleotidase in CAVD tissues and determined the role of these ecto-nucleotidases on the mineralization of isolated VICs. In CAVD tissues (stenotic and sclerotic), we documented that NPP1 and 5'-nucleotidase were overexpressed by VICs. In isolated VICs, we found that mineralization induced by adenosine triphosphate was decreased by silencing NPP1 and 5'-nucleotidase, suggesting a role for adenosine. Adenosine and specific A2a adenosine receptor (A2aR) agonist increased the mineralization of VICs. Silencing of A2aR in human VICs and the use of A2aR(-/-) mouse VICs confirmed that A2aR promotes the mineralization of cells. Also, A2aR-mediated mineralization was negated by the transfection of a mutant dominant-negative Gαs vector. Through several lines of evidence, we next documented that adenosine stimulated the mineralization of VICs through a cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway, and found that CREB positively regulated the expression of NPP1 in a positive feedback loop by physically interacting with the promoter. CONCLUSION Expression of NPP1 and 5'-nucleotidase by VICs promotes the mineralization of the aortic valve through A2aR and a cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Ablajan Mahmut
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| | - Rihab Bouchareb
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| | - Fayez Hadji
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| | - Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| |
Collapse
|
28
|
Viegas CSB, Rafael MS, Enriquez JL, Teixeira A, Vitorino R, Luís IM, Costa RM, Santos S, Cavaco S, Neves J, Macedo AL, Willems BAG, Vermeer C, Simes DC. Gla-rich protein acts as a calcification inhibitor in the human cardiovascular system. Arterioscler Thromb Vasc Biol 2015; 35:399-408. [PMID: 25538207 DOI: 10.1161/atvbaha.114.304823] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Vascular and valvular calcifications are pathological processes regulated by resident cells, and depending on a complex interplay between calcification promoters and inhibitors, resembling skeletal metabolism. Here, we study the role of the vitamin K-dependent Gla-rich protein (GRP) in vascular and valvular calcification processes. APPROACH AND RESULTS Immunohistochemistry and quantitative polymerase chain reaction showed that GRP expression and accumulation are upregulated with calcification simultaneously with osteocalcin and matrix Gla protein (MGP). Using conformation-specific antibodies, both γ-carboxylated GRP and undercarboxylated GRP species were found accumulated at the sites of mineral deposits, whereas undercarboxylated GRP was predominant in calcified aortic valve disease valvular interstitial cells. Mineral-bound GRP, MGP, and fetuin-A were identified by mass spectrometry. Using an ex vivo model of vascular calcification, γ-carboxylated GRP but not undercarboxylated GRP was shown to inhibit calcification and osteochondrogenic differentiation through α-smooth muscle actin upregulation and osteopontin downregulation. Immunoprecipitation assays showed that GRP is part of an MGP-fetuin-A complex at the sites of valvular calcification. Moreover, extracellular vesicles released from normal vascular smooth muscle cells are loaded with GRP, MGP, and fetuin-A, whereas under calcifying conditions, released extracellular vesicles show increased calcium loading and GRP and MGP depletion. CONCLUSIONS GRP is an inhibitor of vascular and valvular calcification involved in calcium homeostasis. Its function might be associated with prevention of calcium-induced signaling pathways and direct mineral binding to inhibit crystal formation/maturation. Our data show that GRP is a new player in mineralization competence of extracellular vesicles possibly associated with the fetuin-A-MGP calcification inhibitory system. GRP activity was found to be dependent on its γ-carboxylation status, with potential clinical relevance.
Collapse
Affiliation(s)
- Carla S B Viegas
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Marta S Rafael
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - José L Enriquez
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Alexandra Teixeira
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Rui Vitorino
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Inês M Luís
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Rúben M Costa
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Sofia Santos
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Sofia Cavaco
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - José Neves
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Anjos L Macedo
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Brecht A G Willems
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Cees Vermeer
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.)
| | - Dina C Simes
- From the Centre of Marine Sciences (CCMAR) (C.S.B.V., M.S.R., I.M.L., R.M.C., S.S., S.C., D.C.S.), GenoGla Diagnostics (C.S.B.V., D.C.S.), University of Algarve, Faro, Portugal; Department of Histopathology, Algarve Medical Centre, Faro, Portugal (J.L.E., A.T.); Department of Chemistry, QOPNA, Mass Spectrometry Center, University of Aveiro, Aveiro, Portugal (R.V.); Service of Cardiothoracic Surgery, Santa Cruz Hospital, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal (J.N.); UCIBIO@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal (A.L.M.); VitaK, Maastricht University, Maastricht, The Netherlands (B.A.G.W., C.V.); and Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands (B.A.G.W.).
| |
Collapse
|
29
|
Vasuri F, Fittipaldi S, Pasquinelli G. Arterial calcification: Finger-pointing at resident and circulating stem cells. World J Stem Cells 2014; 6:540-551. [PMID: 25426251 PMCID: PMC4178254 DOI: 10.4252/wjsc.v6.i5.540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/08/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
The term ‘‘Stammzelle’’ (stem cells) originally appeared in 1868 in the works of Ernst Haeckel who used it to describe the ancestor unicellular organism from which he presumed all multicellular organisms evolved. Since then stem cells have been studied in a wide spectrum of normal and pathological conditions; it is remarkable to note that ectopic arterial calcification was considered a passive deposit of calcium since its original discovering in 1877; in the last decades, resident and circulating stem cells were imaged to drive arterial calcification through chondro-osteogenic differentiation thus opening the idea that an active mechanism could be at the basis of the process that clinically shows a Janus effect: calcifications either lead to the stabilization or rupture of the atherosclerotic plaques. A review of the literature underlines that 130 years after stem cell discovery, antigenic markers of stem cells are still debated and the identification of the osteoprogenitor phenotype is even more elusive due to tissue degradation occurring at processing and manipulation. It is necessary to find a consensus to perform comparable studies that implies phenotypic recognition of stem cells antigens. A hypothesis is based on the singular morphology and amitotic mechanism of division of osteoclasts: it constitutes the opening to a new approach on osteoprogenitors markers and recognition. Our aim was to highlight all the present evidences of the active calcification process, summarize the different cellular types involved, and discuss a novel approach to discover osteoprogenitor phenotypes in arterial wall.
Collapse
|
30
|
Rozé J, Hoornaert A, Layrolle P. Correlation between primary stability and bone healing of surface treated titanium implants in the femoral epiphyses of rabbits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1941-1951. [PMID: 24818874 DOI: 10.1007/s10856-014-5231-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
The aim of this study was to analyse the stability and osseointegration of surface treated titanium implants in rabbit femurs. The implants were either grit-blasted and acid-etched (BE Group), calcium phosphate (CaP) coated by using the electrodeposition technique, or had bioactive molecules incorporated into the CaP coatings: either cyclic adenosine monophosphate (cAMP) or dexamethasone (Dex). Twenty four cylindrical titanium implants (n = 6/group) were inserted bilaterally into the femoral epiphyses of New Zealand White, female, adult rabbits for 4 weeks. Implant stability was measured by resonance frequency analysis (RFA) the day of implantation and 4 weeks later, and correlated to histomorphometric parameters, bone implant contact (BIC) and bone growth around the implants (BS/TS 0.5 mm). The BIC values for the four groups were not significantly different. That said, histology indicated that the CaP coatings improved bone growth around the implants. The incorporation of bioactive molecules (cAMP and Dex) into the CaP coatings did not improve bone growth compared to the BE group. Implant stability quotients (ISQ) increased in each group after 4 weeks of healing but were not significantly different between the groups. A good correlation was observed between ISQ and BS/TS 0.5 mm indicating that RFA is a non-invasive method that can be used to assess the osseointegration of implants. In conclusion, the CaP coating enhanced bone formation around the implants, which was correlated to stability measured by resonance frequency analysis. Furthers studies need to be conducted in order to explore the benefits of incorporating bioactive molecules into the coatings for peri-implant bone healing.
Collapse
Affiliation(s)
- Julie Rozé
- CHU Nantes, Faculty of Dental Surgery, University of Nantes, 1 Place Alexis Ricordeau, Nantes, 44042, France
| | | | | |
Collapse
|
31
|
Mathieu P, Boulanger MC. Basic mechanisms of calcific aortic valve disease. Can J Cardiol 2014; 30:982-93. [PMID: 25085215 DOI: 10.1016/j.cjca.2014.03.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valve disorder. There is no medical treatment to prevent and/or promote the regression of CAVD. Hence, it is of foremost importance to delineate and understand the key basic underlying mechanisms involved in CAVD. In the past decade our comprehension of the underpinning processes leading to CAVD has expanded at a fast pace. Hence, our understanding of the basic pathobiological processes implicated in CAVD might lead eventually to the development of novel pharmaceutical therapies for CAVD. In this review, we discuss molecular processes that are implicated in fibrosis and mineralization of the aortic valve. Specifically, we address the role of lipid retention, inflammation, phosphate signalling and osteogenic transition in the development of CAVD. Interplays between these different processes and the key regulation pathways are discussed along with their clinical relevance.
Collapse
Affiliation(s)
- Patrick Mathieu
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Québec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Québec, Canada.
| | - Marie-Chloé Boulanger
- Laboratoire d'Études Moléculaires des Valvulopathies (LEMV), Groupe de Recherche en Valvulopathies (GRV), Québec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, Québec, Québec, Canada
| |
Collapse
|
32
|
Willems BAG, Vermeer C, Reutelingsperger CPM, Schurgers LJ. The realm of vitamin K dependent proteins: shifting from coagulation toward calcification. Mol Nutr Food Res 2014; 58:1620-35. [PMID: 24668744 DOI: 10.1002/mnfr.201300743] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
In the past few decades vitamin K has emerged from a single-function "haemostasis vitamin" to a "multi-function vitamin." The use of vitamin K antagonists (VKA) inevitably showed that the inhibition was not restricted to vitamin K dependent coagulation factors but also synthesis of functional extrahepatic vitamin K dependent proteins (VKDPs), thereby eliciting undesired side effects. Vascular calcification is one of the recently revealed detrimental effects of VKA. The discovery that VKDPs are involved in vascular calcification has propelled our mechanistic understanding of this process and has opened novel avenues for diagnosis and treatment. This review addresses mechanisms of VKDPs and their significance for physiological and pathological calcification.
Collapse
Affiliation(s)
- Brecht A G Willems
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands; VitaK BV, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
33
|
Kramann R, Kunter U, Brandenburg VM, Leisten I, Ehling J, Klinkhammer BM, Knüchel R, Floege J, Schneider RK. Osteogenesis of heterotopically transplanted mesenchymal stromal cells in rat models of chronic kidney disease. J Bone Miner Res 2013; 28:2523-34. [PMID: 23703894 DOI: 10.1002/jbmr.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022]
Abstract
The current study is based on the hypothesis of mesenchymal stromal cells (MSCs) contributing to soft-tissue calcification and ectopic osteogenesis in chronic kidney disease (CKD). Rat MSCs were transplanted intraperitoneally in an established three-dimensional collagen-based model in healthy control animals and two rat models of CKD and vascular calcification: (1) 5/6 nephrectomy + high phosphorus diet; and (2) adenine nephropathy. As internal controls, collagen gels without MSCs were transplanted in the same animals. After 4 and 8 weeks, MSCs were still detectable and proliferating in the collagen gels (fluorescence-activated cell sorting [FACS] analysis and confocal microscopy after fluorescence labeling of the cells). Aortas and MSC-containing collagen gels in CKD animals showed distinct similarities in calcification (micro-computed tomography [µCT], energy-dispersive X-ray [EDX] analysis, calcium content), induction of osteogenic markers, (ie, bone morphogenic protein 2 [BMP-2], Runt related transcription factor 2 [Runx2], alkaline phosphatase [ALP]), upregulation of the osteocytic marker sclerostin and extracellular matrix remodeling with increased expression of osteopontin, collagen I/III/IV, fibronectin, and laminin. Calcification, osteogenesis, and matrix remodeling were never observed in healthy control animals and non-MSC-containing collagen gels in all groups. Paul Karl Horan 26 (PKH-26)-labeled, 3G5-positive MSCs expressed Runx2 and sclerostin in CKD animals whereas PKH-26-negative migrated cells did not express osteogenic markers. In conclusion, heterotopically implanted MSCs undergo osteogenic differentiation in rat models of CKD-induced vascular calcification, supporting our hypothesis of MSCs as possible players in heterotopic calcification processes of CKD patients.
Collapse
Affiliation(s)
- Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hox genes are involved in vascular wall-resident multipotent stem cell differentiation into smooth muscle cells. Sci Rep 2013; 3:2178. [PMID: 24145756 PMCID: PMC3804857 DOI: 10.1038/srep02178] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/02/2013] [Indexed: 01/10/2023] Open
Abstract
Human vascular wall-resident CD44+ multipotent stem cells (VW-MPSCs) within the vascular adventitia are capable to differentiate into pericytes and smooth muscle cells (SMC). This study demonstrates HOX-dependent differentiation of CD44(+) VW-MPSCs into SMC that involves epigenetic modification of transgelin as a down-stream regulated gene. First, HOXB7, HOXC6 and HOXC8 were identified to be differentially expressed in VW-MPSCs as compared to terminal differentiated human aortic SMC, endothelial cells and undifferentiated pluripotent embryonic stem cells. Silencing these HOX genes in VW-MPSCs significantly reduced their sprouting capacity and increased expression of the SMC markers transgelin and calponin and the histone gene histone H1. Furthermore, the methylation pattern of the TAGLN promoter was altered. In summary, our findings suggest a role for certain HOX genes in regulating differentiation of human VW-MPSC into SMCs that involves epigenetic mechanisms. This is critical for understanding VW-MPSC-dependent vascular disease processes such as neointima formation and tumor vascularization.
Collapse
|
35
|
Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M. PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification. J Am Heart Assoc 2013; 2:e000238. [PMID: 24008080 PMCID: PMC3835225 DOI: 10.1161/jaha.113.000238] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Vascular calcification is a common feature in patients with chronic kidney disease (CKD). CKD increases serum levels of tumor necrosis factor-α (TNFα), a critical mediator of vascular calcification. However, the molecular mechanism by which TNFα promotes CKD-dependent vascular calcification remains obscure. The purpose of the present study was to investigate whether TNFα-induced vascular calcification in CKD is caused by the endoplasmic reticulum response involving protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP). METHODS AND RESULTS We examined the effects of TNFα on the endoplasmic reticulum (ER) stress response of vascular smooth muscle cells (VSMCs). TNFα treatment drastically induced the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in VSMCs. PERK, ATF4, and CHOP shRNA-mediated knockdowns drastically inhibited mineralization and osteogenesis of VSMCs induced by TNFα. CKD induced by 5/6 nephrectomies activated the PERK-eIF2α-ATF4-CHOP axis of the ER stress response in the aortas of ApoE-/- mice with increased aortic TNFα expression and vascular calcification. Treatment of 5/6 nephrectomized ApoE-/- mice with the TNFα neutralizing antibody or chemical Chaperones reduced aortic PERK-eIF2α-ATF4-CHOP signaling of the ER stress increased by CKD. This resulted in the inhibition of CKD-dependent vascular calcification. CONCLUSIONS These results suggest that TNFα induces the PERK-eIF2α-ATF4-CHOP axis of the ER stress response, leading to CKD-dependent vascular calcification.
Collapse
Affiliation(s)
- Masashi Masuda
- Division of Renal Diseases and Hypertension, University of Colorado Denver, Aurora, CO
| | | | | | | | | |
Collapse
|
36
|
Lo KWH, Kan HM, Laurencin CT. Short-term administration of small molecule phenamil induced a protracted osteogenic effect on osteoblast-like MC3T3-E1 cells. J Tissue Eng Regen Med 2013; 10:518-26. [PMID: 23913855 DOI: 10.1002/term.1786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/13/2013] [Accepted: 05/27/2013] [Indexed: 12/26/2022]
Abstract
Sustained administration (21-day treatment) of the small molecule phenamil has been proposed as an alternative osteogenic factor when used in conjunction with a biodegradable scaffold for in vitro osteogenesis. While promising, the major issue associated with small molecules is non-specific cytotoxicity. The aim of this study was to minimize the side-effects from small-molecule drugs by reducing the frequency of administration. Toward this goal, we investigated whether a shorter phenamil treatment is sufficient to induce in vitro osteogenesis. We compared the effects of short-term (12 h) and continuous treatments of phenamil on osteoblastic differentiation and mineralization. Alkaline phosphatase (ALP) and osteopontin (OPN) activity were used as markers for osteoblastic differentiation. Measurement of the calcium content of the extracellular matrix was used as the hallmark for in vitro bone formation after 21 days of culture. Our findings revealed that both short and continuous phenamil treatment triggers osteoblastic differentiation and mineralization of MC3T3-E1 cells on a biodegradable polymeric scaffold composed of polylactic-co-glycolic acid (PLAGA) at the same time points. In addition, in order to fabricate a phenamil-loaded PLAGA scaffold, the small molecule phenamil was physically absorbed onto the surface of scaffolds and the bioactivity of the loaded scaffolds was evaluated. Furthermore, biochemical analysis indicated that short phenamil treatment of cells was accompanied by upregulation in protein expression of integrin α5, p125(FAK) and phosphorylation of CREB. These effects may contribute to the downstream signalling cascade necessary for osteogenesis, and such responses may account for our observed protracted osteogenic differentiation in vitro. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kevin W-H Lo
- Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, USA
| | - Ho Man Kan
- Department of Orthopedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA
| | - Cato T Laurencin
- Department of Orthopedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT, USA.,Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, School of Engineering, Storrs, CT, USA.,Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT, USA
| |
Collapse
|
37
|
Kim JM, Choi JS, Kim YH, Jin SH, Lim S, Jang HJ, Kim KT, Ryu SH, Suh PG. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J Cell Physiol 2013; 228:617-26. [PMID: 22886506 DOI: 10.1002/jcp.24171] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/31/2012] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells capable of differentiating along the osteoblast, adipocyte, and chondrocyte lineages. Regulation of MSCs differentiation may be a useful tool for regenerative medicine and cell-based therapy. The discovery of small molecule that activates the osteogenic differentiation of MSCs could aid in the development of a new anabolic drug for osteoporosis treatment. We identified CW008, a derivative of pyrazole-pyridine, that stimulates osteoblast differentiation of human MSCs and increases bone formation in ovariectomized mice. CW008 promotes osteogenesis by activating cAMP/PKA/CREB signaling pathway and inhibiting leptin secretion. These results suggest that CW008 is an agonist of cAMP/PKA/CREB pathway in osteogenic differentiation and that application of CW008 may be useful for the treatment of bone-related diseases and for the study of bone biology.
Collapse
Affiliation(s)
- Jung-Min Kim
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Beazley KE, Eghtesad S, Nurminskaya MV. Quercetin attenuates warfarin-induced vascular calcification in vitro independently from matrix Gla protein. J Biol Chem 2013; 288:2632-40. [PMID: 23223575 PMCID: PMC3554930 DOI: 10.1074/jbc.m112.368639] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/14/2012] [Indexed: 12/20/2022] Open
Abstract
Warfarin can stimulate vascular calcification in vitro via activation of β-catenin signaling and/or inhibition of matrix Gla protein (MGP) carboxylation. Calcification was induced in vascular smooth muscle cells (VSMCs) with therapeutic levels of warfarin in normal calcium and clinically acceptable phosphate levels. Although TGF/BMP and PKA pathways are activated in calcifying VSMCs, pharmacologic analysis reveals that their activation is not contributory. However, β-catenin activity is important because inhibition of β-catenin with shRNA or bioflavonoid quercetin prevents calcification in primary human VSMCs, rodent aortic rings, and rat A10 VSMC line. In the presence of quercetin, reactivation of β-catenin using the glycogen synthase kinase-3β (GSK-3β) inhibitor LiCl restores calcium accumulation, confirming that quercetin mechanism of action hinges on inhibition of the β-catenin pathway. Calcification in VSMCs induced by 10 μm warfarin does not associate with reduced levels of carboxylated MGP, and inhibitory effects of quercetin do not involve induction of MGP carboxylation. Further, down-regulation of MGP by shRNA does not alter the effect of quercetin. These results suggest a new β-catenin-targeting strategy to prevent vascular calcification induced by warfarin and identify quercetin as a potential therapeutic in this pathology.
Collapse
Affiliation(s)
- Kelly E. Beazley
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Saman Eghtesad
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Maria V. Nurminskaya
- From the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
39
|
Sallam T, Cheng H, Demer LL, Tintut Y. Regulatory circuits controlling vascular cell calcification. Cell Mol Life Sci 2012; 70:3187-97. [PMID: 23269436 DOI: 10.1007/s00018-012-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/12/2012] [Accepted: 12/03/2012] [Indexed: 12/20/2022]
Abstract
Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification.
Collapse
Affiliation(s)
- Tamer Sallam
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Center for the Health Sciences, A2-237, 10833 Le Conte Ave., Los Angeles, CA, 90095-1679, USA
| | | | | | | |
Collapse
|
40
|
Morony S, Sage AP, Corbin T, Lu J, Tintut Y, Demer LL. Enhanced mineralization potential of vascular cells from SM22α-Rankl (tg) mice. Calcif Tissue Int 2012; 91:379-86. [PMID: 23052229 PMCID: PMC3523707 DOI: 10.1007/s00223-012-9655-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/15/2012] [Indexed: 11/26/2022]
Abstract
Vascular calcification, prevalent in diabetes and chronic kidney disease, contributes to morbidity and mortality. To investigate the effect of receptor activator of NF-kB ligand (RANKL) on vascular calcification in vivo, transgenic mice, where RANKL expression was targeted to vascular smooth muscle cells using the SM22α promoter (SM22α-Rankl ( tg )), were created. Sixteen-month-old male SM22α-Rankl ( tg ) mice had higher body weight and higher serum calcium levels but lower lumbar bone mineral density (BMD) compared with age- and gender-matched wild-type (WT) littermates. BMD of long bones, body fat (percent of weight) of the leg, and serum levels of phosphate and RANKL were not significantly different. No significant differences in these parameters were observed in female mice. Histological analysis did not reveal calcium deposits in the aortic roots of SM22α-Rankl ( tg ) mice. To analyze the osteoblastic differentiation and mineralization potentials of vascular cells, aortic smooth muscle cells (SMCs) were isolated and cultured. Results showed that SM22α-Rankl ( tg ) SMCs had higher baseline alkaline phosphatase (ALP) activity but not baseline matrix calcification. When induced by the PKA agonist forskolin, ALP activity was greater in SM22α-Rankl ( tg ) than in WT SMCs. Real-time RT-qPCR revealed higher baseline expression of ALP and ankylosis genes but lower osteoprotegerin gene in SM22α-Rankl ( tg ) SMCs. Matrix mineralization induced by inorganic phosphate or forskolin was greater in SM22α-Rankl ( tg ) than in WT SMCs. Treatment of these cells with the ALP inhibitor levamisole abolished forskolin-induced matrix mineralization but not inorganic phosphate-induced matrix mineralization. These findings suggest that RANKL overexpression in the vasculature may promote mineralization potential.
Collapse
Affiliation(s)
- S Morony
- Department of Metabolic Disorders, Amgen, Thousands Oaks, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Kao R, Lu W, Louie A, Nissenson R. Cyclic AMP signaling in bone marrow stromal cells has reciprocal effects on the ability of mesenchymal stem cells to differentiate into mature osteoblasts versus mature adipocytes. Endocrine 2012; 42:622-36. [PMID: 22695986 PMCID: PMC3509326 DOI: 10.1007/s12020-012-9717-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 05/25/2012] [Indexed: 01/02/2023]
Abstract
Stimulatory G protein-mediated cAMP signaling is intimately involved in skeletal homeostasis. However, limited information is available on the role of the cAMP signaling in regulating the differentiation of mesenchymal stem cells into mature osteoblasts and adipocytes. To investigate this, we treated primary mouse bone marrow stromal cells (BMSCs) with forskolin to stimulate cAMP signaling and determined the effect on osteoblast and adipocyte differentiation. Exposure of differentiating osteoblasts to forskolin markedly inhibited progression to the late stages of osteoblast differentiation, and this effect was replicated by continuous exposure to PTH. Strikingly, forskolin activation of cAMP signaling in BMSCs conditioned mesenchymal stem cells (MSCs) to undergo increased osteogenic differentiation and decreased adipogenic differentiation. PTH treatment of BMSCs also enhanced subsequent osteogenesis, but promoted an increased adipogenesis as well. Thus, activation of cAMP signaling alters the lineage commitment of MSCs, favoring osteogenesis at the expense of adipogenesis.
Collapse
Affiliation(s)
- Richard Kao
- University of California, San Francisco, San Francisco, CA USA
- Veterans Affairs Medical Center, San Francisco, CA USA
| | - Weidar Lu
- University of California, San Francisco, San Francisco, CA USA
- Veterans Affairs Medical Center, San Francisco, CA USA
| | - Alyssa Louie
- University of California, San Francisco, San Francisco, CA USA
- Veterans Affairs Medical Center, San Francisco, CA USA
| | - Robert Nissenson
- University of California, San Francisco, San Francisco, CA USA
- Veterans Affairs Medical Center, San Francisco, CA USA
| |
Collapse
|
42
|
Wong MN, Nguyen TP, Chen TH, Hsu JJ, Zeng X, Saw A, Demer EM, Zhao X, Tintut Y, Demer LL. Preferred mitotic orientation in pattern formation by vascular mesenchymal cells. Am J Physiol Heart Circ Physiol 2012; 303:H1411-7. [PMID: 23064835 DOI: 10.1152/ajpheart.00625.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cellular self-organization is essential to physiological tissue and organ development. We previously observed that vascular mesenchymal cells, a multipotent subpopulation of aortic smooth muscle cells, self-organize into macroscopic, periodic patterns in culture. The patterns are produced by cells gathering into raised aggregates in the shape of nodules or ridges. To determine whether these patterns are accounted for by an oriented pattern of cell divisions or postmitotic relocation of cells, we acquired time-lapse, videomicrographic phase-contrast, and fluorescence images during self-organization. Cell division events were analyzed for orientation of daughter cells in mitoses during separation and their angle relative to local cell alignment, and frequency distribution of the mitotic angles was analyzed by both histographic and bin-free statistical methods. Results showed a statistically significant preferential orientation of daughter cells along the axis of local cell alignment as early as day 8, just before aggregate formation. This alignment of mitotic axes was also statistically significant at the time of aggregate development (day 11) and after aggregate formation was complete (day 15). Treatment with the nonmuscle myosin II inhibitor, blebbistatin, attenuated alignment of mitotic orientation, whereas Rho kinase inhibition eliminated local cell alignment, suggesting a role for stress fiber orientation in this self-organization. Inhibition of cell division using mitomycin C reduced the macroscopic pattern formation. Time-lapse monitoring of individual cells expressing green fluorescent protein showed postmitotic movement of cells into neighboring aggregates. These findings suggest that polarization of mitoses and postmitotic migration of cells both contribute to self-organization into periodic, macroscopic patterns in vascular stem cells.
Collapse
Affiliation(s)
- Margaret N Wong
- Department of Bioengineering, University of California, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhang S, Kaplan FS, Shore EM. Different roles of GNAS and cAMP signaling during early and late stages of osteogenic differentiation. Horm Metab Res 2012; 44:724-31. [PMID: 22903279 PMCID: PMC3557937 DOI: 10.1055/s-0032-1321845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progressive osseous heteroplasia (POH) and fibrous dysplasia (FD) are genetic diseases of bone formation at opposite ends of the osteogenic spectrum: imperfect osteogenesis of the skeleton occurs in FD, while heterotopic ossification in skin, subcutaneous fat, and skeletal muscle forms in POH. POH is caused by heterozygous inactivating germline mutations in GNAS, which encodes G-protein subunits regulating the cAMP pathway, while FD is caused by GNAS somatic activating mutations. We used pluripotent mouse ES cells to examine the effects of Gnas dysregulation on osteoblast differentiation. At the earliest stages of osteogenesis, Gnas transcripts Gsα, XLαs and 1A are expressed at low levels and cAMP levels are also low. Inhibition of cAMP signaling (as in POH) by 2',5'-dideoxyadenosine enhanced osteoblast differentiation while conversely, increased cAMP signaling (as in FD), induced by forskolin, inhibited osteoblast differentiation. Notably, increased cAMP was inhibitory for osteogenesis only at early stages after osteogenic induction. Expression of osteogenic and adipogenic markers showed that increased cAMP enhanced adipogenesis and impaired osteoblast differentiation even in the presence of osteogenic factors, supporting cAMP as a critical regulator of osteoblast and adipocyte lineage commitment. Furthermore, increased cAMP signaling decreased BMP pathway signaling, indicating that G protein-cAMP pathway activation (as in FD) inhibits osteoblast differentiation, at least in part by blocking the BMP-Smad pathway, and suggesting that GNAS inactivation as occurs in POH enhances osteoblast differentiation, at least in part by stimulating BMP signaling. These data support that differences in cAMP levels during early stages of cell differentiation regulate cell fate decisions. Supporting information available online at http:/www.thieme-connect.de/ejournals/toc/hmr.
Collapse
Affiliation(s)
- S. Zhang
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - F. S. Kaplan
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - E. M. Shore
- Department of Orthopaedic Surgery and the Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
44
|
Lampropoulos CE, Papaioannou I, D'Cruz DP. Osteoporosis--a risk factor for cardiovascular disease? Nat Rev Rheumatol 2012; 8:587-98. [PMID: 22890244 DOI: 10.1038/nrrheum.2012.120] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a serious health problem worldwide that is associated with an increased risk of fractures and mortality. Vascular calcification is a well-defined independent risk factor for cardiovascular disease (CVD) and mortality. Major advances in our understanding of the pathophysiology of osteoporosis and vascular calcification indicate that these two processes share common pathogenetic mechanisms. Multiple factors including proteins (such as bone morphogenetic proteins, receptor activator of nuclear factor κB ligand, osteoprotegerin, matrix Gla protein and cathepsins), parathyroid hormone, phosphate, oxidized lipids and vitamins D and K are implicated in both bone and vascular metabolism, illustrating the interaction of these two, seemingly unrelated, conditions. Many clinical studies have now confirmed the correlation between osteoporosis and vascular calcification as well as the increased risk of CVD in patients with osteoporosis. Here, we explore the proposed mechanistic similarities between osteoporosis and vascular calcification and present an overview of the clinical data that support the interaction between these conditions.
Collapse
Affiliation(s)
- Christos E Lampropoulos
- Department of Internal Medicine, General Hospital of Nafplio, Kolokotroni and Asklipiou Streets, 21100 Nafplio, Greece
| | | | | |
Collapse
|
45
|
Zheng W, Xie Y, Zhang W, Wang D, Ma W, Wang Z, Jiang X. Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol (Camb) 2012; 4:1102-11. [PMID: 22814412 DOI: 10.1039/c2ib20094e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mesenchymal stem cells (MSCs), the multipotent progenitor cells, are sensitive to fluid shear stress (FSS). MSCs can migrate through the blood stream by intravasation into the circulatory system to transfer to distant positions through the blood stream. During the transferring process, MSCs may differentiate into cells of corresponding tissues for repair, or remain undifferentiated and initiate ectopic tissue formation, lipid accumulation, or calcification, which are closely related to the pathology of atherosclerosis. However, how the MSCs sense and respond to vascular FSS stimulation and lead to subsequent biological effects remains elusive. In this study, by using an in situ time-lapse microfluidic cell culture and observation system, we found that rat mesenchymal stem cells (rMSCs) presented a contraction and re-spread (CRS) process when they were initially subjected to a physiological FSS (1.3 Pa). Our subsequent studies demonstrated that integrin and cilia played key roles in sensing FSS. Calcium, F-actin, and Rho-kinase were key molecules in the mechanotransduction of the CRS of the rMSCs. Our study revealed the immediate response of the rMSCs to FSS. It will be helpful for the understanding of MSC-related tissue repair and the role of MSCs in the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience & Technology, 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Karwowski W, Naumnik B, Szczepański M, Myśliwiec M. The mechanism of vascular calcification - a systematic review. Med Sci Monit 2012; 18:RA1-11. [PMID: 22207127 PMCID: PMC3560673 DOI: 10.12659/msm.882181] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcification of vessels reduces their elasticity, affecting hemodynamic parameters of the cardiovascular system. The development of arterial hypertension, cardiac hypertrophy, ischemic heart disease or peripheral arterial disease significantly increases mortality in patients over 60 years of age. Stage of advancement and the extent of accumulation of calcium deposits in vessel walls are key risk factors of ischemic events. Vascular calcification is an active and complex process that involves numerous mechanisms responsible for calcium depositions in arterial walls. They lead to increase in arterial stiffness and in pulse wave velocity, which in turn increases cardiovascular disease morbidity and mortality. In-depth study and thorough understanding of vascular calcification mechanisms may be crucial for establishing an effective vasculoprotective therapy. The aim of this study was to present a comprehensive survey of current state-of-the-art research into the impact of metabolic and hormonal disorders on development of vascular calcification. Due to strong resemblance to the processes occurring in bone tissue, drugs used for osteoporosis treatment (calcitriol, estradiol, bisphosphonates) may interfere with the processes occurring in the vessel wall. On the other hand, drugs used to treat cardiovascular problems (statins, angiotensin convertase inhibitors, warfarin, heparins) may have an effect on bone tissue metabolism. Efforts to optimally control calcium and phosphate concentrations are also beneficial for patients with end-stage renal disease, for whom vessel calcification remains a major problem.
Collapse
Affiliation(s)
- Wojciech Karwowski
- Department of Pathophysiology of Pregnancy, District Hospital in Bialystok, Bialystok, Poland.
| | | | | | | |
Collapse
|
47
|
Ozkok A, Caliskan Y, Sakaci T, Erten G, Karahan G, Ozel A, Unsal A, Yildiz A. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients. Clin J Am Soc Nephrol 2012; 7:965-73. [PMID: 22490874 DOI: 10.2215/cjn.11191111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Vascular calcification is associated with increased cardiovascular mortality in chronic hemodialysis patients. This prospective study investigated the relationship between serum osteoprotegerin, receptor activator of NF-κB ligand, inflammatory markers, and progression of coronary artery calcification score. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Seventy-eight hemodialysis patients were enrolled. Serum IL-1β, IL-6, TNF-α, osteoprotegerin, receptor activator of NF-κB, fetuin A, and bone alkaline phosphatase were measured by ELISA. Coronary artery calcification score was measured two times with 1-year intervals, and patients were classified as progressive or nonprogressive. RESULTS Baseline and first-year serum osteoprotegerin levels were significantly higher in the progressive than nonprogressive group (17.39±9.67 versus 12.90±6.59 pmol/L, P=0.02; 35.17±18.35 versus 24±11.65 pmol/L, P=0.002, respectively). The ratio of serum osteoprotegerin to receptor activator of NF-κB ligand at 1 year was significantly higher in the progressive group (0.26 [0.15-0.46] versus 0.18 [0.12-0.28], P=0.004). Serum osteoprotegerin levels were significantly correlated with coronary artery calcification score at both baseline (r=0.36, P=0.001) and 1 year (r=0.36, P=0.001). Importantly, progression in coronary artery calcification score significantly correlated with change in serum osteoprotegerin levels (r=0.39, P=0.001). In addition, serum receptor activator of NF-κB ligand levels were significantly inversely correlated with coronary artery calcification scores at both baseline (r=-0.29, P=0.01) and 1 year (r=-0.29, P=0.001). In linear regression analysis for predicting coronary artery calcification score progression, only baseline coronary artery calcification score and change in osteoprotegerin were retained as significant factors in the model. CONCLUSIONS Baseline coronary artery calcification score and serum osteoprotegerin levels were significantly associated with progression of coronary artery calcification score in hemodialysis patients.
Collapse
Affiliation(s)
- Abdullah Ozkok
- Istanbul Faculty of Medicine, Department of Internal Medicine and Nephrology, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhu D, Mackenzie NCW, Farquharson C, MacRae VE. Mechanisms and clinical consequences of vascular calcification. Front Endocrinol (Lausanne) 2012; 3:95. [PMID: 22888324 PMCID: PMC3412412 DOI: 10.3389/fendo.2012.00095] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 07/17/2012] [Indexed: 12/23/2022] Open
Abstract
Vascular calcification has severe clinical consequences and is considered an accurate predictor of future adverse cardiovascular events, including myocardial infarction and stroke. Previously vascular calcification was thought to be a passive process which involved the deposition of calcium and phosphate in arteries and cardiac valves. However, recent studies have shown that vascular calcification is a highly regulated, cell-mediated process similar to bone formation. In this article, we outline the current understanding of key mechanisms governing vascular calcification and highlight the clinical consequences. By understanding better the molecular pathways and genetic circuitry responsible for the pathological mineralization process novel drug targets may be identified and exploited to combat and reduce the detrimental effects of vascular calcification on human health.
Collapse
Affiliation(s)
- Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Neil C. W. Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
| | - Vicky E. MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of EdinburghMidlothian, Scotland, UK
- *Correspondence: Vicky E. MacRae, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK. e-mail:
| |
Collapse
|
49
|
Geng Y, Hsu JJ, Lu J, Ting TC, Miyazaki M, Demer LL, Tintut Y. Role of cellular cholesterol metabolism in vascular cell calcification. J Biol Chem 2011; 286:33701-6. [PMID: 21835914 DOI: 10.1074/jbc.m111.269639] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vascular calcification impairs vessel compliance and increases the risk of cardiovascular events. We found previously that liver X receptor agonists, which regulate intracellular cholesterol homeostasis, augment PKA agonist- or high phosphate-induced osteogenic differentiation of vascular smooth muscle cells. Because cholesterol is an integral component of the matrix vesicles that nucleate calcium mineral, we examined the role of cellular cholesterol metabolism in vascular cell mineralization. The results showed that vascular smooth muscle cells isolated from LDL receptor null (Ldlr(-/-)) mice, which have impaired cholesterol uptake, had lower levels of intracellular cholesterol and less osteogenic differentiation, as indicated by alkaline phosphatase activity and matrix mineralization, compared with WT cells. PKA activation with forskolin acutely induced genes that promote cholesterol uptake (LDL receptor) and biosynthesis (HMG-CoA reductase). In WT cells, inhibition of cholesterol uptake by lipoprotein-deficient serum attenuated forskolin-induced matrix mineralization, which was partially reversed by the addition of cell-permeable cholesterol. Prolonged activation of both uptake and biosynthesis pathways by cotreatment with a liver X receptor agonist further augmented forskolin-induced matrix mineralization. Inhibition of either cholesterol uptake, using Ldlr(-/-) cells, or of cholesterol biosynthesis, using mevastatin-treated WT cells, failed to inhibit matrix mineralization due to up-regulation of the respective compensatory pathway. Inhibition of both pathways simultaneously using mevastatin-treated Ldlr(-/-) cells did inhibit forskolin-induced matrix mineralization. Altogether, the results suggest that up-regulation of cholesterol metabolism is essential for matrix mineralization by vascular cells.
Collapse
Affiliation(s)
- Yifan Geng
- Department of Medicine, UCLA, Los Angeles, California 90095-1679, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Han Y, Jin YH, Yum J, Jeong HM, Choi JK, Yeo CY, Lee KY. Protein kinase A phosphorylates and regulates the osteogenic activity of Dlx5. Biochem Biophys Res Commun 2011; 407:461-5. [DOI: 10.1016/j.bbrc.2011.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/05/2011] [Indexed: 11/29/2022]
|