1
|
Marwan-Abdelbaset E, Samy-Kamal M, Tan D, Lu X. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J Biotechnol 2025; 403:52-72. [PMID: 40154620 DOI: 10.1016/j.jbiotec.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Hyaluronic acid (HA) is a versatile biomolecule with applications in medicine, cosmetics, and pharmaceuticals. While traditionally extracted from animal tissues, HA is now predominantly produced through microbial fermentation. Microbial fermentation using strains such as Streptococcus zooepidemicus, Corynebacterium glutamicum, and Bacillus subtilis offers a more scalable and sustainable alternative to chemical and animal extraction methods. Recent studies reveal promising yields from engineered strains of Corynebacterium glutamicum and Bacillus subtilis, utilizing advanced metabolic and genetic techniques. Recent advancements in genetic and metabolic engineering, as well as synthetic biology, have addressed some challenges related to molecular weight, viscosity, and by-product formation. This review focuses on the microbial production of HA using engineered strains, encompassing producer organisms, metabolic engineering strategies, industrial-scale production, and key factors influencing molecular weight. Furthermore, it addresses the challenges and potential solutions associated with HA production. Additional research is necessary to develop more efficient and robust engineered strains that exhibit resistance to contamination and can utilize low-cost substrates, such as Pseudomonas putida and Halomonas spp. By overcoming these challenges, researchers can advance the industrial production of HA and expand its applications, thereby contributing to the growth of the HA market.
Collapse
Affiliation(s)
- Ehab Marwan-Abdelbaset
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Samy-Kamal
- Department of Marine Sciences and Applied Biology, University of Alicante, Sciences Building V, San Vicente del Raspeig Campus, PO Box 99, Alicante 03080, Spain
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
2
|
Saadati F, Bahrulolum H, Talebi M, Karimi M, Bozorgchami N, Ghale RA, Zafar S, Aghighi Y, Asiaei E, Tabandeh F. Advances and principles of hyaluronic acid production, extraction, purification, and its applications: A review. Int J Biol Macromol 2025; 312:143839. [PMID: 40318723 DOI: 10.1016/j.ijbiomac.2025.143839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Hyaluronic acid (HA) is a linear, unbranched polysaccharide composed of repeating disaccharide units of N-acetyl-d-glucosamine and D-glucuronic acid. It plays a crucial role in promoting soft tissue growth, elasticity, and scar reduction. The growing demand for HA in pharmaceutical and cosmetic applications has provoked extensive research into diverse production strategies. Current efforts focus on bacterial and yeast fermentation. However, the extraction process presents a significant challenge due to the complex nature of source materials like fermentation broth, which contains numerous components and solutes. Achieving high extraction yields and purity requires careful consideration of extraction techniques. This study provides a comprehensive overview of the primary methodologies employed for HA production, elaborating on the advantages and disadvantages of each approach. Additionally, it highlights recent advancements in HA extraction and purification, with a particular emphasis on bacterial sources and the applications of HA. This review critically evaluates current HA production strategies, identifies key challenges hindering scalability and efficiency, and discusses innovative solutions under development to overcome these limitations.
Collapse
Affiliation(s)
- Fatemeh Saadati
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Howra Bahrulolum
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Marjan Talebi
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Karimi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Negar Bozorgchami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Almasi Ghale
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shaghayegh Zafar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Aghighi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Elaheh Asiaei
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
3
|
Guo L, Wang S, Lian C, He L. Expression and molecular characterization of an intriguing hyaluronan synthase (HAS) from the symbiont " Candidatus Mycoplasma liparidae" in snailfish. PeerJ 2025; 13:e19253. [PMID: 40297469 PMCID: PMC12036578 DOI: 10.7717/peerj.19253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Hyaluronan synthases (HASs) are ubiquitous in living organisms, and the hyaluronic acid (HA) synthesized by them are important to their body and well used in medicine, cosmetics and other fields. HAS from deep-sea creatures has not yet been explored before. The study aims to analyse the characteristics and enzyme kinetics of a novel hyaluronan synthase derived from the symbiont "Candidatus Mycoplasma liparidae" found in deep-sea snailfish (snHAS). Methodology snHAS was over-expressed using His 6 as tag in the study. The sequence alignment was conducted by Cluster W and then the phylogenetic analyse of HASs was performed by Mega 6.0 to investigate the position of snHAS during evolution. K m and V max were detected to study the enzyme kinetics of snHAS wildtype and its mutant. The molecular weight of HA was evaluated by high performance gel permeation chromatography (HPGPC). The cardiolipin was added to investigate whether it had a promoting effect on the snHAS. Results The length of snHAS was 933 bp with an open reading frame (ORF) of 310 amino acids. Unlike other repoted HASs, snHAS had no transmembrane region and was not classified into the currently known Class I or Class II. snHAS could synthesize hyaluronan with lower molecular weights using the substrates of uridine-diphosphate-N-acetylglucosamine (UDP-GlcNAc) and uridine-diphosphate-glucuronic acid (UDP-GlcA) in vitro. The K m values of snHAS were 258 ± 45 µM and 39 ± 5 µM for UDP-GlcNAc and UDP-GlcA, respectively, much lower than those from mice (K m for UDP-GlcA: 55 ± 5 µM; K m for UDP-GlcNAc: 870 ± 60 µM). The k cat/K m values of snHAS were 163.5 s-1 mM-1 and 8.08 s-1 mM-1 for UDP-GlcA and UDP-GlcNAc, respectively. Furthermore, the activity of snHAS was independent of cardiolipin. Conclusions snHAS was a novel HAS based on the characteristics of the animo acid sequence, which could produce low molecular weight of HA with high efficiency. This provides a molecular basis for the biosynthesis of low molecular weight of HA.
Collapse
Affiliation(s)
- Lulu Guo
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Shaolu Wang
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Chunang Lian
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Lisheng He
- Department of Deep-sea Science Research, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
4
|
Hu L, Xiao S, Sun J, Wang F, Yin G, Xu W, Cheng J, Du G, Chen J, Kang Z. Regulating cellular metabolism and morphology to achieve high-yield synthesis of hyaluronan with controllable molecular weights. Nat Commun 2025; 16:2076. [PMID: 40021631 PMCID: PMC11871322 DOI: 10.1038/s41467-025-56950-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
High-yield biosynthesis of hyaluronan (HA) with controllable molecular weights (MWs) remains challenging due to the poorly understood function of Class I HA synthase (HAS) and the metabolic imbalance between HA biosynthesis and cellular growth. Here, we systematically characterize HAS to identify crucial regions involved in HA polymerization, secretion, and MW control. We construct HAS mutants that achieve complete HA secretion and expand the MW range from 300 to 1400 kDa. By dynamically regulating UDP-glucose 6-dehydrogenase activity and applying an adaptive evolution approach, we recover cell normal growth with increased metabolic capacities. Final titers and productivities for high MW HA (500 kDa) and low MW HA (10 kDa) reach 45 g L-1 and 105 g L-1, 0.94 g L-1 h-1 and 1.46 g L-1 h-1, respectively. Our findings advance our understanding of HAS function and the interplay between cell metabolism and morphology, and provide a shape-guided engineering strategy to optimize microbial cell factories.
Collapse
Affiliation(s)
- Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Sen Xiao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jieyu Sun
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Faying Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Wenjie Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jianhua Cheng
- Institute of Future Food Technology, JITRI, Yixing, China
- College of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China
- Institute of Future Food Technology, JITRI, Yixing, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
- Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi, China.
- Institute of Future Food Technology, JITRI, Yixing, China.
| |
Collapse
|
5
|
DeAngelis PL. Chemoenzymatic synthesis with the Pasteurella hyaluronan synthase; production of a multitude of defined authentic, derivatized, and analog polymers. PROTEOGLYCAN RESEARCH 2024; 2:e70000. [PMID: 39735554 PMCID: PMC11673988 DOI: 10.1002/pgr2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/21/2024] [Indexed: 12/31/2024]
Abstract
Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] n ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Pasteurella multocida Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.g., HA di-, tri- or tetrasaccharide) or an artificial glucuronide yielding homogeneous oligosaccharides in the range of 2 to ~20 monosaccharide units (n = 1 to ~10), or (2) "one-pot" polymerization reactions employing acceptor-mediated synchronization with stoichiometric size control yielding quasi-monodisperse (i.e., polydispersity approaching 1; very narrow size distributions) polysaccharides in the range of ~7 kDa to ~2 MDa (n = ~17 to 5000). In either strategy, acceptors containing non-carbohydrate functionalities (e.g., biotin, fluorophores, amines) can add useful moieties to the reducing termini of HA chains at 100% efficiency. As a further structural diversification, PmHAS can utilize a variety of unnatural UDP-sugar analogs thus adding novel groups (e.g., trifluoroacetyl, alkyne, azide, sulfhydryl) along the HA backbone and/or at its nonreducing terminus. This review discusses the current understanding and recent advances in HA chemoenzymatic synthesis methods using PmHAS. This powerful toolbox has potential for creation of a multitude of HA-based probes, therapeutics, drug conjugates, coatings, and biomaterials.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
6
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|
7
|
Kuklewicz J, Zimmer J. Molecular insights into capsular polysaccharide secretion. Nature 2024; 628:901-909. [PMID: 38570679 PMCID: PMC11041684 DOI: 10.1038/s41586-024-07248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.
Collapse
Affiliation(s)
- Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
8
|
DeAngelis PL, Zimmer J. Hyaluronan synthases; mechanisms, myths, & mysteries of three types of unique bifunctional glycosyltransferases. Glycobiology 2023; 33:1117-1127. [PMID: 37769351 PMCID: PMC10939387 DOI: 10.1093/glycob/cwad075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 09/30/2023] Open
Abstract
Hyaluronan (HA), the essential [-3-GlcNAc-1-β-4-GlcA-1-β-]n matrix polysaccharide in vertebrates and molecular camouflage coating in select pathogens, is polymerized by "HA synthase" (HAS) enzymes. The first HAS identified three decades ago opened the window for new insights and biotechnological tools. This review discusses current understanding of HA biosynthesis, its biotechnological utility, and addresses some misconceptions in the literature. HASs are fascinating enzymes that polymerize two different UDP-activated sugars via different glycosidic linkages. Therefore, these catalysts were the first examples to break the "one enzyme/one sugar transferred" dogma. Three distinct types of these bifunctional glycosyltransferases (GTs) with disparate architectures and reaction modes are known. Based on biochemical and structural work, we present an updated classification system. Class I membrane-integrated HASs employ a processive chain elongation mechanism and secrete HA across the plasma membrane. This complex operation is accomplished by functionally integrating a cytosolic catalytic domain with a channel-forming transmembrane region. Class I enzymes, containing a single GT family-2 (GT-2) module that adds both monosaccharide units to the nascent chain, are further subdivided into two groups that construct the polymer with opposite molecular directionalities: Class I-R and I-NR elongate the HA polysaccharide at either the reducing or the non-reducing end, respectively. In contrast, Class II HASs are membrane-associated peripheral synthases with a non-processive, non-reducing end elongation mechanism using two independent GT-2 modules (one for each type of monosaccharide) and require a separate secretion system for HA export. We discuss recent mechanistic insights into HA biosynthesis that promise biotechnological benefits and exciting engineering approaches.
Collapse
Affiliation(s)
- Paul L DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma, OK 73104, United States
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, Howard Hughes Medical Institute, University of Virginia, 480 Ray C. Hunt Dr, Charlottesville, VA 22908, United States
| |
Collapse
|
9
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
10
|
Shukla P, Sinha R, Anand S, Srivastava P, Mishra A. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Appl Biochem Biotechnol 2023; 195:7132-7157. [PMID: 36961510 DOI: 10.1007/s12010-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shubhankar Anand
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
11
|
Wang YJ, Li L, Yu J, Hu HY, Liu ZX, Jiang WJ, Xu W, Guo XP, Wang FS, Sheng JZ. Imaging of Escherichia coli K5 and glycosaminoglycan precursors via targeted metabolic labeling of capsular polysaccharides in bacteria. SCIENCE ADVANCES 2023; 9:eade4770. [PMID: 36800421 PMCID: PMC9937569 DOI: 10.1126/sciadv.ade4770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/13/2023] [Indexed: 05/25/2023]
Abstract
The introduction of unnatural chemical moieties into glycosaminoglycans (GAGs) has enormous potential to facilitate studies of the mechanism and application of these critical, widespread molecules. Unnatural N-acetylhexosamine analogs were metabolically incorporated into the capsule polysaccharides of Escherichia coli and Bacillus subtilis via bacterial metabolism. Targeted metabolic labeled hyaluronan and the precursors of heparin and chondroitin sulfate were obtained. The azido-labeled polysaccharides (purified or in capsules) were reacted with dyes, via bioorthogonal chemistry, to enable detection and imaging. Site-specific introduction of fluorophores directly onto cell surfaces affords another choice for observing and quantifying bacteria in vivo and in vitro. Furthermore, azido-polysaccharides retain similar biological properties to their natural analogs, and reliable and predictable introduction of functionalities, such as fluorophores, onto azido-N-hexosamines in the disaccharide repeat units provides chemical tools for imaging and metabolic analysis of GAGs in vivo and in vitro.
Collapse
Affiliation(s)
- Yu-Jia Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lian Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Jie Yu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong-Yu Hu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zi-Xu Liu
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wen-Jie Jiang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Wei Xu
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| |
Collapse
|
12
|
Dueholm MKD, Besteman M, Zeuner EJ, Riisgaard-Jensen M, Nielsen ME, Vestergaard SZ, Heidelbach S, Bekker NS, Nielsen PH. Genetic potential for exopolysaccharide synthesis in activated sludge bacteria uncovered by genome-resolved metagenomics. WATER RESEARCH 2023; 229:119485. [PMID: 36538841 DOI: 10.1016/j.watres.2022.119485] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
A good floc formation of activated sludge (AS) is crucial for solid-liquid separation and production of clean effluent during wastewater treatment. Floc formation is partly controlled by self-produced extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, and nucleic acids. Little is known about the composition, structure, and function of EPS in AS and which bacteria produce them. To address this knowledge gap for the exopolysaccharides, we took advantage of 1083 high-quality metagenome-assembled genomes (MAGs) obtained from 23 Danish wastewater treatment plants. We investigated the genomic potential for exopolysaccharide biosynthesis in bacterial species typical in AS systems based on genome mining and gene synteny analyses. Putative gene clusters associated with the biosynthesis of alginate, cellulose, curdlan, diutan, hyaluronic acids, Pel, poly-β-1,6-N-acetyl-d-glucosamine (PNAG), Psl, S88 capsular polysaccharide, salecan, succinoglycan, and xanthan were identified and linked to individual MAGs, providing a comprehensive overview of the genome-resolved potential for these exopolysaccharides in AS bacteria. The approach and results provide a starting point for a more comprehensive understanding of EPS composition in wastewater treatment systems, which may facilitate a more refined regulation of the activated sludge process for improved stability.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Maaike Besteman
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emil Juel Zeuner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marie Riisgaard-Jensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Eneberg Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sofie Zacho Vestergaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren Heidelbach
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nicolai Sundgaard Bekker
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
13
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
14
|
Rykov SV, Battalova IY, Mironov AS. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. RUSS J GENET+ 2022; 58:507-527. [DOI: 10.1134/s1022795422050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2025]
|
15
|
Lierova A, Kasparova J, Filipova A, Cizkova J, Pekarova L, Korecka L, Mannova N, Bilkova Z, Sinkorova Z. Hyaluronic Acid: Known for Almost a Century, but Still in Vogue. Pharmaceutics 2022; 14:838. [PMID: 35456670 PMCID: PMC9029726 DOI: 10.3390/pharmaceutics14040838] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
Hyaluronic acid (HA) has a special position among glycosaminoglycans. As a major component of the extracellular matrix (ECM). This simple, unbranched polysaccharide is involved in the regulation of various biological cell processes, whether under physiological conditions or in cases of cell damage. This review summarizes the history of this molecule's study, its distinctive metabolic pathway in the body, its unique properties, and current information regarding its interaction partners. Our main goal, however, is to intensively investigate whether this relatively simple polymer may find applications in protecting against ionizing radiation (IR) or for therapy in cases of radiation-induced damage. After exposure to IR, acute and belated damage develops in each tissue depending upon the dose received and the cellular composition of a given organ. A common feature of all organ damage is a distinct change in composition and structure of the ECM. In particular, the important role of HA was shown in lung tissue and the variability of this flexible molecule in the complex mechanism of radiation-induced lung injuries. Moreover, HA is also involved in intermediating cell behavior during morphogenesis and in tissue repair during inflammation, injury, and would healing. The possibility of using the HA polymer to affect or treat radiation tissue damage may point to the missing gaps in the responsible mechanisms in the onset of this disease. Therefore, in this article, we will also focus on obtaining answers from current knowledge and the results of studies as to whether hyaluronic acid can also find application in radiation science.
Collapse
Affiliation(s)
- Anna Lierova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jitka Kasparova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Alzbeta Filipova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Jana Cizkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lenka Pekarova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| | - Lucie Korecka
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Nikola Mannova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Bilkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 532 10 Pardubice, Czech Republic; (J.K.); (L.K.); (N.M.); (Z.B.)
| | - Zuzana Sinkorova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic; (A.F.); (J.C.); (L.P.); (Z.S.)
| |
Collapse
|
16
|
Maloney FP, Kuklewicz J, Corey RA, Bi Y, Ho R, Mateusiak L, Pardon E, Steyaert J, Stansfeld PJ, Zimmer J. Structure, substrate recognition and initiation of hyaluronan synthase. Nature 2022; 604:195-201. [PMID: 35355017 PMCID: PMC9358715 DOI: 10.1038/s41586-022-04534-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Abstract
Hyaluronan is an acidic heteropolysaccharide comprising alternating N-acetylglucosamine and glucuronic acid sugars that is ubiquitously expressed in the vertebrate extracellular matrix1. The high-molecular-mass polymer modulates essential physiological processes in health and disease, including cell differentiation, tissue homeostasis and angiogenesis2. Hyaluronan is synthesized by a membrane-embedded processive glycosyltransferase, hyaluronan synthase (HAS), which catalyses the synthesis and membrane translocation of hyaluronan from uridine diphosphate-activated precursors3,4. Here we describe five cryo-electron microscopy structures of a viral HAS homologue at different states during substrate binding and initiation of polymer synthesis. Combined with biochemical analyses and molecular dynamics simulations, our data reveal how HAS selects its substrates, hydrolyses the first substrate to prime the synthesis reaction, opens a hyaluronan-conducting transmembrane channel, ensures alternating substrate polymerization and coordinates hyaluronan inside its transmembrane pore. Our research suggests a detailed model for the formation of an acidic extracellular heteropolysaccharide and provides insights into the biosynthesis of one of the most abundant and essential glycosaminoglycans in the human body.
Collapse
Affiliation(s)
- Finn P Maloney
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yunchen Bi
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruoya Ho
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Lukasz Mateusiak
- Laboratory for In Vivo Cellular and Molecular Imaging, ICMI-BEFY, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Pardon
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Brussels, Belgium
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
17
|
Ma Y, Qiu Y, Yu C, Li S, Xu H. Design and construction of a Bacillus amyloliquefaciens cell factory for hyaluronic acid synthesis from Jerusalem artichoke inulin. Int J Biol Macromol 2022; 205:410-418. [PMID: 35202630 DOI: 10.1016/j.ijbiomac.2022.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
Hyaluronic acid (HA), a high-value biomacromolecule, has wide applications in medical, cosmetic and food fields. Currently, employing the safe-grade microorganisms for de novo biosynthesis of HA from renewable substrates has become a promising alternative. In this study, we established a Bacillus amyloliquefaciens strain as platform for HA production from Jerusalem artichoke inulin. Firstly, the different HA and UDP-GlcUA synthase genes were introduced into B. amyloliquefaciens to construct the HA synthesis pathway. Secondly, the byproduct polysaccharides were removed by knocking sacB and epsA-O using CRISPR/Cas9n system, resulting in a 13% increase in HA production. Finally, 2.89 g/L HA with a high molecular weight of 1.5 MDa was obtained after optimizing fermentation conditions and adding osmotic agents. This study demonstrates the engineered B. amyloliquefaciens can effectively synthesize HA with Jerusalem artichoke inulin and provides a green route for HA production.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
18
|
Mohan N, Pavan SS, Jayakumar A, Rathinavelu S, Sivaprakasam S. Real-time metabolic heat-based specific growth rate soft sensor for monitoring and control of high molecular weight hyaluronic acid production by Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2022; 106:1079-1095. [PMID: 35076739 DOI: 10.1007/s00253-022-11760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
This present investigation addressing the metabolic bottleneck in synthesis of high MW HA by Streptococcus zooepidemicus and illustrates the application of calorimetric fed-batch control of µ at a narrower range. Feedforward (FF) and feedback (FB) control was devised to improve the molecular weight (MW) of HA production by S. zooepidemicus. Metabolic heat measurements (Fermentation calorimetry) were modeled to decipher real-time specific growth rate, [Formula: see text] was looped into the PID circuit, envisaged to control [Formula: see text] to their desired setpoint values 0.05 [Formula: see text], 0.1 [Formula: see text], and 0.15 [Formula: see text] respectively. Similarly, a predetermined exponential feed rate irrespective of real-time µ was carried out in FF strategy. The developed FB strategy established a robust control capable of maintaining the specific growth rate (µ) close to the [Formula: see text] value with a minimal tracking error. Exponential feed rate carried out with a lowest [Formula: see text] of 0.05 [Formula: see text] showed an improved MW of HA to 2.98 MDa and 2.94 MDa for the FF and FB-based control strategies respectively. An optimal HA titer of 4.73 g/L was achieved in FF control strategy at [Formula: see text]. Superior control of µ at low [Formula: see text] value was observed to influence HA polymerization positively by yielding an improved MW and desired polydispersity index (PDI) of HA. PID control offers advantage over conventional fed-batch method to synthesize HA at an improved MW. Calorimetric signal-based µ control by PID negates adverse effects due to the secretion of other end products albeit maintaining regular metabolic activities. KEY POINTS: First report to compare HA productivities by feedforward and feedback control strategy. Inherent merits of regulating µ at narrower range were entailed. Relationship between operating µ and HA molecular weight was discussed.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anjali Jayakumar
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sivakumar Rathinavelu
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
19
|
Bosi A, Banfi D, Bistoletti M, Moretto P, Moro E, Crema F, Maggi F, Karousou E, Viola M, Passi A, Vigetti D, Giaroni C, Baj A. Hyaluronan: A Neuroimmune Modulator in the Microbiota-Gut Axis. Cells 2021; 11:cells11010126. [PMID: 35011688 PMCID: PMC8750446 DOI: 10.3390/cells11010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022] Open
Abstract
The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Banfi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Michela Bistoletti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Elisabetta Moro
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Francesca Crema
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (E.M.); (F.C.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
- Centre of Neuroscience, University of Insubria, 21100 Varese, Italy
- Correspondence: ; Tel.: +39-0332-217412; Fax: +39-0332-217111
| | - Andreina Baj
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (A.B.); (D.B.); (M.B.); (P.M.); (F.M.); (E.K.); (M.V.); (A.P.); (D.V.); (A.B.)
| |
Collapse
|
20
|
Takahama R, Kato H, Tajima K, Tagawa S, Kondo T. Biofabrication of a Hyaluronan/Bacterial Cellulose Composite Nanofibril by Secretion from Engineered Gluconacetobacter. Biomacromolecules 2021; 22:4709-4719. [PMID: 34705422 DOI: 10.1021/acs.biomac.1c00987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Naturally occurring polysaccharides, such as cellulose, hemicellulose, and chitin, have roles in plant skeletons and/or related properties in living organisms. Their hierarchically regulated production systems show potential for designing nanocomposite fabrication using engineered microorganisms. This study has demonstrated that genetically engineered Gluconacetobacter hansenii (G. hansenii) individual cells can fabricate naturally composited nanofibrils by simultaneous production of hyaluronan (HA) and bacterial cellulose (BC). The cells were manipulated to contain hyaluronan synthase and UDP-glucose dehydrogenase genes, which are essential for HA biosynthesis. Fluorescence microscopic observations indicated the production of composited nanofibrils and suggested that HA secretion was associated with the cellulose secretory pathway in G. hansenii. The gel-like nanocomposite materials produced by the engineered G. hansenii exhibited superior properties compared with conventional in situ nanocomposites. This genetic engineering approach facilitates the use of G. hansenii for designing integrated cellulose-based nanomaterials.
Collapse
Affiliation(s)
- Ryo Takahama
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Honami Kato
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Tajima
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Satomi Tagawa
- Faculty of Agriculture, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tetsuo Kondo
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Faculty of Agriculture, Kyushu University, West 5th, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
21
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
22
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
23
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
24
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
25
|
Zakeri A, Khoshsorour S, Karami Fath M, Pourzardosht N, Fazeli F, Khalili S. Structural analyses and engineering of the pmHAS enzyme to improve its functional performance: An in silico study. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1821041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alireza Zakeri
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sepideh Khoshsorour
- Department of Biology, Faculty of Fundamental Sciences, Payame Noor University, Branch of Rey, Tehran, Iran
| | - Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Faezeh Fazeli
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
26
|
Snetkov P, Zakharova K, Morozkina S, Olekhnovich R, Uspenskaya M. Hyaluronic Acid: The Influence of Molecular Weight on Structural, Physical, Physico-Chemical, and Degradable Properties of Biopolymer. Polymers (Basel) 2020; 12:E1800. [PMID: 32796708 PMCID: PMC7464276 DOI: 10.3390/polym12081800] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/25/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hyaluronic acid, as a natural linear polysaccharide, has attracted researchers' attention from its initial detection and isolation from tissues in 1934 until the present day. Due to biocompatibility and a high biodegradation of hyaluronic acid, it finds wide application in bioengineering and biomedicine: from biorevitalizing skin cosmetics and endoprostheses of joint fluid to polymeric scaffolds and wound dressings. However, the main properties of aqueous polysaccharide solutions with different molecular weights are different. Moreover, the therapeutic effect of hyaluronic acid-based preparations directly depends on the molecular weight of the biopolymer. The present review collects the information about relations between the molecular weight of hyaluronic acid and its original properties. Particular emphasis is placed on the structural, physical and physico-chemical properties of hyaluronic acid in water solutions, as well as their degradability.
Collapse
Affiliation(s)
- Petr Snetkov
- Institute BioEngineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia; (K.Z.); (S.M.); (R.O.); (M.U.)
| | | | | | | | | |
Collapse
|
27
|
Gunasekaran V, D G, V P. Role of membrane proteins in bacterial synthesis of hyaluronic acid and their potential in industrial production. Int J Biol Macromol 2020; 164:1916-1926. [PMID: 32791275 DOI: 10.1016/j.ijbiomac.2020.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan polymer found in various parts of human body and is required for functions like lubrication, water homeostasis etc. Hyaluronic acid is mostly produced industrially by bacterial fermentation for pharmaceutical and cosmetic applications. This review discusses on the role of membrane proteins involved in synthesis and transport of bacterial HA, since HA is a transmembrane product. The different types of membrane proteins involved, their transcriptional control in wild type bacteria and the expression of those proteins in various recombinant hosts have been discussed. The role of phospholipids and metal ions on membrane proteins activity, HA yield and size of HA have also been discussed. Today with an estimated market of US$ 8.3 billion and which is expected to grow to US$ 15.25 billion in 2026, it is essential to increase the efficiency of the industrial HA production process. So this review also proposes on how those membrane proteins and cellular mechanisms like the transcriptional control can be utilised to develop efficient industrial strains that enhance the yield and size of HA produced.
Collapse
Affiliation(s)
| | - Gowdhaman D
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Ponnusami V
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
| |
Collapse
|
28
|
Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, Du G, Kang Z. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020; 11:3120. [PMID: 32561727 PMCID: PMC7305114 DOI: 10.1038/s41467-020-16962-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L−1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L−1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers. Bioproduction of hyaluronan needs increases in yield and greater diversity of the molecular weights. Here, the author increases hyaluronan production and diversifies the molecular weights through engineering the hyaluronan biosynthesis pathway and disruption of Corynebacterium glutamicum encapsulation caused by secreted hyaluronan.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | | | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
29
|
Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – A review. Int J Pharm 2020; 578:119127. [DOI: 10.1016/j.ijpharm.2020.119127] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022]
|
30
|
Chemical, enzymatic and biological synthesis of hyaluronic acids. Int J Biol Macromol 2020; 152:199-206. [PMID: 32088231 DOI: 10.1016/j.ijbiomac.2020.02.214] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
Hyaluronic acid (HA) is a major glycosaminoglycan, a family of structurally complex, linear, anionic hetero-co-polysaccharides. HA is important in various anatomical structures including the eyes, joints, heart and myriad intricate tissues, and is currently widely used in the therapeutics and cosmetics areas. The synthesis of HA of well-defined and uniform chain lengths is of major interest for the development of safer and more reliable drugs and to gain a better understanding of its structure-activity relationships. However, HA has received less attention from the synthetic carbohydrate community compared with other members of the glycosaminoglycan family. In this review, we examine the remarkable progress that has been made in the chemical and chemoenzymatic synthesis of HA, providing a broad spectrum of options to access HA of well controlled chain lengths.
Collapse
|
31
|
Mohan N, Tadi SRR, Pavan SS, Sivaprakasam S. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory. Appl Microbiol Biotechnol 2020; 104:3349-3365. [PMID: 32078020 DOI: 10.1007/s00253-020-10445-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
The present study is focused on systematic process and kinetic investigation of hyaluronic acid (HA) production strategy unraveling the role of dissolved oxygen (DO) and N-acetyl glucosamine (GlcNAc) towards the enhancement of HA titer and its molecular weight. Maintaining excess DO levels (10-40% DO) through DO-stat control and the substitution of GlcNAc at a range (5-20 g/L) with glucose (Glc) critically influenced HA production. DO-stat control strategy yielded a promising HA titer (2.4 g/L) at 40% DO concentration. Controlling DO level at 20% (DO-stat) was observed to be optimum resulting in a significant HA production (2.1 g/L) and its molecular weight ranging 0.98-1.45 MDa with a consistent polydispersity index (PDI) (1.57-1.69). Substitution of GlcNAc with Glc at different proportions explicitly addressed the metabolic trade-off between HA titer and its molecular weight. GlcNAc substitution positively influenced the molecular weight of HA. The highest HA molecular weight (2.53 MDa) of two-fold increase compared with glucose as sole carbon substrate and narrower PDI (1.35 ± 0.18) was achieved for the 10:20 (Glc:GlcNAc) proportion. A novice attempt on modeling the uptake of dual substrates (Glc and GlcNAc) by Streptococcus zooepidemicus for HA production was successfully accomplished using double Andrew's growth model and the kinetic parameters were estimated reliably.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Subbi Rami Reddy Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
32
|
Gottschalk J, Zaun H, Eisele A, Kuballa J, Elling L. Key Factors for A One-Pot Enzyme Cascade Synthesis of High Molecular Weight Hyaluronic Acid. Int J Mol Sci 2019; 20:ijms20225664. [PMID: 31726754 PMCID: PMC6888640 DOI: 10.3390/ijms20225664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
In the last decades, interest in medical or cosmetic applications of hyaluronic acid (HA) has increased. Size and dispersity are key characteristics of biological function. In contrast to extraction from animal tissue or bacterial fermentation, enzymatic in vitro synthesis is the choice to produce defined HA. Here we present a one-pot enzyme cascade with six enzymes for the synthesis of HA from the cheap monosaccharides glucuronic acid (GlcA) and N-acetylglucosamine (GlcNAc). The combination of two enzyme modules, providing the precursors UDP–GlcA and UDP–GlcNAc, respectively, with hyaluronan synthase from Pasteurella multocida (PmHAS), was optimized to meet the kinetic requirements of PmHAS for high HA productivity and molecular weight. The Mg2+ concentration and the pH value were found as key factors. The HA product can be tailored by different conditions: 25 mM Mg2+ and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES)-NaOH pH 8 result into an HA product with high Mw HA (1.55 MDa) and low dispersity (1.05). Whereas with 15 mM Mg2+ and HEPES–NaOH pH 8.5, we reached the highest HA concentration (2.7 g/L) with a yield of 86.3%. Our comprehensive data set lays the basis for larger scale enzymatic HA synthesis.
Collapse
Affiliation(s)
- Johannes Gottschalk
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
| | - Henning Zaun
- Research and Development Department, GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (H.Z.); (J.K.)
| | - Anna Eisele
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
| | - Jürgen Kuballa
- Research and Development Department, GALAB Laboratories GmbH, Am Schleusengraben 7, 21029 Hamburg, Germany; (H.Z.); (J.K.)
| | - Lothar Elling
- Laboratory for Biomaterials, Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (J.G.); (A.E.)
- Correspondence: ; Tel.: +49-241-80-28350
| |
Collapse
|
33
|
Agarwal G, K V K, Prasad SB, Bhaduri A, Jayaraman G. Biosynthesis of Hyaluronic acid polymer: Dissecting the role of sub structural elements of hyaluronan synthase. Sci Rep 2019; 9:12510. [PMID: 31467312 PMCID: PMC6715743 DOI: 10.1038/s41598-019-48878-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Hyaluronic acid (HA) based biomaterials have several biomedical applications. HA biosynthesis is catalysed by hyaluronan synthase (HAS). The unavailability of 3-D structure of HAS and gaps in molecular understanding of HA biosynthesis process pose challenges in rational engineering of HAS to control HA molecular weight and titer. Using in-silico approaches integrated with mutation studies, we define a dictionary of sub-structural elements (SSE) of the Class I Streptococcal HAS (SeHAS) to guide rational engineering. Our study identifies 9 SSE in HAS and elucidates their role in substrate and polymer binding and polymer biosynthesis. Molecular modelling and docking assessment indicate a single binding site for two UDP-substrates implying conformationally-driven alternating substrate specificities for this class of enzymes. This is the first report hypothesizing the involvement of sites from SSE5 in polymer binding. Mutation at these sites influence HA production, indicating a tight coupling of polymer binding and synthase functions. Mutation studies show dispensable role of Lys-139 in substrate binding and a key role of Gln-248 and Thr-283 in HA biosynthesis. Based on the functional architecture in SeHAS, we propose a plausible three-step polymer extension model from its reducing end. Together, these results open new avenues for rational engineering of Class I HAS to study and regulate its functional properties and enhanced understanding of glycosyltransferases and processive enzymes.
Collapse
Affiliation(s)
- Garima Agarwal
- Materials Simulation group, Samsung Advanced Institute of Technology, Samsung R&D Institute, Bengaluru, Karnataka, 560037, India.
| | - Krishnan K V
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Shashi Bala Prasad
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Anirban Bhaduri
- Materials Simulation group, Samsung Advanced Institute of Technology, Samsung R&D Institute, Bengaluru, Karnataka, 560037, India
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
34
|
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel) 2018; 10:E701. [PMID: 30960626 PMCID: PMC6403654 DOI: 10.3390/polym10070701] [Citation(s) in RCA: 450] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
35
|
Mandawe J, Infanzon B, Eisele A, Zaun H, Kuballa J, Davari MD, Jakob F, Elling L, Schwaneberg U. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid. Chembiochem 2018; 19:1414-1423. [PMID: 29603528 DOI: 10.1002/cbic.201800093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/20/2023]
Abstract
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge-gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain-length specificity and a twofold increase in mass-based turnover number. Seven improved pmHAS variants out of 1392 generated by error-prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell-free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N-terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.
Collapse
Affiliation(s)
- John Mandawe
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belen Infanzon
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Anna Eisele
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Henning Zaun
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Lothar Elling
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
36
|
Blackburn MR, Hubbard C, Kiessling V, Bi Y, Kloss B, Tamm LK, Zimmer J. Distinct reaction mechanisms for hyaluronan biosynthesis in different kingdoms of life. Glycobiology 2018; 28:108-121. [PMID: 29190396 PMCID: PMC6192386 DOI: 10.1093/glycob/cwx096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022] Open
Abstract
Hyaluronan (HA) is an acidic high molecular weight cell surface polysaccharide ubiquitously expressed by vertebrates, some pathogenic bacteria and even viruses. HA modulates many essential physiological processes and is implicated in numerous pathological conditions ranging from autoimmune diseases to cancer. In various pathogens, HA functions as a non-immunogenic surface polymer that reduces host immune responses. It is a linear polymer of strictly alternating glucuronic acid and N-acetylglucosamine units synthesized by HA synthase (HAS), a membrane-embedded family-2 glycosyltransferase. The enzyme synthesizes HA and secretes the polymer through a channel formed by its own membrane-integrated domain. To reveal how HAS achieves these tasks, we determined the biologically functional units of bacterial and viral HAS in a lipid bilayer environment by co-immunoprecipitation, single molecule fluorescence photobleaching, and site-specific cross-linking analyses. Our results demonstrate that bacterial HAS functions as an obligate homo-dimer with two functional HAS copies required for catalytic activity. In contrast, the viral enzyme, closely related to vertebrate HAS, functions as a monomer. Using site-specific cross-linking, we identify the dimer interface of bacterial HAS and show that the enzyme uses a reaction mechanism distinct from viral HAS that necessitates a dimeric assembly.
Collapse
Affiliation(s)
- Matthew R Blackburn
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Caitlin Hubbard
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Yunchen Bi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis (COMPPÅ), New York Structural Biology Center (NYSBC), 89 Convent Avenue, New York, NY 10027, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| |
Collapse
|
37
|
Harper M, Wright A, St Michael F, Li J, Deveson Lucas D, Ford M, Adler B, Cox AD, Boyce JD. Characterization of Two Novel Lipopolysaccharide Phosphoethanolamine Transferases in Pasteurella multocida and Their Role in Resistance to Cathelicidin-2. Infect Immun 2017; 85:e00557-17. [PMID: 28874446 PMCID: PMC5649011 DOI: 10.1128/iai.00557-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
The lipopolysaccharide (LPS) produced by the Gram-negative bacterial pathogen Pasteurella multocida has phosphoethanolamine (PEtn) residues attached to lipid A, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and galactose. In this report, we show that PEtn is transferred to lipid A by the P. multocida EptA homologue, PetL, and is transferred to galactose by a novel PEtn transferase that is unique to P. multocida called PetG. Transcriptomic analyses indicated that petL expression was positively regulated by the global regulator Fis and negatively regulated by an Hfq-dependent small RNA. Importantly, we have identified a novel PEtn transferase called PetK that is responsible for PEtn addition to the single Kdo molecule (Kdo1), directly linked to lipid A in the P. multocida glycoform A LPS. In vitro assays showed that the presence of a functional petL and petK, and therefore the presence of PEtn on lipid A and Kdo1, was essential for resistance to the cationic, antimicrobial peptide cathelicidin-2. The importance of PEtn on Kdo1 and the identification of the transferase responsible for this addition have not previously been shown. Phylogenetic analysis revealed that PetK is the first representative of a new family of predicted PEtn transferases. The PetK family consists of uncharacterized proteins from a range of Gram-negative bacteria that produce LPS glycoforms with only one Kdo molecule, including pathogenic species within the genera Vibrio, Bordetella, and Haemophilus We predict that many of these bacteria will require the addition of PEtn to Kdo for maximum protection against host antimicrobial peptides.
Collapse
Affiliation(s)
- Marina Harper
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC, Australia
| | - Amy Wright
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC, Australia
| | - Frank St Michael
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada
| | - Jianjun Li
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC, Australia
| | - Mark Ford
- CSIRO Australian Animal Health Laboratory, Geelong, VIC, Australia
| | - Ben Adler
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC, Australia
| | - Andrew D Cox
- Vaccine Program, Human Health Therapeutics Portfolio, National Research Council, Ottawa, ON, Canada
| | - John D Boyce
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, VIC, Australia
| |
Collapse
|
38
|
Westbrook AW, Ren X, Moo-Young M, Chou CP. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 2017; 115:216-231. [DOI: 10.1002/bit.26459] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - Murray Moo-Young
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical Engineering; University of Waterloo; Waterloo Ontario Canada
| |
Collapse
|
39
|
Li S, Wang S, Fu X, Liu XW, Wang PG, Fang J. Sequential one-pot multienzyme synthesis of hyaluronan and its derivative. Carbohydr Polym 2017; 178:221-227. [PMID: 29050588 DOI: 10.1016/j.carbpol.2017.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Hyaluronan (HA) is a linear polysaccharide composed of repeating disaccharide units. It has been well documented to play an array of biological functions in cancer events. Here, we reported a sequential one-pot multienzyme (OPME) strategy for in vitro synthesis of HA and its derivatives. The strategy, which combined in situ sugar nucleotides generation with HA chain polymerization, could convert cheap monosaccharides into HA polymers without consuming exogenous sugar nucleotide donors. HA polymers (number-average molecular weight ranged from 1.5×104 to 5.5×105Da) with over 70% yields were efficiently synthesized and purified from this one-pot system. More importantly, partial labeled HA derivative was further synthesized by metabolic incorporation of unnatural monosaccharide analogues into the sequential OPME system. Cross-linked HA hydrogel was achieved via copper (I)-catalyzed azide-alkyne cycloaddition and exhibited novel networks consisting of both inter- and intra-connected HA chains, which could facilitate the potential applications of this unique polysaccharide.
Collapse
Affiliation(s)
- Shuang Li
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Shuaishuai Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Xuan Fu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Xian-Wei Liu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China
| | - Peng George Wang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China; Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30302-4098, USA
| | - Junqiang Fang
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry Glycobiology, Shandong University, Jinan, Shandong 250100, People's Republic of China.
| |
Collapse
|
40
|
Fu X, Shang W, Wang S, Liu Y, Qu J, Chen X, Wang PG, Fang J. A general strategy for the synthesis of homogeneous hyaluronan conjugates and their biological applications. Chem Commun (Camb) 2017; 53:3555-3558. [DOI: 10.1039/c6cc09431g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we developed a general strategy for synthesizing homogeneous HA conjugates, and generated homogeneous HA–pNP, HA–biotin, and HA–oroxylin conjugates to investigate the relationships between HA chain length and its diverse biological functions.
Collapse
Affiliation(s)
- Xuan Fu
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology
- Shandong University
- Jinan
- People's Republic of China
| | - Wenjing Shang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology
- Shandong University
- Jinan
- People's Republic of China
| | - Shuaishuai Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Jingyao Qu
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology
- Shandong University
- Jinan
- People's Republic of China
| | - Xi Chen
- Department of Chemistry
- University of California
- Davis
- USA
| | - Peng George Wang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology
- Shandong University
- Jinan
- People's Republic of China
| | - Junqiang Fang
- National Glycoengineering Research Center
- Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology
- Shandong University
- Jinan
- People's Republic of China
| |
Collapse
|
41
|
Tsepilov RN, Beloded AV. Hyaluronic Acid--an "Old" Molecule with "New" Functions: Biosynthesis and Depolymerization of Hyaluronic Acid in Bacteria and Vertebrate Tissues Including during Carcinogenesis. BIOCHEMISTRY (MOSCOW) 2016; 80:1093-108. [PMID: 26555463 DOI: 10.1134/s0006297915090011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyaluronic acid is an evolutionarily ancient molecule commonly found in vertebrate tissues and capsules of some bacteria. Here we review modern data regarding structure, properties, and biological functions of hyaluronic acid in mammals and Streptococcus spp. bacteria. Various aspects of biogenesis and degradation of hyaluronic acid are discussed, biosynthesis and degradation metabolic pathways for glycosaminoglycan together with involved enzymes are described, and vertebrate and bacterial hyaluronan synthase genes are characterized. Special attention is given to the mechanisms underlying the biological action of hyaluronic acid as well as the interaction between polysaccharide and various proteins. In addition, all known signaling pathways involving hyaluronic acid are outlined. Impaired hyaluronic acid metabolism, changes in biopolymer molecular weight, hyaluronidase activity, and enzyme isoforms often accompany carcinogenesis. The interaction between cells and hyaluronic acid from extracellular matrix that may be important during malignant change is discussed. An expected role for high molecular weight hyaluronic acid in resistance of naked mole rat to oncologic diseases and the protective role of hyaluronic acid in bacteria are discussed.
Collapse
Affiliation(s)
- R N Tsepilov
- Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Moscow, 123098, Russia.
| | | |
Collapse
|
42
|
Zhao X, Chen Z, Gu G, Guo Z. Recent advances in the research of bacterial glucuronosyltransferases. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1205597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
de Oliveira JD, Carvalho LS, Gomes AMV, Queiroz LR, Magalhães BS, Parachin NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact 2016; 15:119. [PMID: 27370777 PMCID: PMC4930576 DOI: 10.1186/s12934-016-0517-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.
Collapse
Affiliation(s)
- Juliana Davies de Oliveira
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil
| | - Lucas Silva Carvalho
- Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Antônio Milton Vieira Gomes
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Lúcio Rezende Queiroz
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Beatriz Simas Magalhães
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil.,Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil.
| |
Collapse
|
44
|
Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 2016; 6:67. [PMID: 28330137 PMCID: PMC4754297 DOI: 10.1007/s13205-016-0379-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 12/18/2022] Open
Abstract
Hyaluronic acid (HA) is a polysaccharide found in the extracellular matrix of vertebrate epithelial, neural and connective tissues. Due to the high moisture retention, biocompatibility and viscoelasticity properties of this polymer, HA has become an important component of major pharmaceutical, biomedical and cosmetic products with high commercial value worldwide. Currently, large scale production of HA involves extraction from animal tissues as well as the use of bacterial expression systems in Streptococci. However, due to concerns over safety, alternative sources of HA have been pursued which include the use of endotoxin-free microorganisms such as Bacilli and Escherichia coli. In this review, we explore current knowledge of biosynthetic enzymes that produce HA, how these systems have been used commercially to produce HA and how the challenges of producing HA cheaply and safely are being addressed.
Collapse
Affiliation(s)
- Jun Hui Sze
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
| | - Jeremy C Brownlie
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, QLD, 4111, Australia
| | - Christopher A Love
- School of Natural Sciences, Griffith University, Nathan, QLD, 4111, Australia.
- Eskitis Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
45
|
Chu X, Han J, Guo D, Fu Z, Liu W, Tao Y. Characterization of UDP-glucose dehydrogenase from Pasteurella multocida CVCC 408 and its application in hyaluronic acid biosynthesis. Enzyme Microb Technol 2016; 85:64-70. [DOI: 10.1016/j.enzmictec.2015.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 10/22/2022]
|
46
|
Bi Y, Hubbard C, Purushotham P, Zimmer J. Insights into the structure and function of membrane-integrated processive glycosyltransferases. Curr Opin Struct Biol 2015; 34:78-86. [PMID: 26342143 PMCID: PMC4684724 DOI: 10.1016/j.sbi.2015.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/17/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Complex carbohydrates perform essential functions in life, including energy storage, cell signaling, protein targeting, quality control, as well as supporting cell structure and stability. Extracellular polysaccharides (EPS) represent mainly structural polymers and are found in essentially all kingdoms of life. For example, EPS are important biofilm and capsule components in bacteria, represent major constituents in cell walls of fungi, algae, arthropods and plants, and modulate the extracellular matrix in vertebrates. Different mechanisms evolved by which EPS are synthesized. Here, we review the structures and functions of membrane-integrated processive glycosyltransferases (GTs) implicated in the synthesis and secretion of chitin, alginate, hyaluronan and poly-N-acetylglucosamine (PNAG).
Collapse
Affiliation(s)
- Yunchen Bi
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Caitlin Hubbard
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Pallinti Purushotham
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States
| | - Jochen Zimmer
- Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, United States.
| |
Collapse
|
47
|
Cress BF, Englaender JA, He W, Kasper D, Linhardt RJ, Koffas MAG. Masquerading microbial pathogens: capsular polysaccharides mimic host-tissue molecules. FEMS Microbiol Rev 2014; 38:660-97. [PMID: 24372337 PMCID: PMC4120193 DOI: 10.1111/1574-6976.12056] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/16/2013] [Accepted: 12/19/2013] [Indexed: 11/27/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant bacteria portends an impending postantibiotic age, characterized by diminishing efficacy of common antibiotics and routine application of multifaceted, complementary therapeutic approaches to treat bacterial infections, particularly multidrug-resistant organisms. The first line of defense for most bacterial pathogens consists of a physical and immunologic barrier known as the capsule, commonly composed of a viscous layer of carbohydrates that are covalently bound to the cell wall in Gram-positive bacteria or often to lipids of the outer membrane in many Gram-negative bacteria. Bacterial capsular polysaccharides are a diverse class of high molecular weight polysaccharides contributing to virulence of many human pathogens in the gut, respiratory tree, urinary tract, and other host tissues, by hiding cell surface components that might otherwise elicit host immune response. This review highlights capsular polysaccharides that are structurally identical or similar to polysaccharides found in mammalian tissues, including polysialic acid and glycosaminoglycan capsules hyaluronan, heparosan, and chondroitin. Such nonimmunogenic coatings render pathogens insensitive to certain immune responses, effectively increasing residence time in host tissues and enabling pathologically relevant population densities to be reached. Biosynthetic pathways and capsular involvement in immune system evasion are described, providing a basis for potential therapies aimed at supplementing or replacing antibiotic treatment.
Collapse
Affiliation(s)
- Brady F Cress
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | | | | | | | | |
Collapse
|
48
|
Marcellin E, Steen JA, Nielsen LK. Insight into hyaluronic acid molecular weight control. Appl Microbiol Biotechnol 2014; 98:6947-56. [DOI: 10.1007/s00253-014-5853-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/03/2023]
|
49
|
Hoffmann J, Altenbuchner J. Hyaluronic acid production with Corynebacterium glutamicum: effect of media composition on yield and molecular weight. J Appl Microbiol 2014; 117:663-78. [PMID: 24863652 DOI: 10.1111/jam.12553] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023]
Abstract
AIMS Corynebacterium glutamicum was tested as an alternative host for heterologous production of hyaluronic acid (HA). METHODS AND RESULTS A set of expression vectors containing hasA, encoding HA synthase from Streptococcus equi subsp. zooepidemicus, alone or in combination with genes encoding enzymes for HA precursor production (hasB, hasC, glmU from Pseudomonas putida KT2440) or bacterial haemoglobin (vgb from Vitreoscilla sp.) was constructed. Recombinant Coryne. glutamicum strains were cultivated in two different minimal media, CGXII and MEK700. HA was isolated from the culture broth by ethanol precipitation or ultrafiltration. Analyses of the isolated HA revealed that overall production was higher in CGXII medium (1241 mg l(-1)) than in MEK700 medium (363 mg l(-1)), but molecular weight of the product was higher in MEK700 (>1·4 MDa) than in CGXII (<270 kDa). Coexpression of hasB, hasC or glmU had no effect on HA yield and did not improve molecular weight of the product. Coexpression of vgb lowered HA yield about 1·5-fold and did not affect molecular weight of the product. Microscopy of negative-stained cultures revealed that Coryne. glutamicum produces no distinct HA capsule. CONCLUSIONS Regulation of cell growth and gene expression level of hasA are reasonable starting points for controlling the molecular weight of HA produced by Coryne. glutamicum. SIGNIFICANCE AND IMPACT OF THE STUDY Corynebacterium glutamicum has a great potential as an alternative production host for HA. The fact that Coryne. glutamicum produces no distinct HA capsule facilitates HA isolation and improves overall yield.
Collapse
Affiliation(s)
- J Hoffmann
- Institute of Industrial Genetics, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
50
|
Abstract
Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active pharmaceutical ingredients for treatment of, for example, arthritis and osteoarthritis, and its commercial value far exceeds that of other microbial extracellular polysaccharides. Traditionally hyaluronan is extracted from animal waste which is a well-established process now. However, biotechnological synthesis of biopolymers provides a wealth of new possibilities. Therefore, genetic/metabolic engineering has been applied in the area of tailor-made hyaluronan synthesis. Another approach is the controlled artificial (in vitro) synthesis of hyaluronan by enzymes. Advantage of using microbial and enzymatic synthesis for hyaluronan production is the simpler downstream processing and a reduced risk of viral contamination. In this paper an overview of the different methods used to produce hyaluronan is presented. Emphasis is on the advancements made in the field of the synthesis of bioengineered hyaluronan.
Collapse
|