1
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Cao Z, Yang X, Li T, Liu Z, Li P, Zhou Y, Sun Y. Molecular characterization and expression analysis of B-cell lymphoma-2 in Trachinotus ovatus and its role in apoptotic process. Front Immunol 2023; 14:1129800. [PMID: 37006242 PMCID: PMC10063160 DOI: 10.3389/fimmu.2023.1129800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction B-cell lymphoma-2 (Bcl-2) is the first identified member of the Bcl-2 family that performs an anti-apoptotic function in mammals. However, its role in teleosts is not fully understood. In this study, Bcl-2 of Trachinotus ovatus (TroBcl2) was cloned, and its role in apoptosis was investigated. Methods In this study, Bcl-2 of Trachinotus ovatus (TroBcl2) was cloned by PCR. Quantitative real-time PCR (qRT-PCR) was used to detect its mRNA expression level in healthy condition and after LPS stimulation. Subcellular localization was performed by transfecting the pTroBcl2-N3 plasmid into golden pompano snout (GPS) cells and observed under an inverted fluorescence microscope DMi8 and further verified by immunoblotting. In vivo overexpression and RNAi knockdown method were performed to evaluate the role of TroBcl2 in apoptosis. The anti-apoptotic activity of TroBcl2 was detected by flow cytometry. The effect of TroBcl2 on the mitochondrial membrane potential (MMP) was measured by an enhanced mitochondrial membrane potential assay kit with JC-1. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method was performed to evaluate the role of TroBcl2 in the DNA fragmentation. Immunoblotting was used to verify whether TroBcl2 inhibits the release of cytochrome c from mitochondria into the cytoplasm. The Caspase 3 and Caspase 9 Activity Assay Kits were used to investigate the effect of TroBcl2 on caspase 3 and caspase 9 activities. The effects of TroBcl2 on the expression of apoptosis-related and nuclear factor- κB (NF-κB) signaling pathway-related genes in vitro were evaluated by qRT-PCR and Enzyme linked immunosorbent assay (ELISA). Luciferase reporter assay was used to evaluate the activity in NF-κB signaling pathway. Results and discussion The full-length coding sequence of TroBcl2 contains 687 bp and encodes a protein containing 228 amino acids. Four conserved Bcl-2 homology (BH) domains and one invariant "NWGR" motif located in BH1 were identified in TroBcl2. In healthy T. ovatus, TroBcl2 was widely distributed in the eleven tested tissues, and higher expression levels were found in immune-related tissues, such as spleen and head kidney tissues. After stimulation with lipopolysaccharide (LPS), the expression of TroBcl2 in the head kidney, spleen, and liver was significantly upregulated. In addition, subcellular localization analysis revealed that TroBcl2 was localized in both the cytoplasm and nucleus. Functional experiments showed that TroBcl2 inhibited apoptosis, possibly by reducing mitochondrial membrane potential loss, decreasing DNA fragmentation, preventing cytochrome c release into cytoplasm, and reducing the caspase 3 and caspase 9 activations. Moreover, upon LPS stimulation, overexpression of TroBcl2 suppressed the activation of several apoptosis-related genes, such as BOK, caspase-9, caspase-7, caspase-3, cytochrome c, and p53. Furthermore, knockdown of TroBcl2 significantly increased the expression of those apoptosis-related genes. In addition, TroBcl2 overexpression or knockdown induced or inhibited, respectively, the transcription of NF-κB and regulated the expression of genes (such as NF-κB1 and c-Rel) in the NF-κB signaling pathway as well as the expression of the downstream inflammatory cytokine IL-1β. Overall, our study suggested that TroBcl2 performs its conserved anti-apoptotic function via the mitochondrial pathway and may serve as an anti-apoptotic regulator in T. ovatus.
Collapse
Affiliation(s)
- Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Xin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Tao Li
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhiru Liu
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Pengfei Li
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, Nanning, China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
3
|
Moldoveanu T. Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays 2023; 45:e2200221. [PMID: 36650950 PMCID: PMC9975053 DOI: 10.1002/bies.202200221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
The pore-forming BCL-2 family proteins are effectors of mitochondrial poration in apoptosis initiation. Two atypical effectors-BOK and truncated BID (tBID)-join the canonical effectors BAK and BAX. Gene knockout revealed developmental phenotypes in the absence the effectors, supporting their roles in vivo. During apoptosis effectors are activated and change shape from dormant monomers to dynamic oligomers that associate with and permeabilize mitochondria. BID is activated by proteolysis, BOK accumulates on inhibition of its degradation by the E3 ligase gp78, while BAK and BAX undergo direct activation by BH3-only initiators, autoactivation, and crossactivation. Except tBID, effector oligomers on the mitochondria appear as arcs and rings in super-resolution microscopy images. The BH3-in-groove dimers of BAK and BAX, the tBID monomers, and uncharacterized BOK species are the putative building blocks of apoptotic pores. Effectors interact with lipids and bilayers but the mechanism of membrane poration remains elusive. I discuss effector-mediated mitochondrial poration.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences,Correspondence:
| |
Collapse
|
4
|
Sancho M, Leiva D, Lucendo E, Orzáez M. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. FEBS J 2022; 289:6209-6234. [PMID: 34310025 PMCID: PMC9787394 DOI: 10.1111/febs.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022]
Abstract
Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2 family characterized by a short half-life, functions as a rapid sensor that regulates cell death and other relevant processes that include cell cycle progression and mitochondrial homeostasis. In cancer, MCL1 overexpression contributes to cell survival and resistance to diverse chemotherapeutic agents; for this reason, several MCL1 inhibitors are currently under preclinical and clinical development for cancer treatment. However, the nonapoptotic functions of MCL1 may influence their therapeutic potential. Overall, the complexity of MCL1 regulation and function represent challenges to the clinical application of MCL1 inhibitors. We now summarize the current knowledge regarding MCL1 structure, regulation, and function that could impact the clinical success of MCL1 inhibitors.
Collapse
Affiliation(s)
- Mónica Sancho
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Diego Leiva
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Estefanía Lucendo
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| | - Mar Orzáez
- Targeted Therapies on Cancer and Inflammation LaboratoryCentro de Investigación Príncipe FelipeValenciaSpain
| |
Collapse
|
5
|
Walter F, D’Orsi B, Jagannathan A, Dussmann H, Prehn JHM. BOK controls ER proteostasis and physiological ER stress responses in neurons. Front Cell Dev Biol 2022; 10:915065. [PMID: 36060797 PMCID: PMC9434404 DOI: 10.3389/fcell.2022.915065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
The Bcl-2 family proteins BAK and BAX control the crucial step of pore formation in the mitochondrial outer membrane during intrinsic apoptosis. Bcl-2-related ovarian killer (BOK) is a Bcl-2 family protein with a high sequence similarity to BAK and BAX. However, intrinsic apoptosis can proceed in the absence of BOK. Unlike BAK and BAX, BOK is primarily located on the endoplasmic reticulum (ER) and Golgi membranes, suggesting a role for BOK in regulating ER homeostasis. In this study, we report that BOK is required for a full ER stress response. Employing previously characterized fluorescent protein-based ER stress reporter cell systems, we show that BOK-deficient cells have an attenuated response to ER stress in all three signaling branches of the unfolded protein response. Fluo-4-based confocal Ca2+ imaging revealed that disruption of ER proteostasis in BOK-deficient cells was not linked to altered ER Ca2+ levels. Fluorescence recovery after photobleaching (FRAP) experiments using GRP78/BiP-eGFP demonstrated that GRP78 motility was significantly lower in BOK-deficient cells. This implied that less intraluminal GRP78 was freely available and more of the ER chaperone bound to unfolded proteins. Collectively, these experiments suggest a new role for BOK in the protection of ER proteostasis and cellular responses to ER stress.
Collapse
Affiliation(s)
- Franziska Walter
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatrice D’Orsi
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- Institute of Neuroscience, Italian National Research Council, Pisa, Italy
| | - Anagha Jagannathan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- SFI FutureNeuro Research Centre, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
- *Correspondence: Jochen H. M. Prehn,
| |
Collapse
|
6
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
7
|
Pogmore JP, Uehling D, Andrews DW. Pharmacological Targeting of Executioner Proteins: Controlling Life and Death. J Med Chem 2021; 64:5276-5290. [PMID: 33939407 DOI: 10.1021/acs.jmedchem.0c02200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-molecule mediated modulation of protein interactions of Bcl-2 (B-cell lymphoma-2) family proteins was clinically validated in 2015 when Venetoclax, a selective inhibitor of the antiapoptotic protein BCL-2, achieved breakthrough status designation by the FDA for treatment of lymphoid malignancies. Since then, substantial progress has been made in identifying inhibitors of other interactions of antiapoptosis proteins. However, targeting their pro-apoptotic counterparts, the "executioners" BAX, BAK, and BOK that both initiate and commit the cell to dying, has lagged behind. However, recent publications demonstrate that these proteins can be positively or negatively regulated using small molecule tool compounds. The results obtained with these molecules suggest that pharmaceutical regulation of apoptosis will have broad implications that extend beyond activating cell death in cancer. We review recent advances in identifying compounds and their utility in the exogenous control of life and death by regulating executioner proteins, with emphasis on the prototype BAX.
Collapse
Affiliation(s)
- Justin P Pogmore
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - David Uehling
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 1M1, Canada
| | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1J7, Canada.,Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
8
|
The Mysteries around the BCL-2 Family Member BOK. Biomolecules 2020; 10:biom10121638. [PMID: 33291826 PMCID: PMC7762061 DOI: 10.3390/biom10121638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
BOK is an evolutionarily conserved BCL-2 family member that resembles the apoptotic effectors BAK and BAX in sequence and structure. Based on these similarities, BOK has traditionally been classified as a BAX-like pro-apoptotic protein. However, the mechanism of action and cellular functions of BOK remains controversial. While some studies propose that BOK could replace BAK and BAX to elicit apoptosis, others attribute to this protein an indirect way of apoptosis regulation. Adding to the debate, BOK has been associated with a plethora of non-apoptotic functions that makes this protein unpredictable when dictating cell fate. Here, we compile the current knowledge and open questions about this paradoxical protein with a special focus on its structural features as the key aspect to understand BOK biological functions.
Collapse
|
9
|
Joshi P, Bodnya C, Rasmussen ML, Romero-Morales AI, Bright A, Gama V. Modeling the function of BAX and BAK in early human brain development using iPSC-derived systems. Cell Death Dis 2020; 11:808. [PMID: 32978370 PMCID: PMC7519160 DOI: 10.1038/s41419-020-03002-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Intrinsic apoptosis relies on the ability of the BCL-2 family to induce the formation of pores on the outer mitochondrial membrane. Previous studies have shown that both BAX and BAK are essential during murine embryogenesis, and reports in human cancer cell lines identified non-canonical roles for BAX and BAK in mitochondrial fission during apoptosis. BAX and BAK function in human brain development remains elusive due to the lack of appropriate model systems. Here, we generated BAX/BAK double knockout human-induced pluripotent stem cells (hiPSCs), hiPSC-derived neural progenitor cells (hNPCs), neural rosettes, and cerebral organoids to uncover the effects of BAX and BAK deletion in an in vitro model of early human brain development. We found that BAX and BAK-deficient cells have abnormal mitochondrial morphology and give rise to aberrant cortical structures. We suggest crucial functions for BAX and BAK during human development, including maintenance of homeostatic mitochondrial morphology, which is crucial for proper development of progenitors and neurons of the cortex. Human pluripotent stem cell-derived systems can be useful platforms to reveal novel functions of the apoptotic machinery in neural development.
Collapse
Affiliation(s)
- Piyush Joshi
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Caroline Bodnya
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Megan L Rasmussen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Anna Bright
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Vivian Gama
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Naim S, Kaufmann T. The Multifaceted Roles of the BCL-2 Family Member BOK. Front Cell Dev Biol 2020; 8:574338. [PMID: 33043006 PMCID: PMC7523462 DOI: 10.3389/fcell.2020.574338] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is-despite its identification over 20 years ago-an incompletely understood member of the BCL-2 family. BCL-2 family proteins are best known for their critical role in the regulation of mitochondrial outer membrane permeabilization during the intrinsic apoptotic pathway. Based on sequence and structural similarities to BAX and BAK, BOK is grouped with these "killers" within the effector subgroup of the family. However, the mechanism of how exactly BOK exerts apoptosis is not clear and controversially discussed. Furthermore, and in accordance with reports on several other BCL-2 family members, BOK seems to be involved in the regulation of a variety of other, "apoptosis-independent" cellular functions, including the unfolded protein response, cellular proliferation, metabolism, and autophagy. Of note, compared with other proapoptotic BCL-2 family members, BOK levels are often reduced in cancer by various means, and there is increasing evidence for BOK modulating tumorigenesis. In this review, we summarize and discuss apoptotic- and non-apoptotic-related functions of BOK, its regulation as well as its physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Samara Naim
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Dwivedi R, Pandey R, Chandra S, Mehrotra D. Apoptosis and genes involved in oral cancer - a comprehensive review. Oncol Rev 2020; 14:472. [PMID: 32685111 PMCID: PMC7365992 DOI: 10.4081/oncol.2020.472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Oral cancers needs relentless research due to high mortality and morbidity associated with it. Despite of the comparable ease in accessibility to these sites, more than 2/3rd cases are diagnosed in advanced stages. Molecular/genetic studies augment clinical assessment, classification and prediction of malignant potential of oral lesions, thereby reducing its incidence and increasing the scope for early diagnosis and treatment of oral cancers. Herein we aim to review the role of apoptosis and genes associated with it in oral cancer development in order to aid in early diagnosis, prediction of malignant potential and evaluation of possible treatment targets in oral cancer. An internet-based search was done with key words apoptosis, genes, mutations, targets and analysis to extract 72 articles after considering inclusion and exclusion criteria. The knowledge of genetics and genomics of oral cancer is of utmost need in order to stop the rising prevalence of oral cancer. Translational approach and interventions at the early stage of oral cancer, targeted destruction of cancerous cells by silencing or promoting involved genes should be the ideal intervention.
Collapse
Affiliation(s)
- Ruby Dwivedi
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shaleen Chandra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- DHR-MRU & Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
B-cell lymphoma 2 ovarian killer suppresses testicular cancer cell malignant behavior, but plays a role in platinum resistance. Anticancer Drugs 2019; 29:839-846. [PMID: 29985192 DOI: 10.1097/cad.0000000000000666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Testicular cancer (TC) is the most common malignancy in men. Although the 5-year survival rate of TC patients exceeds 95%, the prognosis of patients with platinum-resistant tumors remains poor because of limited therapeutic options. Overcoming chemoresistance is the key to improving survival in poor-prognosis patients. However, the mechanism remains poorly understood. B-cell lymphoma 2 ovarian killer (BOK) is a proapoptotic protein and functions as a tumor suppressor in malignancy tumors. In this study, we found that BOK was frequently downregulated in TC tissues compared with paratumor tissues. BOK overexpression inhibited TC cell proliferation and invasion. In contrast, BOK knockdown promoted TC cell proliferation and invasion. Surprisingly, either BOK overexpression or knockdown rendered TC cells resistant to Cisplatin (DDP). In conclusion, BOK downregulation may be associated with tumorigenesis of TC. BOK had the potency to suppress TC cell proliferation and invasion, and may function as a tumor suppressor in TC. However, BOK also contributes to Cisplatin resistance. These data may provide a wider perspective on TC research and treatment.
Collapse
|
13
|
Ke FFS, Vanyai HK, Cowan AD, Delbridge ARD, Whitehead L, Grabow S, Czabotar PE, Voss AK, Strasser A. Embryogenesis and Adult Life in the Absence of Intrinsic Apoptosis Effectors BAX, BAK, and BOK. Cell 2019; 173:1217-1230.e17. [PMID: 29775594 DOI: 10.1016/j.cell.2018.04.036] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/31/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
Abstract
Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.
Collapse
Affiliation(s)
- Francine F S Ke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Angus D Cowan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Alex R D Delbridge
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| |
Collapse
|
14
|
Tichý A. Apoptotic Machinery: The Bcl-2 Family Proteins in the Role of Inspectors and Superintendents. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Programmed cell death, apoptosis, plays an integral role in a variety of biological events, e.g. morphogenesis, removal of unwanted or harmful cells, tissue homeostasis etc. Members of the Bcl-2 family have been described as the key players in the regulation of the apoptotic process. This family consists of proteins that prevent apoptosis (Bcl-2–like) and two structurally distinct subgroups (Bax-like and BH3–only) that on the contrary promote cell death. Majority of their response is concentrated to the mitochondrial level. In this paper, besides reviewing some new information in this field we focused on how they interact among each other and on the way they sense and influence the death signals from the environment. Here, we compare Bcl-2 family to inspectors and superintendents since they supervise the manufacturing process of cell death and they determine whether the cell will die or it will resist and survive.
Collapse
|
15
|
The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer. Cell Death Dis 2018; 9:125. [PMID: 29374142 PMCID: PMC5833733 DOI: 10.1038/s41419-017-0140-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
Abstract
The intrinsic or mitochondrial apoptosis pathway is controlled by the interaction of antiapoptotic and pro-apoptotic members of the BCL-2 protein family. Activation of this death pathway plays a crucial role in cancer progression and chemotherapy responses. The BCL-2-related ovarian killer (BOK) possesses three BCL-2 homology domains and has been proposed to act in a similar pro-apoptotic pathway as the pro-apoptotic proteins BAX and BAK. In this study, we showed that stage II and III colorectal cancer patients possessed decreased levels of BOK protein in their tumours compared to matched normal tissue. BOK protein levels in tumours were also prognostic of clinical outcome but increased BOK protein levels surprisingly associated with earlier disease recurrence and reduced overall survival. We found no significant association of BOK protein tumour levels with ER stress markers GRP78 or GRP94 or with cleaved caspase-3. In contrast, BOK protein levels correlated with Calreticulin. These data indicate BOK as a prognostic marker in colorectal cancer and suggest that different activities of BOK may contribute to cancer progression and prognosis.
Collapse
|
16
|
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business. Cell Death Differ 2018; 25:46-55. [PMID: 29053143 PMCID: PMC5729535 DOI: 10.1038/cdd.2017.179] [Citation(s) in RCA: 424] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Apoptosis shapes development and differentiation, has a key role in tissue homeostasis, and is deregulated in cancer. In most cases, successful apoptosis is triggered by mitochondrial outer membrane permeabilization (MOMP), which defines the mitochondrial or intrinsic pathway and ultimately leads to caspase activation and protein substrate cleavage. The mitochondrial apoptotic pathway centered on MOMP is controlled by an intricate network of events that determine the balance of the cell fate choice between survival and death. Here we will review how MOMP proceeds and how the main effectors cytochrome c, a heme protein that has a crucial role in respiration, and second mitochondria-derived activator of caspase (SMAC), as well as other intermembrane space proteins, orchestrate caspase activation. Moreover, we discuss recent insights on the interplay of the upstream coordinators and initiators of MOMP, the BCL-2 family. This review highlights how our increasing knowledge on the regulation of critical checkpoints of apoptosis integrates with understanding of cancer development and has begun to translate into therapeutic clinical benefit.
Collapse
Affiliation(s)
- Halime Kalkavan
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
17
|
BOK promotes chemical-induced hepatocarcinogenesis in mice. Cell Death Differ 2017; 25:708-720. [PMID: 29229991 PMCID: PMC5864194 DOI: 10.1038/s41418-017-0008-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/27/2017] [Accepted: 10/12/2017] [Indexed: 12/21/2022] Open
Abstract
BCL-2-related ovarian killer (BOK) is a conserved and widely expressed BCL-2 family member with sequence homology to pro-apoptotic BAX and BAK, but with poorly understood pathophysiological function. Since several members of the BCL-2 family are critically involved in the regulation of hepatocellular apoptosis and carcinogenesis we aimed to establish whether loss of BOK affects diethylnitrosamine (DEN)-induced hepatocarcinogenesis in mice. Short-term exposure to DEN lead to upregulation of BOK mRNA and protein in the liver. Of note, induction of CHOP and the pro-apoptotic BH3-only proteins PUMA and BIM by DEN was strongly reduced in the absence of BOK. Accordingly, Bok-/- mice were significantly protected from DEN-induced acute hepatocellular apoptosis and associated inflammation. As a consequence, Bok-/- animals were partially protected against chemical-induced hepatocarcinogenesis showing fewer and, surprisingly, also smaller tumors than WT controls. Gene expression profiling revealed that downregulation of BOK results in upregulation of genes involved in cell cycle arrest. Bok-/- hepatocellular carcinoma (HCC) displayed higher expression levels of the cyclin kinase inhibitors p19INK4d and p21cip1. Accordingly, hepatocellular carcinoma in Bok-/- animals, BOK-deficient human HCC cell lines, as well as non-transformed cells, showed significantly less proliferation than BOK-proficient controls. We conclude that BOK is induced by DEN, contributes to DEN-induced hepatocellular apoptosis and resulting hepatocarcinogenesis. In line with its previously reported predominant localization at the endoplasmic reticulum, our findings support a role of BOK that links the cell cycle and cell death machineries upstream of mitochondrial damage.
Collapse
|
18
|
Onyeagucha B, Subbarayalu P, Abdelfattah N, Rajamanickam S, Timilsina S, Guzman R, Zeballos C, Eedunuri V, Bansal S, Mohammad T, Chen Y, Vadlamudi RK, Rao MK. Novel post-transcriptional and post-translational regulation of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 determine the fate of breast cancer cells to survive or die. Oncotarget 2017; 8:85984-85996. [PMID: 29156771 PMCID: PMC5689661 DOI: 10.18632/oncotarget.20841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/04/2017] [Indexed: 02/03/2023] Open
Abstract
Deregulation of apoptosis is central to cancer progression and a major obstacle to effective treatment. The Bcl-2 gene family members play important roles in the regulation of apoptosis and are frequently altered in cancers. One such member is pro-apoptotic protein Bcl-2-related Ovarian Killer (BOK). Despite its critical role in apoptosis, the regulation of BOK expression is poorly understood in cancers. Here, we discovered that miR-296-5p regulates BOK expression by binding to its 3'-UTR in breast cancers. Interestingly, miR-296-5p also regulates the expression of anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1), which is highly expressed in breast cancers. Our results reveal that Mcl-1 and BOK constitute a regulatory feedback loop as ectopic BOK expression induces Mcl-1, whereas silencing of Mcl-1 results in reduced BOK levels in breast cancer cells. In addition, we show that silencing of Mcl-1 but not BOK reduced the long-term growth of breast cancer cells. Silencing of both Mcl-1 and BOK rescued the effect of Mcl-1 silencing on breast cancer cell growth, suggesting that BOK is important for attenuating cell growth in the absence of Mcl-1. Depletion of BOK suppressed caspase-3 activation in the presence of paclitaxel and in turn protected cells from paclitaxel-induced apoptosis. Furthermore, we demonstrate that glycogen synthase kinase (GSK3) α/β interacts with BOK and regulates its level post-translationally in breast cancer cells. Taken together, our results suggest that fine tuning of the levels of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 may decide the fate of cancer cells to either undergo apoptosis or proliferation.
Collapse
Affiliation(s)
- Benjamin Onyeagucha
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Panneerdoss Subbarayalu
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Nourhan Abdelfattah
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Subapriya Rajamanickam
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Santosh Timilsina
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Rosa Guzman
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Carla Zeballos
- 2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Vijay Eedunuri
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Sanjay Bansal
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Tabrez Mohammad
- 2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Yidong Chen
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,3 Department of Epidemiology and Statistics, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Ratna K. Vadlamudi
- 4 Department of Obstetrics and Gynecology, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| | - Manjeet K. Rao
- 1 Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA,2 Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, Texas, 78229 USA
| |
Collapse
|
19
|
Abstract
Fernández-Marrero and colleagues show in their work that the proapoptotic BCL-2 family member BOK can form large, stable pores in artificial liposomes. This can be enhanced by the proapoptotic protein cBID and is unaffected by the antiapoptotic BCL-XL . Although BOK can bind to isolated mitochondria, it is unable to cause cytochrome c release even with the help of cBID.
Collapse
Affiliation(s)
- Manuel D Haschka
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, BIOCENTER, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| |
Collapse
|
20
|
Moravcikova E, Krepela E, Donnenberg VS, Donnenberg AD, Benkova K, Rabachini T, Fernandez-Marrero Y, Bachmann D, Kaufmann T. BOK displays cell death-independent tumor suppressor activity in non-small-cell lung carcinoma. Int J Cancer 2017; 141:2050-2061. [PMID: 28744854 DOI: 10.1002/ijc.30906] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
As the genomic region containing the Bcl-2-related ovarian killer (BOK) locus is frequently deleted in certain human cancers, BOK is hypothesized to have a tumor suppressor function. In the present study, we analyzed primary non-small-cell lung carcinoma (NSCLC) tumors and matched lung tissues from 102 surgically treated patients. We show that BOK protein levels are significantly downregulated in NSCLC tumors as compared to lung tissues (p < 0.001). In particular, we found BOK downregulation in NSCLC tumors of grades two (p = 0.004, n = 35) and three (p = 0.031, n = 39) as well as in tumors with metastases to hilar (pN1) (p = 0.047, n = 31) and mediastinal/subcarinal lymph nodes (pN2) (p = 0.021, n = 18) as opposed to grade one tumors (p = 0.688, n = 7) and tumors without lymph node metastases (p = 0.112, n = 51). Importantly, in lymph node-positive patients, BOK expression greater than the median value was associated with longer survival (p = 0.002, Mantel test). Using in vitro approaches, we provide evidence that BOK overexpression is inefficient in inducing apoptosis but that it inhibits TGFβ-induced migration and epithelial-to-mesenchymal transition (EMT) in lung adenocarcinoma-derived A549 cells. We have identified epigenetic mechanisms, in particular BOK promoter methylation, as an important means to silence BOK expression in NSCLC cells. Taken together, our data point toward a novel mechanism by which BOK acts as a tumor suppressor in NSCLC by inhibiting EMT. Consequently, the restoration of BOK levels in low-BOK-expressing tumors might favor the overall survival of NSCLC patients.
Collapse
Affiliation(s)
- Erika Moravcikova
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland.,Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Evzen Krepela
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | | | - Kamila Benkova
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| | - Tatiana Rabachini
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | | | - Daniel Bachmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Thomas Kaufmann
- Institute of Pharmacology, Faculty of Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
21
|
Pihán P, Carreras-Sureda A, Hetz C. BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 2017. [PMID: 28622296 DOI: 10.1038/cdd.2017.82] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In the last decade, the endoplasmic reticulum (ER) has emerged as a central organelle regulating the core mitochondrial apoptosis pathway. At the ER membrane, a variety of stress signals are integrated toward determining cell fate, involving a complex cross talk between key homeostatic pathways including the unfolded protein response, autophagy, calcium signaling and mitochondrial bioenergetics. In this context, key regulators of cell death of the BCL-2 and TMBIM/BI-1 family of proteins have relevant functions as stress rheostats mediated by the formation of distinct protein complexes that regulate the switch between adaptive and proapoptotic phases under stress. Here, we overview recent advances on our molecular understanding of how the apoptotic machinery integrates stress signals toward cell fate decisions upstream of the mitochondrial gateway of death.
Collapse
Affiliation(s)
- Philippe Pihán
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Amado Carreras-Sureda
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Faculty of Medicine, Center for Geroscience, Brain Health and Metabolism, University of Chile, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA 94945, USA.,Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston MA 02115, USA
| |
Collapse
|
22
|
D'Orsi B, Mateyka J, Prehn JHM. Control of mitochondrial physiology and cell death by the Bcl-2 family proteins Bax and Bok. Neurochem Int 2017; 109:162-170. [PMID: 28315370 DOI: 10.1016/j.neuint.2017.03.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Neuronal cell death is often triggered by events that involve intracellular increases in Ca2+. Under resting conditions, the intracellular Ca2+ concentration is tightly controlled by a number of extrusion and sequestering mechanisms involving the plasma membrane, mitochondria, and ER. These mechanisms act to prevent a disruption of neuronal ion homeostasis. As these processes require ATP, excessive Ca2+ overloading may cause energy depletion, mitochondrial dysfunction, and may eventually lead to Ca2+-dependent cell death. Excessive Ca2+ entry though glutamate receptors (excitotoxicity) has been implicated in several neurologic and chronic neurodegenerative diseases, including ischemic stroke, epilepsy, and Alzheimer's disease. Recent evidence has revealed that excitotoxic cell death is regulated by the B-cell lymphoma-2 (Bcl-2) family of proteins. Bcl-2 proteins, comprising of both pro-apoptotic and anti-apoptotic members, have been shown to not only mediate the intrinsic apoptosis pathway by controlling mitochondrial outer membrane (MOM) integrity, but to also control neuronal Ca2+ homeostasis and energetics. In this review, the role of Bcl-2 family proteins in the regulation of apoptosis, their expression in the central nervous system and how they control Ca2+-dependent neuronal injury are summarized. We review the current knowledge on Bcl-2 family proteins in the regulation of mitochondrial function and bioenergetics, including the fusion and fission machinery, and their role in Ca2+ homeostasis regulation at the mitochondria and ER. Specifically, we discuss how the 'pro-apoptotic' Bcl-2 family proteins, Bax and Bok, physiologically expressed in the nervous system, regulate such 'non-apoptotic/daytime' functions.
Collapse
Affiliation(s)
- Beatrice D'Orsi
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia Mateyka
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
23
|
Bok Is Not Pro-Apoptotic But Suppresses Poly ADP-Ribose Polymerase-Dependent Cell Death Pathways and Protects against Excitotoxic and Seizure-Induced Neuronal Injury. J Neurosci 2016; 36:4564-78. [PMID: 27098698 DOI: 10.1523/jneurosci.3780-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bok (Bcl-2-related ovarian killer) is a Bcl-2 family member that, because of its predicted structural homology to Bax and Bak, has been proposed to be a pro-apoptotic protein. In this study, we demonstrate that Bok is highly expressed in neurons of the mouse brain but that bok was not required for staurosporine-, proteasome inhibition-, or excitotoxicity-induced apoptosis of cultured cortical neurons. On the contrary, we found that bok-deficient neurons were more sensitive to oxygen/glucose deprivation-induced injury in vitro and seizure-induced neuronal injury in vivo Deletion of bok also increased staurosporine-, excitotoxicity-, and oxygen/glucose deprivation-induced cell death in bax-deficient neurons. Single-cell imaging demonstrated that bok-deficient neurons failed to maintain their neuronal Ca(2+)homeostasis in response to an excitotoxic stimulus; this was accompanied by a prolonged deregulation of mitochondrial bioenergetics.bok deficiency led to a specific reduction in neuronal Mcl-1 protein levels, and deregulation of both mitochondrial bioenergetics and Ca(2+)homeostasis was rescued by Mcl-1 overexpression. Detailed analysis of cell death pathways demonstrated the activation of poly ADP-ribose polymerase-dependent cell death in bok-deficient neurons. Collectively, our data demonstrate that Bok acts as a neuroprotective factor rather than a pro-death effector during Ca(2+)- and seizure-induced neuronal injury in vitro and in vivo SIGNIFICANCE STATEMENT Bcl-2 proteins are essential regulators of the mitochondrial apoptosis pathway. The Bcl-2 protein Bok is highly expressed in the CNS. Because of its sequence similarity to Bax and Bak, Bok has long been considered part of the pro-apoptotic Bax-like subfamily, but no studies have yet been performed in neurons to test this hypothesis. Our study provides important new insights into the functional role of Bok during neuronal apoptosis and specifically in the setting of Ca(2+)- and seizure-mediated neuronal injury. We show that Bok controls neuronal Ca(2+)homeostasis and bioenergetics and, contrary to previous assumptions, exerts neuroprotective activities in vitro and in vivo Our results demonstrate that Bok cannot be placed unambiguously into the Bax-like Bcl-2 subfamily of pro-apoptotic proteins.
Collapse
|
24
|
Luna-Vargas MPA, Chipuk JE. Physiological and Pharmacological Control of BAK, BAX, and Beyond. Trends Cell Biol 2016; 26:906-917. [PMID: 27498846 DOI: 10.1016/j.tcb.2016.07.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023]
Abstract
Cellular commitment to the mitochondrial pathway of apoptosis is accomplished when proapoptotic B cell chronic lymphocytic leukemia/lymphoma (BCL)-2 proteins compromise mitochondrial integrity through the process of mitochondrial outer membrane permeabilization (MOMP). For nearly three decades, intensive efforts focused on the identification and interactions of two key proapoptotic BCL-2 proteins: BCL-2 antagonist killer (BAK) and BCL-2-associated X (BAX). Indeed, we now have critical insights into which BCL-2 proteins interact with BAK/BAX to either preserve survival or initiate MOMP. In contrast, while mitochondria are targeted by BAK/BAX, a molecular understanding of how these organelles govern BAK/BAX function remains less clear. Here, we integrate recent mechanistic insights of proapoptotic BCL-2 protein function in the context of mitochondrial environment, and discuss current and potential pharmacological opportunities to control MOMP in disease.
Collapse
Affiliation(s)
- Mark P A Luna-Vargas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
25
|
|
26
|
Cai J, Yu D, Wei S, Tang J, Lu Y, Wu Z, Qin Q, Jian J. Identification of the Bcl-2 family protein gene BOK from orange-spotted grouper (Epinephelus coioides) involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2016; 52:9-15. [PMID: 26994672 DOI: 10.1016/j.fsi.2016.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Apoptosis plays vital roles in many physiological process and immune response. BOK is one of the central regulators in apoptosis. In this study, a new BOK homolog (Ec-BOK) was cloned and characterized from Orange-spotted grouper, Epinephelus coioides. Ec-BOK encoded a 210 amino acid peptides which shared 97% identity to Stegastes partitus BOK protein, contained four BH domains and one transmembrane region. Ec-BOK widely expressed in all analyzed tissues with the higher expressions in kidney and spleen. Its expression level was up-regulated after SGIV infection in vitro. Further analysis revealed that overexpression of Ec-BOK inhibited viral genes transcriptions and virus replication in fish cell. Our findings suggested that Ec-BOK might play a role in the immune response against virus.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Dapeng Yu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China
| | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, PR China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, PR China.
| |
Collapse
|
27
|
Einsele-Scholz S, Malmsheimer S, Bertram K, Stehle D, Johänning J, Manz M, Daniel PT, Gillissen BF, Schulze-Osthoff K, Essmann F. Bok is a genuine multi-BH-domain protein that triggers apoptosis in the absence of Bax and Bak. J Cell Sci 2016; 129:2213-23. [PMID: 27076518 DOI: 10.1242/jcs.181727] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The pro-apoptotic multidomain Bcl-2 proteins Bax and Bak (also known as BAK1) are considered the gatekeepers of the intrinsic pathway of apoptosis by triggering the mitochondrial release of cytochrome c The role of the third Bax- and Bak-homologous multidomain protein Bok, however, is still unresolved. As cells doubly deficient for Bax and Bak are largely resistant to various apoptotic stimuli, it has been proposed that Bok is either dispensable for apoptosis or that its role is dependent on Bax and Bak. Here, we demonstrate, in several cell systems, that Bok efficiently induces cytochrome c release and apoptosis even in the complete absence of both Bak and Bax. Moreover, modulation of endogenous Bok levels affects the apoptosis response. By RNA interference and targeted deletion of the Bok gene, we demonstrate that Bok can significantly influence the apoptotic response to chemotherapeutic drugs in ovarian carcinoma cells. Hence, our results not only establish Bok as a Bak- and Bax-independent apoptosis inducer, but also suggest a potential impact of Bok expression in ovarian cancer therapy.
Collapse
Affiliation(s)
- Stephanie Einsele-Scholz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Silke Malmsheimer
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Katrin Bertram
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Daniel Stehle
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Janina Johänning
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Marianne Manz
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany
| | - Peter T Daniel
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Bernhard F Gillissen
- Department of Hematology, Oncology and Tumor Immunology, University Medical Center Charité, Humboldt University, Berlin 13125, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Klaus Schulze-Osthoff
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Frank Essmann
- Department of Molecular Medicine, Interfaculty Institute for Biochemistry, Eberhard Karls University, Tübingen 72076, Germany German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
28
|
Schulman JJ, Wright FA, Han X, Zluhan EJ, Szczesniak LM, Wojcikiewicz RJH. The Stability and Expression Level of Bok Are Governed by Binding to Inositol 1,4,5-Trisphosphate Receptors. J Biol Chem 2016; 291:11820-8. [PMID: 27053113 DOI: 10.1074/jbc.m115.711242] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 12/31/2022] Open
Abstract
Bok is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, although the role that Bok plays in this pathway is unclear. We have shown previously in cultured cell lines that Bok interacts strongly with inositol 1,4,5-trisphosphate receptors (IP3Rs), suggesting that it may contribute to the structural integrity or stability of IP3R tetramers. Here we report that Bok is similarly IP3R-assocated in mouse tissues, that essentially all cellular Bok is IP3R bound, that it is the helical nature of the Bok BH4 domain, rather than specific amino acids, that mediates binding to IP3Rs, that Bok is dramatically stabilized by binding to IP3Rs, that unbound Bok is ubiquitinated and degraded by the proteasome, and that binding to IP3Rs limits the pro-apoptotic effect of overexpressed Bok. Agents that stimulate IP3R activity, apoptosis, phosphorylation, and endoplasmic reticulum stress did not trigger the dissociation of mature Bok from IP3Rs or Bok degradation, indicating that the role of proteasome-mediated Bok degradation is to destroy newly synthesized Bok that is not IP3R associated. The existence of this unexpected proteolytic mechanism that is geared toward restricting Bok to that which is bound to IP3Rs, implies that unbound Bok is deleterious to cell viability and helps explain the current uncertainty regarding the cellular role of Bok.
Collapse
Affiliation(s)
- Jacqualyn J Schulman
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Xiaobing Han
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Eric J Zluhan
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Laura M Szczesniak
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210
| | | |
Collapse
|
29
|
Impact of the combined loss of BOK, BAX and BAK on the hematopoietic system is slightly more severe than compound loss of BAX and BAK. Cell Death Dis 2015; 6:e1938. [PMID: 26492371 PMCID: PMC4632322 DOI: 10.1038/cddis.2015.304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022]
Abstract
It is well established that BAX and BAK play crucial, overlapping roles in the intrinsic pathway of apoptosis. Gene targeted mice lacking both BAX and BAK have previously been generated, but the majority of these animals died perinatally. BOK is a poorly studied relative of BAX and BAK that shares extensive amino acid sequence homology to both proteins, but its function remains largely unclear to date. To determine whether BOK plays an overlapping role with BAX and BAK, we utilized a hematopoietic reconstitution model where lethally irradiated wild type mice were transplanted with Bok−/−Bax−/−Bak−/− triple knockout (TKO) fetal liver cells, and compared alongside mice reconstituted with a Bax−/−Bak−/− double knockout (DKO) hematopoietic compartment. We report here that mice with a TKO and DKO hematopoietic system died at a similar rate and much earlier than control animals, mostly due to severe autoimmune pathology. Both TKO and DKO reconstituted mice also had altered frequencies of various leukocyte subsets in the thymus, bone marrow and spleen, displayed leukocyte infiltrates and autoimmune pathology in multiple tissues, as well as elevated levels of anti-nuclear autoantibodies. Interestingly, the additional deletion of BOK (on top of BAX and BAK loss) led to a further increase in peripheral blood lymphocytes, as well as enhanced lymphoid infiltration in some organs. These findings suggest that BOK may have some functions that are redundant with BAX and BAK in the hematopoietic system.
Collapse
|
30
|
Chaurasia MK, Palanisamy R, Harikrishnan R, Arasu MV, Al-Dhabi NA, Arockiaraj J. Molecular profiles and pathogen-induced transcriptional responses of prawn B cell lymphoma-2 related ovarian killer protein (BOK). FISH & SHELLFISH IMMUNOLOGY 2015; 45:598-607. [PMID: 25982403 DOI: 10.1016/j.fsi.2015.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, we have reported a molecular characterization of the first B cell lymphoma-2 (BCL-2) related ovarian killer protein (BOK) from freshwater prawn Macrobrachium rosenbergii (Mr). BOK is a novel pro-apoptotic protein of the BCL-2 family that entails in mediating apoptosis to remove cancer cells. A cDNA sequence of MrBOK was identified from the prawn cDNA library and its full length was obtained by internal sequencing. The coding region of MrBOK yields a polypeptide of 291 amino acids. The analysis revealed that MrBOK contains a transmembrane helix at V(261)-L(283) and a putative BCL-2 family domain at V(144)-W(245). MrBOK also possessed four putative BCL-2 homology domains including BH1, BH2, BH3 and weak BH4. The BH3 contains 21 binding sites and among them five residues are highly conserved with the aligned BOK proteins. The homology analysis showed that MrBOK shared maximum similarity with the Caligus rogercresseyi BOK A. The topology of the phylogenetic tree was classified into nine sister groups which includes BOK, BAK, BAX, BAD, BCL-2, BCL-XL, NR13 and MCL members. The BOK protein group further sub-grouped into vertebrate and invertebrate BOK, wherein MrBOK located within insect monophyletic clad of invertebrate BOK. The secondary structural analysis showed that MrBOK contains 11 α-helices (52.2%) which are connected over random coils (47.7%). The 3D structure of MrBOK showed three central helices (α6, α7 and α8) which formed the core of the protein and are flanked on one side by α1, α2 and α3, and on the other side by α4, α5 and α11. MrBOK mRNA is expressed most abundantly (P < 0.05) in ovary compared to other tissues taken for analysis. Hence ovary was selected to study the possible roles of MrBOK mRNA regulation upon bacterial (Aeromonas hydrophila and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodovirus] infection. During bacterial and viral infection, the highest MrBOK mRNA transcription was varied at different time points. In bacterial infected ovary tissue, the highest mRNA expression was at 24 h post-infection, whereas in viral infection, the expression was highest at 48 h post-infection. Thus we can conclude that MrBOK functions as an apoptotic protein in intracellular programmed cell-death pathway to counteract the anti-apoptotic proteins released by bacterial and viral pathogens at the time of infection. This is the first study that emphasizes the importance of BOK during bacterial and viral infection in crustacean.
Collapse
Affiliation(s)
- Mukesh Kumar Chaurasia
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Rajesh Palanisamy
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India
| | - Ramasamy Harikrishnan
- Department of Zoology, Pachaiyappa's College for Men, Kanchipuram, 631 501, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Research Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
31
|
BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2015; 112:7201-6. [PMID: 26015568 DOI: 10.1073/pnas.1421063112] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) is a BCL-2 family protein with high homology to the multidomain proapoptotic proteins BAX and BAK, yet Bok(-/-) and even Bax(-/-)Bok(-/-) and Bak(-/-)Bok(-/-) mice were reported to have no overt phenotype or apoptotic defects in response to a host of classical stress stimuli. These surprising findings were interpreted to reflect functional compensation among the BAX, BAK, and BOK proteins. However, BOK cannot compensate for the severe apoptotic defects of Bax(-/-)Bak(-/-) mice despite its widespread expression. Here, we independently developed Bok(-/-) mice and found that Bok(-/-) cells are selectively defective in their response to endoplasmic reticulum (ER) stress stimuli, consistent with the predominant subcellular localization of BOK at the ER. Whereas Bok(-/-) mouse embryonic fibroblasts exposed to thapsigargin, A23187, brefeldin A, DTT, geldanamycin, or bortezomib manifested reduced activation of the mitochondrial apoptotic pathway, the death response to other stimuli such as etoposide, staurosporine, or UV remained fully intact. Multiple organs in Bok(-/-) mice exhibited resistance to thapsigargin-induced apoptosis in vivo. Although the ER stress agents activated the unfolded protein response, both ATF4 and CHOP activation were diminished in Bok(-/-) cells and mice. Importantly, BAX and BAK were unable to compensate for the defective apoptotic response to ER stress observed in SV40-transformed and primary Bok(-/-) cells, and in vivo. These findings support a selective and distinguishing role for BOK in regulating the apoptotic response to ER stress, revealing--to our knowledge--the first bona fide apoptotic defect linked to Bok deletion.
Collapse
|
32
|
Balogh A, Németh M, Koloszár I, Markó L, Przybyl L, Jinno K, Szigeti C, Heffer M, Gebhardt M, Szeberényi J, Müller DN, Sétáló G, Pap M. Overexpression of CREB protein protects from tunicamycin-induced apoptosis in various rat cell types. Apoptosis 2015; 19:1080-98. [PMID: 24722832 DOI: 10.1007/s10495-014-0986-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endoplasmic reticulum (ER) stress plays an essential role in unfolded protein response induced apoptosis contributing to several pathological conditions. Glycogen synthase kinase-3β (GSK-3β) plays a central role in several apoptotic signaling, including ER stress, as the active form of GSK-3β induces apoptosis. The phosphorylation of cAMP responsive element (CRE) binding protein (CREB) Ser-133 (S133) residue is the end-point of various signaling pathways, like growth factor signaling, while the Ser-129 (S129) residue is phosphorylated by GSK-3β. The significance of the ubiquitously expressed transcription factor CREB is demonstrated in prolonged, tunicamycin (TM)-induced ER stress in this study. In the experiments wild-type (wt) CREB, S129Ala, S133Ala or S129Ala-S133Ala mutant CREB expressing PC12 rat pheochromocytoma cell lines showed increased survival under TM-evoked prolonged ER stress compared to wtPC12 cells. After TM treatment ER stress was activated in all PC12 cell types. Lithium and SB-216763, the selective, well-known inhibitors of GSK-3β, decreased TM-induced apoptosis and promoted cell survival. The proapoptotic BH3-only Bcl-2 family member Bcl-2-interacting mediator of cell death (Bim) level was decreased in the different CREB overexpressing PC12 cells as a result of TM treatment. CREB overexpression also inhibited the sequestration of Bim protein from tubulin molecules, as it was demonstrated in wtPC12 cells. Transient expression of wtCREB diminished TM-induced apoptosis in wtPC12, Rat-1 and primary rat vascular smooth muscle cells. These findings demonstrate a novel role of CREB in different cell types as a potent protector against ER stress.
Collapse
Affiliation(s)
- András Balogh
- Department of Medical Biology, University of Pécs Medical School, Szigeti 12, Pecs, 7624, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Pre-eclampsia, a disorder of pregnancy, is characterized by placental hypoxia and cell death. Hypoxia shifts the intricate balance between death-inducing BOK and survival-promoting MCL1 towards BOK, thereby triggering placental cell death. Here, we show that BOK is a direct target of HIF.
Collapse
|
34
|
Kalkat M, Garcia J, Ebrahimi J, Melland-Smith M, Todros T, Post M, Caniggia I. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy 2013; 9:2140-53. [PMID: 24113155 DOI: 10.4161/auto.26452] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is the catabolic degradation of cellular cytoplasmic constituents via the lysosomal pathway that physiologically elicits a primarily cytoprotective function, but can rapidly be upregulated in response to stressors thereby inducing cell death. We have reported that the balance between the BCL2 family proteins BOK and MCL1 regulates human trophoblast cell fate and its alteration toward cell death typifies preeclampsia. Here we demonstrate that BOK is a potent inducer of autophagy as shown by increased LC3B-II production, autophagosomal formation and lysosomal activation in HEK 293. In contrast, using JEG3 cells we showed that prosurvival MCL1 acts as a repressor of autophagy via an interaction with BECN1, which is abrogated by BOK. We found that MCL1-cleaved products, specifically MCL1c157, trigger autophagy while the splicing variant MCL1S has no effect. Treatment of JEG3 cells with nitric oxide donor SNP resulted in BOK-MCL1 rheostat dysregulation, favoring BOK accumulation, thereby inducing autophagy. Overexpression of MCL1 rescued oxidative stress-induced autophagy. Of clinical relevance, we report aberrant autophagy levels in the preeclamptic placenta due to impaired recruitment of BECN1 to MCL1. Our data provided the first evidence for a key role of the BOK-MCL1 system in regulating autophagy in the human placenta, whereby an adverse environment as seen in preeclampsia tilts the BOK-MCL1 balance toward the build-up of isoforms that triggers placental autophagy.
Collapse
Affiliation(s)
- Manpreet Kalkat
- Lunenfeld-Tanenbaum Research Institute; Mount Sinai Hospital; Toronto, ON CA; Department of Physiology; University of Toronto; Toronto, ON CA
| | | | | | | | | | | | | |
Collapse
|
35
|
Schulman JJ, Wright FA, Kaufmann T, Wojcikiewicz RJH. The Bcl-2 protein family member Bok binds to the coupling domain of inositol 1,4,5-trisphosphate receptors and protects them from proteolytic cleavage. J Biol Chem 2013; 288:25340-25349. [PMID: 23884412 DOI: 10.1074/jbc.m113.496570] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bok is a member of the Bcl-2 protein family that controls intrinsic apoptosis. Bok is most closely related to the pro-apoptotic proteins Bak and Bax, but in contrast to Bak and Bax, very little is known about its cellular role. Here we report that Bok binds strongly and constitutively to inositol 1,4,5-trisphosphate receptors (IP3Rs), proteins that form tetrameric calcium channels in the endoplasmic reticulum (ER) membrane and govern the release of ER calcium stores. Bok binds most strongly to IP3R1 and IP3R2, and barely to IP3R3, and essentially all cellular Bok is IP3R bound in cells that express substantial amounts of IP3Rs. Binding to IP3Rs appears to be mediated by the putative BH4 domain of Bok and the docking site localizes to a small region within the coupling domain of IP3Rs (amino acids 1895-1903 of IP3R1) that is adjacent to numerous regulatory sites, including sites for proteolysis. With regard to the possible role of Bok-IP3R binding, the following was observed: (i) Bok does not appear to control the ability of IP3Rs to release ER calcium stores, (ii) Bok regulates IP3R expression, (iii) persistent activation of inositol 1,4,5-trisphosphate-dependent cell signaling causes Bok degradation by the ubiquitin-proteasome pathway, in a manner that parallels IP3R degradation, and (iv) Bok protects IP3Rs from proteolysis, either by chymotrypsin in vitro or by caspase-3 in vivo during apoptosis. Overall, these data show that Bok binds strongly and constitutively to IP3Rs and that the most significant consequence of this binding appears to be protection of IP3Rs from proteolysis. Thus, Bok may govern IP3R cleavage and activity during apoptosis.
Collapse
Affiliation(s)
- Jacqualyn J Schulman
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Forrest A Wright
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and
| | - Thomas Kaufmann
- University of Bern, Medical Faculty, Institute of Pharmacology, Friedbuehlstrasse 49, CH-3010 Bern, Switzerland
| | - Richard J H Wojcikiewicz
- From the Department of Pharmacology, SUNY Upstate Medical University, Syracuse, New York 13210 and.
| |
Collapse
|
36
|
Echeverry N, Bachmann D, Ke F, Strasser A, Simon HU, Kaufmann T. Intracellular localization of the BCL-2 family member BOK and functional implications. Cell Death Differ 2013; 20:785-99. [PMID: 23429263 PMCID: PMC3647236 DOI: 10.1038/cdd.2013.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Collapse
Affiliation(s)
- N Echeverry
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
BCL-2 family member BOK is widely expressed but its loss has only minimal impact in mice. Cell Death Differ 2012; 19:915-25. [PMID: 22281706 DOI: 10.1038/cdd.2011.210] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BOK/MTD was discovered as a protein that binds to the anti-apoptotic Bcl-2 family member MCL-1 and shares extensive amino-acid sequence similarity to BAX and BAK, which are essential for the effector phase of apoptosis. Therefore, and on the basis of its reported expression pattern, BOK is thought to function in a BAX/BAK-like pro-apoptotic manner in female reproductive tissues. In order to determine the function of BOK, we examined its expression in diverse tissues and investigated the consequences of its loss in Bok(-/-) mice. We confirmed that Bok mRNA is prominently expressed in the ovaries and uterus, but also observed that it is present at readily detectable levels in several other tissues such as the brain and myeloid cells. Bok(-/-) mice were produced at the expected Mendelian ratio, appeared outwardly normal and proved fertile. Histological examination revealed that major organs in Bok(-/-) mice displayed no morphological aberrations. Although several human cancers have somatically acquired copy number loss of the Bok gene and BOK is expressed in B lymphoid cells, we found that its deficiency did not accelerate lymphoma development in Eμ-Myc transgenic mice. Collectively, these results indicate that Bok may have a role that largely overlaps with that of other members of the Bcl-2 family, or may have a function restricted to specific stress stimuli and/or tissues.
Collapse
|
38
|
Zhong Z, Chen X, Tan W, Xu Z, Zhou K, Wu T, Cui L, Wang Y. Germacrone inhibits the proliferation of breast cancer cell lines by inducing cell cycle arrest and promoting apoptosis. Eur J Pharmacol 2011; 667:50-5. [PMID: 21497161 DOI: 10.1016/j.ejphar.2011.03.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 12/23/2022]
Abstract
Traditional medicinal herbs are an untapped source of potential pharmaceutical compounds. This study aims to determine whether the proliferation of breast cancer cell lines could be inhibited by germacrone, a natural product isolated from Rhizoma curcuma. Germacrone treatment significantly inhibited cell proliferation, increased lactate dehydrogenase (LDH) release, and induced mitochondrial membrane potential (ΔΨm) depolarization in both MCF-7 and MDA-MB-231 cells in a dose-dependent manner. Germacrone induced MDA-MB-231 and MCF-7 cell cycle arrest at the G0/G1 and G2/M phases respectively and induced MDA-MB-231 cell apoptosis. Furthermore, germacrone treatment significantly increased Bok expression and cytochrome c release from mitochondria without affecting Bcl-2, Bcl-xL, Bax, and Bim protein expressions. In addition, germacrone treatment induced caspase-3, 7, 9, PARP cleavage. We concluded that germacrone inhibited the proliferation of breast cancer cell lines by inducing cell cycle arrest and apoptosis through mitochondria-mediated caspase pathway. These results might provide some molecular basis for the anti-tumor activity of Rhizoma curcuma.
Collapse
Affiliation(s)
- Zhangfeng Zhong
- Institute of Chinese Medical Sciences, University of Macau, Av. Padre Toma's Pereira S.J., Taipa, Macau, 999078, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Apoptosis and oncogenesis: give and take in the BCL-2 family. Curr Opin Genet Dev 2011; 21:12-20. [PMID: 21236661 DOI: 10.1016/j.gde.2010.12.001] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/23/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023]
Abstract
The mitochondrial pathway of apoptosis constitutes one of the main safeguards against tumorigenesis. The BCL-2 family includes the central players of this pathway that regulate cell fate through the control of mitochondrial outer membrane permeabilization (MOMP), and important progress has been made in understanding the dynamic interactions between pro-apoptotic and anti-apoptotic BCL-2 proteins. In particular, recent studies have delineated a stepwise model for the induction of MOMP. BCL-2 proteins are often dysregulated in cancer, leading to increased survival of abnormal cells; however, recent studies have paradoxically shown that apoptosis induction can under some circumstances drive tumor formation, perhaps by inducing compensatory proliferation under conditions of cellular stress. These observations underline the complexity of BCL-2 protein function in oncogenesis.
Collapse
|
40
|
Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. Emerging Bcl-2 inhibitors for the treatment of cancer. Expert Opin Emerg Drugs 2010; 16:59-70. [PMID: 20812891 DOI: 10.1517/14728214.2010.515210] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Bcl-2 family proteins are a component of the antiapoptotic machinery and are overexpressed in different malignancies. Accordingly, their enhanced expression has been attributed to the observed chemoresistance in most of the cancers. Therefore, targeting Bcl-2 family members becomes an important and attractive approach towards cancer therapy and is currently a very rapidly evolving area of research. This article highlights the numerous advancements that have been made in the design and synthesis of small molecule inhibitors (SMI) of pro-survival Bcl-2 proteins. AREAS COVERED This review comprehensively describes the progress made over the last 2 decades on this subject, including the clinical status of SMIs of Bcl-2 family proteins. Newer insights on the status of our knowledge on SMIs of Bcl-2 family proteins, their most beneficial application as well as current and future directions in this field are discussed. EXPERT OPINION Targeting Bcl-2 family proteins using SMI strategies is gaining momentum, with the emergence of certain new classes of inhibitors in Phase I and II clinical settings. In view of the tremendous progress toward the development of such inhibitors, this innovative approach certainly holds promise and has the potential to become a future mainstay for cancer therapy. The stage is set for the next generation of SMIs, for not only Bcl-2 proteins but also for Mcl-1. Other emerging molecules in the apoptotic machinery will also be explored and targeted.
Collapse
Affiliation(s)
- Asfar S Azmi
- Wayne State University School of Medicine, 740 Hudson Webber Cancer Research Center, Barbara Ann Karmanos Cancer Institute, Department of Pathology, 4100 John R, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
41
|
Ray JE, Garcia J, Jurisicova A, Caniggia I. Mtd/Bok takes a swing: proapoptotic Mtd/Bok regulates trophoblast cell proliferation during human placental development and in preeclampsia. Cell Death Differ 2009; 17:846-59. [DOI: 10.1038/cdd.2009.167] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochem Pharmacol 2008; 76:1612-9. [DOI: 10.1016/j.bcp.2008.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 02/02/2023]
|
43
|
Bradley EW, Ruan MM, Oursler MJ. Novel pro-survival functions of the Kruppel-like transcription factor Egr2 in promotion of macrophage colony-stimulating factor-mediated osteoclast survival downstream of the MEK/ERK pathway. J Biol Chem 2008; 283:8055-64. [PMID: 18198176 DOI: 10.1074/jbc.m709500200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Determining the underlying mechanisms of macrophage colony-stimulating factor (M-CSF)-mediated osteoclast survival may be important in identifying novel approaches for treating excessive bone loss. This study investigates M-CSF-mediated MEK/ERK activation and identifies a downstream effector of this pathway. M-CSF activates MEK/ERK and induces MEK-dependent expression of the immediate early gene Egr2. Inhibition of either MEK1/2 or inhibition of Egr2 increases osteoclast apoptosis. In contrast, wild-type Egr2 or an Egr2 point mutant unable to bind the endogenous repressors Nab1/2 (caEgr2) suppresses basal osteoclast apoptosis and rescues osteoclasts from apoptosis induced by MEK1/2 or Egr2 inhibition. Mechanistically, Egr2 induces pro-survival Blc2 family member Mcl1 while stimulating proteasome-mediated degradation of pro-apoptotic Bim. In addition, Egr2 increased the expression of c-Cbl, the E3 ubiquitin ligase that catalyzes Bim ubiquitination. M-CSF, therefore, promotes osteoclast survival through MEK/ERK-dependent induction of Egr2 to control the Mcl1/Bim ratio, documenting a novel function of Egr2 in promoting survival.
Collapse
|
44
|
Schmitt E, Paquet C, Beauchemin M, Bertrand R. DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 2007; 8:377-97. [PMID: 17565509 PMCID: PMC1879163 DOI: 10.1631/jzus.2007.b0377] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tissue homeostasis requires a carefully-orchestrated balance between cell proliferation, cellular senescence and cell death. Cells proliferate through a cell cycle that is tightly regulated by cyclin-dependent kinase activities. Cellular senescence is a safeguard program limiting the proliferative competence of cells in living organisms. Apoptosis eliminates unwanted cells by the coordinated activity of gene products that regulate and effect cell death. The intimate link between the cell cycle, cellular senescence, apoptosis regulation, cancer development and tumor responses to cancer treatment has become eminently apparent. Extensive research on tumor suppressor genes, oncogenes, the cell cycle and apoptosis regulatory genes has revealed how the DNA damage-sensing and -signaling pathways, referred to as the DNA-damage response network, are tied to cell proliferation, cell-cycle arrest, cellular senescence and apoptosis. DNA-damage responses are complex, involving "sensor" proteins that sense the damage, and transmit signals to "transducer" proteins, which, in turn, convey the signals to numerous "effector" proteins implicated in specific cellular pathways, including DNA repair mechanisms, cell-cycle checkpoints, cellular senescence and apoptosis. The Bcl-2 family of proteins stands among the most crucial regulators of apoptosis and performs vital functions in deciding whether a cell will live or die after cancer chemotherapy and irradiation. In addition, several studies have now revealed that members of the Bcl-2 family also interface with the cell cycle, DNA repair/recombination and cellular senescence, effects that are generally distinct from their function in apoptosis. In this review, we report progress in understanding the molecular networks that regulate cell-cycle checkpoints, cellular senescence and apoptosis after DNA damage, and discuss the influence of some Bcl-2 family members on cell-cycle checkpoint regulation.
Collapse
Affiliation(s)
- Estelle Schmitt
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Claudie Paquet
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Myriam Beauchemin
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
| | - Richard Bertrand
- Notre Dame Hospital and Montreal Cancer Institute, Research Centre of University of Montreal Hospital Centre (CRCHUM), Montreal (Que) H2L 4M1, Canada
- Medicine Department, University of Montreal, Montreal (Que) H3C 3J7, Canada
- †E-mail:
| |
Collapse
|
45
|
Soleymanlou N, Jurisicova A, Wu Y, Chijiiwa M, Ray JE, Detmar J, Todros T, Zamudio S, Post M, Caniggia I. Hypoxic switch in mitochondrial myeloid cell leukemia factor-1/Mtd apoptotic rheostat contributes to human trophoblast cell death in preeclampsia. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:496-506. [PMID: 17600131 PMCID: PMC1934524 DOI: 10.2353/ajpath.2007.070094] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Preeclampsia, a disorder of pregnancy, is characterized by increased trophoblast cell death and altered trophoblast-mediated remodeling of myometrial spiral arteries resulting in reduced uteroplacental perfusion. Mitochondria-associated Bcl-2 family members are important regulators of programed cell death. The mechanism whereby hypoxia alters the mitochondrial apoptotic rheostat is essential to our understanding of placental disease. Herein, myeloid cell leukemia factor-1 (Mcl-1) isoform expression was examined in physiological/pathological models of placental hypoxia. Preeclamptic placentae were characterized by caspase-dependent cleavage of death-suppressing Mcl-1L and switch toward cell death-inducing Mcl-1S. In vitro, Mcl-1L cleavage was induced by hypoxia-reoxygenation in villous explants, whereas Mcl-1L overexpression under hypoxia-reoxygenation rescued trophoblast cells from undergoing apoptosis. Cleavage was mediated by caspase-3/-7 because pharmacological caspase inhibition prevented this process. Altitude-induced chronic hypoxia was characterized by expression of Mcl-1L; resulting in a reduction of apoptotic markers (cleaved caspase-3/-8 and p85 poly-ADP-ribose polymerase). Moreover, in both physiological (explants and high altitude) and pathological (preeclampsia) placental hypoxia, decreased trophoblast syncytin expression was observed. Hence, although both pathological and physiological placental hypoxia are associated with slowed trophoblast differentiation, trophoblast apoptosis is only up-regulated in preeclampsia, because of a hypoxia-reoxygenation-induced switch in generation of proapoptotic Mcl-1 isoforms.
Collapse
|
46
|
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. ACTA ACUST UNITED AC 2007; 54:34-66. [PMID: 17222914 DOI: 10.1016/j.brainresrev.2006.11.003] [Citation(s) in RCA: 532] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia (stroke) triggers a complex series of biochemical and molecular mechanisms that impairs the neurologic functions through breakdown of cellular integrity mediated by excitotoxic glutamatergic signalling, ionic imbalance, free-radical reactions, etc. These intricate processes lead to activation of signalling mechanisms involving calcium/calmodulin-dependent kinases (CaMKs) and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). The distribution of these transducers bring them in contact with appropriate molecular targets leading to altered gene expression, e.g. ERK and JNK mediated early gene induction, responsible for activation of cell survival/damaging mechanisms. Moreover, inflammatory reactions initiated at the neurovascular interface and alterations in the dynamic communication between the endothelial cells, astrocytes and neurons are thought to substantially contribute to the pathogenesis of the disease. The damaging mechanisms may proceed through rapid nonspecific cell lysis (necrosis) or by active form of cell demise (apoptosis or necroptosis), depending upon the severity and duration of the ischemic insult. A systematic understanding of these molecular mechanisms with prospect of modulating the chain of events leading to cellular survival/damage may help to generate the potential strategies for neuroprotection. This review briefly covers the current status on the molecular mechanisms of stroke pathophysiology with an endeavour to identify potential molecular targets such as targeting postsynaptic density-95 (PSD-95)/N-methyl-d-aspartate (NMDA) receptor interaction, certain key proteins involved in oxidative stress, CaMKs and MAPKs (ERK, p38 and JNK) signalling, inflammation (cytokines, adhesion molecules, etc.) and cell death pathways (caspases, Bcl-2 family proteins, poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis-inducing factor (AIF), inhibitors of apoptosis proteins (IAPs), heat shock protein 70 (HSP70), receptor interacting protein (RIP), etc., besides targeting directly the genes itself. However, selecting promising targets from various signalling cascades, for drug discovery and development is very challenging, nevertheless such novel approaches may lead to the emergence of new avenues for therapeutic intervention in cerebral ischemia.
Collapse
Affiliation(s)
- Suresh L Mehta
- Division of Pharmacology, Central Drug Research Institute, Chatter Manzil Palace, POB-173, Lucknow-226001, India
| | | | | |
Collapse
|
47
|
Rodriguez JM, Glozak MA, Ma Y, Cress WD. Bok, Bcl-2-related Ovarian Killer, Is Cell Cycle-regulated and Sensitizes to Stress-induced Apoptosis. J Biol Chem 2006; 281:22729-35. [PMID: 16772296 PMCID: PMC2134790 DOI: 10.1074/jbc.m604705200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bok/Mtd (Bcl-2-related ovarian killer/Matador) is considered a pro-apoptotic member of the Bcl-2 family. Although identified in 1997, little is known about its biological role. We have previously demonstrated that Bok mRNA is up-regulated following E2F1 overexpression. In the current work, we demonstrate that Bok RNA is low in quiescent cells and rises upon serum stimulation. To determine the mechanism underlying this regulation, we cloned and characterized the mouse Bok promoter. We find that the mouse promoter contains a conserved E2F binding site (-43 to -49) and that a Bok promoter-driven luciferase reporter is activated by serum stimulation dependent on this site. Chromatin immunoprecipitation assays demonstrate that endogenous E2F1 and E2F3 associate with the Bok promoter in vivo. Surprisingly, we find that H1299 cells can stably express high levels of exogenous Bok protein. However, these cells are highly sensitive to chemotherapeutic drug treatment. Taken together these results demonstrate that Bok represents a cell cycle-regulated pro-apoptotic member of the Bcl-2 family, which may predispose growing cells to chemotherapeutic treatment.
Collapse
Affiliation(s)
- Jose M Rodriguez
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Department of Interdisciplinary Oncology, Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612
| | | | | | | |
Collapse
|
48
|
Thomadaki H, Scorilas A. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 2006; 43:1-67. [PMID: 16531274 DOI: 10.1080/10408360500295626] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the most effective ways to combat different types of cancer is through early diagnosis and administration of effective treatment, followed by efficient monitoring that will allow physicians to detect relapsing disease and treat it at the earliest possible time. Apoptosis, a normal physiological form of cell death, is critically involved in the regulation of cellular homeostasis. Dysregulation of programmed cell death mechanisms plays an important role in the pathogenesis and progression of cancer as well as in the responses of tumours to therapeutic interventions. Many members of the BCL2 (B-cell CLL/lymphoma 2; Bcl-2) family of apoptosis-related genes have been found to be differentially expressed in various malignancies, and some are useful prognostic cancer biomarkers. We have recently cloned a new member of this family, BCL2L12, which was found to be differentially expressed in many tumours. Most of the BCL2 family genes have been found to play a central regulatory role in apoptosis induction. Results have made it clear that a number of coordinating alterations in the BCL2 family of genes must occur to inhibit apoptosis and provoke carcinogenesis in a wide variety of cancers. However, more research is required to increase our understanding of the extent to which and the mechanisms by which they are involved in cancer development, providing the basis for earlier and more accurate cancer diagnosis, prognosis and therapeutic intervention that targets the apoptosis pathways. In the present review, we describe current knowledge of the function and molecular characteristics of a series of classic but also newly discovered genes of the BCL2 family as well as their implications in cancer development, prognosis and treatment.
Collapse
Affiliation(s)
- Hellinida Thomadaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | | |
Collapse
|
49
|
Bartholomeusz G, Wu Y, Ali Seyed M, Xia W, Kwong KY, Hortobagyi G, Hung MC. Nuclear translocation of the pro-apoptotic Bcl-2 family member Bok induces apoptosis. Mol Carcinog 2006; 45:73-83. [PMID: 16302269 DOI: 10.1002/mc.20156] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The anti-apoptotic members of the Bcl-2 family, such as Bcl-2 and Bcl-XL, play a central role in preventing the induction of apoptosis via the intrinsic apoptotic pathway. It has been previously shown that induction of apoptosis by the pro-apoptotic Bcl-2 family member Bok is not antagonized by either Bcl-2 or Bcl-xL, suggesting that Bok might have a unique role in the apoptotic cascade. We showed here that human Bok is the only member of the Bcl-2 family to have a leucine-rich sequence indicative of a nuclear export signal within its BH3 domain. Western blot analysis of nuclear and cytoplasmic fractions identified Bok in both the nucleus and the cytoplasm of HEK 293T cells, HeLa cells, and breast cancer cells, and its nuclear concentration increased after treatment of those cells with leptomycin B, an inhibitor of the exportin Crm1. Immunocytochemistry of flag-tagged Bok confirmed its nuclear localization. Mutating the nuclear export signal of Bok by site-directed mutagenesis resulted in an increase in its nuclear localization and apoptotic activity. We also found that Crm1 interacted with wild-type Bok but not with the mutated form. These results suggest that nuclear export of Bok is a regulated process mediated by Crm1, and constitutes the first report of a link between the apoptotic activity and nuclear localization of a pro-apoptotic member of the Bcl-2 family.
Collapse
Affiliation(s)
- Geoffrey Bartholomeusz
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Centre, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Jurisicova A, Detmar J, Caniggia I. Molecular mechanisms of trophoblast survival: From implantation to birth. ACTA ACUST UNITED AC 2005; 75:262-80. [PMID: 16425250 DOI: 10.1002/bdrc.20053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal development depends upon a coordinated series of events in both the embryo and in the supporting placenta. The initial event in placentation is appropriate lineage allocation of stem cells followed by the formation of a spheroidal trophoblastic shell surrounding the embryo, facilitating implantation into the uterine stroma and exclusion of oxygenated maternal blood. In mammals, cellular proliferation, differentiation, and death accompany early placental development. Programmed cell death is a critical driving force behind organ sculpturing and eliminating abnormal, misplaced, nonfunctional, or harmful cells in the embryo proper, although very little is known about its physiological function during placental development. This review summarizes current knowledge of the cell death patterns and molecular pathways governing the survival of cells within the blastocyst, with a focus on the trophoblast lineage prior to and after implantation. Particular emphasis is given to human placental development in the context of normal and pathological conditions. As molecular pathways in humans are poorly elucidated, we have also included an overview of pertinent genetic animal models displaying defects in trophoblast survival.
Collapse
Affiliation(s)
- Andrea Jurisicova
- Department of Obstetrics and Gynecology, University of Toronto, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|