1
|
Königshausen E, Zierhut UM, Ruetze M, Rump LC, Sellin L. A molecular mechanism for angiotensin II receptor blocker-mediated slit membrane protection: Angiotensin II increases nephrin endocytosis via AT1-receptor-dependent ERK 1/2 activation. FASEB J 2024; 38:e70018. [PMID: 39212304 DOI: 10.1096/fj.202400369r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Albuminuria is characterized by a disruption of the glomerular filtration barrier, which is composed of the fenestrated endothelium, the glomerular basement membrane, and the slit diaphragm. Nephrin is a major component of the slit diaphragm. Apart from hemodynamic effects, Ang II enhances albuminuria by β-Arrestin2-mediated nephrin endocytosis. Blocking the AT1 receptor with candesartan and irbesartan reduces the Ang II-mediated nephrin-β-Arrestin2 interaction. The inhibition of MAPK ERK 1/2 blocks Ang II-enhanced nephrin-β-Arrestin2 binding. ERK 1/2 signaling, which follows AT1 receptor activation, is mediated by G-protein signaling, EGFR transactivation, and β-Arrestin2 recruitment. A mutant AT1 receptor defective in EGFR transactivation and β-Arrestin2 recruitment reduces the Ang II-mediated increase in nephrin β-Arrestin2 binding. The mutation of β-Arrestin2K11,K12, critical for AT1 receptor binding, completely abrogates the interaction with nephrin, independent of Ang II stimulation. β-Arrestin2K11R,K12R does not influence nephrin cell surface expression. The data presented here deepen our molecular understanding of a blood-pressure-independent molecular mechanism of AT-1 receptor blockers (ARBs) in reducing albuminuria.
Collapse
Affiliation(s)
- Eva Königshausen
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Ulf M Zierhut
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Martin Ruetze
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lars C Rump
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Lorenz Sellin
- Department of Nephrology, Medical School Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
2
|
Camargo LDL, Trevelin SC, da Silva GHG, Dos Santos Dias AA, Oliveira MA, Mikhaylichenko O, Androwiki ACD, Dos Santos CX, Holbrook LM, Ceravolo GS, Denadai-Souza A, Ribeiro IMR, Sartoretto S, Laurindo FRM, Coltri PP, Antunes VR, Touyz R, Miller FJ, Shah AM, Lopes LR. Protein disulfide isomerase-mediated transcriptional upregulation of Nox1 contributes to vascular dysfunction in hypertension. J Hypertens 2024; 42:984-999. [PMID: 38690903 DOI: 10.1097/hjh.0000000000003677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Livia De Lucca Camargo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
| | - Silvia Cellone Trevelin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | - Maria Aparecida Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Olga Mikhaylichenko
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Aline C D Androwiki
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Celio Xavier Dos Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | | | | | | | | | - Simone Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Patricia Pereira Coltri
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Vagner Roberto Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| | - Rhian Touyz
- University of Glasgow, Institute of Cardiovascular & Medical Sciences
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London
| | - Lucia Rossetti Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), Brazil
| |
Collapse
|
3
|
Eguchi S, Torimoto K, Adebiyi A, Kanthakumar P, Bomfim GF, Wenceslau CF, Dahlen SA, Osei-Owusu P. Milestone Papers on Signal Transduction Mechanisms of Hypertension and Its Complications. Hypertension 2024; 81:977-990. [PMID: 38372140 PMCID: PMC11023792 DOI: 10.1161/hypertensionaha.123.21365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
To celebrate 100 years of American Heart Association-supported cardiovascular disease research, this review article highlights milestone papers that have significantly contributed to the current understanding of the signaling mechanisms driving hypertension and associated cardiovascular disorders. This article also includes a few of the future research directions arising from these critical findings. To accomplish this important mission, 4 principal investigators gathered their efforts to cover distinct yet intricately related areas of signaling mechanisms pertaining to the pathogenesis of hypertension. The renin-angiotensin system, canonical and novel contractile and vasodilatory pathways in the resistance vasculature, vascular smooth muscle regulation by membrane channels, and noncanonical regulation of blood pressure and vascular function will be described and discussed as major subjects.
Collapse
Affiliation(s)
- Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine, Temple University
- Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine, Temple University
| | - Keiichi Torimoto
- Department of Cardiovascular Science, Lewis Katz School of Medicine, Temple University
| | - Adebowale Adebiyi
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | - Praghalathan Kanthakumar
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
| | - Gisele F. Bomfim
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
| | - Camilla Ferreira Wenceslau
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine
| | - Shelby A. Dahlen
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University
| | - Patrick Osei-Owusu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University
| |
Collapse
|
4
|
Eguchi S, Tamura M, Matoba T. Tribute to Tadashi Inagami: A Super Legend of Renin Angiotensin II Research. Hypertension 2023; 80:1137-1139. [PMID: 37196098 DOI: 10.1161/hypertensionaha.123.21219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Satoru Eguchi
- Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University (S.E.)
| | - Masaaki Tamura
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine (M.T.)
| | - Teruyoshi Matoba
- Department of Food Science and Nutrition, Nara Women's University (T.M.)
| |
Collapse
|
5
|
Eguchi S, Senbonmatsu T. Obituary: Dr. Tadashi Inagami, a legend in the field of renin angiotensin II research. Hypertens Res 2023:10.1038/s41440-023-01282-2. [PMID: 37055562 DOI: 10.1038/s41440-023-01282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Affiliation(s)
- Satoru Eguchi
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA.
| | | |
Collapse
|
6
|
Conte JG, Tellechea ML, Park B, Ballerini MG, Jaita G, Peluffo MC. Interaction between epidermal growth factor receptor and C-C motif chemokine receptor 2 in the ovulatory cascade. Front Cell Dev Biol 2023; 11:1161813. [PMID: 37082622 PMCID: PMC10110862 DOI: 10.3389/fcell.2023.1161813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the main pathways responsible for propagating the luteinizing hormone (LH) signal throughout the cumulus cells and the oocyte. Recently, we have proposed the C-C motif chemokine receptor 2 (CCR2) and its main ligand (monocyte chemoattractant protein-1, MCP1) as novel mediators of the ovulatory cascade. Our previous results demonstrate that the gonadotropins (GNT), amphiregulin (AREG), and prostaglandin E2 (PGE2) stimulation of periovulatory gene mRNA levels occurs, at least in part, through the CCR2/MCP1 pathway, proposing the CCR2 receptor as a novel mediator of the ovulatory cascade in a feline model. For that purpose, feline cumulus-oocyte complexes (COCs) were cultured in the presence or absence of an EGFR inhibitor, recombinant chemokine MCP1, and gonadotropins [as an inducer of cumulus-oocyte expansion (C-OE), and oocyte maturation] to further assess the mRNA expression of periovulatory key genes, C-OE, oocyte nuclear maturation, and steroid hormone production. We observed that MCP1 was able to revert the inhibition of AREG mRNA expression by an EGFR inhibitor within the feline COC. In accordance, the confocal analysis showed that the GNT-stimulated hyaluronic acid (HA) synthesis, blocked by the EGFR inhibitor, was recovered by the addition of recombinant MCP1 in the C-OE culture media. Also, MCP1 was able to revert the inhibition of progesterone (P4) production by EGFR inhibitor in the C-OE culture media. Regarding oocyte nuclear maturation, recombinant MCP1 could also revert the inhibition triggered by the EGFR inhibitor, leading to a recovery in the percentage of metaphase II (MII)-stage oocytes. In conclusion, our results confirm the chemokine receptor CCR2 as a novel intermediate in the ovulatory cascade and demonstrate that the EGFR/AREG and the CCR2/MCP1 signaling pathways play critical roles in regulating feline C-OE and oocyte nuclear maturation, with CCR2/MCP1 signaling pathway being downstream EGFR/AREG pathway within the ovulatory cascade.
Collapse
Affiliation(s)
- J. G. Conte
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. L. Tellechea
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - B. Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - M. G. Ballerini
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - G. Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Biología Celular e Histología, Facultad de Medicina-Universidad de Buenos Aires Buenos, Buenos Aires, Argentina
| | - M. C. Peluffo
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CEDIE), CONICET—FEI—División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
7
|
Helfenberger KE, Argentino GF, Benzo Y, Herrera LM, Finocchietto P, Poderoso C. Angiotensin II Regulates Mitochondrial mTOR Pathway Activity Dependent on Acyl-CoA Synthetase 4 in Adrenocortical Cells. Endocrinology 2022; 163:6763139. [PMID: 36256598 DOI: 10.1210/endocr/bqac170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Two well-known protein complexes in mammalian cells, mTOR type 1 and type 2 (mTORC1/2) are involved in several cellular processes such as protein synthesis, cell proliferation, and commonly dysregulated in cancer. An acyl-CoA synthetase type 4 (ACSL4) is one of the most recently mTORC1/2 regulators described, in breast cancer cells. The expression of ACSL4 is hormone-regulated in adrenocortical cells and required for steroid biosynthesis. mTORC1/2 have been reported to be crucial in the proliferation of human adrenocortical tumor cells H295R and interestingly reported at several subcellular locations, which has brought cell biology to the vanguard of the mTOR signaling field. In the present work, we study the regulation of mTORC1/2 activation by angiotensin II (Ang II)-the trophic hormone for adrenocortical cells-the subcellular localization of mTORC1/2 signaling proteins and the role of ACSL4 in the regulation of this pathway, in H295R cells. Ang II promotes activation by phosphorylation of mTORC1/2 pathway proteins in a time-dependent manner. Mitochondrial pools of ribosomal protein S6, protein kinase B (Akt) in threonine 308, and serine 473 and Rictor are phosphorylated and activated. Glycogen synthase kinase type 3 (GSK3) is phosphorylated and inactivated in mitochondria, favoring mTORC1 activation. Epidermal growth factor, a classic mTORC1/2 activator, promoted unique activation kinetics of mTORC1/2 pathway, except for Akt phosphorylation. Here, we demonstrate that ACSL4 is necessary for mTORC1/2 effectors phosphorylation and H295R proliferation, triggered by Ang II. Ang II promotes activation of mitochondrial mTORC1/2 signaling proteins, through ACSL4, with a direct effect on adrenocortical cellular proliferation.
Collapse
Affiliation(s)
- Katia E Helfenberger
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Giuliana F Argentino
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Yanina Benzo
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Lucía M Herrera
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Paola Finocchietto
- Laboratorio del Metabolismo del Oxígeno. Hospital de Clínicas "José de San Martín," Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| | - Cecilia Poderoso
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires-CONICET, Buenos Aires C1121ABG, Argentina
| |
Collapse
|
8
|
Guner S, Akhayeva T, Nichols CD, Gurdal H. The Ca2+/CaM, Src kinase and/or PI3K-dependent EGFR transactivation via 5-HT2A and 5-HT1B receptor subtypes mediates 5-HT-induced vasoconstriction. Biochem Pharmacol 2022; 206:115317. [DOI: 10.1016/j.bcp.2022.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022]
|
9
|
Torimoto K, Okuno K, Kuroda R, Shanas N, Cicalese SM, Eguchi K, Elliott KJ, Kawai T, Corbett CB, Peluzzo AM, St. Paul AK, Autieri MV, Scalia R, Rizzo V, Hashimoto T, Eguchi S. Glucose consumption of vascular cell types in culture: toward optimization of experimental conditions. Am J Physiol Cell Physiol 2022; 322:C73-C85. [PMID: 34817269 PMCID: PMC8791793 DOI: 10.1152/ajpcell.00257.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we have looked for an optimum media glucose concentration and compared glucose consumption in three vascular cell types, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs) with or without angiotensin II (AngII) stimulation. In a subconfluent 6-well experiment in 1 mL DMEM with a standard low (100 mg/dL), a standard high (450 mg/dL), or a mixed middle (275 mg/dL) glucose concentration, steady and significant glucose consumption was observed in all cell types. After 48-h incubation, media that contained low glucose was reduced to almost 0 mg/dL, media that contained high glucose remained significantly higher at ∼275 mg/dL, and media that contained middle glucose remained closer to physiological range. AngII treatment enhanced glucose consumption in AFs and VSMCs but not in ECs. Enhanced extracellular acidification rate by AngII was also observed in AFs. In AFs, AngII induction of target proteins at 48 h varied depending on the glucose concentration used. In low glucose media, induction of glucose regulatory protein 78 or hexokinase II was highest, whereas induction of VCAM-1 was lowest. Utilization of specific inhibitors further suggests essential roles of angiotensin II type-1 receptor and glycolysis in AngII-induced fibroblast activation. Overall, this study demonstrates a high risk of hypo- or hyperglycemic conditions when standard low or high glucose media is used with vascular cells. Moreover, these conditions may significantly alter experimental outcomes. Media glucose concentration should be monitored during any culture experiments and utilization of middle glucose media is recommended for all vascular cell types.
Collapse
Affiliation(s)
- Keiichi Torimoto
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Keisuke Okuno
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ryohei Kuroda
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - No’Ad Shanas
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Stephanie M. Cicalese
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kunie Eguchi
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Katherine J. Elliott
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tatsuo Kawai
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Cali B. Corbett
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda M. Peluzzo
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Amanda K. St. Paul
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Michael V. Autieri
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Rosario Scalia
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Victor Rizzo
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Tomoki Hashimoto
- 2Barrow Aneurysm and AVM Research Center, Departments of Neurosurgery and Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | - Satoru Eguchi
- 1Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Gém JB, Kovács KB, Szalai L, Szakadáti G, Porkoláb E, Szalai B, Turu G, Tóth AD, Szekeres M, Hunyady L, Balla A. Characterization of Type 1 Angiotensin II Receptor Activation Induced Dual-Specificity MAPK Phosphatase Gene Expression Changes in Rat Vascular Smooth Muscle Cells. Cells 2021; 10:3538. [PMID: 34944046 PMCID: PMC8700539 DOI: 10.3390/cells10123538] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/03/2023] Open
Abstract
Activation of the type I angiotensin receptor (AT1-R) in vascular smooth muscle cells (VSMCs) plays a crucial role in the regulation of blood pressure; however, it is also responsible for the development of pathological conditions such as vascular remodeling, hypertension and atherosclerosis. Stimulation of the VSMC by angiotensin II (AngII) promotes a broad variety of biological effects, including gene expression changes. In this paper, we have taken an integrated approach in which an analysis of AngII-induced gene expression changes has been combined with the use of small-molecule inhibitors and lentiviral-based gene silencing, to characterize the mechanism of signal transduction in response to AngII stimulation in primary rat VSMCs. We carried out Affymetrix GeneChip experiments to analyze the effects of AngII stimulation on gene expression; several genes, including DUSP5, DUSP6, and DUSP10, were identified as upregulated genes in response to stimulation. Since various dual-specificity MAPK phosphatase (DUSP) enzymes are important in the regulation of mitogen-activated protein kinase (MAPK) signaling pathways, these genes have been selected for further analysis. We investigated the kinetics of gene-expression changes and the possible signal transduction processes that lead to altered expression changes after AngII stimulation. Our data shows that the upregulated genes can be stimulated through multiple and synergistic signal transduction pathways. We have also found in our gene-silencing experiments that epidermal growth factor receptor (EGFR) transactivation is not critical in the AngII-induced expression changes of the investigated genes. Our data can help us understand the details of AngII-induced long-term effects and the pathophysiology of AT1-R. Moreover, it can help to develop potential interventions for those symptoms that are induced by the over-functioning of this receptor, such as vascular remodeling, cardiac hypertrophy or atherosclerosis.
Collapse
Affiliation(s)
- Janka Borbála Gém
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Kinga Bernadett Kovács
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Laura Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Gyöngyi Szakadáti
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Edit Porkoláb
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Dávid Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
- Department of Internal Medicine and Hematology, Semmelweis University, 1085 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary; (J.B.G.); (K.B.K.); (L.S.); (G.S.); (E.P.); (B.S.); (G.T.); (A.D.T.); (M.S.)
- MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
11
|
Jaworski JP, Urrutia M, Dascal E, Jaita G, Peluffo MC. C-C motif chemokine receptor 2 as a novel intermediate in the ovulatory cascade. Mol Hum Reprod 2021; 26:289-300. [PMID: 32159806 DOI: 10.1093/molehr/gaaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Expression of immune function genes within follicle cells has been reported in ovaries from many species. Recent work from our laboratory showed a direct effect of the monocyte chemoattractant protein 1/C-C motif chemokine receptor 2 system within the feline cumulus oocyte complex, by increasing the mRNA levels of key genes involved in the ovulatory cascade in vitro. Studies were designed to evaluate if C-C motif chemokine receptor 2 acts as a novel mediator of the ovulatory cascade in vitro. Therefore, feline cumulus oocyte complexes were cultured in the presence or absence of a highly selective C-C motif chemokine receptor 2 antagonist together with known inducers of cumulus-oocyte expansion and/or oocyte maturation to assess mRNA expression of key genes related to periovulatory events in other species as well as oocyte maturation. Also, the effects of recombinant monocyte chemoattractant protein 1 on spontaneous or gonadotrophin-induced oocyte maturation were assessed. This is an in vitro system using isolated cumulus oocyte complexes from feline ovaries. The present study reveals the modulation of several key ovulatory genes by a highly selective C-C motif chemokine receptor 2 antagonist. However, this antagonist was not enough to block the oocyte maturation induced by gonadotropins or amphiregulin. Nonetheless, recombinant monocyte chemoattractant protein 1 had a significant effect on spontaneous oocyte maturation, increasing the percentage of metaphase II stage oocytes in comparison to the control. This is the first study in any species to establish C-C motif chemokine receptor 2 as a mediator of some actions of the mid-cycle gonadotrophin surge.
Collapse
Affiliation(s)
- J P Jaworski
- Instituto de Virología, INTA (National Institute of Agricultural Technology-Instituto Nacional de Tecnología Agropecuaria)-CONICET, Argentina. Las Cabañas y Los Reseros s/n, Las Cabañas y Los Reseros 10 s/n, Castelar, Argentina
| | - M Urrutia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - E Dascal
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| | - G Jaita
- Instituto de Investigaciones Biomédicas (INBIOMED), Facultad de Medicina CONICET, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina.,Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires Buenos, Paraguay 2155, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - M C Peluffo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330, C1425EFD Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
12
|
Eckenstaler R, Sandori J, Gekle M, Benndorf RA. Angiotensin II receptor type 1 - An update on structure, expression and pathology. Biochem Pharmacol 2021; 192:114673. [PMID: 34252409 DOI: 10.1016/j.bcp.2021.114673] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
The AT1 receptor, a major effector of the renin-angiotensin system, has been extensively studied in the context of cardiovascular and renal disease. Moreover, angiotensin receptor blockers, sartans, are among the most frequently prescribed drugs for the treatment of hypertension, chronic heart failure and chronic kidney disease. However, precise molecular insights into the structure of this important drug target have not been available until recently. In this context, seminal studies have now revealed exciting new insights into the structure and biased signaling of the receptor and may thus foster the development of novel therapeutic approaches to enhance the efficacy of pharmacological angiotensin receptor antagonism or to enable therapeutic induction of biased receptor activity. In this review, we will therefore highlight these and other seminal publications to summarize the current understanding of the tertiary structure, ligand binding properties and downstream signal transduction of the AT1 receptor.
Collapse
Affiliation(s)
| | - Jana Sandori
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany
| | - Michael Gekle
- Julius-Bernstein-Institute of Physiology, Martin-Luther-University, Halle, Germany
| | - Ralf A Benndorf
- Institute of Pharmacy, Martin-Luther-University, Halle, Germany.
| |
Collapse
|
13
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
14
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
15
|
Rianto F, Hoang T, Revoori R, Sparks MA. Angiotensin receptors in the kidney and vasculature in hypertension and kidney disease. Mol Cell Endocrinol 2021; 529:111259. [PMID: 33781840 DOI: 10.1016/j.mce.2021.111259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/05/2021] [Accepted: 03/20/2021] [Indexed: 12/24/2022]
Abstract
Kidney disease, blood pressure determination, hypertension pathogenesis, and the renin-angiotensin system (RAS) are inextricably linked. Hence, understanding the RAS is pivotal to unraveling the pathophysiology of hypertension and the determinants to maintaining normal blood pressure. The RAS has been the subject of intense investigation for over a century. Moreover, medications that block the RAS are mainstay therapies in clinical medicine and have been shown to reduce morbidity and mortality in patients with diabetes, cardiovascular, and kidney diseases. The main effector peptide of the RAS is the interaction of the octapeptide- Ang II with its receptor. The type 1 angiotensin receptor (AT1R) is the effector receptor for Ang II. These G protein-coupled receptors (GPCRs) are ubiquitously expressed in a variety of cell lineages and tissues relevant to cardiovascular disease throughout the body. The advent of cell specific deletion of genes using Cre LoxP technology in mice has allowed for the identification of discreet actions of AT1Rs in blood pressure control and kidney disease. The kidney is one of the major targets of the RAS, which is responsible in maintaining fluid, electrolyte balance, and blood pressure. In this review we will discuss the role of AT1Rs in the kidney, vasculature, and immune cells and address their effects on hypertension and kidney disease.
Collapse
MESH Headings
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Blood Pressure/genetics
- Gene Expression Regulation
- Humans
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Kidney Tubules, Proximal/enzymology
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Fitra Rianto
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Thien Hoang
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ritika Revoori
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States; Renal Section, Durham VA Health Care System, Durham, NC, United States.
| |
Collapse
|
16
|
Chiu WC, Chiang JY, Chiang FT. Small chemical compounds Y16 and Rhosin can inhibit calcium sensitization pathway in vascular smooth muscle cells of spontaneously hypertensive rats. J Formos Med Assoc 2021; 120:1863-1868. [PMID: 33893012 DOI: 10.1016/j.jfma.2021.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/22/2021] [Accepted: 03/28/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/PURPOSE The small-molecule compounds Y16 and Rhosin can inhibit the activation of leukemia-associated Rho guanine nucleotide exchange factor (LARG) and small G-protein RhoA, respectively, in breast cancer cells and inhibit their growth and migration. However, it remains unclear whether they have inhibitory effects on the vascular smooth muscle cells (VSMCs) of spontaneously hypertensive rats (SHRs). METHODS Primary cultured VSMCs from SHRs were treated with different concentrations of Y16 or Y16 plus Rhosin for 24 h, followed by 10-min stimulation with 10-7 M angiotensin II (Ang II). The cells were then harvested, and the total protein was extracted. The co-immunoprecipitation method, Western blot analysis, and MTT assay were performed to determine the LARG-RhoA interaction, the protein levels of RhoA and MYPT1, and cell viability, respectively. RESULTS Y16 dose-dependently inhibited the LARG-RhoA complex formation induced by Ang II. With 50 μM of Y16, the effect of inhibition was statistically significant. Y16 also reduced the formation of phospho-MYPT1 stimulated by Ang II. With 5 μM of Y16, the inhibitory effect was statistically significant. When 25 μM of Y16 and 25 μM of Rhosin were combined, the inhibitory effect on LARG-RhoA interaction was statistically significant. When Y16 and Rhosin were combined, a significantly reduced concentration could effectively inhibit MYPT1 phosphorylation (2.5 μM compared with 5 μM for Y16 alone). CONCLUSION Treating SHR VSMCs with Y16 can suppress the activation of LARG, prevent LARG binding to RhoA, and decrease the phosphorylation of MYPT1, thus weakening the activation of the calcium (Ca2+) sensitization pathway in SHR VSMCs.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiun-Yang Chiang
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-Tien Chiang
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei, Taiwan; Fu Jen Catholic University, Taiwan.
| |
Collapse
|
17
|
Russell JJ, Grisanti LA, Brown SM, Bailey CA, Bender SB, Chandrasekar B. Reversion inducing cysteine rich protein with Kazal motifs and cardiovascular diseases: The RECKlessness of adverse remodeling. Cell Signal 2021; 83:109993. [PMID: 33781845 DOI: 10.1016/j.cellsig.2021.109993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
The Reversion Inducing Cysteine Rich Protein With Kazal Motifs (RECK) is a glycosylphosphatidylinositol (GPI) anchored membrane-bound regulator of matrix metalloproteinases (MMPs). It is expressed throughout the body and plays a role in extracellular matrix (ECM) homeostasis and inflammation. In initial studies, RECK expression was found to be downregulated in various invasive cancers and associated with poor prognostic outcome. Restoring RECK, however, has been shown to reverse the metastatic phenotype. Downregulation of RECK expression is also reported in non-malignant diseases, such as periodontal disease, renal fibrosis, and myocardial fibrosis. As such, RECK induction has therapeutic potential in several chronic diseases. Mechanistically, RECK negatively regulates various matrixins involved in cell migration, proliferation, and adverse remodeling by targeting the expression and/or activation of multiple MMPs, A Disintegrin And Metalloproteinase Domain-Containing Proteins (ADAMs), and A Disintegrin And Metalloproteinase With Thrombospondin Motifs (ADAMTS). Outside of its role in remodeling, RECK has also been reported to exert anti-inflammatory effects. In cardiac diseases, for example, it has been shown to counteract several downstream effectors of Angiotensin II (Ang-II) that play a role in adverse cardiac and vascular remodeling, such as Interleukin-6 (IL-6)/IL-6 receptor (IL-6R)/glycoprotein 130 (IL-6 signal transducer) signaling and Epidermal Growth Factor Receptor (EGFR) transactivation. This review article focuses on the current understanding of the multifunctional effects of RECK and how its downregulation may contribute to adverse cardiovascular remodeling.
Collapse
Affiliation(s)
- Jacob J Russell
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Laurel A Grisanti
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America.
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Chastidy A Bailey
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America.
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| | - B Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States of America; Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America; Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Center, University of Missouri, Columbia, MO, United States of America.
| |
Collapse
|
18
|
Simões e Silva AC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 2021; 36:1407-1426. [PMID: 32995920 PMCID: PMC7524035 DOI: 10.1007/s00467-020-04759-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The last decade was crucial for our understanding of the renin-angiotensin-aldosterone system (RAAS) as a two-axis, counter-regulatory system, divided into the classical axis, formed by angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the angiotensin type 1 receptor (AT1R), and the alternative axis comprising angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)), and the Mas receptor. Breakthrough discoveries also took place, with other RAAS endopeptides being described, including alamandine and angiotensin A. In this review, we characterize the two RAAS axes and the role of their components in pediatric kidney diseases, including childhood hypertension (HTN), pediatric glomerular diseases, congenital abnormalities of the kidney and urinary tract (CAKUT), and chronic kidney disease (CKD). We also present recent findings on potential interactions between the novel coronavirus, SARS-CoV-2, and components of the RAAS, as well as potential implications of coronavirus disease 2019 (COVID-19) for pediatric kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil ,grid.8430.f0000 0001 2181 4888Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Katharina Lanza
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Vitória Andrade Palmeira
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Larissa Braga Costa
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Joseph T. Flynn
- grid.34477.330000000122986657Pediatric Nephrology, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA 98105 USA
| |
Collapse
|
19
|
Khan EA, Zhang X, Hanna EM, Bartosova Z, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site. ENVIRONMENTAL RESEARCH 2020; 189:109906. [PMID: 32980003 DOI: 10.1016/j.envres.2020.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Eileen M Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU, N-7491, Trondheim, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| |
Collapse
|
20
|
Okitsu-Sakurayama S, Higa-Nakamine S, Torihara H, Higashiyama S, Yamamoto H. Roles of Pyk2 in signal transduction after gonadotropin-releasing hormone receptor stimulation. J Cell Physiol 2020; 236:3033-3043. [PMID: 32984962 DOI: 10.1002/jcp.30077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) is highly expressed in hypothalamic neurons. It has been reported that GnRH treatment of cultured GnRH neurons (GT1-7 cells) activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in the activation of extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 (ERK1/2). In the present study, we first examined the possibility that GnRH treatment might activate epidermal growth factor receptor (EGFR). We found that activation of EGFR after GnRH treatment for 5 min was much less than after EGF or heparin-binding EGF treatment. Next, we examined whether or not Pyk2 bound to growth factor receptor-binding protein 2 (Grb2). We overexpressed FLAG-fused Pyk2 in GT1-7 cells, and immunoprecipitated Pyk2 using an anti-FLAG antibody. The binding of Pyk2 to Grb2 was detected only after GnRH treatment. In contrast, a site-directed mutant of Pyk2 wherein tyrosine 881 was mutated to phenylalanine did not bind to Grb2. Studies with small interfering RNA and inhibitors indicated that the activation of Grb2/Ras/Raf/MEK was a major pathway to ERK1/2 activation after the short-term treatment of GT1-7 cells with GnRH.
Collapse
Affiliation(s)
- Shiho Okitsu-Sakurayama
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Hidetsugu Torihara
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Department of Biochemistry and Molecular Genetics, Proteo-Science Center, Ehime University Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
21
|
Vadhan JD, Speth RC. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol Ther 2020; 218:107684. [PMID: 32956721 DOI: 10.1016/j.pharmthera.2020.107684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 02/07/2023]
Abstract
There is considerable interest in traumatic brain injury (TBI) induced by repeated concussions suffered by athletes in sports, military personnel from combat-and non-combat related activities, and civilian populations who suffer head injuries from accidents and domestic violence. Although the renin-angiotensin system (RAS) is primarily a systemic cardiovascular regulatory system that, when dysregulated, causes hypertension and cardiovascular pathology, the brain contains a local RAS that plays a critical role in the pathophysiology of several neurodegenerative diseases. This local RAS includes receptors for angiotensin (Ang) II within the brain parenchyma, as well as on circumventricular organs outside the blood-brain-barrier. The brain RAS acts primarily via the type 1 Ang II receptor (AT1R), exacerbating insults and pathology. With TBI, the brain RAS may contribute to permanent brain damage, especially when a second TBI occurs before the brain recovers from an initial injury. Agents are needed that minimize the extent of injury from an acute TBI, reducing TBI-mediated permanent brain damage. This review discusses how activation of the brain RAS following TBI contributes to this damage, and how drugs that counteract activation of the AT1R including AT1R blockers (ARBs), renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, and agonists at type 2 Ang II receptors (AT2) and at Ang (1-7) receptors (Mas) can potentially ameliorate TBI-induced brain damage.
Collapse
Affiliation(s)
- Jason D Vadhan
- College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States of America; School of Medicine, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
22
|
Louhivuori LM, Turunen PM, Louhivuori V, Al Rayyes I, Nordström T, Uhlén P, Åkerman KE. Neurotransmitters and Endothelins Acting on Radial Glial G-Protein-Coupled Receptors Are, Through Proteolytic NRG/ErbB4 Activation, Able to Modify the Migratory Behavior of Neocortical Cells and Mediate Bipolar-to-Multipolar Transition. Stem Cells Dev 2020; 29:1160-1177. [PMID: 31941419 DOI: 10.1089/scd.2019.0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell-cell communication plays a central role in the guidance of migrating neurons during the development of the cerebral cortex. Neuregulins (NRGs) are essential mediators for migration and maintenance of the radial glial scaffold. We show, in this study that soluble NRG reduces neuronal motility, causes transition of bipolar cells to multipolar ones, and induces neuronal mitosis. Blocking the NRG receptor, ErbB4, results in reduction of neuron-neuron and neuron-radial glial contacts and causes an increase in neuronal motility. Blocking the radial glial metabotropic glutamate receptor 5 (mGluR5), the nonselective cation channel transient receptor potential 3 (TRPC3), or matrix metalloproteinases (MMPs) results in similar effects as ErbB4 blockade. Soluble NRG counteract the changes in motility pattern. Stimulation of other radial glial G-protein-coupled receptors (GPCRs), such as muscarinic acetylcholine receptors or endothelin receptors counteract all the effect of mGluR5 blockade, but not that of ErbB4, TRPC3, and MMP blockade. The results indicate that neurotransmitters and endothelins acting on radial glial GPCRs are, through proteolytic NRG/ErbB4 activation, able to modify the migratory behavior of neurons.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pauli M Turunen
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Verna Louhivuori
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ibrahim Al Rayyes
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karl E Åkerman
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Rysenkova KD, Klimovich PS, Shmakova AA, Karagyaur MN, Ivanova KA, Aleksandrushkina NA, Tkachuk VA, Rubina KA, Semina EV. Urokinase receptor deficiency results in EGFR-mediated failure to transmit signals for cell survival and neurite formation in mouse neuroblastoma cells. Cell Signal 2020; 75:109741. [PMID: 32822758 DOI: 10.1016/j.cellsig.2020.109741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
Urokinase-type plasminogen activator uPA and its receptor (uPAR) are the central players in extracellular matrix proteolysis, which facilitates cancer invasion and metastasis. EGFR is one of the important components of uPAR interactome. uPAR/EGFR interaction controls signaling pathways that regulate cell survival, proliferation and migration. We have previously established that uPA binding to uPAR stimulates neurite elongation in neuroblastoma cells, while blocking uPA/uPAR interaction induces neurite branching and new neurite formation. Here we demonstrate that blocking the uPA binding to uPAR with anti-uPAR antibody decreases the level of pEGFR and its downstream pERK1/2, but does increase phosphorylation of Akt, p38 and c-Src Since long-term uPAR blocking results in a severe DNA damage, accompanied by PARP-1 proteolysis and Neuro2a cell death, we surmise that Akt, p38 and c-Src activation transmits a pro-apoptotic signal, rather than a survival. Serum deprivation resulting in enhanced neuritogenesis is accompanied by an upregulated uPAR mRNA expression, while EGFR mRNA remains unchanged. EGFR activation by EGF stimulates neurite growth only in uPAR-overexpressing cells but not in control or uPAR-deficient cells. In addition, AG1478-mediated inhibition of EGFR activity impedes neurite growth in control and uPAR-deficient cells, but not in uPAR-overexpressing cells. Altogether these data implicate uPAR as an important regulator of EGFR and ERK1/2 signaling, representing a novel mechanism which implicates urokinase system in neuroblastoma cell survival and differentiation.
Collapse
Affiliation(s)
- K D Rysenkova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - P S Klimovich
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Shmakova
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - M N Karagyaur
- Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - K A Ivanova
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - N A Aleksandrushkina
- Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia; Institute of Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russian Federation
| | - V A Tkachuk
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - K A Rubina
- Laboratory of Morphogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.
| | - E V Semina
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia; Laboratory of Gene and Cell Technologies, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
24
|
Cicalese S, Okuno K, Elliott KJ, Kawai T, Scalia R, Rizzo V, Eguchi S. 78 kDa Glucose-Regulated Protein Attenuates Protein Aggregation and Monocyte Adhesion Induced by Angiotensin II in Vascular Cells. Int J Mol Sci 2020; 21:ijms21144980. [PMID: 32679678 PMCID: PMC7403992 DOI: 10.3390/ijms21144980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Investigations of vascular smooth muscle cell (VSMC) phenotypic modulation due to angiotensin II (AngII) stimulation are important for understanding molecular mechanisms contributing to hypertension and associated vascular pathology. AngII induces endoplasmic reticulum (ER) stress in VSMCs, which has been implicated in hypertensive vascular remodeling. Under ER stress, 78 kDa glucose-regulated protein (GRP78) acts as an endogenous chaperone, as well as a master controller of unfolded protein response (UPR) to maintain protein quality control. However, the potential downstream consequences of ER stress induced by AngII on protein quality control and pro-inflammatory phenotype in VSMCs remain elusive. This study aims to identify protein aggregation as evidence of the disruption of protein quality control in VSMCs, and to test the hypothesis that preservation of proteostasis by overexpression of GRP78 can attenuate the AngII-induced pro-inflammatory phenotype in VSMCs. Increases in protein aggregation and enhanced UPR were observed in VSMCs exposed to AngII, which were mitigated by overexpression of GRP78. Moreover, GRP78 overexpression attenuated enhanced monocyte adhesion to VSMCs induced by AngII. Our results thus indicate that the prevention of protein aggregation can potentially mitigate an inflammatory phenotype in VSMCs, which may suggest an alternative therapy for the treatment of AngII-associated vascular disorders.
Collapse
|
25
|
Park JW, Lee KT, Jeon BJ, Pyon JK, Bang SI, Mun GH. Effects of Antihypertensive Drugs on Outcomes of Breast Reconstruction. Ann Surg Oncol 2019; 26:1712-1719. [PMID: 30863940 DOI: 10.1245/s10434-019-07293-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND Angiotensin receptor blocker (ARB), a commonly used antihypertensive drug, is reported to affect wound healing and flap survival in animal models. However, this has not been elucidated in a clinical series. This study aimed to investigate the impact that perioperative use of ARB has on outcomes after breast reconstruction. METHODS Patients who underwent immediate breast reconstruction using a tissue expander or a deep inferior epigastric perforator (DIEP) flap were reviewed. The patients were categorized according to the types of antihypertensive medications as follows: the ARB group consisted of hypertensive patients treated with ARB alone or a combination of ARB and other drugs; the non-ARB group included those receiving drugs other than ARB; and the control group did not receive any medication. The effects of antihypertensive drugs on the development of complications were evaluated. RESULTS The study analyzed 1390 cases including 999 cases of tissue-expander insertion and 391 cases of DIEP flap reconstruction. With regard to tissue-expander reconstruction, the rates of seroma, reoperation, reconstruction failure, and overall complications were significantly higher in the ARB group than in the other two groups. Compared with no medication, ARB use was an independent risk factor for these complications. With regard to DIEP flap reconstruction, the ARB group showed a significantly higher rate of fat necrosis and significantly greater odds for the development of overall perfusion-related complications and fat necrosis than the control group after adjustment for other variables. CONCLUSIONS Perioperative administration of ARB might be associated with adverse outcomes after breast reconstruction.
Collapse
Affiliation(s)
- Jin-Woo Park
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeong-Tae Lee
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byung-Joon Jeon
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jai-Kyong Pyon
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sa Ik Bang
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Goo-Hyun Mun
- Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
26
|
Dodmane PR, Schulte NA, Heires AJ, Band H, Romberger DJ, Toews ML. Biphasic changes in airway epithelial cell EGF receptor binding and phosphorylation induced by components of hogbarn dust. Exp Lung Res 2019; 44:443-454. [PMID: 30862200 DOI: 10.1080/01902148.2019.1575931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF THE STUDY Workers in enclosed hogbarns experience an increased incidence of airway inflammation and obstructive lung disease, and an aqueous hogbarn dust extract (HDE) induces multiple inflammation-related responses in cultured airway epithelial cells. Epidermal growth factor receptor (EGFR) phosphorylation and activation has been identified as one important mediator of inflammatory cytokine release from these cells. The studies here investigated both early and late phase adaptive changes in EGFR binding properties and subcellular localization induced by exposure of cells to HDE. MATERIALS AND METHODS Cell surface EGFRs were quantified as binding to intact cells on ice. EGFR phosphorylation, expression, and localization were assessed with anti-EGFR antibodies and either blotting or confocal microscopy. RESULTS In BEAS-2B and primary human bronchial epithelial cells, HDE induced decreases in cell surface EGFR binding following both 15-min and 18-h exposures. In contrast, H292 cells exhibited only the 15-min decrease, with binding near the control level at 18 hr. Confocal microscopy showed that the 15-min decrease in binding is due to EGFR endocytosis. Although total EGFR immunoreactivity decreased markedly at 18 hr in confocal microscopy with BEAS-2B cells, immunoblots showed no loss of EGFR protein. HDE stimulated EGFR phosphorylation at both 15 min and 18 hr in BEAS-2B cells and primary cells, but only at 15 min in H292 cells, indicating that the different EGFR binding changes among these cell types is likely related to their different time-dependent changes in phosphorylation. CONCLUSIONS These studies extend the evidence for EGFRs as important cellular targets for components of HDE and they reveal novel patterns of EGFR phosphorylation and binding changes that vary among airway epithelial cell types. The results provide both impetus and convenient assays for identifying the EGFR-activating components and pathways that likely contribute to hogbarn dust-induced lung disease in agricultural workers.
Collapse
Affiliation(s)
- Puttappa R Dodmane
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Nancy A Schulte
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| | - Art J Heires
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Hamid Band
- d Eppley Institute for Research in Cancer and Allied Diseases , University of Nebraska Medical Center , Omaha , NE , USA
| | - Debra J Romberger
- b Veterans Affairs Nebraska-Western Iowa Health Care System , Research Service , Omaha , NE , USA.,c Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine , University of Nebraska Medical Center , Omaha , NE , USA
| | - Myron L Toews
- a Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha , NE , USA
| |
Collapse
|
27
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 663] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
28
|
Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2446-2456. [PMID: 30142332 PMCID: PMC6207098 DOI: 10.1016/j.ajpath.2018.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family. It contains an EGF-like domain as well as a heparin-binding domain that allows for interactions with heparin and cell-surface heparan sulfate. Soluble mature HB-EGF, a ligand of human epidermal growth factor receptors 1 and 4, is cleaved from the membrane-associated pro-HB-EGF by matrix metalloproteinase or a disintegrin and metalloproteinase in a process called ectodomain shedding. Signaling through human epidermal growth factor receptors 1 and 4 results in a variety of effects, including cellular proliferation, migration, adhesion, and differentiation. HB-EGF levels increase in response to different forms of injuries as well as stimuli, such as lysophosphatidic acid, retinoic acid, and 17β-estradiol. Because it is widely expressed in many organs, HB-EGF plays a critical role in tissue repair and regeneration throughout the body. It promotes cutaneous wound healing, hepatocyte proliferation after partial hepatectomy, intestinal anastomosis strength, alveolar regeneration after pneumonectomy, neurogenesis after ischemic injury, bladder wall thickening in response to urinary tract obstruction, and protection against ischemia/reperfusion injury to many cell types. Additionally, innovative strategies to deliver HB-EGF to sites of organ injury or to increase the endogenous levels of shed HB-EGF have been attempted with promising results. Harnessing the reparatory properties of HB-EGF in the clinical setting, therefore, may produce therapies that augment the treatment of various organ injuries.
Collapse
Affiliation(s)
- Duy T Dao
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Anez-Bustillos
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
29
|
O'Brien SL, Johnstone EKM, Devost D, Conroy J, Reichelt ME, Purdue BW, Ayoub MA, Kawai T, Inoue A, Eguchi S, Hébert TE, Pfleger KDG, Thomas WG. BRET-based assay to monitor EGFR transactivation by the AT 1R reveals G q/11 protein-independent activation and AT 1R-EGFR complexes. Biochem Pharmacol 2018; 158:232-242. [PMID: 30347205 DOI: 10.1016/j.bcp.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
The type 1 angiotensin II (AngII) receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR), which leads to pathological remodeling of heart, blood vessels and kidney. End-point assays are used as surrogates of EGFR activation, however these downstream readouts are not applicable to live cells, in real-time. Herein, we report the use of a bioluminescence resonance energy transfer (BRET)-based assay to assess recruitment of the EGFR adaptor protein, growth factor receptor-bound protein 2 (Grb2), to the EGFR. In a variety of cell lines, both epidermal growth factor (EGF) and AngII stimulated Grb2 recruitment to EGFR. The BRET assay was used to screen a panel of 9 G protein-coupled receptors (GPCRs) and further developed for other EGFR family members (HER2 and HER3); the AT1R was able to transactivate HER2, but not HER3. Mechanistically, AT1R-mediated ERK1/2 activation was dependent on Gq/11 and EGFR tyrosine kinase activity, whereas the recruitment of Grb2 to the EGFR was independent of Gq/11 and only partially dependent on EGFR tyrosine kinase activity. This Gq/11 independence of EGFR transactivation was confirmed using AT1R mutants and in CRISPR cell lines lacking Gq/11. EGFR transactivation was also apparently independent of β-arrestins. Finally, we used additional BRET-based assays and confocal microscopy to provide evidence that both AngII- and EGF-stimulation promoted AT1R-EGFR heteromerization. In summary, we report an alternative approach to monitoring AT1R-EGFR transactivation in live cells, which provides a more direct and proximal view of this process, including the potential for complexes between the AT1R and EGFR.
Collapse
Affiliation(s)
- Shannon L O'Brien
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Elizabeth K M Johnstone
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Dominic Devost
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Jacinta Conroy
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Melissa E Reichelt
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Brooke W Purdue
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Mohammed A Ayoub
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Tatsuo Kawai
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Satoru Eguchi
- Cardiovascular Research Centre, Department of Physiology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kevin D G Pfleger
- Molecular Endocrinology and Pharmacology, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia 6009, Australia; Dimerix Limited, Nedlands, Western Australia 6009, Australia
| | - Walter G Thomas
- Receptor Biology Group, The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia 4072, Queensland, Australia; Centre for Cardiac and Vasculature Biology, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
30
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
31
|
Ogola B, Zhang Y, Iyer L, Thekkumkara T. 2-Methoxyestradiol causes matrix metalloproteinase 9-mediated transactivation of epidermal growth factor receptor and angiotensin type 1 receptor downregulation in rat aortic smooth muscle cells. Am J Physiol Cell Physiol 2018; 314:C554-C568. [DOI: 10.1152/ajpcell.00152.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies have demonstrated the therapeutic potential of estrogen metabolite 2-methoxyestradiol (2ME2) in several cardiovascular disorders, including hypertension. However, the exact mechanism(s) remains unknown. In this study, primary rat aortic smooth muscle cells (RASMCs) were exposed to 2ME2, and angiotensin type 1 receptor (AT1R) expression, function, and associated signaling pathways were evaluated. In RASMCs, 2ME2 downregulated AT1R expression in a concentration- and time-dependent manner, which was correlated with reduced mRNA expression. The 2ME2 effect was through G protein-coupled receptor 30 (GPR30) that inhibits second messenger cAMP. Moreover, 2ME2 exposure phosphorylated ERK1/2 that was sensitive to MEK inhibitor PD98059. Selective epidermal growth factor receptor (EGFR) inhibitor AG1478 blocked 2ME2-induced EGFR transactivation and attenuated subsequent phosphorylation of ERK1/2 preventing AT1R downregulation. The transactivation was dependent on 2ME2-induced release of matrix metalloproteinase 9 (MMP9) and epidermal growth factor demonstrated by ELISA. Furthermore, transfection with small interfering (si) RNA targeting MMP9 impeded ERK1/2 activation and AT1R downregulation in response to 2ME2 and G1 stimulation. Interestingly, under similar conditions, stimulation of GPR30 with the selective agonist G1 elicited similar signaling pathways and downregulated the AT1R expression that was reversed by GPR30 antagonist G15. Furthermore, 2ME2 and G1 inhibited angiotensin II (ANG II) induced Ca2+ release, a response consistent with AT1R downregulation. Collectively, our study demonstrates for the first time that 2ME2 binding to GPR30 induces MMP9 specific transactivation of EGFR that mediates ERK1/2-dependent downregulation of AT1R in RASMCs. The study provides critical insights into the newly discovered role and signaling pathways of 2ME2 in the regulation of AT1R in vascular cells and its potential to be developed as a therapeutic agent that ameliorates hypertension.
Collapse
Affiliation(s)
- Benard Ogola
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Yong Zhang
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Laxmi Iyer
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Thomas Thekkumkara
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas
| |
Collapse
|
32
|
G protein coupled receptors can transduce signals through carboxy terminal and linker region phosphorylation of Smad transcription factors. Life Sci 2018; 199:10-15. [DOI: 10.1016/j.lfs.2018.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 11/22/2022]
|
33
|
Tóth AD, Turu G, Hunyady L, Balla A. Novel mechanisms of G-protein-coupled receptors functions: AT 1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Pract Res Clin Endocrinol Metab 2018; 32:69-82. [PMID: 29678287 DOI: 10.1016/j.beem.2018.02.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AT1 angiotensin receptor (AT1R), a prototypical G protein-coupled receptor (GPCR), is the main receptor, which mediates the effects of the renin-angiotensin system (RAS). AT1R plays a crucial role in the regulation of blood pressure and salt-water homeostasis, and in the development of pathological conditions, such as hypertension, heart failure, cardiovascular remodeling, renal fibrosis, inflammation, and metabolic disorders. Stimulation of AT1R leads to pleiotropic signal transduction pathways generating arrays of complex cellular responses. Growing amount of evidence shows that AT1R is a versatile GPCR, which has multiple unique faces with distinct conformations and signaling properties providing new opportunities for functionally selective pharmacological targeting of the receptor. Biased ligands of AT1R have been developed to selectively activate the β-arrestin pathway, which may have therapeutic benefits compared to the conventional angiotensin converting enzyme inhibitors and angiotensin receptor blockers. In this review, we provide a summary about the most recent findings and novel aspects of the AT1R function, signaling, regulation, dimerization or oligomerization and its cross-talk with other receptors, including epidermal growth factor (EGF) receptor, adrenergic receptors and CB1 cannabinoid receptor. Better understanding of the mechanisms and structural aspects of AT1R activation and cross-talk can lead to the development of novel type of drugs for the treatment of cardiovascular and other diseases.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| | - András Balla
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Eguchi S, Kawai T, Scalia R, Rizzo V. Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension 2018; 71:804-810. [PMID: 29581215 DOI: 10.1161/hypertensionaha.118.10266] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Satoru Eguchi
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA.
| | - Tatsuo Kawai
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rosario Scalia
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Victor Rizzo
- From the Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
35
|
Louhivuori LM, Turunen PM, Louhivuori V, Yellapragada V, Nordström T, Uhlén P, Åkerman KE. Regulation of radial glial process growth by glutamate via mGluR5/TRPC3 and neuregulin/ErbB4. Glia 2017; 66:94-107. [PMID: 28887860 DOI: 10.1002/glia.23230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022]
Abstract
Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pauli M Turunen
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Verna Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | | | - Tommy Nordström
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Karl E Åkerman
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| |
Collapse
|
36
|
Hossain E, Anand-Srivastava MB. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors. Can J Physiol Pharmacol 2017; 95:945-953. [DOI: 10.1139/cjpp-2017-0164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Paul-G. Desmarais, C.P. 6128, succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
37
|
Reversible meiotic arrest of bovine oocytes by EGFR inhibition and follicular hemisections. Theriogenology 2017; 99:53-62. [PMID: 28708500 DOI: 10.1016/j.theriogenology.2017.05.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/08/2017] [Accepted: 05/20/2017] [Indexed: 11/21/2022]
Abstract
The objective of this study was to investigate the effects of inhibiting the epidermal growth factor receptor (EGFR) pathway on meiosis blockage and resumption, mRNA expression of genes involved in oocyte maturation and cumulus expansion, and embryo development. Bovine cumulus-oocyte complexes (COCs) were cultured for 15 h in the presence of the EGFR inhibitor (AG1478) and follicular hemisections (FHS). Most of the oocytes (89.3%) remained at the germinal vesicle (GV) stage when cultured in the presence of FHS and 5 μM AG1478. The inhibitory effect was reversible as most oocytes (83.8%) completed meiosis after additional 20 h maturation. Embryo development to the blastocyst stage was similar (P > 0.05) between FHS and 5 μM AG1478 treated (39.3%) and control (41.1%) groups. In cumulus cells, mRNA abundance of early growth response protein 1 (EGR1), tumor necrosis factor alpha-induced protein 6 (TNFAIP6) and hyaluronan synthase 2 (HAS2) genes, and phosphorylated extracellular regulated kinase (p-ERK1/2) protein were lower in COCs treated with AG1478 plus FHS compared with FHS alone (P < 0.05). In granulosa cells of FHS, AG1478 treatment reduced transcript levels of PGR and ADAMTS1 (P < 0.05). The inhibitory effect of AG1478 on meiotic progression was not reverted by treatment with angiotensin II (ANG II) or prostaglandins (PGF2α or PGE2). This study demonstrates that inhibition of EGFR in the presence of FHS is a reliable approach to promote reversible arrest of bovine oocytes at the GV stage.
Collapse
|
38
|
AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res 2017; 125:4-13. [PMID: 28527699 DOI: 10.1016/j.phrs.2017.05.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/14/2023]
Abstract
The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system.
Collapse
|
39
|
Shen M, Morton J, Davidge ST, Kassiri Z. Loss of smooth muscle cell disintegrin and metalloproteinase 17 transiently suppresses angiotensin II-induced hypertension and end-organ damage. J Mol Cell Cardiol 2017; 103:11-21. [DOI: 10.1016/j.yjmcc.2016.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/08/2016] [Accepted: 12/02/2016] [Indexed: 11/27/2022]
|
40
|
Vacas E, Muñoz-Moreno L, Valenzuela PL, Prieto JC, Schally AV, Carmena MJ, Bajo AM. Growth hormone-releasing hormone induced transactivation of epidermal growth factor receptor in human triple-negative breast cancer cells. Peptides 2016; 86:153-161. [PMID: 27816751 DOI: 10.1016/j.peptides.2016.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/01/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subset of breast cancers which is negative for expression of estrogen and progesterone receptors and human epidermal growth factor receptor-2 (HER2). Chemotherapy is currently the only form of treatment for women with TNBC. Growth hormone-releasing hormone (GHRH) and epidermal growth factor (EGF) are autocrine/paracrine growth factors in breast cancer and a substantial proportion of TNBC expresses receptors for GHRH and EGF. The aim of this study was to evaluate the interrelationship between both these signaling pathways in MDA-MB-468 human TNBC cells. We evaluated by Western blot assays the effect of GHRH on transactivation of EGF receptor (EGFR) as well as the elements implicated. We assessed the effect of GHRH on migration capability of MDA-MB-468 cells as well as the involvement of EGFR in this process by means of wound-healing assays. Our findings demonstrate that in MDA-MB-468 cells the stimulatory activity of GHRH on tyrosine phosphorylation of EGFR is exerted by two different molecular mechanisms: i) through GHRH receptors, GHRH stimulates a ligand-independent activation of EGFR involving at least cAMP/PKA and Src family signaling pathways; ii) GHRH also stimulates a ligand-dependent activation of EGFR implicating an extracellular pathway with an important role for metalloproteinases. The cross-talk between EGFR and GHRHR may be impeded by combining drugs acting upon GHRH receptors and EGFR family members. This combination of GHRH receptors antagonists with inhibitors of EGFR signalling could enhance the efficacy of both types of agents as well as reduce their doses increasing therapeutic benefits in management of human breast cancer.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Laura Muñoz-Moreno
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Pedro L Valenzuela
- Obstetrics and Gynaecology Department, Principe de Asturias Hospital, Alcalá de Henares University, Alcalá de Henares, Madrid, Spain
| | - Juan C Prieto
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Andrew V Schally
- Veterans Administration Medical Center and Departments of Pathology and Medicine, Division of Oncology and Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine and South Florida Veterans Affairs Foundation for Research and Education, Miami, FL, USA
| | - María J Carmena
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain
| | - Ana M Bajo
- Department of Systems of Biology, University of Alcala, Alcala de Henares, Spain.
| |
Collapse
|
41
|
Janssens J, Lu D, Ni B, Chadwick W, Siddiqui S, Azmi A, Etienne H, Jushaj A, van Gastel J, Martin B, Maudsley S. Development of Precision Small-Molecule Proneurotrophic Therapies for Neurodegenerative Diseases. VITAMINS AND HORMONES 2016; 104:263-311. [PMID: 28215298 DOI: 10.1016/bs.vh.2016.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related neurodegenerative diseases, such as Alzheimer's disease, will represent one of the largest future burdens on worldwide healthcare systems due to the increasing proportion of elderly in our society. As deficiencies in neurotrophins are implicated in the pathogenesis of many age-related neurodegenerative disorders, it is reasonable to consider that global neurotrophin resistance may also become a major healthcare threat. Central nervous system networks are effectively maintained through aging by neuroprotective and neuroplasticity signaling mechanisms which are predominantly controlled by neurotrophin receptor signaling. Neurotrophin receptors are single pass receptor tyrosine kinases that form dimeric structures upon ligand binding to initiate cellular signaling events that control many protective and plasticity-related pathways. Declining functionality of the neurotrophin ligand-receptor system is considered one of the hallmarks of neuropathological aging. Therefore, it is imperative to develop effective therapeutic strategies to contend with this significant issue. While the therapeutic applications of cognate ligands for neurotrophin receptors are limited, the development of nonpeptidergic, small-molecule ligands can overcome these limitations, and productively regulate this important receptor system with beneficial effects. Using our advanced knowledge of the high-dimensionality complexity of receptor systems, the future generation of precision medicines targeting these systems will be an attainable goal.
Collapse
Affiliation(s)
- J Janssens
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - D Lu
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - B Ni
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - W Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - A Azmi
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - H Etienne
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - A Jushaj
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - J van Gastel
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium
| | - B Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States
| | - S Maudsley
- Translational Neurobiology Group, University of Antwerp, Antwerpen, Belgium; Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore MD United States.
| |
Collapse
|
42
|
Anguita E, Villalobo A. Src-family tyrosine kinases and the Ca 2+ signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:915-932. [PMID: 27818271 DOI: 10.1016/j.bbamcr.2016.10.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 01/08/2023]
Abstract
In this review, we shall describe the rich crosstalk between non-receptor Src-family kinases (SFKs) and the Ca2+ transient generated in activated cells by a variety of extracellular and intracellular stimuli, resulting in diverse signaling events. The exchange of information between SFKs and Ca2+ is reciprocal, as it flows in both directions. These kinases are main actors in pathways leading to the generation of the Ca2+ signal, and reciprocally, the Ca2+ signal modulates SFKs activity and functions. We will cover how SFKs participate in the generation of the cytosolic Ca2+ rise upon activation of a series of receptors and the mechanism of clearance of this Ca2+ signal. The role of SFKs modulating Ca2+-translocating channels participating in these events will be amply discussed. Finally, the role of the Ca2+ sensor protein calmodulin on the activity of c-Src, and potentially on other SFKs, will be outlined as well. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Estefanía Anguita
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain
| | - Antonio Villalobo
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/ Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
43
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
44
|
Centuori SM, Gomes CJ, Trujillo J, Borg J, Brownlee J, Putnam CW, Martinez JD. Deoxycholic acid mediates non-canonical EGFR-MAPK activation through the induction of calcium signaling in colon cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:663-70. [PMID: 27086143 DOI: 10.1016/j.bbalip.2016.04.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/29/2016] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Obesity and a western diet have been linked to high levels of bile acids and the development of colon cancer. Specifically, increased levels of the bile acid deoxycholic acid (DCA), an established tumor promoter, has been shown to correlate with increased development of colorectal adenomas and progression to carcinoma. Herein we investigate the mechanism by which DCA leads to EGFR-MAPK activation, a candidate mechanism by which DCA may promote colorectal tumorigenesis. DCA treated colon cancer cells exhibited strong and prolonged activation of ERK1/2 when compared to EGF treatment alone. We also showed that DCA treatment prevents EGFR degradation as opposed to the canonical EGFR recycling observed with EGF treatment. Moreover, the combination of DCA and EGF treatment displayed synergistic activity, suggesting DCA activates MAPK signaling in a non-canonical manner. Further evaluation showed that DCA treatment increased intracellular calcium levels and CAMKII phosphorylation, and that blocking calcium with BAPTA-AM abrogated MAPK activation induced by DCA, but not by EGF. Finally we showed that DCA-induced CAMKII leads to MAPK activation through the recruitment of c-Src. Taken together, we demonstrated that DCA regulates MAPK activation through calcium signaling, an alternative mechanism not previously recognized in human colon cancer cells. Importantly, this mechanism allows for EGFR to escape degradation and thus achieve a constitutively active state, which may explain its tumor promoting effects.
Collapse
Affiliation(s)
- Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Cecil J Gomes
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse Trujillo
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, United States
| | - Jamie Borg
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Joshua Brownlee
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ 85724, United States
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States; Cell & Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
45
|
Wang M, Tang YB, Ma MM, Chen JH, Hu CP, Zhao SP, Peng DQ, Zhou JG, Guan YY, Zhang Z. TRPC3 channel confers cerebrovascular remodelling during hypertension via transactivation of EGF receptor signalling. Cardiovasc Res 2015; 109:34-43. [DOI: 10.1093/cvr/cvv246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/11/2015] [Indexed: 01/07/2023] Open
|
46
|
Gradinaru I, Babaeva E, Schwinn DA, Oganesian A. Alpha1a-Adrenoceptor Genetic Variant Triggers Vascular Smooth Muscle Cell Hyperproliferation and Agonist Induced Hypertrophy via EGFR Transactivation Pathway. PLoS One 2015; 10:e0142787. [PMID: 26571308 PMCID: PMC4646490 DOI: 10.1371/journal.pone.0142787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/27/2015] [Indexed: 01/06/2023] Open
Abstract
α1a Adrenergic receptors (α1aARs) are the predominant AR subtype in human vascular smooth muscle cells (SMCs). α1aARs in resistance vessels are crucial in the control of blood pressure, yet the impact of naturally occurring human α1aAR genetic variants in cardiovascular disorders remains poorly understood. To this end, we present novel findings demonstrating that 3D cultures of vascular SMCs expressing human α1aAR-247R (247R) genetic variant demonstrate significantly increased SMC contractility compared with cells expressing the α1aAR-WT (WT) receptor. Stable expression of 247R genetic variant also triggers MMP/EGFR-transactivation dependent serum- and agonist-independent (constitutive) hyperproliferation and agonist-dependent hypertrophy of SMCs. Agonist stimulation reduces contractility Using pathway-specific inhibitors we determined that the observed hyperproliferation of 247R-expressing cells is triggered via β-arrestin1/Src/MMP-2/EGFR/ERK-dependent mechanism. MMP-2-specific siRNA inhibited 247R-triggered hyperproliferation indicating MMP-2 involvement in 247R-triggered hyperproliferation in SMCs. β-arrestin1-specific shRNA also inhibited 247R-triggered hyperproliferation but did not affect hypertrophy in 247R-expressing SMCs, indicating that agonist-dependent hypertrophy is independent of β-arrestin1. Our data reveal that in different cardiovascular cells the same human receptor genetic variant can activate alternative modulators of the same signaling pathway. Thus, our findings in SMCs demonstrate that depending on the type of cells expressing the same receptor (or receptor variant), different target-specific inhibitors could be used to modulate aberrant hyperproliferative or hypertrophic pathways in order to restore normal phenotype.
Collapse
Affiliation(s)
- Irina Gradinaru
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Ekaterina Babaeva
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Debra A. Schwinn
- Department of Anesthesiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Anush Oganesian
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
47
|
Forrester SJ, Kawai T, O'Brien S, Thomas W, Harris RC, Eguchi S. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System. Annu Rev Pharmacol Toxicol 2015; 56:627-53. [PMID: 26566153 DOI: 10.1146/annurev-pharmtox-070115-095427] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| | - Shannon O'Brien
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Walter Thomas
- The School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140;
| |
Collapse
|
48
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
49
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
50
|
Savikko J, Rintala JM, Rintala S, Koskinen P. Epidermal growth factor receptor inhibition by erlotinib prevents vascular smooth muscle cell and monocyte–macrophage function in vitro. Transpl Immunol 2015; 32:175-8. [DOI: 10.1016/j.trim.2015.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
|