1
|
Kemna J, Gout E, Daniau L, Lao J, Weißert K, Ammann S, Kühn R, Richter M, Molenda C, Sporbert A, Zocholl D, Klopfleisch R, Schütz A, Lortat-Jacob H, Aichele P, Kammertoens T, Blankenstein T. IFNγ binding to extracellular matrix prevents fatal systemic toxicity. Nat Immunol 2023; 24:414-422. [PMID: 36732425 PMCID: PMC9977683 DOI: 10.1038/s41590-023-01420-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023]
Abstract
Interferon-γ (IFNγ) is an important mediator of cellular immune responses, but high systemic levels of this cytokine are associated with immunopathology. IFNγ binds to its receptor (IFNγR) and to extracellular matrix (ECM) via four positively charged C-terminal amino acids (KRKR), the ECM-binding domain (EBD). Across evolution, IFNγ is not well conserved, but the EBD is highly conserved, suggesting a critical function. Here, we show that IFNγ lacking the EBD (IFNγΔKRKR) does not bind to ECM but still binds to the IFNγR and retains bioactivity. Overexpression of IFNγΔKRKR in tumors reduced local ECM binding, increased systemic levels and induced sickness behavior, weight loss and toxicity. To analyze the function of the EBD during infection, we generated IFNγΔKRKR mice lacking the EBD by using CRISPR-Cas9. Infection with lymphocytic choriomeningitis virus resulted in higher systemic IFNγΔKRKR levels, enhanced sickness behavior, weight loss and fatal toxicity. We conclude that local retention of IFNγ is a pivotal mechanism to protect the organism from systemic toxicity during prolonged immune stimulation.
Collapse
Affiliation(s)
- Josephine Kemna
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany
| | - Evelyne Gout
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Grenoble, France
| | - Leon Daniau
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Jessica Lao
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kristoffer Weißert
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Ammann
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralf Kühn
- Transgenic Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Richter
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christine Molenda
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anje Sporbert
- Advanced Light Microscopy Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Dario Zocholl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Anja Schütz
- Protein Production & Characterization Core Facility, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, University Grenoble Alpes, Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Grenoble, France
| | - Peter Aichele
- Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Kammertoens
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany
- Institute of Immunology, Charité Unversitätsmedizin, Campus Buch, Berlin, Germany
| | - Thomas Blankenstein
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Molecular Immunology and Gene Therapy, Berlin, Germany.
| |
Collapse
|
2
|
Shi D, Sheng A, Bu C, An Z, Cui X, Sun X, Li H, Zhang F, Linhardt RJ, Zhang T, Jin L, Chi L. A Cluster Sequencing Strategy To Determine the Consensus Affinity Domains in Heparin for Its Binding to Specific Proteins. Anal Chem 2022; 94:13987-13994. [PMID: 36183273 DOI: 10.1021/acs.analchem.2c03267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycosaminoglycans (GAGs) have high negative charge and are biologically and pharmaceutically important because their high charge promotes a strong interaction with many proteins. Due to the inherent heterogeneity of GAGs, multiple oligosaccharides, containing certain common domains, often can interact with clusters of basic amino acid residues on a target protein. The specificity of many GAG-protein interactions remains undiscovered since there is insufficient structural information on the interacting GAGs. Herein, we establish a cluster sequencing strategy to simultaneously deduce all major sequences of the affinity GAG oligosaccharides, leading to a definition of the consensus sequence they share that corresponds to the specific binding domain for the target protein. As a proof of concept, antithrombin III-binding oligosaccharides were examined, resulting in a heptasaccharide domain containing the well-established anticoagulant pentasaccharide sequence. Repeating this approach, a new pentasaccharide domain was discovered corresponding to the heparin motif responsible for binding interferon-γ (IFNγ). Our strategy is fundamentally important for the discovery of saccharide sequences needed in the development of novel GAG-based therapeutics.
Collapse
Affiliation(s)
- Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Anran Sheng
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China.,Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Zizhe An
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Xueying Cui
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Xiaojun Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong Province 250022, China
| | - Hongmei Li
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tianji Zhang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province 266237, China
| |
Collapse
|
3
|
Miladinova E, Lilkova E, Krachmarova E, Malinova K, Petkov P, Ilieva N, Nacheva G, Litov L. Heparan Sulfate Facilitates Binding of hIFN γ to Its Cell-Surface Receptor hIFNGR1. Int J Mol Sci 2022; 23:ijms23169415. [PMID: 36012678 PMCID: PMC9408938 DOI: 10.3390/ijms23169415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Human interferon-gamma (hIFNγ) is a crucial signaling molecule with an important role in the initialization and development of the immune response of the host. However, its aberrant activity is also associated with the progression of a multitude of autoimmune and other diseases, which determines the need for effective inhibitors of its activity. The development of such treatments requires proper understanding of the interaction of hIFNγ to its cell-surface receptor hIFNGR1. Currently, there is no comprehensive model of the mechanism of this binding process. Here, we employ molecular dynamics simulations to study on a microscopic level the process of hIFNγ–hIFNGR1 complex formation in different scenarios. We find that the two molecules alone fail to form a stable complex, but the presence of heparan-sulfate-like oligosaccharides largely facilitates the process by both demobilizing the highly flexible C-termini of the cytokine and assisting in the proper positioning of its globule between the receptor subunits. An antiproliferative-activity assay on cells depleted from cell-surface heparan sulfate (HS) sulfation together with the phosphorylation levels of the signal transducer and activator of transcription STAT1 confirms qualitatively the simulation-based multistage complex-formation model. Our results reveal the key role of HS and its proteoglycans in all processes involving hIFNγ signalling.
Collapse
Affiliation(s)
- Elisaveta Miladinova
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Elena Lilkova
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 2 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
- Correspondence: (E.L.); (E.K.)
| | - Elena Krachmarova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
- Correspondence: (E.L.); (E.K.)
| | - Kristina Malinova
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Peicho Petkov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Nevena Ilieva
- Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, 2 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Genoveva Nacheva
- Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Leandar Litov
- Faculty of Physics, Sofia University “St. Kliment Ohridski”, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
4
|
Yasamut U, Wisitponchai T, Lee VS, Yamabhai M, Rangnoi K, Thongkum W, Chupradit K, Tayapiwatana C. Determination of a distinguished interferon gamma epitope recognized by monoclonal antibody relating to autoantibody associated immunodeficiency. Sci Rep 2022; 12:7608. [PMID: 35534543 PMCID: PMC9085737 DOI: 10.1038/s41598-022-11774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Anti-interferon gamma autoantibodies (anti-IFN-γ autoAbs) neutralize the IFN-γ-mediated functions, contributing to immunodeficiency. A particular autoAb in patient serum had been previously demonstrated to recognize the same determinant on IFN-γ as the neutralizing anti-IFN-γ monoclonal antibody clone B27 (B27 mAb). This study explored the epitope recognized by B27 mAb. The specific peptide sequence recognized by B27 mAb, TDFLRMMLQEER, was retrieved from a phage display random peptide library. Sequence alignment and homology modeling demonstrated that the queried phage peptide sequence and structure were similar to amino acids at position 27–40 (TLFLGILKNWKEES) of the human IFN-γ. This determinant resides in the contact surface of IFN-γ and interferon gamma receptor 1. To elucidate the crucial amino acids, mutations were introduced by substituting T27 and T27F29L30 with alanine or deleting the amino acid residues T27–L33. The binding of B27 mAb to IFN-γ T27A using western blotting was lesser than that to wild-type. The interaction with triple mutant and T27–L33 deletion mutant using western blotting and sandwich ELISA was abolished. The finding demonstrated that T27, F29, and L30 are critical residues in the B27 antigenic determinant. Identification of the functional domain of IFN-γ decrypted the relevance of neutralizing autoAb in adult-onset immunodeficiency.
Collapse
|
5
|
Su D, Li Y, Yates EA, Skidmore MA, Lima MA, Fernig DG. Analysis of protein-heparin interactions using a portable SPR instrument. PEERJ ANALYTICAL CHEMISTRY 2022. [DOI: 10.7717/peerj-achem.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Optical biosensors such as those based on surface plasmon resonance (SPR) are a key analytical tool for understanding biomolecular interactions and function as well as the quantitative analysis of analytes in a wide variety of settings. The advent of portable SPR instruments enables analyses in the field. A critical step in method development is the passivation and functionalisation of the sensor surface. We describe the assembly of a surface of thiolated oleyl ethylene glycol/biotin oleyl ethylene glycol and its functionalisation with streptavidin and reducing end biotinylated heparin for a portable SPR instrument. Such surfaces can be batch prepared and stored. Two examples of the analysis of heparin-binding proteins are presented. The binding of fibroblast growth factor 2 and competition for the binding of a heparan sulfate sulfotransferase by a library of selectively modified heparins and suramin, which identify the selectivity of the enzyme for sulfated structures in the polysaccharide and demonstrate suramin as a competitor for the enzyme’s sugar acceptor site. Heparin functionalised surfaces should have a wide applicability, since this polysaccharide is a close structural analogue of the host cell surface polysaccharide, heparan sulfate, a receptor for many endogenous proteins and viruses.
Collapse
Affiliation(s)
- Dunhao Su
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Yong Li
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Edwin A. Yates
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mark A. Skidmore
- Molecular & Structural Biosciences, School of Life Sciences, University of Keele, Newcastle-Under-Lyme, United Kingdom
| | - Marcelo A. Lima
- Molecular & Structural Biosciences, School of Life Sciences, University of Keele, Newcastle-Under-Lyme, United Kingdom
| | - David G. Fernig
- Biochemistry, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol 2022; 103:34-43. [PMID: 35076142 PMCID: PMC8961502 DOI: 10.1111/iep.12428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Anna L. Gray
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Nabina Pun
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Amanda J. L. Ridley
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Douglas P. Dyer
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
7
|
IFNG, FCER1A, PCDHB10 expression as a new potential marker of efficacy in grass pollen allergen-specific immunotherapy. Postepy Dermatol Alergol 2021; 38:665-672. [PMID: 34658711 PMCID: PMC8501422 DOI: 10.5114/ada.2021.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Allergen-specific immunotherapy (AIT) is the core treatment in allergic rhinitis and asthma. Although widely used, some patients do not benefit from treatment and there is no efficacy objective marker. Aim To define the profile of gene transcripts during the build-up phase of AIT and their comparison to the control group and then search for a viable efficacy marker in relation to patient symptoms. Material and methods AIT was administered in 22 patients allergic to grass pollen. Analysis of 15 selected transcript expression was performed in whole blood samples taken before AIT (sample A) and after reaching the maintenance dose (sample B). The control group included 25 healthy volunteers (sample C). The primary endpoint was Relative Quantification. The gene expression analysis was followed by clinical evaluation with the use of Allergy Control Score (ACS). Results Comparison between samples A and B of gene expression showed a significant increase in IFNG expression (p = 0.03). In relation to the control group, pretreatment samples from patients showed higher levels of AFAP1L1 (p = 0.006), COMMD8 (p = 0.001), PIK3CD (p = 0.027) and TWIST2 (p = 0.0003) in univariate analysis. A generalized linear regression model was built according to the Bayesian Information Criterion based on the IFNG, FCER1A and PCDHB10 expression pattern for prediction of the AIT outcome. The model showed a correlation in predicted and observed changes in ACS. Conclusions There is a significant change in the expression of IFNG during the build-up phase of AIT. The authors propose an in vitro model of AIT efficacy prediction for further validation.
Collapse
|
8
|
Heparanome-Mediated Rescue of Oligodendrocyte Progenitor Quiescence following Inflammatory Demyelination. J Neurosci 2021; 41:2245-2263. [PMID: 33472827 DOI: 10.1523/jneurosci.0580-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 12/03/2020] [Accepted: 01/05/2021] [Indexed: 12/26/2022] Open
Abstract
The proinflammatory cytokine IFN-γ, which is chronically elevated in multiple sclerosis, induces pathologic quiescence in human oligodendrocyte progenitor cells (OPCs) via upregulation of the transcription factor PRRX1. In this study using animals of both sexes, we investigated the role of heparan sulfate proteoglycans in the modulation of IFN-γ signaling following demyelination. We found that IFN-γ profoundly impaired OPC proliferation and recruitment following adult spinal cord demyelination. IFN-γ-induced quiescence was mediated by direct signaling in OPCs as conditional genetic ablation of IFNγR1 (Ifngr1) in adult NG2+ OPCs completely abrogated these inhibitory effects. Intriguingly, OPC-specific IFN-γ signaling contributed to failed oligodendrocyte differentiation, which was associated with hyperactive Wnt/Bmp target gene expression in OPCs. We found that PI-88, a heparan sulfate mimetic, directly antagonized IFN-γ to rescue human OPC proliferation and differentiation in vitro and blocked the IFN-γ-mediated inhibitory effects on OPC recruitment in vivo Importantly, heparanase modulation by PI-88 or OGT2155 in demyelinated lesions rescued IFN-γ-mediated axonal damage and demyelination. In addition to OPC-specific effects, IFN-γ-augmented lesions were characterized by increased size, reactive astrogliosis, and proinflammatory microglial/macrophage activation along with exacerbated axonal injury and cell death. Heparanase inhibitor treatment rescued many of the negative IFN-γ-induced sequelae suggesting a profound modulation of the lesion environment. Together, these results suggest that the modulation of the heparanome represents a rational approach to mitigate the negative effects of proinflammatory signaling and rescuing pathologic quiescence in the inflamed and demyelinated human brain.SIGNIFICANCE STATEMENT The failure of remyelination in multiple sclerosis contributes to neurologic dysfunction and neurodegeneration. The activation and proliferation of oligodendrocyte progenitor cells (OPCs) is a necessary step in the recruitment phase of remyelination. Here, we show that the proinflammatory cytokine interferon-γ directly acts on OPCs to induce pathologic quiescence and thereby limit recruitment following demyelination. Heparan sulfate is a highly structured sulfated carbohydrate polymer that is present on the cell surface and regulates several aspects of the signaling microenvironment. We find that pathologic interferon-γ can be blocked by modulation of the heparanome following demyelination using either a heparan mimetic or by treatment with heparanase inhibitor. These studies establish the potential for modulation of heparanome as a regenerative approach in demyelinating disease.
Collapse
|
9
|
Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, Li Y, Nunes QM, Procter P, Mancini N, Clementi M, Bisio A, Forsyth NR, Ferro V, Turnbull JE, Guerrini M, Fernig DG, Vicenzi E, Yates EA, Lima MA, Skidmore MA. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thromb Haemost 2020; 120:1700-1715. [PMID: 33368089 PMCID: PMC7869224 DOI: 10.1055/s-0040-1721319] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Collapse
Affiliation(s)
- Courtney J. Mycroft-West
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Dunhao Su
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy R. Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Neha S. Gandhi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott E. Guimond
- School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Maria C. Z. Meneghetti
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Helena B. Nader
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Quentin M. Nunes
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Procter
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | | | | | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeremy E. Turnbull
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - David G. Fernig
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edwin A. Yates
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marcelo A. Lima
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Mark A. Skidmore
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Mycroft-West CJ, Su D, Pagani I, Rudd TR, Elli S, Gandhi NS, Guimond SE, Miller GJ, Meneghetti MCZ, Nader HB, Li Y, Nunes QM, Procter P, Mancini N, Clementi M, Bisio A, Forsyth NR, Ferro V, Turnbull JE, Guerrini M, Fernig DG, Vicenzi E, Yates EA, Lima MA, Skidmore MA. Heparin Inhibits Cellular Invasion by SARS-CoV-2: Structural Dependence of the Interaction of the Spike S1 Receptor-Binding Domain with Heparin. Thromb Haemost 2020; 120:1700-1715. [PMID: 33368089 DOI: 10.1101/2020.04.28.066761] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dependence of development and homeostasis in animals on the interaction of hundreds of extracellular regulatory proteins with the peri- and extracellular glycosaminoglycan heparan sulfate (HS) is exploited by many microbial pathogens as a means of adherence and invasion. Heparin, a widely used anticoagulant drug, is structurally similar to HS and is a common experimental proxy. Exogenous heparin prevents infection by a range of viruses, including S-associated coronavirus isolate HSR1. Here, we show that heparin inhibits severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invasion of Vero cells by up to 80% at doses achievable through prophylaxis and, particularly relevant, within the range deliverable by nebulisation. Surface plasmon resonance and circular dichroism spectroscopy demonstrate that heparin and enoxaparin, a low-molecular-weight heparin which is a clinical anticoagulant, bind and induce a conformational change in the spike (S1) protein receptor-binding domain (S1 RBD) of SARS-CoV-2. A library of heparin derivatives and size-defined fragments were used to probe the structural basis of this interaction. Binding to the RBD is more strongly dependent on the presence of 2-O or 6-O sulfate groups than on N-sulfation and a hexasaccharide is the minimum size required for secondary structural changes to be induced in the RBD. It is likely that inhibition of viral infection arises from an overlap between the binding sites of heparin/HS on S1 RBD and that of the angiotensin-converting enzyme 2. The results suggest a route for the rapid development of a first-line therapeutic by repurposing heparin and its derivatives as antiviral agents against SARS-CoV-2 and other members of the Coronaviridae.
Collapse
Affiliation(s)
- Courtney J Mycroft-West
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Dunhao Su
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Timothy R Rudd
- Analytical and Biological Sciences Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom
| | - Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Neha S Gandhi
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Scott E Guimond
- School of Medicine, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Gavin J Miller
- School of Chemical and Physical Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Maria C Z Meneghetti
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Helena B Nader
- Biochemistry Department, Federal University of São Paulo (UNIFESP), São Paulo, SP Brazil
| | - Yong Li
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Quentin M Nunes
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Patricia Procter
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | | | | | - Antonella Bisio
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Hartshill, Stoke-on-Trent, Staffordshire, United Kingdom
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Jeremy E Turnbull
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy
| | - David G Fernig
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edwin A Yates
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Marcelo A Lima
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
| | - Mark A Skidmore
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme, Staffordshire, United Kingdom
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Cavé MC, Maillard S, Hildenbrand K, Mamelonet C, Feige MJ, Devergne O. Glycosaminoglycans bind human IL-27 and regulate its activity. Eur J Immunol 2020; 50:1484-1499. [PMID: 32483835 DOI: 10.1002/eji.202048558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
IL-27 is a cytokine of the IL-12 family, composed of EBI3 and IL-27p28. IL-27 regulates immune responses and also other physiological processes including hematopoiesis, angiogenesis, and bone formation. Its receptor, composed of IL-27Rα and gp130, activates the STAT pathway. Here, we show that different glycosaminoglycans (GAGs) modulate human IL-27 activity in vitro. We find that soluble heparin and heparan sulfate efficiently inhibit human IL-27 activity as shown by decreased STAT signaling and downstream biological effects. In contrast, membrane-bound heparan sulfate seems to positively regulate IL-27 activity. Our biochemical studies demonstrate that soluble GAGs directly bind to human IL-27, consistent with in silico analyses, and prevent its binding to IL-27Rα. Although murine IL-27 also bound to GAGs in vitro, its activity was less efficiently inhibited by soluble GAGs. Lastly, we show that two heparin-derivatives, low molecular weight heparin and fondaparinux, that like unfractionated heparin are used in clinics, had weaker or no effect on human IL-27 activity. Together, our data identify GAGs as new players in the regulation of human IL-27 activity that might act under physiological conditions and may also have a clinical impact in heparin-treated patients.
Collapse
Affiliation(s)
- Marie-Charlotte Cavé
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
| | - Solène Maillard
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Claire Mamelonet
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France.,Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|
12
|
Chen S, Fuller KK, Dunlap JC, Loros JJ. A Pro- and Anti-inflammatory Axis Modulates the Macrophage Circadian Clock. Front Immunol 2020; 11:867. [PMID: 32477351 PMCID: PMC7240016 DOI: 10.3389/fimmu.2020.00867] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The circadian clock broadly governs immune cell function, leading to time-of-day differences in inflammatory responses and subsequently, pathogen clearance. However, the effect of inflammatory signals on circadian machinery is poorly understood. We found that in bone marrow-derived macrophages, some host-derived pro-inflammatory cytokines, e.g., IFN-γ or TNF-α, and pathogen-associated molecular patterns, e.g., LPS or Pam3Csk4, suppress the amplitude in oscillations of circadian negative feedback arm clock components such as PER2, and when examined, specific combinations of these immune-related signals suppressed the amplitude of these oscillations to a greater degree in both bone marrow-derived and peritoneal macrophages. At the transcript level, multiple components of the circadian clock were affected in different ways by pro-inflammatory stimulus, including Per2 and Nr1d1. This suppressive effect on PER2 did not arise from nor correlate with cell death or clock resetting. Suppression of the clock by IFN-γ was dependent on its cognate receptor; however, pharmacological inhibition of the canonical JAK/STAT and MEK pathways did not hinder suppression, suggesting a mechanism involving a non-canonical pathway. In contrast, anti-inflammatory signals such as IL-4 and dexamethasone enhanced the expression of PER2 protein and Per2 mRNA. Our results suggest that the circadian system in macrophages can differentially respond to pro- and anti-inflammatory signals in their microenvironments.
Collapse
Affiliation(s)
- Shan Chen
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
13
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
14
|
Przybylski C, Gonnet F, Saesen E, Lortat-Jacob H, Daniel R. Surface plasmon resonance imaging coupled to on-chip mass spectrometry: a new tool to probe protein-GAG interactions. Anal Bioanal Chem 2019; 412:507-519. [PMID: 31807804 DOI: 10.1007/s00216-019-02267-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
A biosensor device for the detection and characterization of protein-glycosaminoglycan interactions is being actively sought and constitutes the key to identifying specific carbohydrate ligands, an important issue in glycoscience. Mass spectrometry (MS) hyphenated methods are promising approaches for carbohydrate enrichment and subsequent structural characterization. In the study herein, we report the analysis of interactions between the glycosaminoglycans (GAGs) heparin (HP) and heparan sulfate (HS) and various cytokines by coupling surface plasmon resonance imaging (SPRi) for thermodynamic analysis method and MALDI-TOF MS for structural determination. To do so, we developed an SPR biochip in a microarray format and functionalized it with a self-assembled monolayer of short poly(ethylene oxide) chains for grafting the human cytokines stromal cell-derived factor-1 (SDF-1α), monocyte chemotactic protein-1 (MCP-1), and interferon-γ. The thermodynamic parameters of the interactions between these cytokines and unfractionated HP/HS and derived oligosaccharides were successively determined using SPRi monitoring, and the identification of the captured carbohydrates was carried out directly on the biochip surface using MALDI-TOF MS, revealing cytokine preferential affinity for GAGs. The MS identification was enhanced by on-chip digestion of the cytokine-bound GAGs with heparinase, leading to the detection of oligosaccharides likely involved in the binding sequence of GAG ligands. Although several carbohydrate array-based assays have been reported, this study is the first report of the successful analysis of protein-GAG interactions using SPRi-MS coupling.
Collapse
Affiliation(s)
- Cédric Przybylski
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE, Université Paris-Saclay, CNRS, CEA, Univ Evry, Evry, France. .,Institut Parisien de Chimie Moléculaire, IPCM, Sorbonne Université, CNRS, 4 Place Jussieu, 75252, Paris Cedex 05, France.
| | - Florence Gonnet
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE, Université Paris-Saclay, CNRS, CEA, Univ Evry, Evry, France
| | - Els Saesen
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, Université Grenoble Alpes, CNRS, CEA, 38000, Grenoble, France
| | - Régis Daniel
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE, Université Paris-Saclay, CNRS, CEA, Univ Evry, Evry, France.
| |
Collapse
|
15
|
Xu K, Jin L. The role of heparin/heparan sulphate in the IFN-γ-led Arena. Biochimie 2019; 170:1-9. [PMID: 31794784 DOI: 10.1016/j.biochi.2019.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/26/2019] [Indexed: 02/08/2023]
Abstract
IFN-γ (Interferon-gamma) is a pleiotropic cytokine. It is often involved in a variety of physiological processes by binding to the cell surface transmembrane receptor (IFN-γR) to initiate a series of signalling pathways that transmit external signals from cell surface receptors to the cell nucleus. Heparan sulphate (HS), a highly sulphated linear polysaccharide, is ubiquitous on the mammalian cell surface and extracellular matrix. Electrostatic interactions can be generated between the highly sulphated HS region and specific basic amino acid residues in the IFN-γ structure, thereby detaining IFN-γ on the cell surface, and the concentration of IFN-γ on the cell surface is thus, changed. IFN-γ retained on the cell surface will optimize the binding of IFN-γ to the transmembrane receptor resulting in high efficiency signalling. Heparin is a glycosaminoglycan with a structure similar to HS. The structural similarity provides a basis for modelling exogenous heparin dependence for interference with IFN-γ function. This model can be summarized as follows: First, the competitive binding effect; heparin bound to cytokines by competing with membrane-associated HS, causes a decrease in cytokine concentration on the cell surface. Second, the principle of priority occupancy; heparin can occupy the receptor binding site on cytokines, partially preventing the IFN-γ-IFN-γR interaction. These two models interfere with IFN-γ signal transmission. To decipher the mechanism by which heparin influences IFN-γ activity, studies of the structure-activity relationship are in progress. This paper summarizes research progress on the IFN-γ signalling pathway, heparin interference with IFN-γ activity and the structure-activity relationship between heparin and IFN-γ.
Collapse
Affiliation(s)
- Kening Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266000, Shandong, PR China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, 266000, Shandong, PR China.
| |
Collapse
|
16
|
Saleh ME, Gadalla R, Hassan H, Afifi A, Götte M, El-Shinawi M, Mohamed MM, Ibrahim SA. The immunomodulatory role of tumor Syndecan-1 (CD138) on ex vivo tumor microenvironmental CD4+ T cell polarization in inflammatory and non-inflammatory breast cancer patients. PLoS One 2019; 14:e0217550. [PMID: 31145753 PMCID: PMC6542534 DOI: 10.1371/journal.pone.0217550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Herein, we aimed to identify the immunomodulatory role of tumor Syndecan-1 (CD138) in the polarization of CD4+ T helper (Th) subsets isolated from the tumor microenvironment of inflammatory breast cancer (IBC) and non-IBC patients. Lymphocytes and mononuclear cells isolated from the axillary tributaries of non-IBC and IBC patients during modified radical mastectomy were either stimulated with the secretome as indirect co-culture or directly co-cultured with control and Syndecan-1-silenced SUM-149 IBC cells. In addition, peripheral blood mononuclear cells (PBMCs) of normal subjects were used for the direct co-culture. Employing flow cytometry, we analyzed the expression of the intracellular IFN-γ, IL-4, IL-17, and Foxp3 markers as readout for basal and co-cultured Th1, Th2, Th17, and Treg CD4+ subsets, respectively. Our data revealed that IBC displayed a lower basal frequency of Th1 and Th2 subsets than non-IBC. Syndecan-1-silenced SUM-149 cells significantly upregulated only Treg subset polarization of normal subjects relative to controls. However, Syndecan-1 silencing significantly enhanced the polarization of Th17 and Treg subsets of non-IBC under both direct and indirect conditions and induced only Th1 subset polarization under indirect conditions compared to control. Interestingly, qPCR revealed that there was a negative correlation between Syndecan-1 and each of IL-4, IL-17, and Foxp3 mRNA expression in carcinoma tissues of IBC and that the correlation was reversed in non-IBC. Mechanistically, Syndecan-1 knockdown in SUM-149 cells promoted Th17 cell expansion via upregulation of IL-23 and the Notch ligand DLL4. Overall, this study indicates a low frequency of the circulating antitumor Th1 subset in IBC and suggests that tumor Syndecan-1 silencing enhances ex vivo polarization of CD4+ Th17 and Treg cells of non-IBC, whereby Th17 polarization is possibly mediated via upregulation of IL-23 and DLL4. These findings suggest the immunoregulatory role of tumor Syndecan-1 expression in Th cell polarization that may have therapeutic implications for breast cancer.
Collapse
Affiliation(s)
| | - Ramy Gadalla
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Afifi
- Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
17
|
Castilla-Casadiego DA, García JR, García AJ, Almodovar J. Heparin/Collagen Coatings Improve Human Mesenchymal Stromal Cell Response to Interferon Gamma. ACS Biomater Sci Eng 2019; 5:2793-2803. [DOI: 10.1021/acsbiomaterials.9b00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- David A. Castilla-Casadiego
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| | - José R. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, 315 Ferst Dr., Georgia Institute of Technology, Atlanta, Georgia 30332-0363, United States
| | - Jorge Almodovar
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, United States
| |
Collapse
|
18
|
Ma H, Xu M, Song Y, Zhang T, Yin H, Yin S. Interferon-γ facilitated adjuvant-induced arthritis at early stage. Scand J Immunol 2019; 89:e12757. [PMID: 30739356 DOI: 10.1111/sji.12757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Interferon-γ (IFN-γ) is a versatile cytokine which broadly involves in the inflammatory diseases, mediating both immune activation and tolerance. Here, we aimed to investigate the role of IFN-γ in the initiation of adjuvant-induced arthritis (AIA). METHODS AND RESULTS In an AIA mice model, increasing IFN-γ mRNA was observed at day 3 and peaked on day 7. At day 3, the majority of IFN-γ-producing cells were located around vessels observed by immunofluorescent staining. Recombinant IFN-γ or anti-IFN-γ antibody was injected into the AIA paw on day 2 to study the outcome of AIA. The recipients of IFN-γ showed increased synovial inflammation, whereas anti-IFN-γ antibody injection repressed the expansion of inflammatory cells. As the percentages of blood monocytes were approximately equivalent, we hypothesized that IFN-γ might impact the access of innate leucocytes from blood to expand local inflammation at this stage. Analysis of tissue CD31 and vascular cell adhesion molecule-1 (VCAM-1) expressions suggested a positive effect of these factors in the development of inflammation, and IFN-γ affected the VCAM-1 expression. To further verify this idea, mice regionally injected with IFN-γ were systematically administrated with anti-VCAM-1 antibody during AIA induction. The IFN-γ expression was inhibited, and the development of AIA was partly abolished in these mice regardless of regional IFN-γ injection. CONCLUSION These data suggested that IFN-γ might be critical for the expansion of AIA at early stage through helping inflammatory cell access.
Collapse
Affiliation(s)
- Hua Ma
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Minwen Xu
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Song
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhang
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hanqiu Yin
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Songlou Yin
- Department of Rheumatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Heidari Z, Moudi B, Mahmoudzadeh-Sagheb H. Immunomodulatory factors gene polymorphisms in chronic periodontitis: an overview. BMC Oral Health 2019; 19:29. [PMID: 30755190 PMCID: PMC6373099 DOI: 10.1186/s12903-019-0715-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic periodontitis (CP), defines as destruction of the supporting tissues of the teeth and resorption of the alveolar bone. It is widespread in human populations and represent an important problem for public health. CP results from inflammatory mechanisms created by the interaction between environmental and host genetic factors that confer the individual susceptibility to the disease. AIM The aim of the current study was to explore and summarize some functional biomarkers that are associated with CP susceptibility. METHODS CP is considered to be a multifactorial disease. The pathogenesis of multifactorial diseases is characterized by various biological pathways. The studies revealed that polymorphisms were associated with susceptibility to periodontal diseases. In other word, genetic variations can change the development of CP. However, there are some conflicting results, because there are different variations in frequency of some alleles in any populations. Therefore, we conducted the current review to completely understanding the special biomarkers for CP. RESULTS There is some evidence that SNPs in the IL-1α, IL-1β, IL1RN, IL-6, IL-10, TNF-α, TGF-β1, IFN-γ and VDR may be associated with CP susceptibility. CONCLUSION In conclusion, numerous studies have reported the host genetic factors associated with CP susceptibility and related traits. Therefore, it is prevail to study the multiple SNPs and their effects to find the useful diagnosis methods. The current study will investigate the relationship between polymorphisms in cytokine genes and the susceptibility to the chronic periodontitis.
Collapse
Affiliation(s)
- Zahra Heidari
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| | - Bita Moudi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, 98167-43175 Iran
| |
Collapse
|
20
|
Collins LE, Troeberg L. Heparan sulfate as a regulator of inflammation and immunity. J Leukoc Biol 2018; 105:81-92. [PMID: 30376187 DOI: 10.1002/jlb.3ru0618-246r] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Heparan sulfate is found on the surface of most cell types, as well as in basement membranes and extracellular matrices. Its strong anionic properties and highly variable structure enable this glycosaminoglycan to provide binding sites for numerous protein ligands, including many soluble mediators of the immune system, and may promote or inhibit their activity. The formation of ligand binding sites on heparan sulfate (HS) occurs in a tissue- and context-specific fashion through the action of several families of enzymes, most of which have multiple isoforms with subtly different specificities. Changes in the expression levels of these biosynthetic enzymes occur in response to inflammatory stimuli, resulting in structurally different HS and acquisition or loss of binding sites for immune mediators. In this review, we discuss the multiple roles for HS in regulating immune responses, and the evidence for inflammation-associated changes to HS structure.
Collapse
Affiliation(s)
- Laura E Collins
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Linda Troeberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Swart M, Troeberg L. Effect of Polarization and Chronic Inflammation on Macrophage Expression of Heparan Sulfate Proteoglycans and Biosynthesis Enzymes. J Histochem Cytochem 2018; 67:9-27. [PMID: 30205019 DOI: 10.1369/0022155418798770] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heparan sulfate (HS) proteoglycans on immune cells have the ability to bind to and regulate the bioactivity more than 400 bioactive protein ligands, including many chemokines, cytokines, and growth factors. This makes them important regulators of the phenotype and behavior of immune cells. Here we review how HS biosynthesis in macrophages is regulated during polarization and in chronic inflammatory diseases such as rheumatoid arthritis, atherosclerosis, asthma, chronic obstructive pulmonary disease and obesity, by analyzing published micro-array data and mechanistic studies in this area. We describe that macrophage expression of many HS biosynthesis and core proteins is strongly regulated by macrophage polarization, and that these expression patterns are recapitulated in chronic inflammation. Such changes in HS biosynthetic enzyme expression are likely to have a significant impact on the phenotype of macrophages in chronic inflammatory diseases by altering their interactions with chemokines, cytokines, and growth factors.
Collapse
Affiliation(s)
- Maarten Swart
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Linda Troeberg
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Lorè NI, Veraldi N, Riva C, Sipione B, Spagnuolo L, De Fino I, Melessike M, Calzi E, Bragonzi A, Naggi A, Cigana C. Synthesized Heparan Sulfate Competitors Attenuate Pseudomonas aeruginosa Lung Infection. Int J Mol Sci 2018; 19:ijms19010207. [PMID: 29315274 PMCID: PMC5796156 DOI: 10.3390/ijms19010207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Several chronic respiratory diseases are characterized by recurrent and/or persistent infections, chronic inflammatory responses and tissue remodeling, including increased levels of glycosaminoglycans which are known structural components of the airways. Among glycosaminoglycans, heparan sulfate (HS) has been suggested to contribute to excessive inflammatory responses. Here, we aim at (i) investigating whether long-term infection by Pseudomonas aeruginosa, one of the most worrisome threat in chronic respiratory diseases, may impact HS levels, and (ii) exploring HS competitors as potential anti-inflammatory drugs during P. aeruginosa pneumonia. P. aeruginosa clinical strains and ad-hoc synthesized HS competitors were used in vitro and in murine models of lung infection. During long-term chronic P. aeruginosa colonization, infected mice showed higher heparin/HS levels, evaluated by high performance liquid chromatography-mass spectrometry after selective enzymatic digestion, compared to uninfected mice. Among HS competitors, an N-acetyl heparin and a glycol-split heparin dampened leukocyte recruitment and cytokine/chemokine production induced by acute and chronic P. aeruginosa pneumonia in mice. Furthermore, treatment with HS competitors reduced bacterial burden during chronic murine lung infection. In vitro, P. aeruginosa biofilm formation decreased upon treatment with HS competitors. Overall, these findings support further evaluation of HS competitors as a novel therapy to counteract inflammation and infection during P. aeruginosa pneumonia.
Collapse
Affiliation(s)
- Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
- Vita-Salute San Raffaele University, Milano 20132, Italy.
| | - Noemi Veraldi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Camilla Riva
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Barbara Sipione
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Lorenza Spagnuolo
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Ida De Fino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Medede Melessike
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Elisa Calzi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| | - Annamaria Naggi
- Istituto di Ricerche Chimiche e Biochimiche "G. Ronzoni", Milano 20133, Italy.
| | - Cristina Cigana
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano 20132, Italy.
| |
Collapse
|
23
|
O'Callaghan P, Zhang X, Li JP. Heparan Sulfate Proteoglycans as Relays of Neuroinflammation. J Histochem Cytochem 2018; 66:305-319. [PMID: 29290138 DOI: 10.1369/0022155417742147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are implicated as inflammatory mediators in a variety of settings, including chemokine activation, which is required to recruit circulating leukocytes to infection sites. Heparan sulfate (HS) polysaccharide chains are highly interactive and serve co-receptor roles in multiple ligand:receptor interactions. HS may also serve as a storage depot, sequestering ligands such as cytokines and restricting their access to binding partners. Heparanase, through its ability to fragment HS chains, is a key regulator of HS function and has featured prominently in studies of HS's involvement in inflammatory processes. This review focuses on recent discoveries regarding the role of HSPGs, HS, and heparanase during inflammation, with particular focus on the brain. HS chains emerge as critical go-betweens in multiple aspects of the inflammatory response-relaying signals between receptors and cells. The molecular interactions proposed to occur between HSPGs and the pathogen receptor toll-like receptor 4 (TLR4) are discussed, and we summarize some of the contrasting roles that HS and heparanase have been assigned in diseases associated with chronic inflammatory states, including Alzheimer's disease (AD). We conclude by briefly discussing how current knowledge could potentially be applied to augment HS-mediated events during sustained neuroinflammation, which contributes to neurodegeneration in AD.
Collapse
Affiliation(s)
- Paul O'Callaghan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiao Zhang
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Kosmidis C, Sapalidis K, Koletsa T, Kosmidou M, Efthimiadis C, Anthimidis G, Varsamis N, Michalopoulos N, Koulouris C, Atmatzidis S, Liavas L, Strati TM, Koimtzis G, Tsakalidis A, Mantalovas S, Zarampouka K, Florou M, Giannakidis DE, Georgakoudi E, Baka S, Zarogoulidis P, Man YG, Kesisoglou I. Interferon-γ and Colorectal Cancer: an up-to date. J Cancer 2018; 9:232-238. [PMID: 29344268 PMCID: PMC5771329 DOI: 10.7150/jca.22962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer still remains the third cause of cancer death among cancer patients. Early diagnosis is crucial and they can be either endoscopic or with blood biomarkers. Endoscopic methods consist of gastroscopy and colonoscopy, however; in recent years, endoscopic ultrasound is being used. The microenvironment is very important for the successful delivery of the treatment. Several proteins and hormones play a crucial role in the efficiency of the treatment. In the current mini review we will focus on interferon-γ.
Collapse
Affiliation(s)
- Christoforos Kosmidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Konstantinos Sapalidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Triantafyllia Koletsa
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Kosmidou
- 1st Internal Medicine Division, University Hospital of Ioannina, University of Ioaninna, Medical School
| | | | - George Anthimidis
- Surgery Department, "Interbalkan" European Medical Center, Thessaloniki, Greece
| | - Nikolaos Varsamis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Nikolaos Michalopoulos
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Charilaos Koulouris
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Stefanos Atmatzidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Lazaros Liavas
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Titika-Marina Strati
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Georgios Koimtzis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Alexandros Tsakalidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Stylianos Mantalovas
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Katerina Zarampouka
- Pathology Department, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Florou
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Dimitrios E Giannakidis
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Eleni Georgakoudi
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| | - Sofia Baka
- Oncology Department, "Interbalkan" European Medical Center, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary - Oncology Department, "Theageneio" Anticancer Hospital, Thessaloniki, Greece
| | - Yan-Gao Man
- Research Laboratory and International Collaboration, Bon Secours Cancer Institute, VA, USA
| | - Isaac Kesisoglou
- 3rd Department of Surgery, AHEPA University Hospital, Aristotle University of Thessaloniki, Medical School
| |
Collapse
|
25
|
Banerjee A, McNish S, Shanmugam VK. Interferon-gamma (IFN-γ) is Elevated in Wound Exudate from Hidradenitis Suppurativa. Immunol Invest 2016; 46:149-158. [PMID: 27819528 DOI: 10.1080/08820139.2016.1230867] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic recurrent inflammatory disease of apocrine glands which affects 1-4% of young adults. The purpose of this study was to investigate inflammatory cytokines in effluent from HS lesions and to identify potential local drivers of inflammation in HS. Wound fluid specimens from HS patients (n = 8) and age-matched chronic wound patients (n = 8) were selected for analysis. The hidradenitis suppurativa score (HSS) was used to determine the extent of HS activity. Cytokine analysis was conducted using Meso Scale Discovery cytokine and proinflammatory panels. Interferon-gamma (IFN-γ) was significantly elevated in the HS effluent compared to chronic wounds (1418 ± 1501 pg/ml compared to 102.5 ± 138 pg/ml, p = 0.027). HS effluent also had significantly higher levels of tumor necrosis factor-β (TNF-β) (9.24 ± 7.22 pg/ml compared to 1.65 ± 2.14 pg/ml, p = 0.03). There was no significant difference in any other cytokines. There was no significant difference in demographics in the HS compared to chronic wound cohorts. Mean HSS in the HS cohort was 68.88 (SD ± 41.45). In this proof-of-concept pilot study, IFN-γ was significantly elevated in HS effluent. TNF-β/LT-α levels were also elevated in HS, although the levels were more modest. Further studies should focus on molecular drivers of tissue injury in HS and the relationship between HS effluent cytokine profile and disease activity.
Collapse
Affiliation(s)
- Anirban Banerjee
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Sean McNish
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| | - Victoria K Shanmugam
- a Division of Rheumatology , The George Washington University, School of Medicine and Health Sciences , Washington , DC , USA
| |
Collapse
|
26
|
Moudi B, Heidari Z, Mahmoudzadeh-Sagheb H. Impact of host gene polymorphisms on susceptibility to chronic hepatitis B virus infection. INFECTION GENETICS AND EVOLUTION 2016; 44:94-105. [DOI: 10.1016/j.meegid.2016.06.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/15/2022]
|
27
|
Przybylski C, Mokaddem M, Prull-Janssen M, Saesen E, Lortat-Jacob H, Gonnet F, Varenne A, Daniel R. On-line capillary isoelectric focusing hyphenated to native electrospray ionization mass spectrometry for the characterization of interferon-γ and variants. Analyst 2015; 140:543-50. [DOI: 10.1039/c4an01305k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The on-line hyphenation of Capillary IsoElectric Focusing (CIEF) with ElectroSpray Ionization Mass Spectrometry (ESI/MS) has been carried out in a non-denaturing detection mode at the CIEF-MS interface.
Collapse
Affiliation(s)
- Cédric Przybylski
- CNRS
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (UMR 8587)
- Evry
- France
- Université Evry-Val-D'Essonne
| | - Meriem Mokaddem
- Chimie ParisTech
- Ecole Nationale Supérieure de Chimie
- Unité de Technologies Chimiques et Biologiques pour la Santé
- Paris
- France
| | - Mehdi Prull-Janssen
- CNRS
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (UMR 8587)
- Evry
- France
- Université Evry-Val-D'Essonne
| | - Els Saesen
- Université Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- Grenoble
- France
- CNRS
| | - Hugues Lortat-Jacob
- Université Grenoble Alpes
- Institut de Biologie Structurale (IBS)
- Grenoble
- France
- CNRS
| | - Florence Gonnet
- CNRS
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (UMR 8587)
- Evry
- France
- Université Evry-Val-D'Essonne
| | - Anne Varenne
- Chimie ParisTech
- Ecole Nationale Supérieure de Chimie
- Unité de Technologies Chimiques et Biologiques pour la Santé
- Paris
- France
| | - Régis Daniel
- CNRS
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (UMR 8587)
- Evry
- France
- Université Evry-Val-D'Essonne
| |
Collapse
|
28
|
Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, Alfaro-Cervello C, Saini HK, Davis MP, Schaeffer J, Vega B, Stefanini M, Zhao C, Muller W, Garcia-Verdugo JM, Mathivanan S, Bachi A, Enright AJ, Mattick JS, Pluchino S. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 2014; 56:193-204. [PMID: 25242146 PMCID: PMC4578249 DOI: 10.1016/j.molcel.2014.08.020] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/22/2014] [Accepted: 08/15/2014] [Indexed: 12/20/2022]
Abstract
The idea that stem cell therapies work only via cell replacement is challenged by the observation of consistent intercellular molecule exchange between the graft and the host. Here we defined a mechanism of cellular signaling by which neural stem/precursor cells (NPCs) communicate with the microenvironment via extracellular vesicles (EVs), and we elucidated its molecular signature and function. We observed cytokine-regulated pathways that sort proteins and mRNAs into EVs. We described induction of interferon gamma (IFN-γ) pathway in NPCs exposed to proinflammatory cytokines that is mirrored in EVs. We showed that IFN-γ bound to EVs through Ifngr1 activates Stat1 in target cells. Finally, we demonstrated that endogenous Stat1 and Ifngr1 in target cells are indispensable to sustain the activation of Stat1 signaling by EV-associated IFN-γ/Ifngr1 complexes. Our study identifies a mechanism of cellular signaling regulated by EV-associated IFN-γ/Ifngr1 complexes, which grafted stem cells may use to communicate with the host immune system.
Collapse
Affiliation(s)
- Chiara Cossetti
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Nunzio Iraci
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Tim R Mercer
- Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia
| | - Tommaso Leonardi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK; The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Emanuele Alpi
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Denise Drago
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Clara Alfaro-Cervello
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Harpreet K Saini
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew P Davis
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Julia Schaeffer
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Beatriz Vega
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - Matilde Stefanini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK
| | - CongJian Zhao
- Southwest Hospital, Southwest Eye Hospital, Third Military Medical University, Chongqing 400038, China
| | - Werner Muller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jose Manuel Garcia-Verdugo
- Departamento de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, 46980 Valencia, Spain
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Angela Bachi
- Biomolecular Mass Spectrometry Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milano, Italy
| | - Anton J Enright
- The EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Stefano Pluchino
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, and NIHR Biomedical Research Centre, University of Cambridge, CB2 0PY Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
29
|
Uniewicz KA, Ori A, Ahmed YA, Yates EA, Fernig DG. Characterisation of the interaction of neuropilin-1 with heparin and a heparan sulfate mimetic library of heparin-derived sugars. PeerJ 2014; 2:e461. [PMID: 25024924 PMCID: PMC4089425 DOI: 10.7717/peerj.461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/09/2014] [Indexed: 12/22/2022] Open
Abstract
Background. Neuropilin-1 (NRP-1) is a multidomain membrane protein with soluble isoforms interacting with a complex network of other membrane receptors, their respective ligands and heparan sulfate (HS). It is involved in the development of vasculature, neural patterning, immunological responses and pathological angiogenesis. Methods. We have characterised the binding of a Fc fusion of rat NRP-1 (Fc rNRP-1) and of a soluble isoform, corresponding to the first four extracellular domains of human NRP-1, shNRP-1, using optical biosensor-based binding assays with a library of heparin derivatives. Selective labelling of lysines protected upon heparin binding allowed their identification by mass spectrometry. Results. Fc rNRP-1 bound to heparin with high affinity (2.5 nM) and fast ka (9.8 × 10(6) M(-1)s(-1)). Unusually, NRP-1 bound both highly sulfated and completely desulfated stretches of heparin and exhibited a complex pattern of preferences for chemically modified heparins possessing one or two sulfate groups, e.g., it bound heparin with just a 6-O sulfate group better than heparin with any two of N-sulfate, 6-O sulfate and 2-O sulfate. Mass-spectrometry based mapping identified that, in addition to the expected the b1 domain, the a1, and c domains and the L2 linker were also involved in the interaction. In contrast, shNRP-1 bound heparin far more weakly. This could only be shown by affinity chromatography and by differential scanning fluorimetry. Discussion. The results suggest that the interaction of NRP-1 with HS is more complex than anticipated and involving a far greater extent of the protein than just the b1-b2 domains. NRP-1's preference for binding long saccharide structures suggests it has the potential to bind large segments of HS chains and so organise their local structure. In contrast, the four domain soluble isoform, shNRP-1 binds heparin weakly and so would be expected to diffuse away rapidly from the source cell.
Collapse
Affiliation(s)
- Katarzyna A Uniewicz
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Alessandro Ori
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Yassir A Ahmed
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - Edwin A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| | - David G Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
30
|
Simon Davis DA, Parish CR. Heparan sulfate: a ubiquitous glycosaminoglycan with multiple roles in immunity. Front Immunol 2013; 4:470. [PMID: 24391644 PMCID: PMC3866581 DOI: 10.3389/fimmu.2013.00470] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/05/2013] [Indexed: 12/20/2022] Open
Abstract
Heparan sulfate (HS) is a highly acidic linear polysaccharide with a very variable structure. It is ubiquitously expressed on cell surfaces and in the extracellular matrix and basement membrane of mammalian tissues. Synthesized attached to various core proteins to form HS-proteoglycans, HS is capable of interacting with various polypeptides and exerting diverse functions. In fact, a bioinformatics analysis of mammalian proteins that express a heparin/HS-binding motif and are associated with the immune system identified 235 candidate proteins, the majority having an intracellular location. This simple analysis suggests that HS may, in fact, interact with many more components of the immune system than previously realized. Numerous studies have also directly demonstrated that HS plays multiple prominent functional roles in the immune system that are briefly reviewed in this article. In particular, the molecule has been shown to regulate leukocyte development, leukocyte migration, immune activation, and inflammatory processes.
Collapse
Affiliation(s)
- David Anak Simon Davis
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University , Canberra, ACT , Australia
| |
Collapse
|
31
|
WANG DAN, REN HUI, XU JINGWEI, SUN PENGDA, FANG XUEDONG. Expression, purification and characterization of human interferon-γ in Pichia pastoris. Mol Med Rep 2013; 9:715-9. [DOI: 10.3892/mmr.2013.1812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|
32
|
Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat Rev Rheumatol 2013; 10:44-56. [PMID: 24166242 DOI: 10.1038/nrrheum.2013.160] [Citation(s) in RCA: 1095] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degeneration of the intervertebral discs (IVDs) is a major contributor to back, neck and radicular pain. IVD degeneration is characterized by increases in levels of the proinflammatory cytokines TNF, IL-1α, IL-1β, IL-6 and IL-17 secreted by the IVD cells; these cytokines promote extracellular matrix degradation, chemokine production and changes in IVD cell phenotype. The resulting imbalance in catabolic and anabolic responses leads to the degeneration of IVD tissues, as well as disc herniation and radicular pain. The release of chemokines from degenerating discs promotes the infiltration and activation of immune cells, further amplifying the inflammatory cascade. Leukocyte migration into the IVD is accompanied by the appearance of microvasculature tissue and nerve fibres. Furthermore, neurogenic factors, generated by both disc and immune cells, induce expression of pain-associated cation channels in the dorsal root ganglion. Depolarization of these ion channels is likely to promote discogenic and radicular pain, and reinforce the cytokine-mediated degenerative cascade. Taken together, an enhanced understanding of the contribution of cytokines and immune cells to these catabolic, angiogenic and nociceptive processes could provide new targets for the treatment of symptomatic disc disease. In this Review, the role of key inflammatory cytokines during each of the individual phases of degenerative disc disease, as well as the outcomes of major clinical studies aimed at blocking cytokine function, are discussed.
Collapse
Affiliation(s)
- Makarand V Risbud
- Department of Orthopaedic Surgery, Jefferson Medical College, 1025 Walnut Street, 511 College Building, Philadelphia, PA 19107, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Jefferson Medical College, 1025 Walnut Street, 511 College Building, Philadelphia, PA 19107, USA
| |
Collapse
|
33
|
Zaferani A, Vivès RR, van der Pol P, Navis GJ, Daha MR, van Kooten C, Lortat-Jacob H, Seelen MA, van den Born J. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate. J Biol Chem 2012; 287:31471-81. [PMID: 22815489 DOI: 10.1074/jbc.m112.380386] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.
Collapse
Affiliation(s)
- Azadeh Zaferani
- Department of Nephrology, University Medical Center, 9713 GZ Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bartoli J, Roget A, Livache T. Polypyrrole-oligosaccharide microarray for the measurement of biomolecular interactions by surface plasmon resonance imaging. Methods Mol Biol 2012; 808:69-86. [PMID: 22057518 DOI: 10.1007/978-1-61779-373-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The polypyrrole approach initially developed for the construction of DNA chips, has been extended to other biochemical compounds such as proteins and more recently oligosaccharides. The copolymerization of a pyrrole monomer with a biomolecule bearing a pyrrole group by an electrochemical process allows a very fast coupling of the biomolecule (probe) to a gold layer used as a working electrode. Fluorescence-based detection is the reference method to detect interactions on biochips; however an alternative label free method, could be more convenient for rapid screening of biointeractions. Surface Plasmon Resonance (SPRi) is a typical label-free method for real time detection of the binding of biological molecules onto functionalized surfaces. This surface sensitive optical method is based upon evanescent wave sensing on a thin metal layer. The SPR approach described herein is performed in an imaging geometry that allows simultaneous monitoring of biorecognition reactions occurring on an array of immobilized probes (chip). In a SPR imaging experiment, local changes in the reflectivity are recorded with a CCD camera and are exploited to monitor up to 100 different biological reactions occurring onto the molecules linked to the polypyrrole matrix. This method will be applied to oligosaccharide recognition.
Collapse
Affiliation(s)
- Julia Bartoli
- UMR 5075 (CEA, CNRS, UJF), Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
35
|
Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One 2011; 6:e23530. [PMID: 21886795 PMCID: PMC3158765 DOI: 10.1371/journal.pone.0023530] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022] Open
Abstract
The early use of fresh frozen plasma as a resuscitative agent after hemorrhagic shock has been associated with improved survival, but the mechanism of protection is unknown. Hemorrhagic shock causes endothelial cell dysfunction and we hypothesized that fresh frozen plasma would restore endothelial integrity and reduce syndecan-1 shedding after hemorrhagic shock. A prospective, observational study in severely injured patients in hemorrhagic shock demonstrated significantly elevated levels of syndecan-1 (554±93 ng/ml) after injury, which decreased with resuscitation (187±36 ng/ml) but was elevated compared to normal donors (27±1 ng/ml). Three pro-inflammatory cytokines, interferon-γ, fractalkine, and interleukin-1β, negatively correlated while one anti-inflammatory cytokine, IL-10, positively correlated with shed syndecan-1. These cytokines all play an important role in maintaining endothelial integrity. An in vitro model of endothelial injury then specifically examined endothelial permeability after treatment with fresh frozen plasma orlactated Ringers. Shock or endothelial injury disrupted junctional integrity and increased permeability, which was improved with fresh frozen plasma, but not lactated Ringers. Changes in endothelial cell permeability correlated with syndecan-1 shedding. These data suggest that plasma based resuscitation preserved endothelial syndecan-1 and maintained endothelial integrity, and may help to explain the protective effects of fresh frozen plasma after hemorrhagic shock.
Collapse
|
36
|
Gendrin C, Sarrazin S, Bonnaffé D, Jault JM, Lortat-Jacob H, Dessen A. Hijacking of the pleiotropic cytokine interferon-γ by the type III secretion system of Yersinia pestis. PLoS One 2010; 5:e15242. [PMID: 21179438 PMCID: PMC3001473 DOI: 10.1371/journal.pone.0015242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022] Open
Abstract
Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Upon cell contact, LcrV is also released into the surrounding medium where it has been shown to block the normal inflammatory response, although details of this mechanism have remained elusive. In this work, we reveal a key aspect of the immunomodulatory function of LcrV by showing that it interacts directly and with nanomolar affinity with the inflammatory cytokine IFNγ. In addition, we generate specific IFNγ mutants that show decreased interaction capabilities towards LcrV, enabling us to map the interaction region to two basic C-terminal clusters of IFNγ. Lastly, we show that the LcrV-IFNγ interaction can be disrupted by a number of inhibitors, some of which display nanomolar affinity. This study thus not only identifies novel potential inhibitors that could be developed for the control of Yersinia-induced infection, but also highlights the diversity of the strategies used by Y. pestis to evade the immune system, with the hijacking of pleiotropic cytokines being a long-range mechanism that potentially plays a key role in the severity of plague.
Collapse
Affiliation(s)
- Claire Gendrin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Stéphane Sarrazin
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - David Bonnaffé
- Laboratoire de Chimie Organique Multifonctionnelle, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, Université Paris-Sud 11, Orsay, France
| | - Jean-Michel Jault
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale, UMR 5075 (Comissariat à l'Enérgie Atomique/Centre National de la Recherche Scientifique/Université Grenoble I), Grenoble, France
- * E-mail:
| |
Collapse
|
37
|
Donnelly RP, Sheikh F, Dickensheets H, Savan R, Young HA, Walter MR. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. Cytokine Growth Factor Rev 2010; 21:393-401. [PMID: 20947410 DOI: 10.1016/j.cytogfr.2010.09.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IL-26 is classified as a member of the IL-10 cytokine family because it has limited sequence homology to IL-10 and the IL-10-related cytokines. The human IL-26 gene, IL26, is located on chromosome 12q15 between the genes for two other important class-2 cytokines, IFNG (IFN-γ) and IL22 (IL-22). IL-26 is often co-expressed with IL-22 by activated T cells, especially Th17 cells. It signals through a heterodimeric receptor complex composed of the IL-20R1 and IL-10R2 chains. IL-26 receptors are primarily expressed on non-hematopoietic cell types, particularly epithelial cells. Signaling through IL-26 receptor complexes results in the activation of STAT1 and STAT3 with subsequent induction of IL-26-responsive genes. The biological functions of IL-26 have only begun to be defined.
Collapse
Affiliation(s)
- Raymond P Donnelly
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Schreiber G, Walter MR. Cytokine-receptor interactions as drug targets. Curr Opin Chem Biol 2010; 14:511-9. [PMID: 20619718 DOI: 10.1016/j.cbpa.2010.06.165] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/30/2010] [Accepted: 06/08/2010] [Indexed: 12/24/2022]
Abstract
Cytokines are essential proteins that exert potent control over entire cell populations to fight infections and other pathologies, but can by themselves cause disease. Therefore, cytokine-related drugs act either by stimulating or blocking their activities. Our knowledge of the structures of cytokine-receptor complexes, the biophysical basis of their binding, and their mode of biological activation has substantially increased in recent years. This knowledge has been translated into new drugs and drug candidates. This review summarizes our current understanding of the receptor-mediated activity of cytokines, their relation to health and disease, and the agents in use to activate and block their actions.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
39
|
Reeves EP, Williamson M, Byrne B, Bergin DA, Smith SGJ, Greally P, O’Kennedy R, O’Neill SJ, McElvaney NG. IL-8 Dictates Glycosaminoglycan Binding and Stability of IL-18 in Cystic Fibrosis. THE JOURNAL OF IMMUNOLOGY 2009; 184:1642-52. [DOI: 10.4049/jimmunol.0902605] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Yamada S, Onishi M, Fujinawa R, Tadokoro Y, Okabayashi K, Asashima M, Sugahara K. Structural and functional changes of sulfated glycosaminoglycans in Xenopus laevis during embryogenesis. Glycobiology 2009; 19:488-98. [PMID: 19190026 DOI: 10.1093/glycob/cwp005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Xenopus laevis is an excellent animal for analyzing early vertebrate development. Various effects of glycosaminoglycans (GAGs) on growth factor-related cellular events during embryogenesis have been demonstrated in Xenopus. To elucidate the relationship between alterations in fine structure and changes in the specificity of growth factor binding during Xenopus development, heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) chains were isolated at four different embryonic stages and their structure and growth factor-binding capacities were compared. The total amounts of both HS and CS/DS chains decreased from the pre-midblastula transition to the gastrula stage, but increased exponentially during the following developmental stages. The length of HS chains was not significantly affected by development, whereas that of CS/DS chains increased with development. The disaccharide composition of GAGs in embryos also changed during development. The degree of sulfation of the HS chains gradually decreased with development. The predominant sulfation position in the CS/DS chains shifted from C4 to C6 of GalNAc during embryogenesis. Growth factor-binding experiments using a BIAcore system demonstrated that GAGs bound growth factors including fibroblast growth factors-1 and -2, midkine, and pleiotrophin, with comparable affinities. These affinities significantly varied during development, although the correlation between the structural alterations of GAGs and the change in the ability to bind growth factors remains to be clarified. The expression of saccharide sequences, which specifically interact with a growth factor, might be regulated during development.
Collapse
Affiliation(s)
- Shuhei Yamada
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Mercey E, Sadir R, Maillart E, Roget A, Baleux F, Lortat-Jacob H, Livache T. Polypyrrole oligosaccharide array and surface plasmon resonance imaging for the measurement of glycosaminoglycan binding interactions. Anal Chem 2008; 80:3476-82. [PMID: 18348577 DOI: 10.1021/ac800226k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to construct tools able to screen oligosaccharide-protein interactions, we have developed a polypyrrole-based oligosaccharide chip constructed via a copolymerization process of pyrrole and pyrrole-modified oligosaccharide. For our study, GAG (glycosaminoglycans) or GAG fragments, which are involved in many fundamental biological processes, were modified by the pyrrole moiety on their reducing end and then immobilized on the chip. The parallel binding events on the upperside of the surface can be simultaneously monitored and quantified in real time and without labeling by surface plasmon resonance imaging (SPRi). We show that electrocopolymerization of the oligosaccharide-pyrrole above a gold surface enables the covalent immobilization of multiple probes and the subsequent monitoring of their binding capacities using surface plasmon resonance imaging. Moreover, a biological application was made involving different GAG fragments and different proteins, including stromal cell-derived factor-1alpha (SDF-1alpha), interferon-gamma (IFN-gamma), and monoclonal antibody showing different affinity pattern.
Collapse
Affiliation(s)
- Emilie Mercey
- CREAB, UMR 5819 (CEA, CNRS, UJF), INAC CEA Grenoble; 17, Rue des Martyrs 38054 Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Structure and mechanism of IFN-gamma antagonism by an orthopoxvirus IFN-gamma-binding protein. Proc Natl Acad Sci U S A 2008; 105:1861-6. [PMID: 18252829 DOI: 10.1073/pnas.0705753105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ectromelia virus (ECTV) encodes an IFN-gamma-binding protein (IFN-gammaBP(ECTV)) that disrupts IFN-gamma signaling and its ability to induce an antiviral state within cells. IFN-gammaBP(ECTV) is an important virulence factor that is highly conserved (>90%) in all orthopoxviruses, including variola virus, the causative agent of smallpox. The 2.2-A crystal structure of the IFN-gammaBP(ECTV)/IFN-gamma complex reveals IFN-gammaBP(ECTV) consists of an IFN-gammaR1 ligand-binding domain and a 57-aa helix-turn-helix (HTH) motif that is structurally related to the transcription factor TFIIA. The HTH motif forms a tetramerization domain that results in an IFN-gammaBP(ECTV)/IFN-gamma complex containing four IFN-gammaBP(ECTV) chains and two IFN-gamma dimers. The structure, combined with biochemical and cell-based assays, demonstrates that IFN-gammaBP(ECTV) tetramers are required for efficient IFN-gamma antagonism.
Collapse
|
43
|
Hamma-Kourbali Y, Bernard-Pierrot I, Heroult M, Dalle S, Caruelle D, Milhiet PE, Fernig DG, Delbé J, Courty J. Inhibition of the mitogenic, angiogenic and tumorigenic activities of pleiotrophin by a synthetic peptide corresponding to its C-thrombospondin repeat-I domain. J Cell Physiol 2007; 214:250-9. [PMID: 17607711 DOI: 10.1002/jcp.21191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pleiotrophin (PTN), is a heparin-dependent growth factor involved in angiogenesis and tumor growth. PTN contains a thrombospondin repeat-I (TSR-I) motif in its two beta-sheet domains that are involved in its binding to heparin and its neurite outgrowth activity. Based on the importance of the binding of PTN to heparin in its dimerization and biological activities, we have designed two synthetic peptides, P(13-39) and P(65-97) corresponding to a part of the N-terminal and C-terminal TSR-I motif of PTN, respectively. P(65-97) inhibited the mitogenic, tumorigenic and angiogenic activities of PTN, as well as the mitogenic and an angiogenic activity of fibroblast growth factor-2 (FGF-2). However, P(65-97) had no effect on the mitogenic activity of epidermal growth factor, which does not bind heparin. P(65-97) but not P(13-39) inhibited the binding of PTN and to a lesser extent of FGF-2 to heparin using an immunoassay and an optical biosensor assay and bound directly to heparin with a K(d) of 120 nM. These findings suggest that P(65-97), containing amino acids 65-97 of the TSR-I motif of the C-terminal domain of PTN, inhibits the activities of PTN and FGF-2 by virtue of its ability to bind heparin very effectively and so compete with the growth factors for their polysaccharide co-receptor.
Collapse
Affiliation(s)
- Yamina Hamma-Kourbali
- Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), CNRS UMR 7149, Université Paris XII, Créteil Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Perez Sanchez H, Tatarenko K, Nigen M, Pavlov G, Imberty A, Lortat-Jacob H, Garcia de la Torre J, Ebel C. Organization of human interferon gamma-heparin complexes from solution properties and hydrodynamics. Biochemistry 2006; 45:13227-38. [PMID: 17073444 DOI: 10.1021/bi061490w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparan sulfate (HS) recognizes a variety of proteins, one of which is the pleiotropic cytokine IFN-gamma, and as such modulates many biological processes. IFN-gamma is a homodimer with a well-defined core and two flexible C-termini that constitute HS binding domains. We show here using molecular modeling that an extended IFN-gamma structure overlaps a HS fragment of 16 disaccharides (16 nm). Since a 21-24-disaccharide HS fragment was experimentally defined as the minimum size that interacts with IFN-gamma [Lortat-Jacob, H., Turnbull, J. E., and Grimaud, J. A. (1995) Biochem. J. 310 (Part 2), 497-505], this raises the question of the complexe organization. We combine analytical ultracentrifugation, size exclusion chromatography, and hydrodynamic bead modeling to characterize the complexes formed in solution with heparin oligosaccharides. For oligosaccharides of 14 and 20 nm, two types of complexes are formed with one IFN-gamma and one or two heparin molecules. Complexes consisting of two IFN-gamma and one or two heparin molecules are present for a fragment of 25 nm and aggregates for a fragment of 35 nm. The complexes are rather compact and can be formed without major conformational changes of the partners. The complex pattern of interaction is related to the size of the partners and their multiple binding possibilities. These various possibilities suggest networks of interactions at the crowded surface of the cells. Hydrodynamic methods used here proved to be very efficient tools for describing protein-HS complexes that, due to the intrinsic heterogeneity and flexibility of the partners, are otherwise very difficult to analyze.
Collapse
|
45
|
Ranjbaran H, Wang Y, Manes TD, Yakimov AO, Akhtar S, Kluger MS, Pober JS, Tellides G. Heparin Displaces Interferon-γ–Inducible Chemokines (IP-10, I-TAC, and Mig) Sequestered in the Vasculature and Inhibits the Transendothelial Migration and Arterial Recruitment of T Cells. Circulation 2006; 114:1293-300. [PMID: 16940188 DOI: 10.1161/circulationaha.106.631457] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Heparin, used clinically as an anticoagulant, also has antiinflammatory properties and has been described to inhibit interferon (IFN)-γ responses in endothelial cells. We investigated the effects of heparin on the IFN-γ–inducible chemokines IP-10/CXCL10, I-TAC/CXCL11, and Mig/CXCL9, which play important roles in the vascular recruitment of IFN-γ–producing Th1 cells through interactions with their cognate receptor, CXCR3.
Methods and Results—
Patients undergoing coronary artery bypass grafting were studied because coronary atherosclerosis is recognized as a Th1-type inflammatory disease and the subjects required systemic heparinization. Plasma levels of IP-10, I-TAC, and Mig increased immediately after heparin administration and diminished promptly after heparin antagonism with protamine. These effects were independent of detectable circulating IFN-γ or the IFN-γ inducer interleukin-12. We confirmed previous reports that heparin inhibits the IFN-γ–dependent production of CXCR3 chemokine ligands using atherosclerotic coronary arteries in organ culture. In addition to prolonged treatment decreasing chemokine secretion, heparin rapidly displaced membrane-associated IP-10 from cultured endothelial cells that did not express CXCR3 and reduced the IP-10–dependent transendothelial migration of T helper cells under conditions of venular shear stress. Finally, heparin administration to immunodeficient mouse hosts decreased both the recruitment and accumulation of memory T cells within allogeneic human coronary arteries.
Conclusions—
Besides inhibiting IFN-γ responses, heparin has further immunomodulatory effects by competing for binding with IP-10, I-TAC, and Mig on endothelial cells. Disruption of CXCR3
+
Th1 cell trafficking to arteriosclerotic arteries may contribute to the therapeutic efficacy of heparin in inflammatory arterial diseases, and nonanticoagulant heparin derivatives may represent a novel antiinflammatory strategy.
Collapse
Affiliation(s)
- Hooman Ranjbaran
- Department of Surgery, Yale University School of Medicine, New Haven, Conn, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In 1954, substances that protected cells from viral infection were discovered and named IFN (interferon). This family of cytokines, which were the first to be used in clinical therapy, is classified into type I and II IFNs. Type I mainly consists of IFNalpha and IFNbeta subtypes, which are structurally related and bind to a common receptor. IFNgamma, the sole type II IFN, is structurally unrelated, binds to a different receptor and, as a dimer, strongly interacts with HS (heparan sulphate). In addition to its antiviral activity, it modulates nearly all phases of immune and inflammatory responses. IFNgamma binding to HS controls the blood clearance, the subsequent tissue targeting and the local accumulation of the cytokine. It also regulates IFNgamma activity by a unique mechanism involving a controlled processing of the C-terminal peptide. The binding site encompasses an N-acetylated glucosamine-rich domain separating two highly sulphated sequences that each binds to one IFNgamma monomer. Based on this template, a set of glycoconjugate mimetics that would mimic the IFNgamma binding site has been synthesized. One of these molecules displays high affinity for the cytokine and inhibits binding to both HS and IFNgammaR (IFNgamma receptor), the cell-surface receptor. These results validate the HS structural determinants for IFNgamma recognition, and provide a new strategy to inhibit IFNgamma in a number of diseases in which the cytokine has been identified as a target.
Collapse
Affiliation(s)
- H Lortat-Jacob
- Institut de Biologie Structurale UMR 5075 CEA-CNRS-UJF, Grenoble, France.
| |
Collapse
|
47
|
Bode L, Freeze HH. Applied glycoproteomics—approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta Gen Subj 2006; 1760:547-59. [PMID: 16380211 DOI: 10.1016/j.bbagen.2005.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 11/04/2005] [Accepted: 11/07/2005] [Indexed: 12/31/2022]
Abstract
Protein-losing enteropathy (PLE), the loss of plasma proteins through the intestine, is a life-threatening symptom associated with seemingly unrelated conditions including Crohn's disease, congenital disorder of glycosylation, or Fontan surgery to correct univentricular hearts. Emerging commonalities between these and other disorders led us to hypothesize that PLE develops when genetic insufficiencies collide with simultaneous or sequential environmental insults. Most intriguing is the loss of heparan sulfate (HS) proteoglycans (HSPG) specifically from the basolateral surface of intestinal epithelial cells only during PLE episodes suggesting a direct link to protein leakage. Reasons for HSPG loss are unknown, but genetic insufficiencies affecting HSPG biosynthesis, trafficking, or degradation may be involved. Here, we describe cell-based assays we devised to identify key players contributing to protein leakage. Results from these assays confirm that HS loss directly causes protein leakage, but more importantly, it amplifies the effects of other factors, e.g., cytokines and increased pressure. Thus, HS loss appears to play a central role for PLE. To transfer our in vitro results back to the in vivo situation, we established methods to assess enteric protein leakage in mice and present several genetically deficient strains mimicking intestinal HS loss observed in PLE patients. Preliminary results indicate that mice with haploinsufficient genes involved in HS biosynthesis or HSPG trafficking develop intestinal protein leakage upon additional environmental stress. Our goal is to model PLE in vitro and in vivo to unravel the pathomechanisms underlying PLE, identify patients at risk, and provide them with a safe and effective therapy.
Collapse
Affiliation(s)
- Lars Bode
- Glycobiology and Carbohydrate Chemistry Program, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | | |
Collapse
|
48
|
Sarrazin S, Bonnaffé D, Lubineau A, Lortat-Jacob H. Heparan sulfate mimicry: a synthetic glycoconjugate that recognizes the heparin binding domain of interferon-gamma inhibits the cytokine activity. J Biol Chem 2005; 280:37558-64. [PMID: 16155294 DOI: 10.1074/jbc.m507729200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell-associated heparan sulfate (HS) is endowed with the remarkable ability to bind numerous proteins. As such, it represents a unique system that integrates signaling from circulating ligands with cellular receptors. This polysaccharide is extraordinary complex, and examples that define the structure-function relationship of HS are limited. In particular, it remains difficult to understand the structures by which HS interact with proteins. Among them, interferon-gamma (IFNgamma), a dimeric cytokine, binds to a complex oligosaccharide motif encompassing a N-acetylated glucosamine-rich domain and two highly sulfated sequences, each of which binds to one IFNgamma monomer. Based on this template, we have synthesized a set of glycoconjugate mimetics and evaluated their ability to interact with IFNgamma. One of these molecules, composed of two authentic N-sulfated octasaccharides linked to each other through a 50-Angstroms-long spacer termed 2O(10), displays high affinity for the cytokine and inhibits IFNgamma-HS binding with an IC(50) of 35-40 nm. Interestingly, this molecule also inhibits the binding of IFNgamma to its cellular receptor. Thus, in addition to its ability to delocalize the cytokine from cell surface-associated HS, this compound has direct anti-IFNgamma activity. Altogether, our results represent the first synthetic HS-like molecule that targets a cytokine, strongly validating the HS structural determinants for IFNgamma recognition, providing a new strategy to inhibit IFNgamma in a number of diseases in which the cytokine has been identified as a target, and reinforcing the view that it is possible to create"tailor-made"sequences based on the HS template to isolate therapeutic activities.
Collapse
Affiliation(s)
- Stéphane Sarrazin
- Institut de Biologie Structurale, Commissariat à l'Energie Atomique-CNRS, Université Joseph Fourier, Unité Mixte de Recherche 5075, Grenoble, France
| | | | | | | |
Collapse
|
49
|
Liang A, Chao Y, Liu X, Du Y, Wang K, Qian S, Lin B. Separation, identification, and interaction of heparin oligosaccharides with granulocyte-colony stimulating factor using capillary electrophoresis and mass spectrometry. Electrophoresis 2005; 26:3460-7. [PMID: 16100743 DOI: 10.1002/elps.200500115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A capillary electrophoresis (CE) method was developed for the separation of heparin oligosaccharides compatible to study the interactions between the oligosaccharides and granulocyte-colony stimulating factor (G-CSF). Unfractionated heparin was eliminitively degraded to heparin oligosaccharides by an endolytic heparinase. The degraded smaller oligosaccharides (M(r) < 1000) were baseline-separated by CE under a 50 mM phosphate buffer (pH 9.0) in 10 min. Standard heparin disaccharides and larger oligosaccharides (1000 < M(r) < 8000) were all separated under optimized separation conditions. Compared with standard heparin disaccharides, smaller oligosaccharides contained one nonsulfated, two monosulfated, and two disulfated disaccharides, but trisulfated disaccharides were not found. The smaller oligosaccharides were also identified and molecular mass was deduced by electrospray ionization-mass spectrometry (ESI-MS). Furthermore, interactions between G-CSF and the oligosaccharides were studied by using capillary zone electrophoresis (CZE) under the above separation conditions. It was found that larger oligosaccharides could interact with G-CSF while smaller oligosaccharides were not observed to bind to G-CSF under the experimental conditions. In conclusion, the purified heparinase could selectively degrade heparin into oligosaccharides and the interaction between G-CSF and heparin was correlated with the chain length of heparin.
Collapse
Affiliation(s)
- Aiye Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Liang A, He X, Du Y, Wang K, Fung Y, Lin B. Capillary zone electrophoresis characterization of low molecular weight heparin binding to interleukin 2. J Pharm Biomed Anal 2005; 38:408-13. [PMID: 15925240 DOI: 10.1016/j.jpba.2005.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/19/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
A method based on capillary zone electrophoresis (CZE) was used to study the interaction between low molecular weight heparin (LMWH) and interleukin 2 (IL-2). The results showed that the increase of the concentration of LMWH led to the decrease of the peak height and the increase of the peak width of IL-2, but the peak areas were kept constant. The binding constant of IL-2 with LMWH was calculated as 1.2 x 10(6)M(-1) by Scatchard analysis, which is in good agreement with the results found in the references using enzyme-linked immunosorbent assay (ELISA). The results demonstrated that the interaction between IL-2 and LMWH is of fast on-and-off kinetic binding reaction. CZE might be used to study not only slow on-and-off rates interactions, but also fast on-and-off rates ones. The binding constant can be calculated easily, and the method can be applied to study a wide range of heparin-protein interactions.
Collapse
Affiliation(s)
- Aiye Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | | | |
Collapse
|