1
|
Ikushiro H, Honda T, Murai Y, Murakami T, Takahashi A, Sawai T, Goto H, Ikushiro SI, Miyahara I, Hirabayashi Y, Kamiya N, Monde K, Yano T. Racemization of the substrate and product by serine palmitoyltransferase from Sphingobacterium multivorum yields two enantiomers of the product from d-serine. J Biol Chem 2024; 300:105728. [PMID: 38325740 PMCID: PMC10912632 DOI: 10.1016/j.jbc.2024.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.
Collapse
Affiliation(s)
- Hiroko Ikushiro
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Takumi Honda
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan; Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Taiki Murakami
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Aya Takahashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Taiki Sawai
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Haruna Goto
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Shin-Ichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Ikuko Miyahara
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Yoshio Hirabayashi
- RIKEN Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan; Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Nobuo Kamiya
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, Osaka, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takato Yano
- Department of Biochemistry, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| |
Collapse
|
2
|
Jamjoum R, Majumder S, Issleny B, Stiban J. Mysterious sphingolipids: metabolic interrelationships at the center of pathophysiology. Front Physiol 2024; 14:1229108. [PMID: 38235387 PMCID: PMC10791800 DOI: 10.3389/fphys.2023.1229108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.
Collapse
Affiliation(s)
- Rama Jamjoum
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Saurav Majumder
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States
| | - Batoul Issleny
- Department of Pharmacy, Birzeit University, West Bank, Palestine
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
3
|
Wang D, Han S, Lv G, Hu Y, Zhuo W, Zeng Z, Tang J, Huang Y, Wang F, Wang J, Zhao Y, Zhao G. Pancreatic Acinar Cells-Derived Sphingosine-1-Phosphate Contributes to Fibrosis of Chronic Pancreatitis via Inducing Autophagy and Activation of Pancreatic Stellate Cells. Gastroenterology 2023; 165:1488-1504.e20. [PMID: 37634735 DOI: 10.1053/j.gastro.2023.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND & AIMS Studies have demonstrated that activated pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis (CP); however, the precise mechanism for PSCs activation has not been fully elucidated. We analyzed the role of injured pancreatic acinar cells (iPACs) in the activation of PSCs of CP. METHODS Sphingosine kinase 1 (SPHK1)/sphingosine-1-phosphate (S1P) signaling was evaluated in experimental CP induced by cerulein injection or pancreatic duct ligation, as well as in PACs injured by cholecystokinin. The activation of PSCs and pancreatic fibrosis in CP samples was evaluated by immunohistochemical and immunofluorescence analyses. In vitro coculture assay of iPACs and PSCs was created to evaluate the effect of the SPHK1/S1P pathway and S1P receptor 2 (SIPR2) on autophagy and activation of PSCs. The pathogenesis of CP was assessed in SPHK1-/- mice or PACs-specific SPHK1-knockdown mice with recombinant adeno-associated virus serotypes 9-SPHK1-knockdown, as well as in mice treated with inhibitor of SPHK1 and S1P receptor 2 (S1PR2). RESULTS SPHK1/S1P was remarkably increased in iPACs and acinar cells in pancreatic tissues of CP mice. Meanwhile, the pathogenesis, fibrosis, and PSCs activation of CP was significantly prevented in SPHK1-/- mice and recombinant adeno-associated virus serotypes 9-SPHK1-knockdown mice. Meanwhile, iPACs obviously activated PSCs, which was prevented by SPHK1 knockdown in iPACs. Moreover, iPACs-derived S1P specifically combined to S1PR2 of PSCs, by which modulated 5' adenosine monophosphate-activated protein kinase/mechanistic target of rapamycin pathway and consequently induced autophagy and activation of PSCs. Furthermore, hypoxia-inducible factor 1-α and -2α promoted SPHK1 transcription of PACs under hypoxia conditions, which is a distinct characteristic of the CP microenvironment. Coincidently, inhibition of SPHK1 and S1PR2 activity with inhibitor PF-543 and JTE-013 obviously impeded pancreatic fibrogenesis of CP mice. CONCLUSIONS The activated SPHK1/S1P pathway in iPACs induces autophagy and activation of PSCs by regulating the S1PR2/5' adenosine monophosphate-activated protein kinase/mammalian target of rapamycin pathway, which promotes fibrogenesis of CP. The hypoxia microenvironment might contribute to the cross talk between PACs and PSCs in pathogenesis of CP.
Collapse
Affiliation(s)
- Decai Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Shengbo Han
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Guozheng Lv
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yuhang Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Wenfeng Zhuo
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Zhu Zeng
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Jiang Tang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yan Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Fan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Jie Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Yong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan China.
| |
Collapse
|
4
|
Franco M, Cano-Martínez A, Ramos-Godínez MDP, López-Marure R, Donis-Maturano L, Sosa JS, Bautista-Pérez R. Immunolocalization of Sphingolipid Catabolism Enzymes along the Nephron: Novel Early Urinary Biomarkers of Renal Damage. Int J Mol Sci 2023; 24:16633. [PMID: 38068956 PMCID: PMC10706607 DOI: 10.3390/ijms242316633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.
Collapse
Affiliation(s)
- Martha Franco
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Agustina Cano-Martínez
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | | | - Rebeca López-Marure
- Department of Physiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (A.C.-M.); (R.L.-M.)
| | - Luis Donis-Maturano
- Faculty of Higher Studies Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico;
| | - José Santamaría Sosa
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico; (M.F.)
| | - Rocio Bautista-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| |
Collapse
|
5
|
Kim KM, Shin EJ, Yang JH, Ki SH. Integrative roles of sphingosine kinase in liver pathophysiology. Toxicol Res 2023; 39:549-564. [PMID: 37779595 PMCID: PMC10541397 DOI: 10.1007/s43188-023-00193-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Bioactive sphingolipids and enzymes that metabolize sphingolipid-related substances have been considered as critical messengers in various signaling pathways. One such enzyme is the crucial lipid kinase, sphingosine kinase (SphK), which mediates the conversion of sphingosine to the potent signaling substance, sphingosine-1-phosphate. Several studies have demonstrated that SphK metabolism is strictly regulated to maintain the homeostatic balance of cells. Here, we summarize the role of SphK in the course of liver disease and illustrate its effects on both physiological and pathological conditions of the liver. SphK has been implicated in a variety of liver diseases, such as steatosis, liver fibrosis, hepatocellular carcinoma, and hepatic failure. This study may advance the understanding of the cellular and molecular foundations of liver disease and establish therapeutic approaches via SphK modulation.
Collapse
Affiliation(s)
- Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452 Republic of Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do 58245 Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452 Republic of Korea
| |
Collapse
|
6
|
Okundaye B, Biyani N, Moitra S, Zhang K. The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major. Sci Rep 2022; 12:16064. [PMID: 36163400 PMCID: PMC9513092 DOI: 10.1038/s41598-022-20249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Sphingosine-1-phosphate phosphatase (SPP) catalyzes the dephosphorylation of sphingosine-1-phosphate (S1P) into sphingosine, the reverse reaction of sphingosine kinase. In mammals, S1P acts as a potent bioactive molecule regulating cell proliferation, migration, and immunity. In Leishmania, S1P production is crucial for the synthesis of ethanolamine and choline phospholipids, and cell survival under stress conditions. To better understand the roles of S1P, we characterized a SPP ortholog in Leishmania major which displays activity towards S1P but not structurally related lipids such as ceramide-1-phosphate or lysophosphatidic acid. While this enzyme is found in the endoplasmic reticulum in mammalian cells, L. major SPP is localized at the Golgi apparatus. Importantly, chromosomal SPP alleles cannot be deleted from L. major even with the addition of a complementing episome, suggesting that endogenously expressed SPP is essential. Finally, SPP overexpression in L. major leads to a slower growth rate and heightened sensitivity to brefeldin A and sodium orthovanadate. Together, these results suggest that the equilibrium between S1P and sphingosine is vital for the function of Golgi apparatus in Leishmania.
Collapse
Affiliation(s)
- Brian Okundaye
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, 79409, USA
| | - Neha Biyani
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Lantern Pharma Inc., 1920 McKinney Ave., Dallas, TX, 75201, USA
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
7
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
8
|
Peters S, Fohmann I, Rudel T, Schubert-Unkmeir A. A Comprehensive Review on the Interplay between Neisseria spp. and Host Sphingolipid Metabolites. Cells 2021; 10:cells10113201. [PMID: 34831424 PMCID: PMC8623382 DOI: 10.3390/cells10113201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/01/2023] Open
Abstract
Sphingolipids represent a class of structural related lipids involved in membrane biology and various cellular processes including cell growth, apoptosis, inflammation and migration. Over the past decade, sphingolipids have become the focus of intensive studies regarding their involvement in infectious diseases. Pathogens can manipulate the sphingolipid metabolism resulting in cell membrane reorganization and receptor recruitment to facilitate their entry. They may recruit specific host sphingolipid metabolites to establish a favorable niche for intracellular survival and proliferation. In contrast, some sphingolipid metabolites can also act as a first line defense against bacteria based on their antimicrobial activity. In this review, we will focus on the strategies employed by pathogenic Neisseria spp. to modulate the sphingolipid metabolism and hijack the sphingolipid balance in the host to promote cellular colonization, invasion and intracellular survival. Novel techniques and innovative approaches will be highlighted that allow imaging of sphingolipid derivatives in the host cell as well as in the pathogen.
Collapse
Affiliation(s)
- Simon Peters
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
| | - Thomas Rudel
- Chair of Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany;
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080 Wuerzburg, Germany; (S.P.); (I.F.)
- Correspondence: ; Tel.: +49-931-31-46721; Fax: +49-931-31-46445
| |
Collapse
|
9
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
10
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Chee-Onn Leong,
| |
Collapse
|
11
|
Abstract
It is a great honor to be asked to write a "Reflections" article by one of the true icons of biochemistry, Herb Tabor. I felt humbled, especially since it follows many written by biochemists I admire and whose contributions have shaped major advances in biochemistry and molecular biology in the last century. Here I present my personal reflections on my adventure with the bioactive sphingolipid metabolite sphingosine-1-phosphate intertwined with those of my family life as a wife, mother, and grandmother. These reflections brought back many memories of events in my early career that played significant roles in determining the path I have taken for more than 40 years and that brought much fun and satisfaction into my life. It has been an exciting journey so far, with many surprises along the way, that still continues.
Collapse
Affiliation(s)
- Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298
| |
Collapse
|
12
|
Adams DR, Pyne S, Pyne NJ. Structure-function analysis of lipid substrates and inhibitors of sphingosine kinases. Cell Signal 2020; 76:109806. [PMID: 33035646 DOI: 10.1016/j.cellsig.2020.109806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/21/2022]
Abstract
The sphingosine kinases, SK1 and SK2, catalyse the formation of the bioactive signalling lipid, sphingosine 1-phosphate (S1P), from sphingosine. SK1 and SK2 differ in their subcellular localisation, trafficking and regulation, but the isoforms are also distinct in their selectivity toward naturally occurring and synthetic ligands as substrates and inhibitors. To date, only the structure of SK1 has been determined, and a structural basis for selectivity differences in substrate handling by SK2 has yet to be established. Here we present a structural rationale, based on homology modelling and ligand docking, to account for the capacity of SK2, but not SK1, to efficiently process the pharmacologically active substances, fingolimod (FTY720) and safingol, as substrates. We propose that two key residue differences in hSK2 (Ser305/Thr584 in place of Ala175/Ala339 in hSK1) facilitate conformational switching in the lipid head group anchor residue, Asp308 (corresponding to Asp178 in hSK1), to accommodate substrate diversity for SK2. Our analysis accounts for the contrasting behaviour of fingolimod and safingol as non-turnover inhibitors of SK1, but substrates for SK2, and the observed stereoselectivity for phosphorylation of the pro-S hydroxymethyl group of fingolimod to generate (S)-FTY720-P in vivo. We also rationalise why methylation of the pro-R hydroxymethyl of FTY720 switches the behaviour of the resulting compound, (R)-FTY720 methyl ether (ROMe), to SK2-selective inhibition. Whilst the pharmacological significance of (S)-FTY720-P is firmly established, as the active principle of fingolimod in treating relapsing-remitting multiple sclerosis, the potential importance of SK-mediated phosphorylation of other substrates, such as safingol and non-canonical naturally occuring substrates such as (4E,nZ)-sphingadienes, is less widely appreciated. Thus, the contribution of SK2-derived safingol 1-phosphate to the anti-cancer activity of safingol should be considered. Similarly, the biological role of sphingadiene 1-phosphates derived from plant-based dietary sphingadienes, which we also show here are substrates for both SK1 and SK2, merits investigation.
Collapse
Affiliation(s)
- David R Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE Scotland, UK.
| |
Collapse
|
13
|
Hengst JA, Dick TE, Smith CD, Yun JK. Analysis of selective target engagement by small-molecule sphingosine kinase inhibitors using the Cellular Thermal Shift Assay (CETSA). Cancer Biol Ther 2020; 21:841-852. [PMID: 32835586 DOI: 10.1080/15384047.2020.1798696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
The recently renewed interest in scientific rigor and reproducibility is of critical importance for both scientists developing new targeted small-molecule inhibitors and those employing these molecule in cellular studies, alike. While off-target effects are commonly considered as limitations for any given small-molecule inhibitor, the ability of a given compound to distinguish between enzyme isoforms is often neglected when employing compounds in cellular studies. To call attention to this issue, we have compared the results of an assay for "direct target engagement", the Cellular Thermal Shift Assay (CETSA), to the published isoform selectivity of 12 commercially available sphingosine kinase 1 and 2 (SphK 1 and SphK2) inhibitors. Our results suggest that, at the concentrations commonly employed in cellular assay systems, none of the tested SKIs can be considered isoform selective. Thus, caution and complimentary assay strategies must be employed to fully discern isoform selectivity for the SphKs. Moreover, caution must be employed by the scientific community as a whole when designing experiments that aim to discern the effects of one enzyme isoform versus another to ensure that the concentration ranges used are able to distinguish isoform selectivity.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Taryn E Dick
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Charles D Smith
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Jong K Yun
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| |
Collapse
|
14
|
Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082062. [PMID: 32722626 PMCID: PMC7463798 DOI: 10.3390/cancers12082062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy. However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.
Collapse
|
15
|
Couttas TA, Rustam YH, Song H, Qi Y, Teo JD, Chen J, Reid GE, Don AS. A Novel Function of Sphingosine Kinase 2 in the Metabolism of Sphinga-4,14-Diene Lipids. Metabolites 2020; 10:metabo10060236. [PMID: 32521763 PMCID: PMC7344861 DOI: 10.3390/metabo10060236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
The number, position, and configuration of double bonds in lipids affect membrane fluidity and the recruitment of signaling proteins. Studies on mammalian sphingolipids have focused on those with a saturated sphinganine or mono-unsaturated sphingosine long chain base. Using high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS), we observed a marked accumulation of lipids containing a di-unsaturated sphingadiene base in the hippocampus of mice lacking the metabolic enzyme sphingosine kinase 2 (SphK2). The double bonds were localized to positions C4–C5 and C14–C15 of sphingadiene using ultraviolet photodissociation-tandem mass spectrometry (UVPD-MS/MS). Phosphorylation of sphingoid bases by sphingosine kinase 1 (SphK1) or SphK2 forms the penultimate step in the lysosomal catabolism of all sphingolipids. Both SphK1 and SphK2 phosphorylated sphinga-4,14-diene as efficiently as sphingosine, however deuterated tracer experiments in an oligodendrocyte cell line demonstrated that ceramides with a sphingosine base are more rapidly metabolized than those with a sphingadiene base. Since SphK2 is the dominant sphingosine kinase in brain, we propose that the accumulation of sphingadiene-based lipids in SphK2-deficient brains results from the slower catabolism of these lipids, combined with a bottleneck in the catabolic pathway created by the absence of SphK2. We have therefore uncovered a previously unappreciated role for SphK2 in lipid quality control.
Collapse
Affiliation(s)
- Timothy Andrew Couttas
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yepy Hardi Rustam
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
| | - Huitong Song
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Yanfei Qi
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jonathan David Teo
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
| | - Gavin Edmund Reid
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; (Y.H.R.); (G.E.R.)
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony Simon Don
- Centenary Institute, The University of Sydney, Camperdown, NSW 2006, Australia; (T.A.C.); (H.S.); (Y.Q.); (J.D.T.); (J.C.)
- NHMRC Clinical Trials Centre, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence: ; Tel.: +61-28627-5578
| |
Collapse
|
16
|
Synthesis and biological evaluation of 2-epi-jaspine B analogs as selective sphingosine kinase 1 inhibitors. Bioorg Chem 2020; 98:103369. [DOI: 10.1016/j.bioorg.2019.103369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
|
17
|
Alganga H, Almabrouk TAM, Katwan OJ, Daly CJ, Pyne S, Pyne NJ, Kennedy S. Short Periods of Hypoxia Upregulate Sphingosine Kinase 1 and Increase Vasodilation of Arteries to Sphingosine 1-Phosphate (S1P) via S1P 3. J Pharmacol Exp Ther 2019; 371:63-74. [PMID: 31371480 DOI: 10.1124/jpet.119.257931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase [(SK), isoforms SK1 and SK2] catalyzes the formation of the bioactive lipid, sphingosine 1-phosphate (S1P). This can be exported from cells and bind to S1P receptors to modulate vascular function. We investigated the effect of short-term hypoxia on SK1 expression and the response of arteries to S1P. SK1 expression in rat aortic and coronary artery endothelial cells was studied using immunofluorescence and confocal microscopy. Responses of rat aortic rings were studied using wire myography and reversible hypoxia induced by bubbling myography chambers with 95% N2:5% CO2 Inhibitors were added 30 minutes before induction of hypoxia. S1P induced endothelium-dependent vasodilation via activation of S1P3 receptors and generation of nitric oxide. Hypoxia significantly increased relaxation to S1P and this was attenuated by (2R)-1-[[(4-[[3-methyl-5-[(phenylsulfonyl)methyl] phenoxy]methyl]phenyl]methyl]-2-pyrrolidinemethanol [(PF-543), SK1 inhibitor] but not (R)-FTY720 methyl ether [(ROMe), SK2 inhibitor]. Hypoxia also increased vessel contractility to the thromboxane mimetic, 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α, which was further increased by PF-543 and ROMe. Hypoxia upregulated SK1 expression in aortic and coronary artery endothelial cells and this was blocked by PF-543 and 2-(p-hydroxyanilino)-4-(p-chlorophenyl)thiazole [(SKi), SK1/2 inhibitor]. The effects of PF-543 and SKi were associated with increased proteasomal/lysosomal degradation of SK1. A short period of hypoxia increases the expression of SK1, which may generate S1P to oppose vessel contraction. Under hypoxic conditions, upregulation of SK1 is likely to lead to increased export of S1P from the cell and vasodilation via activation of endothelial S1P3 receptors. These data have significance for perfusion of tissue during episodes of ischemia.
Collapse
Affiliation(s)
- H Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - T A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - O J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - C J Daly
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - S Pyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - N J Pyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| | - S Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom (H.A., T.A.M.A., O.J.K., C.J.D., S.K.); Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, United Kingdom (S.P., N.J.P.); Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya (H.A., T.A.M.A.); and Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq (O.J.K.)
| |
Collapse
|
18
|
Cho HE, Maurer BJ, Reynolds CP, Kang MH. Hydrophilic interaction liquid chromatography-tandem mass spectrometric approach for simultaneous determination of safingol and D-erythro-sphinganine in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1112:16-23. [PMID: 30836314 DOI: 10.1016/j.jchromb.2019.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
A simple and specific hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method was developed for the simultaneous determination of C18-L-threo-sphinganine (safingol, an anti-neoplastic in phase I trials) and its diastereomer, C18-D-erythro-sphinganine (sphinganine), in human plasma. Sample pretreatment involved a protein precipitation with methanol using 25 μL aliquots of plasma. Chromatographic separation of the diastereomers and C17-D-erythro-sphinganine, an internal standard, was achieved on a Xbridge HILIC (3.5 μm, 100 × 2.1 mm) using isocratic elution with the mobile phase of 2 mM ammonium bicarbonate in water (pH 8.3) and acetonitrile at a flow rate of 0.3 mL/min. Electrospray ionization (ESI) mass spectrometry was operated in the positive ion mode with multiple reaction monitoring (MRM). The calibration curves obtained were linear over the concentration range of 0.2-100 ng/mL with a lower limit of quantification of 0.2 ng/mL. The relative standard deviation of intra-day and inter-day precision was below 8.27%, and the accuracy ranged from 92.23 to 110.06%. The extraction recoveries were found to be higher than 93.22% and IS-normalized matrix effect was higher than 90.92%. The analytes were stable for the durations of the stability studies. The validated method was successfully applied to the analyses of pharmacokinetic samples from patients treated with safingol and all-trans-N-(4-hydroxyphenyl)retinamide; (fenretinide, 4-HPR) in a current phase I clinical trial (SPOC-2010-002, ClinicalTrials.gov Identifier: NCT01553071).
Collapse
Affiliation(s)
- Hwang Eui Cho
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Barry J Maurer
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - C Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Min H Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
19
|
Greig FH, Nather K, Ballantyne MD, Kazi ZH, Alganga H, Ewart MA, Zaborska KE, Fertig B, Pyne NJ, Pyne S, Kennedy S. Requirement for sphingosine kinase 1 in mediating phase 1 of the hypotensive response to anandamide in the anaesthetised mouse. Eur J Pharmacol 2018; 842:1-9. [PMID: 30359564 PMCID: PMC6318480 DOI: 10.1016/j.ejphar.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 01/30/2023]
Abstract
In the isolated rat carotid artery, the endocannabinoid anandamide induces endothelium-dependent relaxation via activation of the enzyme sphingosine kinase (SK). This generates sphingosine-1-phosphate (S1P) which can be released from the cell and activates S1P receptors on the endothelium. In anaesthetised mice, anandamide has a well-characterised triphasic effect on blood pressure but the contribution of SK and S1P receptors in mediating changes in blood pressure has never been studied. Therefore, we assessed this in the current study. The peak hypotensive response to 1 and 10 mg/kg anandamide was measured in control C57BL/6 mice and in mice pretreated with selective inhibitors of SK1 (BML-258, also known as SK1-I) or SK2 ((R)-FTY720 methylether (ROMe), a dual SK1/2 inhibitor (SKi) or an S1P1 receptor antagonist (W146). Vasodilator responses to S1P were also studied in isolated mouse aortic rings. The hypotensive response to anandamide was significantly attenuated by BML-258 but not by ROMe. Antagonising S1P1 receptors with W146 completely blocked the fall in systolic but not diastolic blood pressure in response to anandamide. S1P induced vasodilation in denuded aortic rings was blocked by W146 but caused no vasodilation in endothelium-intact rings. This study provides evidence that the SK1/S1P regulatory-axis is necessary for the rapid hypotension induced by anandamide. Generation of S1P in response to anandamide likely activates S1P1 to reduce total peripheral resistance and lower mean arterial pressure. These findings have important implications in our understanding of the hypotensive and cardiovascular actions of cannabinoids.
Collapse
Affiliation(s)
- Fiona H Greig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Margaret D Ballantyne
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Zeshan H Kazi
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Husam Alganga
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Marie-Ann Ewart
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Karolina E Zaborska
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Bracy Fertig
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK
| | - Nigel J Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy and Biomedical Science, 161 Cathedral Street, University of Strathclyde, Glasgow G4 0RE, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
20
|
Zheng X, Li W, Ren L, Liu J, Pang X, Chen X, Kang D, Wang J, Du G. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: Potential target for anticancer therapy. Pharmacol Ther 2018; 195:85-99. [PMID: 30347210 DOI: 10.1016/j.pharmthera.2018.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine and sphingosine-1-phosphate (S1P), play many important roles in cellular activities. Ceramide and sphingosine inhibit cell proliferation and induce cell apoptosis while S1P has the opposite effect. Maintaining a metabolic balance of sphingolipids is essential for growth and development of cells. Sphingosine kinase (SPHK) is an important regulator for keeping this balance. It controls the level of S1P and plays important roles in proliferation, migration, and invasion of cancer cells and tumor angiogenesis. There are two isoenzymes of sphingosine kinase, SPHK1 and SPHK2. SPHK1 is ubiquitously expressed in most cancers where it promotes survival and proliferation, while SPHK2 is restricted to only certain tissues and its functions are not well characterized. SPHK1 is currently considered as a novel target for the treatment of cancers. Targeting SPHK1 would provide new strategies for cancer treatment and improve the prognosis of cancer patients. Here we review and summarize the current research findings on the SPHK1-S1P axis in cancer from many aspects including structure, expression, regulation, mechanism, and potential inhibitors.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiaocong Pang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - De Kang
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
21
|
Cao M, Ji C, Zhou Y, Huang W, Ni W, Tong X, Wei JF. Sphingosine kinase inhibitors: A patent review. Int J Mol Med 2018; 41:2450-2460. [PMID: 29484372 DOI: 10.3892/ijmm.2018.3505] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2016] [Accepted: 01/30/2018] [Indexed: 11/05/2022] Open
Abstract
Sphingosine kinases (SphKs) catalyze the conversion of the sphingosine to the promitogenic/migratory product, sphingosine-1-phosphate (S1P). SphK/S1P pathway has been linked to the progression of cancer and various other diseases including allergic inflammatory disease, cardiovascular diseases, rejection after transplantation, the central nervous system, and virus infections. Therefore, SphKs represent potential new targets for developing novel therapeutics for these diseases. The history and development of SphK inhibitors are discussed, summarizing SphK inhibitors by their structures, and describing some applications of SphK inhibitors. We concluded: i) initial SphK inhibitors based on sphingosine have low specificity with several important off-targets. Identification the off-targets that would work synergistically with SphKs, and developing compounds that target the unique C4 domain of SphKs should be the focus of future studies. ii) The modifications of SphK inhibitors, which are devoted to increasing the selectivity to one of the two isoforms, now focus on the alkyl length, the spacer between the head and linker rings, and the insertion and the position of lipidic group in tail region. iii) SphK/S1P signaling pathway holds therapeutic values for many diseases. To find the exact function of each isoform of SphKs increasing the number of SphK inhibitor clinical trials is necessary.
Collapse
Affiliation(s)
- Mengda Cao
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanjun Zhou
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Dongcheng, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
22
|
Funaki M, Kitabayashi J, Shimakami T, Nagata N, Sakai Y, Takegoshi K, Okada H, Murai K, Shirasaki T, Oyama T, Yamashita T, Ota T, Takuwa Y, Honda M, Kaneko S. Peretinoin, an acyclic retinoid, inhibits hepatocarcinogenesis by suppressing sphingosine kinase 1 expression in vitro and in vivo. Sci Rep 2017; 7:16978. [PMID: 29208982 PMCID: PMC5717167 DOI: 10.1038/s41598-017-17285-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Sphingosine-1-phospate is a potent bioactive lipid metabolite that regulates cancer progression. Because sphingosine kinase 1 and sphingosine kinase 2 (SPHK 1/2) are both essential for sphingosine-1-phospate production, they could be a therapeutic target in various cancers. Peretinoin, an acyclic retinoid, inhibits post-therapeutic recurrence of hepatocellular carcinoma via unclear mechanisms. In this study, we assessed effects of peretinoin on SPHK expression and liver cancer development in vitro and in vivo. We examined effects of peretinoin on expression, enzymatic and promoter activity of SPHK1 in a human hepatoma cell line, Huh-7. We also investigated effects of SPHK1 on hepatocarcinogenesis induced by diethylnitrosamine using SPHK1 knockout mice. Peretinoin treatment of Huh-7 cells reduced mRNA levels, protein expression and enzymatic activity of SPHK1. Peretinoin reduced SPHK1 promoter activity; this effect of peretinoin was blocked by overexpression of Sp1, a transcription factor. Deletion of all Sp1 binding sites within the SPHK1 promoter region abolished SPHK1 promoter activity, suggesting that peretinoin reduced mRNA levels of SPHK1 via Sp1. Additionally, diethylnitrosamine-induced hepatoma was fewer and less frequent in SPHK1 knockout compared to wild-type mice. Our data showed crucial roles of SPHK1 in hepatocarcinogenesis and suggests that peretinoin prevents hepatocarcinogenesis by suppressing mRNA levels of SPHK1.
Collapse
Affiliation(s)
- Masaya Funaki
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Juria Kitabayashi
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuriko Sakai
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kai Takegoshi
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeru Oyama
- Department of Molecular and Cellular Pathology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
23
|
Kitchen SA, Poole AZ, Weis VM. Sphingolipid Metabolism of a Sea Anemone Is Altered by the Presence of Dinoflagellate Symbionts. THE BIOLOGICAL BULLETIN 2017; 233:242-254. [PMID: 29553817 DOI: 10.1086/695846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
In host-microbe interactions, signaling lipids function in interpartner communication during both the establishment and maintenance of associations. Previous evidence suggests that sphingolipids play a role in the mutualistic cnidarian-Symbiodinium symbiosis. Exogenously applied sphingolipids have been shown to alter this partnership, though endogenous host regulation of sphingolipids by the sphingosine rheostat under different symbiotic conditions has not been characterized. The rheostat regulates levels of pro-survival sphingosine-1-phosphate (S1P) and pro-apoptotic sphingosine (Sph) through catalytic activities of sphingosine kinase (SPHK) and S1P phosphatase (SGPP). The role of the rheostat in recognition and establishment of cnidarian-Symbiodinium symbiosis was investigated in the sea anemone Aiptasia pallida by measuring gene expression, protein levels, and sphingolipid metabolites in symbiotic, aposymbiotic, and newly recolonized anemones. Comparison of two host populations showed that symbiotic animals from one population had lower SGPP gene expression and Sph lipid concentrations compared to aposymbiotic animals, while the other population had higher S1P concentrations than their aposymbiotic counterparts. In both populations, the host rheostat trended toward host cell survival in the presence of symbionts. Furthermore, upregulation of both rheostat enzymes on the first day of host recolonization by symbionts suggests a role for the rheostat in host-symbiont recognition during symbiosis onset. Collectively, these data suggest a regulatory role of sphingolipid signaling in cnidarian-Symbiodinium symbiosis and symbiont uptake.
Collapse
Key Words
- Ct, cycle threshold
- GMP, Gisele Muller-Parker population
- LPS, lipopolysaccharide
- MAMP, microbe-associated molecular pattern
- NSL, no symbionts + light treatment group
- S1P, sphingosine-1-phosphate
- SD, symbionts + dark treatment group
- SGPP, sphingosine-1-phosphate phosphatase
- SL, symbionts + light treatment group
- SPHK, sphingosine kinase
- Sph, sphingosine
- VWA, Weis Lab population A
- qPCR, quantitative polymerase chain reaction
- rt, room temperature
Collapse
|
24
|
Bao Y, Guo Y, Zhang C, Fan F, Yang W. Sphingosine Kinase 1 and Sphingosine-1-Phosphate Signaling in Colorectal Cancer. Int J Mol Sci 2017; 18:ijms18102109. [PMID: 28991193 PMCID: PMC5666791 DOI: 10.3390/ijms18102109] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2017] [Revised: 09/23/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingosine kinase 1 (Sphk1) is a highly conserved lipid kinase that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). Growing studies have demonstrated that Sphk1 is overexpressed in various types of solid cancers and can be induced by growth factors, cytokines, and carcinogens, leading to the increase of S1P production. Subsequently, the increased Sphk1/S1P facilitates cancer cell proliferation, mobility, angiogenesis, invasion, and metastasis. Therefore, Sphk1/S1P signaling plays oncogenic roles. This review summarizes the features of Sphk1/S1P signaling and their functions in colorectal cancer cell growth, tumorigenesis, and metastasis, as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Yonghua Bao
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Yongchen Guo
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
| | - Chenglan Zhang
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Fenghua Fan
- Department of Nursing, Health Professional College of Heilongjiang Province, Beian 164000, China.
| | - Wancai Yang
- Institute of Precision Medicine, Jining Medical University, Jining 272067, China.
- Department of Pathology, University of Illinois at Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
25
|
Induction of autophagy by sphingosine kinase 1 inhibitor PF-543 in head and neck squamous cell carcinoma cells. Cell Death Discov 2017; 3:17047. [PMID: 29109864 PMCID: PMC5554793 DOI: 10.1038/cddiscovery.2017.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2017] [Revised: 05/12/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
Sphingosine kinase 1 (SphK1) overexpressed in head and neck squamous cell carcinoma (SCC) regulates tumor growth. The effects of PF-543, a specific SphK1 inhibitor, on human SCC cells were examined. The proportion of viable cells after PF-543 treatment decreased in a time- and dose-dependent manner, and cell death occurred in SphK1-expressing SCC cells. Flow cytometry analysis revealed that PF-543 induced both necrosis and apoptosis. PF-543 also induced granular accumulation of LC3 and conversion from LC3-I to LC3-II, which was blocked by autophagy inhibitors, wortmannin, 3-methyladenine (3-MA), and bafilomycin A1. Treatment of head and neck SCC cells with autophagy inhibitors and PF-543 increased the proportion of cells with necrosis and apoptosis, indicating that autophagy acts to promote cell survival. Reactive oxygen species (ROS) scavenger reduced the cytotoxicity of PF-543. These results demonstrated that PF-543 induces apoptosis, necrosis, and autophagy in human head and neck SCC cells, and that autophagy antagonizes either necrosis or apoptosis.
Collapse
|
26
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
27
|
Sphingosine-1-phosphate promotes erythrocyte glycolysis and oxygen release for adaptation to high-altitude hypoxia. Nat Commun 2016; 7:12086. [PMID: 27417539 PMCID: PMC4947158 DOI: 10.1038/ncomms12086] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2015] [Accepted: 05/26/2016] [Indexed: 12/19/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive signalling lipid highly enriched in mature erythrocytes, with unknown functions pertaining to erythrocyte physiology. Here by employing nonbiased high-throughput metabolomic profiling, we show that erythrocyte S1P levels rapidly increase in 21 healthy lowland volunteers at 5,260 m altitude on day 1 and continue increasing to 16 days with concurrently elevated erythrocyte sphingonisne kinase 1 (Sphk1) activity and haemoglobin (Hb) oxygen (O2) release capacity. Mouse genetic studies show that elevated erythrocyte Sphk1-induced S1P protects against tissue hypoxia by inducing O2 release. Mechanistically, we show that intracellular S1P promotes deoxygenated Hb anchoring to the membrane, enhances the release of membrane-bound glycolytic enzymes to the cytosol, induces glycolysis and thus the production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific glycolytic intermediate, which facilitates O2 release. Altogether, we reveal S1P as an intracellular hypoxia-responsive biolipid promoting erythrocyte glycolysis, O2 delivery and thus new therapeutic opportunities to counteract tissue hypoxia. The presence of the signalling lipid Sphingosine 1-phosphate (S1P) in erythrocytes has unclear physiological implications. Here the authors show that the S1P-generating enzyme Sphingosine kinase type 1 and its product S1P play an important role in the red blood cell adaptation to hypoxic environments in mice and humans.
Collapse
|
28
|
Sanagawa A, Iwaki S, Asai M, Sakakibara D, Norimoto H, Sobel BE, Fujii S. Sphingosine 1‑phosphate induced by hypoxia increases the expression of PAI‑1 in HepG2 cells via HIF‑1α. Mol Med Rep 2016; 14:1841-8. [PMID: 27357063 DOI: 10.3892/mmr.2016.5451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2016] [Accepted: 05/23/2016] [Indexed: 11/06/2022] Open
Abstract
Our group has recently reported that in the immortal human HepG2 liver cell line, sphingosine 1‑phosphate (S1P) increases transcription of plasminogen activator inhibitor type‑1 (PAI‑1), the major physiological inhibitor of fibrinolysis, within 4 h. The present study aimed to elucidate the molecular mechanisms underlying this effect. PAI‑1 expression was measured by reverse transcription‑quantitative polymerase chain reaction and immunoblotting. It was demonstrated that S1P increased PAI‑1 promoter activity but did not increase the activity of promoters lacking the hypoxia responsive element (HRE) 2. In addition, S1P transiently increased the concentration of hypoxia inducible factor (HIF)‑1α, a transcription factor capable of binding to HRE. When HIF‑1α was knocked down, the induction of transcription of PAI‑1 by S1P was no longer observed. Sphingosine kinase (SPHK) activity is increased by hypoxia. It was demonstrated that increases in the concentration of the HIF‑1α protein induced by hypoxia were prevented by treatment with SPHK inhibitor or S1P receptor antagonists. Thus, modification of the induction of HIF‑1α by S1P, leading to increased transcription of PAI‑1, may be an attractive therapeutic target for thrombosis and consequent inhibition of fibrinolysis associated with hypoxia.
Collapse
Affiliation(s)
- Akimasa Sanagawa
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Moyoko Asai
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Daisuke Sakakibara
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Hiroaki Norimoto
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| | - Burton E Sobel
- Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
| | - Satoshi Fujii
- Department of Molecular and Cellular Pathobiology and Therapeutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467‑8603, Japan
| |
Collapse
|
29
|
Sphingosine Kinase Regulates Microtubule Dynamics and Organelle Positioning Necessary for Proper G1/S Cell Cycle Transition in Trypanosoma brucei. mBio 2015; 6:e01291-15. [PMID: 26443455 PMCID: PMC4611037 DOI: 10.1128/mbio.01291-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Sphingolipids are important constituents of cell membranes and also serve as mediators of cell signaling and cell recognition. Sphingolipid metabolites such as sphingosine-1-phosphate and ceramide regulate signaling cascades involved in cell proliferation and differentiation, autophagy, inflammation, and apoptosis. Little is known about how sphingolipids and their metabolites function in single-celled eukaryotes. In the present study, we investigated the role of sphingosine kinase (SPHK) in the biology of the protozoan parasite Trypanosoma brucei, the agent of African sleeping sickness. T. brucei SPHK (TbSPHK) is constitutively but differentially expressed during the life cycle of T. brucei. Depletion of TbSPHK in procyclic-form T. brucei causes impaired growth and attenuation in the G1/S phase of the cell cycle. TbSPHK-depleted cells also develop organelle positioning defects and an accumulation of tyrosinated α-tubulin at the elongated posterior end of the cell, known as the "nozzle" phenotype, caused by other molecular perturbations in this organism. Our studies indicate that TbSPHK is involved in G1-to-S cell cycle progression, organelle positioning, and maintenance of cell morphology. Cytotoxicity assays using TbSPHK inhibitors revealed a favorable therapeutic index between T. brucei and human cells, suggesting TbSPHK to be a novel drug target. IMPORTANCE Trypanosoma brucei is a single-celled parasite that is transmitted between humans and other animals by the tsetse fly. T. brucei is endemic in sub-Saharan Africa, where over 70 million people and countless livestock are at risk of developing T. brucei infection, called African sleeping sickness, resulting in economic losses of ~$35 million from the loss of cattle alone. New drugs for this infection are sorely needed and scientists are trying to identify essential enzymes in the parasite that can be targets for new therapies. One possible enzyme target is sphingosine kinase, an enzyme involved in the synthesis of lipids important for cell surface integrity and regulation of cell functions. In this study, we found that sphingosine kinase is essential for normal growth and structure of the parasite, raising the possibility that it could be a good target for new chemotherapy for sleeping sickness.
Collapse
|
30
|
Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity. Blood 2015; 125:1643-52. [PMID: 25587035 DOI: 10.1182/blood-2014-08-595751] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.
Collapse
|
31
|
Wang J, Knapp S, Pyne NJ, Pyne S, Elkins JM. Crystal Structure of Sphingosine Kinase 1 with PF-543. ACS Med Chem Lett 2014; 5:1329-33. [PMID: 25516793 DOI: 10.1021/ml5004074] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022] Open
Abstract
The most potent inhibitor of Sphingosine Kinase 1 (SPHK1) so far identified is PF-543. The crystal structure of SPHK1 in complex with inhibitor PF-543 to 1.8 Å resolution reveals the inhibitor bound in a bent conformation analogous to that expected of a bound sphingosine substrate but with a rotated head group. The structural data presented will aid in the design of SPHK1 and SPHK2 inhibitors with improved properties.
Collapse
Affiliation(s)
- Jing Wang
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Stefan Knapp
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford, NDM
Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Nigel J. Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Susan Pyne
- Cell Biology Group, Strathclyde Institute of Pharmacy
and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Jonathan M. Elkins
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, U.K
| |
Collapse
|
32
|
Snelder N, Ploeger BA, Luttringer O, Stanski DR, Danhof M. Translational pharmacokinetic modeling of fingolimod (FTY720) as a paradigm compound subject to sphingosine kinase-mediated phosphorylation. Drug Metab Dispos 2014; 42:1367-78. [PMID: 24965813 DOI: 10.1124/dmd.113.056770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/13/2025] Open
Abstract
A complicating factor in the translational pharmacology of sphingosine 1-phosphate agonists is that they exert their pharmacological effect through their respective phosphate metabolites, which are formed by the enzyme sphingosine kinase (S1PHK). In this investigation, we present a semimechanistic pharmacokinetic model for the interconversion of S1PHK substrates and their respective phosphates in rats and humans with the aim of investigating whether characterization of the rate of phosphorylation in blood platelets constitutes a basis for interspecies scaling using fingolimod as a model compound. Data on the time course of fingolimod and fingolimod-phosphate (fingolimod-P) blood concentrations after intravenous and oral administration of fingolimod and/or fingolimod-P in rats and after oral administration of fingolimod in doses of 0.5, 1.25, and 5 mg once daily in healthy volunteers were analyzed in conjunction with data on the ex vivo interconversion and blood-plasma distribution in rat and human blood, respectively. Integrating the data from the ex vivo and in vivo studies enabled simulation of fingolimod and fingolimod-P concentrations in plasma rather than blood, which are more relevant for characterizing drug effects. Large interspecies differences in the rate of phosphorylation between rats and humans were quantified. In human, phosphorylation of fingolimod in the platelets was four times slower compared with rat, whereas the dephosphorylation rates were comparable in both species. This partly explained the 10-12-fold overprediction of fingolimod-P exposure in human when applying a dose-by-factor approach on the developed rat model. Additionally, differences in presystemic phosphorylation should also be taken into account.
Collapse
Affiliation(s)
- Nelleke Snelder
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands (N.S., B.A.P., M.D.); LAP&P Consultants BV, Leiden, The Netherlands (N.S., M.D.); and Modeling and Simulation Department, Novartis, Basel, Switzerland (O.L., D.R.S.)
| | - Bart A Ploeger
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands (N.S., B.A.P., M.D.); LAP&P Consultants BV, Leiden, The Netherlands (N.S., M.D.); and Modeling and Simulation Department, Novartis, Basel, Switzerland (O.L., D.R.S.)
| | - Olivier Luttringer
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands (N.S., B.A.P., M.D.); LAP&P Consultants BV, Leiden, The Netherlands (N.S., M.D.); and Modeling and Simulation Department, Novartis, Basel, Switzerland (O.L., D.R.S.)
| | - Donald R Stanski
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands (N.S., B.A.P., M.D.); LAP&P Consultants BV, Leiden, The Netherlands (N.S., M.D.); and Modeling and Simulation Department, Novartis, Basel, Switzerland (O.L., D.R.S.)
| | - Meindert Danhof
- Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden, The Netherlands (N.S., B.A.P., M.D.); LAP&P Consultants BV, Leiden, The Netherlands (N.S., M.D.); and Modeling and Simulation Department, Novartis, Basel, Switzerland (O.L., D.R.S.)
| |
Collapse
|
33
|
Cingolani F, Casasampere M, Sanllehí P, Casas J, Bujons J, Fabrias G. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II. J Lipid Res 2014; 55:1711-20. [PMID: 24875537 PMCID: PMC4109765 DOI: 10.1194/jlr.m049759] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2014] [Revised: 05/27/2014] [Indexed: 01/05/2023] Open
Abstract
Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Pol Sanllehí
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- Faculty of Pharmacy, Unit of Pharmaceutical Chemistry (Associated Unit to CSIC), University of Barcelona, E-08028 Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Bujons
- Biological Chemistry and Molecular Modeling, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Departments of Biomedicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| |
Collapse
|
34
|
Lima S, Milstien S, Spiegel S. A real-time high-throughput fluorescence assay for sphingosine kinases. J Lipid Res 2014; 55:1525-30. [PMID: 24792926 DOI: 10.1194/jlr.d048132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2014] [Indexed: 11/20/2022] Open
Abstract
Sphingosine kinases (SphKs), of which there are two isoforms, SphK1 and SphK2, have been implicated in regulation of many important cellular processes. We have developed an assay for monitoring SphK1 and SphK2 activity in real time without the need for organic partitioning of products, radioactive materials, or specialized equipment. The assay conveniently follows SphK-dependent changes in 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled sphingosine (Sph) fluorescence and can be easily performed in 384-well plate format with small reaction volumes. We present data showing dose-proportional responses to enzyme, substrate, and inhibitor concentrations. The SphK1 and SphK2 binding affinities for NBD-Sph and the IC50 values of inhibitors determined were consistent with those reported with other methods. Because of the versatility and simplicity of the assay, it should facilitate the routine characterization of inhibitors and SphK mutants and can be readily used for compound library screening in high-throughput format.
Collapse
Affiliation(s)
- Santiago Lima
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA 23298
| |
Collapse
|
35
|
Novgorodov SA, Riley CL, Yu J, Borg KT, Hannun YA, Proia RL, Kindy MS, Gudz TI. Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury. J Biol Chem 2014; 289:13142-54. [PMID: 24659784 DOI: 10.1074/jbc.m113.530311] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.
Collapse
Affiliation(s)
- Sergei A Novgorodov
- From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hamada M, Wakabayashi K, Masui A, Iwai S, Imai T, Yura Y. Involvement of hydrogen peroxide in safingol-induced endonuclease G-mediated apoptosis of squamous cell carcinoma cells. Int J Mol Sci 2014; 15:2660-71. [PMID: 24549171 PMCID: PMC3958874 DOI: 10.3390/ijms15022660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2013] [Revised: 01/03/2014] [Accepted: 02/13/2014] [Indexed: 01/09/2023] Open
Abstract
Safingol, a L-threo-dihydrosphingosine, induced the nuclear translocation of a mitochondrial apoptogenic mediator—endonuclease G (endo G)—and apoptosis of human oral squamous cell carcinoma (SCC) cells. Upstream mediators remain largely unknown. The levels of hydrogen peroxide (H2O2) in cultured oral SCC cells were measured. Treatment with safingol increased intracellular H2O2 levels but not extracellular H2O2 levels, indicating the production of H2O2. The cell killing effect of safingol and H2O2 was diminished in the presence of reactive oxygen species (ROS) scavenger N-acetyl-L-cysteine (NAC). Dual staining of cells with annexin V and propidium iodide (PI) revealed that apoptotic cell death occurred by treatment with H2O2 and safingol. The number of apoptotic cells was reduced in the presence of NAC. In untreated cells, endo G distributed in the cytoplasm and an association of endo G with mitochondria was observed. After treatment with H2O2 and safingol, endo G was distributed to the nucleus and cytoplasm, indicating the nuclear translocation of the mitochondrial factor. NAC prevented the increase of apoptotic cells and the translocation of endo G. Knock down of endo G diminished the cell killing effect of H2O2 and safingol. These results suggest that H2O2 is involved in the endo G-mediated apoptosis of oral SCC cells by safingol.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ken Wakabayashi
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Atsushi Masui
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomoaki Imai
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
37
|
Chen K, Pan Q, Gao Y, Yang X, Wang S, Peppelenbosch MP, Kong X. DMS triggers apoptosis associated with the inhibition of SPHK1/NF-κB activation and increase in intracellular Ca2+ concentration in human cancer cells. Int J Mol Med 2013; 33:17-24. [PMID: 24173614 PMCID: PMC3868491 DOI: 10.3892/ijmm.2013.1541] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2013] [Accepted: 10/09/2013] [Indexed: 01/04/2023] Open
Abstract
N,N-Dimethyl-D-erythro-sphingosine (DMS) is known to induce cell apoptosis by specifically inhibiting sphingosine kinase 1 (SPHK1) and modulating the activity of cellular ceramide levels. The present study investigated the effects and the mechanism(s) of action of DMS in human lung cancer cells. We found that DMS dose-dependently suppressed cell proliferation and induced cell apoptosis in the human lung cancer cell line, A549. Mechanistically, treatment with DMS suppressed the activation of SPHK1 and nuclear factor-κB (NF-κB) p65, but increased intracellular [Ca2+]i in A549 cells. This study demonstrates that DMS triggers the apoptosis of human lung cancer cells through the modulation of SPHK1, NF-κB and calcium signaling. These molecules may represent targets for anticancer drug design.
Collapse
Affiliation(s)
- Kan Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | | | | | | | | | | | | |
Collapse
|
38
|
Nguyen AV, Wu YY, Liu Q, Wang D, Nguyen S, Loh R, Pang J, Friedman K, Orlofsky A, Augenlicht L, Pollard JW, Lin EY. STAT3 in epithelial cells regulates inflammation and tumor progression to malignant state in colon. Neoplasia 2013; 15:998-1008. [PMID: 24027425 PMCID: PMC3769879 DOI: 10.1593/neo.13952] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 01/05/2023]
Abstract
Chronic inflammation is an important risk factor for the development of colorectal cancer; however, the mechanism of tumorigenesis especially tumor progression to malignancy in the inflamed colon is still unclear. Our study shows that epithelial signal transducer and activator of transcription 3 (STAT3), persistently activated in inflamed colon, is not required for inflammation-induced epithelial overproliferation and the development of early-stage tumors; however, it is essential for tumor progression to advanced malignancy. We found that one of the mechanisms that epithelial STAT3 regulates in tumor progression might be to modify leukocytic infiltration in the large intestine. Activation of epithelial STAT3 promotes the infiltration of the CD8+ lymphocyte population but inhibits the recruitment of regulatory T (Treg) lymphocytes. The loss of Stat3 in epithelial cells promoted the expression of cytokines/chemokines including CCL19, CCL28, and RANTES, which are known to be able to recruit Treg lymphocytes. Linked to these changes was the pathway mediated by sphingosine 1-phosphate receptor 1 and sphingosine 1-phosphate kinases, which is activated in colonic epithelial cells in inflamed colon with functional STAT3 but not in epithelial cells deleted of STAT3. Our data suggest that epithelial STAT3 plays a critical role in inflammation-induced tumor progression through regulation of leukocytic recruitment especially the infiltration of Treg cells in the large intestine.
Collapse
Affiliation(s)
- Andrew V Nguyen
- Department of Biological Sciences and Geology, Queensborough-The City University of New York, Bayside, NY
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Solaimani P, Damoiseaux R, Hankinson O. Genome-wide RNAi high-throughput screen identifies proteins necessary for the AHR-dependent induction of CYP1A1 by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2013; 136:107-19. [PMID: 23997114 DOI: 10.1093/toxsci/kft191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) has a plethora of physiological roles, and upon dysregulation, carcinogenesis can occur. One target gene of AHR encodes the xenobiotic and drug-metabolizing enzyme CYP1A1, which is inducible by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the AHR. An siRNA library targeted against over 5600 gene candidates in the druggable genome was used to transfect mouse Hepa-1 cells, which were then treated with TCDD, and subsequently assayed for CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) activity. Following redundant siRNA activity (RSA) statistical analysis, we identified 93 hits that reduced EROD activity with a p value ≤ .005 and substantiated 39 of these as positive hits in a secondary screening using endoribonuclease-prepared siRNAs (esiRNAs). Twelve of the corresponding gene products were subsequently confirmed to be necessary for the induction of CYP1A1 messenger RNA by TCDD. None of the candidates were deficient in aryl hydrocarbon nuclear translocator expression. However 6 gene products including UBE2i, RAB40C, CRYGD, DCTN4, RBM5, and RAD50 are required for the expression of AHR as well as for induction of CYP1A1. We also found 2 gene products, ARMC8 and TCF20, to be required for the induction of CYP1A1, but our data are ambiguous as to whether they are required for the expression of AHR. In contrast, SIN3A, PDC, TMEM5, and CD9 are not required for AHR expression but are required for the induction of CYP1A1, implicating a direct role in Cyp1a1 transcription. Our methods, although applied to Cyp1a1, could be modified for identifying proteins that regulate other inducible genes.
Collapse
Affiliation(s)
- Parrisa Solaimani
- * Molecular Toxicology Interdepartmental Program, Department of Pathology and Laboratory Medicine, and the Jonsson Comprehensive Cancer Center and
| | | | | |
Collapse
|
40
|
Wang Z, Min X, Xiao SH, Johnstone S, Romanow W, Meininger D, Xu H, Liu J, Dai J, An S, Thibault S, Walker N. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 2013; 21:798-809. [PMID: 23602659 DOI: 10.1016/j.str.2013.02.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2012] [Revised: 02/05/2013] [Accepted: 02/28/2013] [Indexed: 11/24/2022]
Abstract
Sphingosine kinase 1 (SphK1) is a lipid kinase that catalyzes the conversion of sphingosine to sphingosine-1-phosphate (S1P), which has been shown to play a role in lymphocyte trafficking, angiogenesis, and response to apoptotic stimuli. As a central enzyme in modulating the S1P levels in cells, SphK1 emerges as an important regulator for diverse cellular functions and a potential target for drug discovery. Here, we present the crystal structures of human SphK1 in the apo form and in complexes with a substrate sphingosine-like lipid, ADP, and an inhibitor at 2.0-2.3 Å resolution. The SphK1 structures reveal a two-domain architecture in which its catalytic site is located in the cleft between the two domains and a hydrophobic lipid-binding pocket is buried in the C-terminal domain. Comparative analysis of these structures with mutagenesis and kinetic studies provides insight into how SphK1 recognizes the lipid substrate and catalyzes ATP-dependent phosphorylation.
Collapse
Affiliation(s)
- Zhulun Wang
- Department of Molecular Structure and Characterization, Amgen, Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mastrandrea LD. Role of sphingosine kinases and sphingosine 1-phosphate in mediating adipogenesis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jdm.2013.32009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
|
42
|
Baker DL, Pham TCT, Sparks MA. Structure and catalytic function of sphingosine kinases: analysis by site-directed mutagenesis and enzyme kinetics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:139-46. [PMID: 23000541 DOI: 10.1016/j.bbalip.2012.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022]
Abstract
Sphingosine kinases 1 and 2 (SK1 and SK2) generate the bioactive lipid mediator sphingosine 1-phosphate and as such play a significant role in cell fate and in human health and disease. Despite significant interest in and examination of the role played by SK enzymes in disease, comparatively little is currently known about the three-dimensional structure and catalytic mechanisms of these enzymes. To date, limited numbers of studies have used site directed mutagenesis and activity determinations to examine the roles of individual SK residues in substrate, calmodulin, and membrane binding, as well as activation via phosphorylation. Assays are currently available that allow for both single and bisubstrate kinetic analysis of mutant proteins that show normal, lowered and enhanced activity as compared to wild type controls. Additional studies will be required to build on this foundation to completely understand SK mediated substrate binding and phosphoryl group transfer. A deeper understanding of the SK catalytic mechanism, as well as SK interactions with potential small molecule inhibitors will be invaluable to the future design and identification of SK activity modulators as research tools and potential therapeutics. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Daniel L Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA.
| | | | | |
Collapse
|
43
|
Impact of sphingosine kinase 2 deficiency on the development of TNF-alpha-induced inflammatory arthritis. Rheumatol Int 2012; 33:2677-81. [PMID: 23011090 DOI: 10.1007/s00296-012-2493-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2012] [Accepted: 07/13/2012] [Indexed: 12/23/2022]
Abstract
Sphingolipids are components of the plasma membrane whose metabolic manipulation is of interest as a potential therapeutic approach in a number of diseases. Sphingosine kinase 1 (SphK1), the major kinase that phosphorylates sphingosine to sphingosine-1-phosphate (S1P), was previously shown by our group and others to modulate inflammation in murine models of inflammatory arthritis, inflammatory bowel disease and asthma. Sphingosine kinase 2's (SphK2) impact on inflammation is less well known, as variable results were reported depending on the disease model. A specific SphK2 inhibitor inhibited inflammatory arthritis in one model, while siRNA knockdown of SphK2 worsened arthritis in another. We previously demonstrated that SphK1 deficient mice are protected against development of hTNF-α-induced arthritis. To investigate the role of SphK2 in TNF-α-induced arthritis, we developed SphK2 deficient hTNF-α overexpressing mice and separately treated hTNF-α mice with ABC294640, a SphK2-specific inhibitor. Our data show that genetic inhibition of SphK2 did not significantly impact the severity or progression of inflammatory arthritis, while pharmacologic inhibition of SphK2 led to significantly more severe arthritis. Compared to vehicle-treated mice, ABC294640 treated mice also had less S1P in whole blood and inflamed joint tissue, although the differences were not significant. ABC294640 treatment did not affect SphK1 activity in the inflamed joint while little SphK2 activity was detected in the joint. We conclude that the differences in the inflammatory phenotype in genetic inhibition versus pharmacologic inhibition of SphK2 can be attributed to the amount of ABC294640 used in the experiments versus the impact of acute inhibition of SphK2 with ABC294640 versus genetically induced life-long SphK2 deficiency. Thus, inhibition of SphK2 appears to be proinflammatory in contrast to the clear anti-inflammatory effects of blocking SphK1. Therapies directed at this sphingosine kinase pathways will need to be specific in their targeting of sphingosine kinases.
Collapse
|
44
|
Gault CR, Eblen ST, Neumann CA, Hannun YA, Obeid LM. Oncogenic K-Ras regulates bioactive sphingolipids in a sphingosine kinase 1-dependent manner. J Biol Chem 2012; 287:31794-803. [PMID: 22833671 DOI: 10.1074/jbc.m112.385765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is an important enzyme involved in the production of the bioactive lipid sphingosine 1-phosphate (S1P). SK1 is overexpressed in many forms of cancer, however, the contribution of SK1 to cancer progression is still unclear. One of the best characterized mutations found in several forms of human cancer is an activating point mutation in the Ras oncogene, which disrupts its GTPase activity and leads to stimulation of the MEK/ERK pathway. Because SK1 activity and subcellular localization have been shown to be regulated by ERK, we wished to investigate the effect of oncogenic Ras, a potent activator of the Raf/MEK/ERK pathway, on the activity of SK1 and sphingolipid metabolism. Using HEK293T cells transiently transfected with the K-RasG12V oncogene and both wild type and Sphk1(-/-) mouse embryonic fibroblasts stably infected with retroviral K-RasG12V, we found that K-RasG12V increases the production of S1P and decreases the production of ceramide in a SK1-dependent manner. In addition, we found that expression of the K-RasG12V oncogene leads to plasma membrane localization of SK1 and a reduction in cytosolic levels of SK1. This effect is likely mediated by the Raf/MEK/ERK pathway as constitutively active B-Raf or MEK1 are able to activate SK1, but constitutively active Akt1 is not. We believe this research has important implications for how sphingolipids may be contributing to oncogenic transformation and provide some of the first evidence for oncogenes inducing specific changes in sphingolipid metabolism through SK1 regulation.
Collapse
Affiliation(s)
- Christopher R Gault
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
46
|
Sphingosine kinase type 1 inhibition reveals rapid turnover of circulating sphingosine 1-phosphate. Biochem J 2012; 440:345-53. [PMID: 21848514 DOI: 10.1042/bj20110817] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.
Collapse
|
47
|
Raje MR, Knott K, Kharel Y, Bissel P, Lynch KR, Santos WL. Design, synthesis and biological activity of sphingosine kinase 2 selective inhibitors. Bioorg Med Chem 2012; 20:183-94. [PMID: 22137932 PMCID: PMC3748591 DOI: 10.1016/j.bmc.2011.11.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/24/2011] [Revised: 11/01/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022]
Abstract
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.
Collapse
Affiliation(s)
- Mithun R. Raje
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kenneth Knott
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Philippe Bissel
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
48
|
Kim J, Yun H, Cho Y. Analysis of ceramide metabolites in differentiating epidermal keratinocytes treated with calcium or vitamin C. Nutr Res Pract 2011; 5:396-403. [PMID: 22125676 PMCID: PMC3221824 DOI: 10.4162/nrp.2011.5.5.396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2011] [Revised: 09/17/2011] [Accepted: 09/22/2011] [Indexed: 01/07/2023] Open
Abstract
Ceramides (Cer) comprise the major constituent of sphingolipids in the epidermis and are known to play diverse roles in the outermost layers of the skin including water retention and provision of a physical barrier. In addition, they can be hydrolyzed into free sphingoid bases such as C18 sphingosine (SO) and C18 sphinganine (SA) or can be further metabolized to C18 So-1-phosphate (S1P) and C18 Sa-1-phosphate (Sa1P) in keratinocytes. The significance of ceramide metabolites emerged from studies reporting altered levels of SO and SA in skin disorders and the role of S1P and Sa1P as signaling lipids. However, the overall metabolism of sphingoid bases and their phosphates during keratinocyte differentiation remains not fully understood. Therefore, in this study, we analyzed these Cer metabolites in the process of keratinocyte differentiation. Three distinct keratinocyte differentiation stages were prepared using 0.07 mM calcium (Ca2+) (proliferation stage), 1.2 mM Ca2+ (early differentiation stage) in serum-free medium, or serum-containing medium with vitamin C (50 µL/mL) (late differentiation stage). Serum-containing medium was also used to determine whether vitamin C increases the concentrations of sphingoid bases and their phosphates. The production of sphingoid bases and their phosphates after hydrolysis by alkaline phosphatase was determined using high-performance liquid chromatography. Compared to cells treated with 0.07 mM Ca2+, levels of SO, SA, S1P, and SA1P were not altered after treatment with 1.2 mM Ca2+. However, in keratinocytes cultured in serum-containing medium with vitamin C, levels of SO, SA, S1P, and SA1P were dramatically higher than those in 0.07- and 1.2-mM Ca2+-treated cells; however, compared to serum-containing medium alone, vitamin C did not significantly enhance their production. Taken together, we demonstrate that late differentiation induced by vitamin C and serum was accompanied by dramatic increases in the concentration of sphingoid bases and their phosphates, although vitamin C alone had no effect on their production.
Collapse
Affiliation(s)
- Juyoung Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi 446-701, Korea
| | | | | |
Collapse
|
49
|
Siow D, Wattenberg B. The compartmentalization and translocation of the sphingosine kinases: mechanisms and functions in cell signaling and sphingolipid metabolism. Crit Rev Biochem Mol Biol 2011; 46:365-75. [PMID: 21864225 DOI: 10.3109/10409238.2011.580097] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022]
Abstract
Members of the sphingosine kinase (SK) family of lipid signaling enzymes, comprising SK1 and SK2 in humans, are receiving considerable attention for their roles in a number of physiological and pathophysiological processes. The SKs are considered signaling enzymes based on their production of the potent lipid second messenger sphingosine-1-phosphate, which is the ligand for a family of five G-protein-linked receptors. Both SK1 and SK2 are intracellular enzymes and do not possess obvious membrane anchor domains within their primary sequences. The native substrates (sphingosine and dihydrosphingosine) are lipids, as are the corresponding products, and therefore would have a propensity to be membrane associated, suggesting that specific membrane localization of the SKs could affect both access to substrate and localized production of product. Here, we consider the emerging picture of the SKs as enzymes localized to specific intracellular sites, sometimes by agonist-dependent translocation, the mechanism targeting these enzymes to those sites, and the functional consequence of that localization. Not only is the signaling output of the SKs affected by subcellular localization, but the role of these enzymes as metabolic regulators of sphingolipid metabolism may be impacted as well.
Collapse
Affiliation(s)
- Deanna Siow
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
50
|
Yonesu K, Kubota K, Tamura M, Inaba SI, Honda T, Yahara C, Watanabe N, Matsuoka T, Nara F. Purification and identification of activating enzymes of CS-0777, a selective sphingosine 1-phosphate receptor 1 modulator, in erythrocytes. J Biol Chem 2011; 286:24765-75. [PMID: 21613209 PMCID: PMC3137052 DOI: 10.1074/jbc.m110.217299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2010] [Revised: 05/18/2011] [Indexed: 11/06/2022] Open
Abstract
CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ∼10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.
Collapse
Affiliation(s)
- Kiyoaki Yonesu
- From the Cardiovascular-Metabolics Research Laboratories
| | | | | | - Shin-ichi Inaba
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 134-8630, Japan
| | - Tomohiro Honda
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 134-8630, Japan
| | - Chizuko Yahara
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 134-8630, Japan
| | - Nobuaki Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 134-8630, Japan
| | | | - Futoshi Nara
- From the Cardiovascular-Metabolics Research Laboratories
| |
Collapse
|