1
|
Liu C, Rao G, Nguyen J, Britt RD, Rittle J. O 2 Activation and Enzymatic C-H Bond Activation Mediated by a Dimanganese Cofactor. J Am Chem Soc 2025; 147:2148-2157. [PMID: 39741465 PMCID: PMC11819613 DOI: 10.1021/jacs.4c16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Dioxygen (O2) is a potent oxidant used by aerobic organisms for energy transduction and critical biosynthetic processes. Numerous metalloenzymes harness O2 to mediate C-H bond hydroxylation reactions, but most commonly feature iron or copper ions in their active site cofactors. In contrast, many manganese-activated enzymes─such as glutamine synthetase and isocitrate lyase─perform redox neutral chemical transformations and very few are known to activate O2 or C-H bonds. Here, we report that the dimanganese-metalated form of the cambialistic monooxygenase SfbO (Mn2-SfbO) can efficiently mediate enzymatic C-H bond hydroxylation. The activity of the dimanganese form of SfbO toward substrate hydroxylation is comparable to that of its heterobimetallic Mn/Fe form but exhibits distinct kinetic profiles. Kinetic, spectroscopic, and structural studies invoke a mixed-valent dimanganese cofactor (MnIIMnIII) in O2 activation and evidence a stoichiometric role for superoxide in maturing an O2-inert MnII2 cofactor. Computational studies support a hypothesis wherein superoxide addition to the MnII2 cofactor installs a critical bridging hydroxide ligand that stabilizes higher-valent manganese oxidation states. These findings establish the viability of proteinaceous dimanganese cofactors in mediating complex, multistep redox transformations.
Collapse
Affiliation(s)
- Chang Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jessica Nguyen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jonathan Rittle
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
3
|
Whittington C, Sharma A, Hill SG, Iavarone AT, Hoffman BM, Offenbacher AR. Impact of N-Glycosylation on Protein Structure and Dynamics Linked to Enzymatic C-H Activation in the M. oryzae Lipoxygenase. Biochemistry 2024; 63:1335-1346. [PMID: 38690768 PMCID: PMC11587536 DOI: 10.1021/acs.biochem.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Lipoxygenases (LOXs) from pathogenic fungi are potential therapeutic targets for defense against plant and select human diseases. In contrast to the canonical LOXs in plants and animals, fungal LOXs are unique in having appended N-linked glycans. Such important post-translational modifications (PTMs) endow proteins with altered structure, stability, and/or function. In this study, we present the structural and functional outcomes of removing or altering these surface carbohydrates on the LOX from the devastating rice blast fungus, M. oryzae, MoLOX. Alteration of the PTMs did notinfluence the active site enzyme-substrate ground state structures as visualized by electron-nuclear double resonance (ENDOR) spectroscopy. However, removal of the eight N-linked glycans by asparagine-to-glutamine mutagenesis nonetheless led to a change in substrate selectivity and an elevated activation energy for the reaction with substrate linoleic acid, as determined by kinetic measurements. Comparative hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis of wild-type and Asn-to-Gln MoLOX variants revealed a regionally defined impact on the dynamics of the arched helix that covers the active site. Guided by these HDX results, a single glycan sequon knockout was generated at position 72, and its comparative substrate selectivity from kinetics nearly matched that of the Asn-to-Gln variant. The cumulative data from model glyco-enzyme MoLOX showcase how the presence, alteration, or removal of even a single N-linked glycan can influence the structural integrity and dynamics of the protein that are linked to an enzyme's catalytic proficiency, while indicating that extensive glycosylation protects the enzyme during pathogenesis by protecting it from protease degradation.
Collapse
Affiliation(s)
- Chris Whittington
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville NC, 27858, United States
| |
Collapse
|
4
|
Brunclik SA, Grotemeyer EN, Aghaei Z, Mian MR, Jackson TA. Investigating Ligand Sphere Perturbations on Mn III-Alkylperoxo Complexes. Molecules 2024; 29:1849. [PMID: 38675669 PMCID: PMC11053420 DOI: 10.3390/molecules29081849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Manganese catalysts that activate hydrogen peroxide carry out several different hydrocarbon oxidation reactions with high stereoselectivity. The commonly proposed mechanism for these reactions involves a key manganese(III)-hydroperoxo intermediate, which decays via O-O bond heterolysis to generate a Mn(V)-oxo species that institutes substrate oxidation. Due to the scarcity of characterized MnIII-hydroperoxo complexes, MnIII-alkylperoxo complexes are employed to understand factors that affect the mechanism of the O-O cleavage. Herein, we report a series of novel complexes, including two room-temperature-stable MnIII-alkylperoxo species, supported by a new amide-containing pentadentate ligand (6Medpaq5NO2). We use a combination of spectroscopic methods and density functional theory computations to probe the effects of the electronic changes in the ligand sphere trans to the hydroxo and alkylperoxo units to thermal stability and reactivity. The structural characterizations for both MnII(OTf)(6Medpaq5NO2) and [MnIII(OH)(6Medpaq5NO2)](OTf) were obtained via single-crystal X-ray crystallography. A perturbation to the ligand sphere allowed for a marked increase in reactivity towards an organic substrate, a modest change in the distribution of the O-O cleavage products from homolytic and heterolytic pathways, and little change in thermal stability.
Collapse
Affiliation(s)
- Samuel A. Brunclik
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Elizabeth N. Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Zahra Aghaei
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| | - Mohammad Rasel Mian
- Protein Structure and X-ray Crystallography Laboratory, University of Kansas, Lawrence, KS 66045, USA;
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA; (S.A.B.); (E.N.G.); (Z.A.)
| |
Collapse
|
5
|
Oliw EH. Thirty years with three-dimensional structures of lipoxygenases. Arch Biochem Biophys 2024; 752:109874. [PMID: 38145834 DOI: 10.1016/j.abb.2023.109874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
The X-ray crystal structures of soybean lipoxygenase (LOX) and rabbit 15-LOX were reported in the 1990s. Subsequent 3D structures demonstrated a conserved U-like shape of the substrate cavities as reviewed here. The 8-LOX:arachidonic acid (AA) complex showed AA bound to the substrate cavity carboxylate-out with C10 at 3.4 Å from the iron metal center. A recent cryo-electron microscopy (EM) analysis of the 12-LOX:AA complex illustrated AA in the same position as in the 8-LOX:AA complex. The 15- and 12-LOX complexes with isoenzyme-specific inhibitors/substrate mimics confirmed the U-fold. 5-LOX oxidizes AA to leukotriene A4, the first step in biosynthesis of mediators of asthma. The X-ray structure showed that the entrance to the substrate cavity was closed to AA by Phe and Tyr residues of a partly unfolded α2-helix. Recent X-ray analysis revealed that soaking with inhibitors shifted the short α2-helix to a long and continuous, which opened the substrate cavity. The α2-helix also adopted two conformations in 15-LOX. 12-LOX dimers consisted of one closed and one open subunit with an elongated α2-helix. 13C-ENDOR-MD computations of the 9-MnLOX:linoleate complex showed carboxylate-out position with C11 placed 3.4 ± 0.1 Å from the catalytic water. 3D structures have provided a solid ground for future research.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Powell M, Rao G, Britt RD, Rittle J. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. J Am Chem Soc 2023; 145:16526-16537. [PMID: 37471626 PMCID: PMC10401708 DOI: 10.1021/jacs.3c03419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 07/22/2023]
Abstract
The aerobic oxidation of carbon-hydrogen (C-H) bonds in biology is currently known to be accomplished by a limited set of cofactors that typically include heme, nonheme iron, and copper. While manganese cofactors perform difficult oxidation reactions, including water oxidation within Photosystem II, they are generally not known to be used for C-H bond activation, and those that do catalyze this important reaction display limited intrinsic reactivity. Here we report that the 2-aminoisobutyric acid hydroxylase from Rhodococcus wratislaviensis, AibH1H2, requires manganese to functionalize a strong, aliphatic C-H bond (BDE = 100 kcal/mol). Structural and spectroscopic studies of this enzyme reveal a redox-active, heterobimetallic manganese-iron active site at the locus of O2 activation and substrate coordination. This result expands the known reactivity of biological manganese-iron cofactors, which was previously restricted to single-electron transfer or stoichiometric protein oxidation. Furthermore, the AibH1H2 cofactor is supported by a protein fold distinct from typical bimetallic oxygenases, and bioinformatic analyses identify related proteins abundant in microorganisms. This suggests that many uncharacterized monooxygenases may similarly require manganese to perform oxidative biochemical tasks.
Collapse
Affiliation(s)
- Magan
M. Powell
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Jonathan Rittle
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Sharma A, Whittington C, Jabed M, Hill SG, Kostenko A, Yu T, Li P, Doan PE, Hoffman BM, Offenbacher AR. 13C Electron Nuclear Double Resonance Spectroscopy-Guided Molecular Dynamics Computations Reveal the Structure of the Enzyme-Substrate Complex of an Active, N-Linked Glycosylated Lipoxygenase. Biochemistry 2023; 62:1531-1543. [PMID: 37115010 PMCID: PMC10704959 DOI: 10.1021/acs.biochem.3c00119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lipoxygenase (LOX) enzymes produce important cell-signaling mediators, yet attempts to capture and characterize LOX-substrate complexes by X-ray co-crystallography are commonly unsuccessful, requiring development of alternative structural methods. We previously reported the structure of the complex of soybean lipoxygenase, SLO, with substrate linoleic acid (LA), as visualized through the integration of 13C/1H electron nuclear double resonance (ENDOR) spectroscopy and molecular dynamics (MD) computations. However, this required substitution of the catalytic mononuclear, nonheme iron by the structurally faithful, yet inactive Mn2+ ion as a spin probe. Unlike canonical Fe-LOXs from plants and animals, LOXs from pathogenic fungi contain active mononuclear Mn2+ metallocenters. Here, we report the ground-state active-site structure of the native, fully glycosylated fungal LOX from rice blast pathogen Magnaporthe oryzae, MoLOX complexed with LA, as obtained through the 13C/1H ENDOR-guided MD approach. The catalytically important distance between the hydrogen donor, carbon-11 (C11), and the acceptor, Mn-bound oxygen, (donor-acceptor distance, DAD) for the MoLOX-LA complex derived in this fashion is 3.4 ± 0.1 Å. The difference of the MoLOX-LA DAD from that of the SLO-LA complex, 3.1 ± 0.1 Å, is functionally important, although is only 0.3 Å, despite the MoLOX complex having a Mn-C11 distance of 5.4 Å and a "carboxylate-out" substrate-binding orientation, whereas the SLO complex has a 4.9 Å Mn-C11 distance and a "carboxylate-in" substrate orientation. The results provide structural insights into reactivity differences across the LOX family, give a foundation for guiding development of MoLOX inhibitors, and highlight the robustness of the ENDOR-guided MD approach to describe LOX-substrate structures.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Mohammed Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - S. Gage Hill
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Anastasiia Kostenko
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, United States
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, United States
| | - Peter E. Doan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| |
Collapse
|
8
|
Xia B, Chi H, Zhang B, Lu Z, Liu H, Lu F, Zhu P. Computational Insights and In Silico Characterization of a Novel Mini-Lipoxygenase from Nostoc Sphaeroides and Its Application in the Quality Improvement of Steamed Bread. Int J Mol Sci 2023; 24:ijms24097941. [PMID: 37175648 PMCID: PMC10177866 DOI: 10.3390/ijms24097941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Lipoxygenase (EC1.13.11.12, LOX) has been potentially used in the food industry for food quality improvement. However, the low activity, poor thermal stability, narrow range of pH stability, as well as undesirable isoenzymes and off-flavors, have hampered the application of current commercial LOX. In this study, a putative mini-lipoxygenase gene from cyanobacteria, Nostoc sphaeroides (NsLOX), was cloned and expressed in E. coli BL21. NsLOX displayed only 26.62% structural identity with the reported LOX from Cyanothece sp., indicating it as a novel LOX. The purified NsLOX showed the maximum activity at pH 8.0 and 15 °C, with superior stability at a pH range from 6.0 to 13.0, retaining about 40% activity at 40 °C for 90 min. Notably, NsLOX exhibited the highest specific activity of 78,080 U/mg towards linoleic acid (LA), and the kinetic parameters-Km, kcat, and kcat/Km-attain values of 19.46 μM, 9199.75 s-1, and 473.85 μM-1 s-1, respectively. Moreover, the activity of NsLOX was obviously activated by Ca2+, but it was completely inhibited by Zn2+ and Cu2+. Finally, NsLOX was supplied in steamed bread and contributed even better improved bread quality than the commercial LOX. These results suggest NsLOX as a promising substitute of current commercial LOX for application in the food industry.
Collapse
Affiliation(s)
- Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingjie Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huawei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Powell MM, Rao G, Britt RD, Rittle J. Enzymatic Hydroxylation of Aliphatic C-H Bonds by a Mn/Fe Cofactor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532131. [PMID: 36945426 PMCID: PMC10029006 DOI: 10.1101/2023.03.10.532131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Manganese cofactors activate strong chemical bonds in many essential enzymes. Yet very few manganese-dependent enzymes are known to functionalize ubiquitous carbon-hydrogen (C-H) bonds, and those that catalyze this important reaction display limited intrinsic reactivity. Herein, we report that the 2-aminoisobutyric acid hydroxylase from Rhodococcus wratislaviensis requires manganese to functionalize a C-H bond possessing a bond dissociation enthalpy (BDE) exceeding 100 kcal/mol. Structural and spectroscopic studies of this enzyme reveal a redox-active, heterobimetallic manganese-iron active site that utilizes a manganese ion at the locus for O 2 activation and substrate coordination. Accordingly, this enzyme represents the first documented Mn-dependent monooxygenase in biology. Related proteins are widespread in microorganisms suggesting that many uncharacterized monooxygenases may utilize manganese-containing cofactors to accomplish diverse biological tasks.
Collapse
|
10
|
Khayat MT, Mohammad KA, Mohamed GA, Safo MK, Ibrahim SRM. Integracides: Tetracyclic Triterpenoids from Fusarium sp.-Their 5-Lipoxygenase Inhibitory Potential and Structure-Activity Relation Using In Vitro and Molecular Docking Studies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122095. [PMID: 36556460 PMCID: PMC9782297 DOI: 10.3390/life12122095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Inflammation is a complicated disorder that is produced as a result of consecutive processes. 5-LOX (5-lipoxygenase) is accountable for various inflammation mediators and leukotrienes synthesis, and its inhibition is the target of anti-inflammation therapeutics. Fungi have acquired enormous attentiveness because of their capability to biosynthesize novel bio-metabolites that reveal diversified bio-activities. A new tetracyclic triterpenoid, integracide L (1), along with integracides B (2) and F (3), were separated from Mentha longifolia-associated Fusarium sp. (FS No. MAR2014). Their structures were verified utilizing varied spectral analyses. The isolated metabolites (1-3), alongside the earlier reported integracides G (4), H (5), and J (6), were inspected for 5-LOX inhibition capacity. Interestingly, 1-6 possessed marked 5-LOX inhibition potentials with IC50s ranging from 1.18 to 3.97 μM compared to zileuton (IC50 1.17 µM). Additionally, molecular docking was executed to examine the interaction among these metabolites and 5-LOX, as well as to validate the in vitro findings. The docking study revealed their inhibitory activity interactions in the binding pocket. These findings highlighted the potential of integracides as lead metabolites for anti-inflammation drug discovery.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: ; Tel.: +966-555543053
| | - Khadijah A. Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Sabrin R. M. Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
11
|
Bacterial lipoxygenases: Biochemical characteristics, molecular structure and potential applications. Biotechnol Adv 2022; 61:108046. [DOI: 10.1016/j.biotechadv.2022.108046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/02/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
|
12
|
Oliw EH. Diversity of the manganese lipoxygenase gene family - A mini-review. Fungal Genet Biol 2022; 163:103746. [PMID: 36283615 DOI: 10.1016/j.fgb.2022.103746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 01/06/2023]
Abstract
Analyses of fungal genomes of escalate from biological and evolutionary investigations. The biochemical analyses of putative enzymes will inevitably lag behind and only a selection will be characterized. Plant-pathogenic fungi secrete manganese-lipoxygenases (MnLOX), which oxidize unsaturated fatty acids to hydroperoxides to support infection. Six MnLOX have been characterized so far including the 3D structures of these enzymes of the Rice blast and the Take-all fungi. The goal was to use this information to evaluate MnLOX-related gene transcripts to find informative specimens for further studies. Phylogenetic analysis, determinants of catalytic activities, and the C-terminal amino acid sequences divided 54 transcripts into three major subfamilies. The six MnLOX belonged to the same "prototype" subfamily with conserved residues in catalytic determinants and C-terminal sequences. The second subfamily retained the secretion mechanism, presumably necessary for uptake of Mn2+, but differed in catalytic determinants and by cysteine replacement of an invariant Leu residue for positioning ("clamping") of fatty acids. The third subfamily contrasted with alanine in the Gly/Ala switch for regiospecific oxidation and a minority contained unprecedented C-terminal sequences or lacked secretion signals. With these exceptions, biochemical analyses of transcripts of the three subfamilies appear to have reasonable prospects to find active enzymes.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24 Uppsala, Sweden.
| |
Collapse
|
13
|
Naskar T, Jana M, Majumdar A. Binuclear manganese(II)-thiolate complexes: Synthesis, characterization and nitrite induced structural changes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Park Y, Kim S, Kim K, Shin B, Jang Y, Cho KB, Cho J. Structure and Reactivity of Nonporphyrinic Terminal Manganese(IV)-Hydroxide Complexes in the Oxidative Electrophilic Reaction. Inorg Chem 2022; 61:4292-4301. [PMID: 35226491 DOI: 10.1021/acs.inorgchem.1c03104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent transition metal-hydroxide complexes have been proposed as essential intermediates in biological and synthetic catalytic reactions. In this work, we report the single-crystal X-ray structure and spectroscopic characteristics of a mononuclear nonporphyrinic MnIV-(OH) complex, [MnIV(Me3-TPADP)(OH)(OCH2CH3)]2+ (2), using various physicochemical methods. Likewise, [MnIV(Me3-TPADP)(OH)(OCH2CF3)]2+ (3), which is thermally stable at room temperature, was also synthesized and characterized spectroscopically. The MnIV-(OH) adducts are capable of performing oxidation reactions with external organic substrates such as C-H bond activation, sulfoxidation, and epoxidation. Kinetic studies, involving the Hammett correlation and kinetic isotope effect, and product analyses indicate that 2 and 3 exhibit electrophilic oxidative reactivity toward hydrocarbons. Density functional theory calculations support the assigned electronic structure and show that direct C-H bond activation of the MnIV-(OH) species is indeed possible.
Collapse
Affiliation(s)
- Younwoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seonghan Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.,Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Bongki Shin
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Youngchae Jang
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
15
|
Oliw EH. Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Arch Biochem Biophys 2022; 722:109169. [PMID: 35276213 DOI: 10.1016/j.abb.2022.109169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of five additional MnLOX have provided information on the metal center, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labeled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
16
|
Pennerman KK, Yin G, Bennett JW. Eight-carbon volatiles: prominent fungal and plant interaction compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:487-497. [PMID: 34727164 DOI: 10.1093/jxb/erab438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Signaling via volatile organic compounds (VOCs) has historically been studied mostly by entomologists; however, botanists and mycologists are increasingly aware of the physiological potential of chemical communication in the gas phase. Most research to date focuses on the observed effects of VOCs on different organisms such as differential growth or metabolite production. However, with the increased interest in volatile signaling, more researchers are investigating the molecular mechanisms for these effects. Eight-carbon VOCs are among the most prevalent and best-studied fungal volatiles. Therefore, this review emphasizes examples of eight-carbon VOCs affecting plants and fungi. These compounds display different effects that include growth suppression in both plants and fungi, induction of defensive behaviors such as accumulation of mycotoxins, phytohormone signaling cascades, and the inhibition of spore and seed germination. Application of '-omics' and other next-generation sequencing techniques is poised to decipher the mechanistic basis of volatiles in plant-fungal communication.
Collapse
Affiliation(s)
- Kayla K Pennerman
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA 30605, USA
| | - Guohua Yin
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Opalade AA, Grotemeyer EN, Jackson TA. Mimicking Elementary Reactions of Manganese Lipoxygenase Using Mn-hydroxo and Mn-alkylperoxo Complexes. Molecules 2021; 26:molecules26237151. [PMID: 34885729 PMCID: PMC8659247 DOI: 10.3390/molecules26237151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Manganese lipoxygenase (MnLOX) is an enzyme that converts polyunsaturated fatty acids to alkyl hydroperoxides. In proposed mechanisms for this enzyme, the transfer of a hydrogen atom from a substrate C-H bond to an active-site MnIII-hydroxo center initiates substrate oxidation. In some proposed mechanisms, the active-site MnIII-hydroxo complex is regenerated by the reaction of a MnIII-alkylperoxo intermediate with water by a ligand substitution reaction. In a recent study, we described a pair of MnIII-hydroxo and MnIII-alkylperoxo complexes supported by the same amide-containing pentadentate ligand (6Medpaq). In this present work, we describe the reaction of the MnIII-hydroxo unit in C-H and O-H bond oxidation processes, thus mimicking one of the elementary reactions of the MnLOX enzyme. An analysis of kinetic data shows that the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ oxidizes TEMPOH (2,2′-6,6′-tetramethylpiperidine-1-ol) faster than the majority of previously reported MnIII-hydroxo complexes. Using a combination of cyclic voltammetry and electronic structure computations, we demonstrate that the weak MnIII-N(pyridine) bonds lead to a higher MnIII/II reduction potential, increasing the driving force for substrate oxidation reactions and accounting for the faster reaction rate. In addition, we demonstrate that the MnIII-alkylperoxo complex [MnIII(OOtBu)(6Medpaq)]+ reacts with water to obtain the corresponding MnIII-hydroxo species, thus mimicking the ligand substitution step proposed for MnLOX.
Collapse
|
18
|
Oliw EH. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet Biol 2021; 157:103623. [PMID: 34520871 DOI: 10.1016/j.fgb.2021.103623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOX-AOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOX-AOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
19
|
Oliw EH. WITHDRAWN: Fatty acid dioxygenase-cytochrome P450 fusion enzymes of the top 10 fungal pathogens in molecular plant pathology and human-pathogenic fungi. Fungal Genet Biol 2021:103603. [PMID: 34214670 DOI: 10.1016/j.fgb.2021.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
20
|
Structural considerations on lipoxygenase function, inhibition and crosstalk with nitric oxide pathways. Biochimie 2020; 178:170-180. [PMID: 32980463 DOI: 10.1016/j.biochi.2020.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.
Collapse
|
21
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
22
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
23
|
Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol 2020; 139:103383. [DOI: 10.1016/j.fgb.2020.103383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
|
24
|
Sanjivkumar M, Chandran MN, Suganya AM, Immanuel G. Investigation on bio-properties and in-vivo antioxidant potential of carrageenans against alloxan induced oxidative stress in Wistar albino rats. Int J Biol Macromol 2020; 151:650-662. [DOI: 10.1016/j.ijbiomac.2020.02.227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/25/2022]
|
25
|
Rice DB, Grotemeyer EN, Donovan AM, Jackson TA. Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorg Chem 2020; 59:2689-2700. [PMID: 32045220 DOI: 10.1021/acs.inorgchem.9b02980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Anna M Donovan
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
26
|
Abstract
Lipoxygenases are key enzymes that catalyze the polyunsaturated fatty acids such as arachidic acid, linoleic acid (LA), and others unsaturated fatty acids. They are involved in important functions such as cell structure, metabolism, and signal transduction mechanisms, finally mediating cell death process, especially ferroptosis, a novel type of cell death modality. Our present protocol described a colorimetric assay for measuring lipoxygenase activity as well as a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method for the quantification of arachidonic acid metabolites.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
27
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
28
|
Zaragoza JPT, Nguy A, Minnetian N, Deng Z, Iavarone AT, Offenbacher AR, Klinman JP. Detecting and Characterizing the Kinetic Activation of Thermal Networks in Proteins: Thermal Transfer from a Distal, Solvent-Exposed Loop to the Active Site in Soybean Lipoxygenase. J Phys Chem B 2019; 123:8662-8674. [PMID: 31580070 PMCID: PMC6944211 DOI: 10.1021/acs.jpcb.9b07228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting chemical reaction catalyzed by soybean lipoxygenase (SLO) involves quantum mechanical tunneling of a hydrogen atom from substrate to its active site ferric-hydroxide cofactor. SLO has emerged as a prototypical system for linking the thermal activation of a protein scaffold to the efficiency of active site chemistry. Significantly, hydrogen-deuterium exchange-mass spectrometry (HDX-MS) experiments on wild type and mutant forms of SLO have uncovered trends in the enthalpic barriers for HDX within a solvent-exposed loop (positions 317-334) that correlate well with trends in the corresponding enthalpic barriers for kcat. A model for this behavior posits that collisions between water and loop 317-334 initiate thermal activation at the protein surface that is then propagated 15-34 Å inward toward the reactive carbon of substrate in proximity to the iron catalyst. In this study, we have prepared protein samples containing cysteine residues either at the tip of the loop 317-334 (Q322C) or on a control loop, 586-603 (S596C). Chemical modification of cysteines with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (Badan, BD) provides site-specific probes for the measurement of fluorescence relaxation lifetimes and Stokes shift decays as a function of temperature. Computational studies indicate that surface water structure is likely to be largely preserved in each sample. While both loops exhibit temperature-independent fluorescence relaxation lifetimes as do the Stokes shifts for S596C-BD, the activation enthalpy for the nanosecond solvent reorganization at Q322C-BD (Ea(ksolv) = 2.8(0.9) kcal/mol)) approximates the enthalpy of activation for catalytic C-H activation (Ea(kcat) = 2.3(0.4) kcal/mol). This study establishes and validates the methodology for measuring rates of rapid local motions at the protein/solvent interface of SLO. These new findings, when combined with previously published correlations between protein motions and the rate-limiting hydride transfer in a thermophilic alcohol dehydrogenase, provide experimental evidence for thermally induced "protein quakes" as the origin of enthalpic barriers in catalysis.
Collapse
Affiliation(s)
- Jan Paulo T. Zaragoza
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Andy Nguy
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Natalie Minnetian
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Zhenyu Deng
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Judith P. Klinman
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Biswas S, Mitra A, Banerjee S, Singh R, Das A, Paine TK, Bandyopadhyay P, Paul S, Biswas AN. A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)–Hydroxo Precursor: Characterization and C–H Bond Cleavage Reactivity. Inorg Chem 2019; 58:9713-9722. [DOI: 10.1021/acs.inorgchem.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| | - Amritaa Mitra
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinaki Bandyopadhyay
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Satadal Paul
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Achintesh N. Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| |
Collapse
|
30
|
Kostenko A, Ray K, Iavarone AT, Offenbacher AR. Kinetic Characterization of the C-H Activation Step for the Lipoxygenase from the Pathogenic Fungus Magnaporthe oryzae: Impact of N-Linked Glycosylation. Biochemistry 2019; 58:3193-3203. [PMID: 31264852 DOI: 10.1021/acs.biochem.9b00467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipoxygenases from pathogenic fungi belong to the lipoxygenase family of enzymes, which catalyze C-H activation of polyunsaturated fatty acids to form a diverse set of cell-signaling hydroperoxides. While the lipoxygenase catalytic domains are structurally and functionally similar, these fungal enzymes are decorated with N-linked glycans. The impact of N-linked glycans on the structure and function of these enzymes remains largely unknown. One exemplary system is MoLOX, a lipoxygenase from the fungus Magnaporthe oryzae, that is emerging as an important target for the devastating rice blast disease. Herein, we demonstrate that hydrogen transfer, associated with C-H cleavage of the substrate linoleic acid by MoLOX, is rate-determining and occurs by a hydrogen tunneling mechanism. Using the differential enthalpic barrier for hydrogen and deuterium transfer, ΔEa, as a kinetic reporter of tunneling efficiency, a disproportionate increase in the activation energy for deuterium transfer is observed upon treatment of MoLOX with a peptide:N-glycosidase that cleaves N-linked carbohydrates from the protein. This increased ΔEa is consistent with an impairment of substrate positioning in the enzyme-substrate complex for both the tunneling ready state and the ground state. These results provide new insight into the functional consequences of N-linked glycosylation on lipoxygenase C-H activation and have important implications for MoLOX inhibitor design.
Collapse
Affiliation(s)
- Anastasiia Kostenko
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Katherine Ray
- Department of Biology , East Carolina University , Greenville , North Carolina 27858 , United States
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences (QB3) , University of California , Berkeley , California 94720 , United States
| | - Adam R Offenbacher
- Department of Chemistry , East Carolina University , Greenville , North Carolina 27858 , United States
| |
Collapse
|
31
|
Karrer D, Rühl M. A new lipoxygenase from the agaric fungus Agrocybe aegerita: Biochemical characterization and kinetic properties. PLoS One 2019; 14:e0218625. [PMID: 31216342 PMCID: PMC6584016 DOI: 10.1371/journal.pone.0218625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Oxylipins are metabolites with a variety of biological functions. However, the biosynthetic pathway is widely unknown. It is considered that the first step is the oxygenation of polyunsaturated fatty acids like linoleic acid. Therefore, a lipoxygenase (LOX) from the edible basidiomycete Agrocybe aegerita was investigated. The AaeLOX4 was heterologously expressed in E. coli and purified via affinity chromatography and gel filtration. Biochemical properties and kinetic parameters of the purified AaeLOX4 were determined with linoleic acid and linolenic acid as substrates. The obtained Km, vmax and kcat values for linoleic acid were 295.5 μM, 16.5 μM · min-1 · mg-1 and 103.9 s-1, respectively. For linolenic acid Km, vmax and kcat values of 634.2 μM, 19.5 μM · min-1 · mg-1 and 18.3 s-1 were calculated. Maximum activities were observed at pH 7.5 and 25 °C. The main product of linoleic acid conversion was identified with normal-phase HPLC. This analysis revealed an explicit production of 13-hydroperoxy-9,11-octadecadienoic acid (13-HPOD). The experimental regio specificity is underpinned by the amino acid residues W384, F450, R594 and V635 considered relevant for regio specificity in LOX. In conclusion, HPLC-analysis and alignments revealed that AaeLOX4 is a 13-LOX.
Collapse
Affiliation(s)
- Dominik Karrer
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Hesse, Germany
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Giessen, Hesse, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME Business Area Bioresources, Giessen, Hesse, Germany
- * E-mail:
| |
Collapse
|
32
|
Rice DB, Munasinghe A, Grotemeyer EN, Burr AD, Day VW, Jackson TA. Structure and Reactivity of (μ-Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorg Chem 2019; 58:622-636. [PMID: 30525518 DOI: 10.1021/acs.inorgchem.8b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mononuclear MnIII-hydroxo and dinuclear (μ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(μ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(μ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Aruna Munasinghe
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Andrew D Burr
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Timothy A Jackson
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
33
|
Gehring T, Heydeck D, Niewienda A, Janek K, Kuhn H. Do lipoxygenases occur in viruses?: Expression and characterization of a viral lipoxygenase-like protein did not provide evidence for the existence of functional viral lipoxygenases. Prostaglandins Leukot Essent Fatty Acids 2018; 138:14-23. [PMID: 30392576 DOI: 10.1016/j.plefa.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/24/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023]
Abstract
Lipoxygenases are lipid peroxidizing enzymes, which frequently occur in higher plants and animals. In bacteria, these enzymes are rare and have been introduced via horizontal gene transfer. Since viruses function as horizontal gene transfer vectors and since lipoxygenases may be helpful for releasing assembled virus particles from host cells we explored whether these enzymes may actually occur in viruses. For this purpose we developed a four-step in silico screening strategy and searching the publically available viral genomes for lipoxygenase-like sequences we detected a single functional gene in the genome of a mimivirus infecting Acantamoeba polyphaga. The primary structure of this protein involved two putative metal ligand clusters but the recombinant enzyme did neither contain iron nor manganese. Most importantly, it did not exhibit lipoxygenase activity. These data suggests that this viral lipoxygenase-like sequence does not encode a functional lipoxygenase and that these enzymes do not occur in viruses.
Collapse
Affiliation(s)
- Tatjana Gehring
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Dagmar Heydeck
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Agathe Niewienda
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Core facility for Mass Spectrometry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Katharina Janek
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Core facility for Mass Spectrometry, Chariteplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Chariteplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
34
|
Oxidative Stress in the Male Germline: A Review of Novel Strategies to Reduce 4-Hydroxynonenal Production. Antioxidants (Basel) 2018; 7:antiox7100132. [PMID: 30282920 PMCID: PMC6209867 DOI: 10.3390/antiox7100132] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Germline oxidative stress is intimately linked to several reproductive pathologies including a failure of sperm-egg recognition. The lipid aldehyde 4-hydroxynonenal (4HNE) is particularly damaging to the process of sperm-egg recognition as it compromises the function and the stability of several germline proteins. Considering mature spermatozoa do not have the capacity for de novo protein translation, 4HNE modification of proteins in the mature gametes has uniquely severe consequences for protein homeostasis, cell function and cell survival. In somatic cells, 4HNE overproduction has been attributed to the action of lipoxygenase enzymes that facilitate the oxygenation and degradation of ω-6 polyunsaturated fatty acids (PUFAs). Accordingly, the arachidonate 15-lipoxygenase (ALOX15) enzyme has been intrinsically linked with 4HNE production, and resultant pathophysiology in various complex conditions such as coronary artery disease and multiple sclerosis. While ALOX15 has not been well characterized in germ cells, we postulate that ALOX15 inhibition may pose a new strategy to prevent 4HNE-induced protein modifications in the male germline. In this light, this review focuses on (i) 4HNE-induced protein damage in the male germline and its implications for fertility; and (ii) new methods for the prevention of lipid peroxidation in germ cells.
Collapse
|
35
|
Sugio A, Østergaard LH, Matsui K, Takagi S. Characterization of two fungal lipoxygenases expressed in Aspergillus oryzae. J Biosci Bioeng 2018; 126:436-444. [PMID: 29805113 DOI: 10.1016/j.jbiosc.2018.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/20/2018] [Accepted: 04/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Akiko Sugio
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan
| | | | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Shinobu Takagi
- Novozymes Japan Ltd., CB-6 MTG, 1-3 Nakase, Mihama-ku, Chiba 261-8501, Japan.
| |
Collapse
|
36
|
Regiospecificity of a novel bacterial lipoxygenase from Myxococcus xanthus for polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:823-833. [DOI: 10.1016/j.bbalip.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/17/2022]
|
37
|
Klinman JP, Offenbacher AR, Hu S. Origins of Enzyme Catalysis: Experimental Findings for C-H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs. J Am Chem Soc 2017; 139:18409-18427. [PMID: 29244501 PMCID: PMC5812730 DOI: 10.1021/jacs.7b08418] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Collapse
Affiliation(s)
- Judith P Klinman
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Adam R Offenbacher
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| | - Shenshen Hu
- Department of Chemistry, University of California , Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California , Berkeley, California 94720, United States
| |
Collapse
|
38
|
Mn K-edge X-ray absorption studies of mononuclear Mn(III)–hydroxo complexes. J Biol Inorg Chem 2017; 22:1281-1293. [DOI: 10.1007/s00775-017-1501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022]
|
39
|
Offenbacher AR, Hu S, Poss EM, Carr CAM, Scouras AD, Prigozhin DM, Iavarone AT, Palla A, Alber T, Fraser JS, Klinman JP. Hydrogen-Deuterium Exchange of Lipoxygenase Uncovers a Relationship between Distal, Solvent Exposed Protein Motions and the Thermal Activation Barrier for Catalytic Proton-Coupled Electron Tunneling. ACS CENTRAL SCIENCE 2017; 3:570-579. [PMID: 28691068 PMCID: PMC5492416 DOI: 10.1021/acscentsci.7b00142] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Indexed: 05/11/2023]
Abstract
Defining specific pathways for efficient heat transfer from protein-solvent interfaces to their active sites represents one of the compelling and timely challenges in our quest for a physical description of the origins of enzyme catalysis. Enzymatic hydrogen tunneling reactions constitute excellent systems in which to validate experimental approaches to this important question, given the inherent temperature independence of quantum mechanical wave function overlap. Herein, we present the application of hydrogen-deuterium exchange coupled to mass spectrometry toward the spatial resolution of protein motions that can be related to an enzyme's catalytic parameters. Employing the proton-coupled electron transfer reaction of soybean lipoxygenase as proof of principle, we first corroborate the impact of active site mutations on increased local flexibility and, second, uncover a solvent-exposed loop, 15-34 Å from the reactive ferric center whose temperature-dependent motions are demonstrated to mirror the enthalpic barrier for catalytic C-H bond cleavage. A network that connects this surface loop to the active site is structurally identified and supported by changes in kinetic parameters that result from site-specific mutations.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Shenshen Hu
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Erin M. Poss
- Department
of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cody A. M. Carr
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Alexander D. Scouras
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Daniil M. Prigozhin
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Ali Palla
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tom Alber
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - James S. Fraser
- Department
of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Judith P. Klinman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
40
|
Biological functions controlled by manganese redox changes in mononuclear Mn-dependent enzymes. Essays Biochem 2017; 61:259-270. [PMID: 28487402 DOI: 10.1042/ebc20160070] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/05/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
Remarkably few enzymes are known to employ a mononuclear manganese ion that undergoes changes in redox state during catalysis. Many questions remain to be answered about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II), the nature of the dioxygen species involved in the catalytic mechanism, and how these enzymes acquire Mn(II) given that many other metal ions in the cell form more stable protein complexes. Here, we summarize current knowledge concerning the structure and mechanism of five mononuclear manganese-dependent enzymes: superoxide dismutase, oxalate oxidase (OxOx), oxalate decarboxylase (OxDC), homoprotocatechuate 3,4-dioxygenase, and lipoxygenase (LOX). Spectroscopic measurements and/or computational studies suggest that Mn(III)/Mn(II) are the catalytically active oxidation states of the metal, and the importance of 'second-shell' hydrogen bonding interactions with metal ligands has been demonstrated for a number of examples. The ability of these enzymes to modulate the redox properties of the Mn(III)/Mn(II) couple, thereby allowing them to generate substrate-based radicals, appears essential for accessing diverse chemistries of fundamental importance to organisms in all branches of life.
Collapse
|
41
|
Gao H, Groves JT. Fast Hydrogen Atom Abstraction by a Hydroxo Iron(III) Porphyrazine. J Am Chem Soc 2017; 139:3938-3941. [PMID: 28245648 DOI: 10.1021/jacs.6b13091] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A reactive hydroxoferric porphyrazine complex, [(PyPz)FeIII(OH) (OH2)]4+ (1, PyPz = tetramethyl-2,3-pyridino porphyrazine), has been prepared via one-electron oxidation of the corresponding ferrous species [(PyPz)FeII(OH2)2]4+ (2). Electrochemical analysis revealed a pH-dependent and remarkably high FeIII-OH/FeII-OH2 reduction potential of 680 mV vs Ag/AgCl at pH 5.2. Nernstian behavior from pH 2 to pH 8 indicates a one-proton, one-electron interconversion throughout that range. The O-H bond dissociation energy of the FeII-OH2 complex was estimated to be 84 kcal mol-1. Accordingly, 1 reacts rapidly with a panel of substrates via C-H hydrogen atom transfer (HAT), reducing 1 to [(PyPz)FeII(OH2)2]4+ (2). The second-order rate constant for the reaction of [(PyPz)FeIII(OH) (OH2)]4+ with xanthene was 2.22 × 103 M-1 s-1, 5-6 orders of magnitude faster than other reported FeIII-OH complexes and faster than many ferryl complexes.
Collapse
Affiliation(s)
- Hongxin Gao
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - John T Groves
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Horitani M, Offenbacher AR, Carr CAM, Yu T, Hoeke V, Cutsail GE, Hammes-Schiffer S, Klinman JP, Hoffman BM. 13C ENDOR Spectroscopy of Lipoxygenase-Substrate Complexes Reveals the Structural Basis for C-H Activation by Tunneling. J Am Chem Soc 2017; 139:1984-1997. [PMID: 28121140 PMCID: PMC5322796 DOI: 10.1021/jacs.6b11856] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 12/20/2022]
Abstract
In enzymatic C-H activation by hydrogen tunneling, reduced barrier width is important for efficient hydrogen wave function overlap during catalysis. For native enzymes displaying nonadiabatic tunneling, the dominant reactive hydrogen donor-acceptor distance (DAD) is typically ca. 2.7 Å, considerably shorter than normal van der Waals distances. Without a ground state substrate-bound structure for the prototypical nonadiabatic tunneling system, soybean lipoxygenase (SLO), it has remained unclear whether the requisite close tunneling distance occurs through an unusual ground state active site arrangement or by thermally sampling conformational substates. Herein, we introduce Mn2+ as a spin-probe surrogate for the SLO Fe ion; X-ray diffraction shows Mn-SLO is structurally faithful to the native enzyme. 13C ENDOR then reveals the locations of 13C10 and reactive 13C11 of linoleic acid relative to the metal; 1H ENDOR and molecular dynamics simulations of the fully solvated SLO model using ENDOR-derived restraints give additional metrical information. The resulting three-dimensional representation of the SLO active site ground state contains a reactive (a) conformer with hydrogen DAD of ∼3.1 Å, approximately van der Waals contact, plus an inactive (b) conformer with even longer DAD, establishing that stochastic conformational sampling is required to achieve reactive tunneling geometries. Tunneling-impaired SLO variants show increased DADs and variations in substrate positioning and rigidity, confirming previous kinetic and theoretical predictions of such behavior. Overall, this investigation highlights the (i) predictive power of nonadiabatic quantum treatments of proton-coupled electron transfer in SLO and (ii) sensitivity of ENDOR probes to test, detect, and corroborate kinetically predicted trends in active site reactivity and to reveal unexpected features of active site architecture.
Collapse
Affiliation(s)
- Masaki Horitani
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Adam R. Offenbacher
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Cody A. Marcus Carr
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Tao Yu
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Veronika Hoeke
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George E. Cutsail
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sharon Hammes-Schiffer
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Judith P. Klinman
- Department of Chemistry and California Institute for Quantitative
Biosciences (QB3), Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Rice DB, Wijeratne GB, Burr AD, Parham JD, Day VW, Jackson TA. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex. Inorg Chem 2016; 55:8110-20. [PMID: 27490691 DOI: 10.1021/acs.inorgchem.6b01217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the substrate and the α-methylquinoline group of the dpaq(2Me) ligand. The DFT calculations, which reproduce the experimental activation free energies quite well, provide the first examination of the transition-state structure of mononuclear Mn(III)(OH) species during a CPET reaction.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Gayan B Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Andrew D Burr
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Joshua D Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Victor W Day
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
44
|
Chen Y, Wennman A, Karkehabadi S, Engström Å, Oliw EH. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein. J Lipid Res 2016; 57:1574-88. [PMID: 27313058 DOI: 10.1194/jlr.m069617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 11/20/2022] Open
Abstract
The crystal structure of 13R-manganese lipoxygenase (MnLOX) of Gaeumannomyces graminis (Gg) in complex with zonadhesin of Pichia pastoris was solved by molecular replacement. Zonadhesin contains β-strands in two subdomains. A comparison of Gg-MnLOX with the 9S-MnLOX of Magnaporthe oryzae (Mo) shows that the protein fold and the geometry of the metal ligands are conserved. The U-shaped active sites differ mainly due to hydrophobic residues of the substrate channel. The volumes and two hydrophobic side pockets near the catalytic base may sanction oxygenation at C-13 and C-9, respectively. Gly-332 of Gg-MnLOX is positioned in the substrate channel between the entrance and the metal center. Replacements with larger residues could restrict oxygen and substrate to reach the active site. C18 fatty acids are likely positioned with C-11 between Mn(2+)OH2 and Leu-336 for hydrogen abstraction and with one side of the 12Z double bond shielded by Phe-337 to prevent antarafacial oxygenation at C-13 and C-11. Phe-347 is positioned at the end of the substrate channel and replacement with smaller residues can position C18 fatty acids for oxygenation at C-9. Gg-MnLOX does not catalyze the sequential lipoxygenation of n-3 fatty acids in contrast to Mo-MnLOX, which illustrates the different configurations of their substrate channels.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Anneli Wennman
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Åke Engström
- Department of Biochemistry and Microbiology, Uppsala University Biomedical Center, SE-751 23 Uppsala, Sweden
| | - Ernst H Oliw
- Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
45
|
Oliw EH, Aragó M, Chen Y, Jernerén F. A new class of fatty acid allene oxide formed by the DOX-P450 fusion proteins of human and plant pathogenic fungi, C. immitis and Z. tritici. J Lipid Res 2016; 57:1518-28. [PMID: 27282156 DOI: 10.1194/jlr.m068981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 01/14/2023] Open
Abstract
Linoleate dioxygenase-cytochrome P450 (DOX-CYP) fusion enzymes are common in pathogenic fungi. The DOX domains form hydroperoxy metabolites of 18:2n-6, which can be transformed by the CYP domains to 1,2- or 1,4-diols, epoxy alcohols, or to allene oxides. We have characterized two novel allene oxide synthases (AOSs), namely, recombinant 8R-DOX-AOS of Coccidioides immitis (causing valley fever) and 8S-DOX-AOS of Zymoseptoria tritici (causing septoria tritici blotch of wheat). The 8R-DOX-AOS oxidized 18:2n-6 sequentially to 8R-hydroperoxy-9Z,12Z-octadecadienoic acid (8R-HPODE) and to an allene oxide, 8R(9)-epoxy-9,12Z-octadecadienoic acid, as judged from the accumulation of the α-ketol, 8S-hydroxy-9-oxo-12Z-octadecenoic acid. The 8S-DOX-AOS of Z. tritici transformed 18:2n-6 sequentially to 8S-HPODE and to an α-ketol, 8R-hydroxy-9-oxo-12Z-octadecenoic acid, likely formed by hydrolysis of 8S(9)-epoxy-9,12Z-octadecadienoic acid. The 8S-DOX-AOS oxidized [8R-(2)H]18:2n-6 to 8S-HPODE with retention of the (2)H-label, suggesting suprafacial hydrogen abstraction and oxygenation in contrast to 8R-DOX-AOS. Both enzymes oxidized 18:1n-9 and 18:3n-3 to α-ketols, but the catalysis of the 8R- and 8S-AOS domains differed. 8R-DOX-AOS transformed 9R-HPODE to epoxy alcohols, but 8S-DOX-AOS converted 9S-HPODE to an α-ketol (9-hydroxy-10-oxo-12Z-octadecenoic acid) and epoxy alcohols in a ratio of ∼1:2. Whereas all fatty acid allene oxides described so far have a conjugated diene impinging on the epoxide, the allene oxides formed by 8-DOX-AOS are unconjugated.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Marc Aragó
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Yang Chen
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Fredrik Jernerén
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
46
|
Wennman A, Oliw EH, Karkehabadi S, Chen Y. Crystal Structure of Manganese Lipoxygenase of the Rice Blast Fungus Magnaporthe oryzae. J Biol Chem 2016; 291:8130-9. [PMID: 26783260 PMCID: PMC4825015 DOI: 10.1074/jbc.m115.707380] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Indexed: 02/01/2023] Open
Abstract
Lipoxygenases (LOX) are non-heme metal enzymes, which oxidize polyunsaturated fatty acids to hydroperoxides. All LOX belong to the same gene family, and they are widely distributed. LOX of animals, plants, and prokaryotes contain iron as the catalytic metal, whereas fungi express LOX with iron or with manganese. Little is known about metal selection by LOX and the adjustment of the redox potentials of their protein-bound catalytic metals. Thirteen three-dimensional structures of animal, plant, and prokaryotic FeLOX are available, but none of MnLOX. The MnLOX of the most important plant pathogen, the rice blast fungusMagnaporthe oryzae(Mo), was expressed inPichia pastoris.Mo-MnLOX was deglycosylated, purified to homogeneity, and subjected to crystal screening and x-ray diffraction. The structure was solved by sulfur and manganese single wavelength anomalous dispersion to a resolution of 2.0 Å. The manganese coordinating sphere is similar to iron ligands of coral 8R-LOX and soybean LOX-1 but is not overlapping. The Asn-473 is positioned on a short loop (Asn-Gln-Gly-Glu-Pro) instead of an α-helix and forms hydrogen bonds with Gln-281. Comparison with FeLOX suggests that Phe-332 and Phe-525 might contribute to the unique suprafacial hydrogen abstraction and oxygenation mechanism of Mo-MnLOX by controlling oxygen access to the pentadiene radical. Modeling suggests that Arg-525 is positioned close to Arg-182 of 8R-LOX, and both residues likely tether the carboxylate group of the substrate. An oxygen channel could not be identified. We conclude that Mo-MnLOX illustrates a partly unique variation of the structural theme of FeLOX.
Collapse
Affiliation(s)
- Anneli Wennman
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H Oliw
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Yang Chen
- From the Department of Pharmaceutical Biosciences, Uppsala University Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
47
|
Mallick D, Shaik S. Theory Revealing Unusual Non-Rebound Mechanisms Responsible for the Distinct Reactivities of O═MnIV═O and [HO–MnIV–OH]2+ in C–H Bond Activation. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dibyendu Mallick
- Institute
of Chemistry and
the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute
of Chemistry and
the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
48
|
Wijeratne GB, Day VW, Jackson TA. O-H bond oxidation by a monomeric Mn(III)-OMe complex. Dalton Trans 2015; 44:3295-306. [PMID: 25597362 DOI: 10.1039/c4dt03546a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese-containing, mid-valent oxidants (Mn(III)-OR) that mediate proton-coupled electron-transfer (PCET) reactions are central to a variety of crucial enzymatic processes. The Mn-dependent enzyme lipoxygenase is such an example, where a Mn(III)-OH unit activates fatty acid substrates for peroxidation by an initial PCET. This present work describes the quantitative generation of the Mn(III)-OMe complex, [Mn(III)(OMe)(dpaq)](+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino-N-quinolin-8-yl-acetamidate) via dioxygen activation by [Mn(II)(dpaq)](+) in methanol at 25 °C. The X-ray diffraction structure of [Mn(III)(OMe)(dpaq)](+) exhibits a Mn-OMe group, with a Mn-O distance of 1.825(4) Å, that is trans to the amide functionality of the dpaq ligand. The [Mn(III)(OMe)(dpaq)](+) complex is quite stable in solution, with a half-life of 26 days in MeCN at 25 °C. [Mn(III)(OMe)(dpaq)](+) can activate phenolic O-H bonds with bond dissociation free energies (BDFEs) of less than 79 kcal mol(-1) and reacts with the weak O-H bond of TEMPOH (TEMPOH = 2,2'-6,6'-tetramethylpiperidine-1-ol) with a hydrogen/deuterium kinetic isotope effect (H/D KIE) of 1.8 in MeCN at 25 °C. This isotope effect, together with other experimental evidence, is suggestive of a concerted proton-electron transfer (CPET) mechanism for O-H bond oxidation by [Mn(III)(OMe)(dpaq)](+). A kinetic and thermodynamic comparison of the O-H bond oxidation reactivity of [Mn(III)(OMe)(dpaq)](+) to other M(III)-OR oxidants is presented as an aid to gain more insight into the PCET reactivity of mid-valent oxidants. In contrast to high-valent counterparts, the limited examples of M(III)-OR oxidants exhibit smaller H/D KIEs and show weaker dependence of their oxidation rates on the driving force of the PCET reaction with O-H bonds.
Collapse
Affiliation(s)
- Gayan B Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
49
|
Kim KR, An JU, Lee SH, Oh DK. Selective Production of 9R-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid from α-Linolenic Acid in Perilla Seed Oil Hydrolyzate by a Lipoxygenase from Nostoc Sp. SAG 25.82. PLoS One 2015; 10:e0137785. [PMID: 26379279 PMCID: PMC4574779 DOI: 10.1371/journal.pone.0137785] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/21/2015] [Indexed: 11/19/2022] Open
Abstract
Hydroxy fatty acids (HFAs) derived from omega-3 polyunsaturated fatty acids have been known as versatile bioactive molecules. However, its practical production from omega-3 or omega-3 rich oil has not been well established. In the present study, the stereo-selective enzymatic production of 9R-hydroxy-10E,12Z,15Z-octadecatrienoic acid (9R-HOTE) from α-linolenic acid (ALA) in perilla seed oil (PO) hydrolyzate was achieved using purified recombinant 9R-lipoxygenase (9R-LOX) from Nostoc sp. SAG 25.82. The specific activity of the enzyme followed the order linoleic acid (LA) > ALA > γ-linolenic acid (GLA). A total of 75% fatty acids (ALA and LA) were used as a substrate for 9R-LOX from commercial PO by hydrolysis of Candida rugosa lipase. The optimal reaction conditions for the production of 9R-HOTE from ALA using 9R-LOX were pH 8.5, 15°C, 5% (v/v) acetone, 0.2% (w/v) Tween 80, 40 g/L ALA, and 1 g/L enzyme. Under these conditions, 9R-LOX produced 37.6 g/L 9R-HOTE from 40 g/L ALA for 1 h, with a conversion yield of 94% and a productivity of 37.6 g/L/h; and the enzyme produced 34 g/L 9R-HOTE from 40 g/L ALA in PO hydrolyzate for 1 h, with a conversion yields of 85% and a productivity of 34 g/L/h. The enzyme also converted 9R-hydroxy-10E,12Z-octadecadienoic acid (9R-HODE) from 40 g/L LA for 1.0 h, with a conversion yield of 95% and a productivity of 38.4 g/L. This is the highest productivity of HFA from both ALA and ALA-rich vegetable oil using LOX ever reported. Therefore, our result suggests an efficient method for the production of 9R-HFAs from LA and ALA in vegetable oil using recombinant LOX in biotechnology.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Seon-Hwa Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Wennman A, Jernerén F, Magnuson A, Oliw EH. Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of α-linolenic acid. Arch Biochem Biophys 2015; 583:87-95. [PMID: 26264916 DOI: 10.1016/j.abb.2015.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022]
Abstract
Magnaporthe oryzae causes rice blast disease and has become a model organism of fungal infections. M. oryzae can oxygenate fatty acids by 7,8-linoleate diol synthase, 10R-dioxygenase-epoxy alcohol synthase, and by a putative manganese lipoxygenase (Mo-MnLOX). The latter two are transcribed during infection. The open reading frame of Mo-MnLOX was deduced from genome and cDNA analysis. Recombinant Mo-MnLOX was expressed in Pichia pastoris and purified to homogeneity. The enzyme contained protein-bound Mn and oxidized 18:2n-6 and 18:3n-3 to 9S-, 11-, and 13R-hydroperoxy metabolites by suprafacial hydrogen abstraction and oxygenation. The 11-hydroperoxides were subject to β-fragmentation with formation of 9S- and 13R-hydroperoxy fatty acids. Oxygen consumption indicated apparent kcat values of 2.8 s(-1) (18:2n-6) and 3.9 s(-1) (18:3n-3), and UV analysis yielded apparent Km values of 8 and 12 μM, respectively, for biosynthesis of cis-trans conjugated metabolites. 9S-Hydroperoxy-10E,12Z,15Z-octadecatrienoic acid was rapidly further oxidized to a triene, 9S,16S-dihydroperoxy-10E,12Z,14E-octadecatrienoic acid. In conclusion, we have expressed, purified and characterized a new MnLOX from M. oryzae. The pathogen likely secretes Mo-MnLOX and phospholipases to generate oxylipins and to oxidize lipid membranes of rice cells and the cuticle.
Collapse
Affiliation(s)
- Anneli Wennman
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.
| | - Fredrik Jernerén
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ann Magnuson
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|