1
|
Abbott JA, Livingston NM, Egri SB, Guth E, Francklyn CS. Characterization of aminoacyl-tRNA synthetase stability and substrate interaction by differential scanning fluorimetry. Methods 2016; 113:64-71. [PMID: 27794454 DOI: 10.1016/j.ymeth.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 11/30/2022] Open
Abstract
Differential scanning fluorimetry (DSF) is a fluorescence-based assay to evaluate protein stability by determining protein melting temperatures. Here, we describe the application of DSF to investigate aminoacyl-tRNA synthetase (AARS) stability and interaction with ligands. Employing three bacterial AARS enzymes as model systems, methods are presented here for the use of DSF to measure the apparent temperatures at which AARSs undergo melting transitions, and the effect of AARS substrates and inhibitors. One important observation is that the extent of temperature stability realized by an AARS in response to a particular bound ligand cannot be predicted a priori. The DSF method thus serves as a rapid and highly quantitative approach to measure AARS stability, and the ability of ligands to influence the temperature at which unfolding transitions occur.
Collapse
Affiliation(s)
- Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA.
| | - Nathan M Livingston
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Shawn B Egri
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | - Ethan Guth
- Chemistry & Biochemistry Department, Norwich University, Northfield, VT 05663, USA
| | | |
Collapse
|
2
|
Bedouelle H. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer. Biochimie 2016; 121:29-37. [DOI: 10.1016/j.biochi.2015.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
|
3
|
Mahapa A, Mandal S, Biswas A, Jana B, Polley S, Sau S, Sau K. Chemical and thermal unfolding of a global staphylococcal virulence regulator with a flexible C-terminal end. PLoS One 2015; 10:e0122168. [PMID: 25822635 PMCID: PMC4379015 DOI: 10.1371/journal.pone.0122168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/07/2015] [Indexed: 11/19/2022] Open
Abstract
SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.
Collapse
Affiliation(s)
- Avisek Mahapa
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Biswanath Jana
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Soumitra Polley
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
- * E-mail: (SS); (KS)
| | - Keya Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- * E-mail: (SS); (KS)
| |
Collapse
|
4
|
Improvement of stability and enzymatic activity by site-directed mutagenesis of E. coli asparaginase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1219-30. [PMID: 24721562 DOI: 10.1016/j.bbapap.2014.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/14/2014] [Accepted: 03/31/2014] [Indexed: 11/22/2022]
Abstract
Bacterial asparaginases (EC 3.5.1.1) have attracted considerable attention because enzymes of this group are used in the therapy of certain forms of leukemia. Class II asparaginase from Escherichia coli (EcA), a homotetramer with a mass of 138 kDa, is especially effective in cancer therapy. However, the therapeutic potential of EcA is impaired by the limited stability of the enzyme in vivo and by the induction of antibodies in the patients. In an attempt to modify the properties of EcA, several variants with amino acid replacements at subunit interfaces were constructed and characterized. Chemical and thermal denaturation analysis monitored by activity, fluorescence, circular dichroism, and differential scanning calorimetry showed that certain variants with exchanges that weaken dimer-dimer interactions exhibited complex denaturation profiles with active dimeric and/or inactive monomeric intermediates appearing at low denaturant concentrations. By contrast, other EcA variants showed considerably enhanced activity and stability as compared to the wild-type enzyme. Thus, even small changes at a subunit interface may markedly affect EcA stability without impairing its catalytic properties. Variants of this type may have a potential for use in the asparaginase therapy of leukemia.
Collapse
|
5
|
Banerjee B, Banerjee R. Guanidine Hydrochloride Mediated Denaturation of E. coli Alanyl-tRNA Synthetase: Identification of an Inactive Dimeric Intermediate. Protein J 2014; 33:119-27. [DOI: 10.1007/s10930-014-9544-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Choudhury A, Banerjee R. The N-terminal fragment of Acanthamoeba polyphaga
mimivirus tyrosyl-tRNA synthetase (TyrRSapm
) is a monomer in solution. FEBS Lett 2013; 587:590-9. [DOI: 10.1016/j.febslet.2013.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/21/2013] [Accepted: 01/22/2013] [Indexed: 01/14/2023]
|
7
|
Krejcirikova A, Tugarinov V. 3D-TROSY-based backbone and ILV-methyl resonance assignments of a 319-residue homodimer from a single protein sample. JOURNAL OF BIOMOLECULAR NMR 2012; 54:135-43. [PMID: 22960997 DOI: 10.1007/s10858-012-9667-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/29/2012] [Indexed: 05/20/2023]
Abstract
The feasibility of practically complete backbone and ILV methyl chemical shift assignments from a single [U-(2)H,(15)N,(13)C; Ileδ1-{(13)CH(3)}; Leu,Val-{(13)CH(3)/(12)CD(3)}]-labeled protein sample of the truncated form of ligand-free Bst-Tyrosyl tRNA Synthetase (Bst-ΔYRS), a 319-residue predominantly helical homodimer, is established. Protonation of ILV residues at methyl positions does not appreciably detract from the quality of TROSY triple resonance data. The assignments are performed at 40 °C to improve the sensitivity of the measurements and alleviate the overlap of (1)H-(15)N correlations in the abundant α-helical segments of the protein. A number of auxiliary approaches are used to assist in the assignment process: (1) selection of (1)H-(15)N amide correlations of certain residue types (Ala, Thr/Ser) that simplifies 2D (1)H-(15)N TROSY spectra, (2) straightforward identification of ILV residue types from the methyl-detected 'out-and-back' HMCM(CG)CBCA experiment, and (3) strong sequential HN-HN NOE connectivities in the helical regions. The two subunits of Bst-YRS were predicted earlier to exist in two different conformations in the absence of ligands. In agreement with our earlier findings (Godoy-Ruiz in J Am Chem Soc 133:19578-195781, 2011), no evidence of dimer asymmetry has been observed in either amide- or methyl-detected experiments.
Collapse
Affiliation(s)
- Anna Krejcirikova
- Department of Chemistry and Biochemistry, University of Maryland, Biomolecular Sci. Bldg./CBSO, College Park, MD 20742, USA
| | | |
Collapse
|
8
|
Jana B, Bandhu A, Mondal R, Biswas A, Sau K, Sau S. Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli. Biochemistry 2012; 51:1223-37. [PMID: 22263615 DOI: 10.1021/bi2015037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biswanath Jana
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Amitava Bandhu
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Rajkrishna Mondal
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Keya Sau
- Department
of Biotechnology, Haldia Institute of Technology, PO-HIT, Dt-Purba Medinipur,
Pin 721657, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| |
Collapse
|
9
|
Moreno-Vargas LM, Carrillo-Ibarra N, Arzeta-Pino L, Benítez-Cardoza CG. Thermal unfolding of apo- and holo-enolase from Saccharomyces cerevisiae: Different mechanisms, similar activation enthalpies. Int J Biol Macromol 2011; 49:871-8. [DOI: 10.1016/j.ijbiomac.2011.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/24/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
10
|
Godoy-Ruiz R, Krejcirikova A, Gallagher DT, Tugarinov V. Solution NMR Evidence for Symmetry in Functionally or Crystallographically Asymmetric Homodimers. J Am Chem Soc 2011; 133:19578-81. [DOI: 10.1021/ja206967d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Raquel Godoy-Ruiz
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, United States
| | - Anna Krejcirikova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, United States
| | - D. Travis Gallagher
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, United States
| | - Vitali Tugarinov
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, 20742, United States
| |
Collapse
|
11
|
Dwevedi A, Dubey VK, Jagannadham MV, Kayastha AM. Insights into pH-induced conformational transition of β-galactosidase from Pisum sativum leading to its multimerization. Appl Biochem Biotechnol 2010; 162:2294-312. [PMID: 20549573 DOI: 10.1007/s12010-010-9003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
Although β-galactosidases are physiologically a very important enzyme and have may therapeutics applications, very little is known about the stability and the folding aspects of the enzyme. We have used β-galactosidase from Pisum sativum (PsBGAL) as model system to investigate stability, folding, and function relationship of β-galactosidases. PsBGAL is a vacuolar protein which has a tendency to multimerize at acidic pH with protein concentration ≥100 μg mL⁻¹ and dissociates into its subunits above neutral pH. It exhibits maximum activity as well as stability under acidic conditions. Further, it has different conformational orientations and core secondary structures at different pH. Substantial predominance of β-content and interfacial interactions through Trp residues play crucial role in pH-dependent multimerization of enzyme. Equilibrium unfolding of PsBGAL at acidic pH follows four-state model when monitored by changes in the secondary structure with two intermediates: one resembling to molten globule-like state while unfolding seen from activity and tertiary structure of PsBGAL fits to two-state model. Unfolding of PsBGAL at higher pH always follows two-state model. Furthermore, unfolding of PsBGAL reveals that it has at least two domains: α/β barrel containing catalytic site and the other is rich in β-content responsible for enzyme multimerization.
Collapse
Affiliation(s)
- Alka Dwevedi
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | | | |
Collapse
|
12
|
Abstract
The susceptibility of monoclonal antibodies (mAbs) to undergo cold denaturation remains unexplored. In this study, the phenomenon of cold denaturation was investigated for a mAb, mAb1, through thermodynamic and spectroscopic analyses. Tryptophan fluorescence and circular dichroism (CD) spectra were recorded for the guanidine hydrochloride (GuHCl)-induced unfolding of mAb1 at pH 6.3 at temperatures ranging from -5 to 50 degrees C. A three-state unfolding model incorporating the linear extrapolation method was fit to the fluorescence data to obtain an apparent free energy of unfolding, DeltaG(u), at each temperature. CD studies revealed that mAb1 exhibited polyproline II helical structure at low temperatures and at high GuHCl concentrations. The Gibbs-Helmholtz expression fit to the DeltaG(u) versus temperature data from fluorescence gave a DeltaC(p) of 8.0 kcal mol(-1) K(-1), a maximum apparent stability of 23.7 kcal mol(-1) at 18 degrees C, and an apparent cold denaturation temperature (T(CD)) of -23 degrees C. DeltaG(u) values for another mAb (mAb2) with a similar framework exhibited less stability at low temperatures, suggesting a depressed protein stability curve and a higher relative T(CD). Direct experimental evidence of the susceptibility of mAb1 and mAb2 to undergo cold denaturation in the absence of denaturant was confirmed at pH 2.5. Thus, mAbs have a potential to undergo cold denaturation at storage temperatures near -20 degrees C (pH 6.3), and this potential needs to be evaluated independently for individual mAbs.
Collapse
Affiliation(s)
- Kristi L Lazar
- Early Stage Pharmaceutical Development, Genentech, Inc., San Francisco, CA, USA
| | | | | |
Collapse
|
13
|
Suresh A, Karthikraja V, Lulu S, Kangueane U, Kangueane P. A decision tree model for the prediction of homodimer folding mechanism. Bioinformation 2009; 4:197-205. [PMID: 20461159 PMCID: PMC2859576 DOI: 10.6026/97320630004197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 11/09/2009] [Indexed: 11/25/2022] Open
Abstract
The formation of protein homodimer complexes for molecular catalysis and regulation is fascinating. The homodimer formation through 2S (2 state), 3SMI (3 state with monomer intermediate) and 3SDI (3 state with dimer intermediate) folding mechanism is known for 47 homodimer structures. Our dataset of forty-seven homodimers consists of twenty-eight 2S, twelve 3SMI and seven 3SDI. The dataset is characterized using monomer length, interface area and interface/total (I/T) residue ratio. It is found that 2S are often small in size with large I/T ratio and 3SDI are frequently large in size with small I/T ratio. Nonetheless, 3SMI have a mixture of these features. Hence, we used these parameters to develop a decision tree model. The decision tree model produced positive predictive values (PPV) of 72% for 2S, 58% for 3SMI and 57% for 3SDI in cross validation. Thus, the method finds application in assigning homodimers with folding mechanism.
Collapse
Affiliation(s)
- Abishek Suresh
- Biomedical Informatics, Pondicherry 607402
- AIMST University, Semeling 08100, Malaysia
| | | | | | | | | |
Collapse
|
14
|
Chadee AB, Bhaskaran H, Russell R. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics. J Mol Biol 2009; 395:656-70. [PMID: 19913030 DOI: 10.1016/j.jmb.2009.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
The Neurospora crassa CYT-18 protein is a mitochondrial tyrosyl-tRNA synthetase that also promotes self-splicing of group I intron RNAs by stabilizing the functional structure in the conserved core. CYT-18 binds the core along the same surface as a common peripheral element, P5abc, suggesting that CYT-18 can replace P5abc functionally. In addition to stabilizing structure generally, P5abc stabilizes the native conformation of the Tetrahymena group I intron relative to a globally similar misfolded conformation that has only local differences within the core and is populated significantly at equilibrium by a ribozyme variant lacking P5abc (E(DeltaP5abc)). Here, we show that CYT-18 specifically promotes formation of the native group I intron core from this misfolded conformation. Catalytic activity assays demonstrate that CYT-18 shifts the equilibrium of E(DeltaP5abc) toward the native state by at least 35-fold, and binding assays suggest an even larger effect. Thus, similar to P5abc, CYT-18 preferentially recognizes the native core, despite the global similarity of the misfolded core and despite forming crudely similar complexes, as revealed by dimethyl sulfate footprinting. Interestingly, the effects of CYT-18 and P5abc on folding kinetics differ. Whereas P5abc inhibits refolding of the misfolded conformation by forming peripheral contacts that must break during refolding, CYT-18 does not display analogous inhibition, most likely because it relies to a greater extent on direct interactions with the core. Although CYT-18 does not encounter this RNA in vivo, our results suggest that it stabilizes its cognate group I introns relative to analogous misfolded intermediates. By specifically recognizing native structural features, CYT-18 may also interact with earlier folding intermediates to avoid RNA misfolding or to trap native contacts as they form. More generally, our results highlight the ability of a protein cofactor to stabilize a functional RNA structure specifically without incurring associated costs in RNA folding kinetics.
Collapse
Affiliation(s)
- Amanda B Chadee
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, TX 78712, USA
| | | | | |
Collapse
|
15
|
Deu E, Dhoot J, Kirsch JF. The partially folded homodimeric intermediate of Escherichia coli aspartate aminotransferase contains a "molten interface" structure. Biochemistry 2009; 48:433-41. [PMID: 19099423 DOI: 10.1021/bi801431x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of intersubunit side chain-side chain interactions in the stability of the Escherichia coli aspartate aminotransferase (eAATase) homodimer was investigated by directed mutagenesis at 10 different interface contacts. The urea-mediated unfolding pathway of this enzyme proceeds through the formation of a dimeric intermediate, D*, that retains only 40% of the native enzyme secondary structure as judged by circular dichroism. Disruption of any single intersubunit interaction results in a >2.6 kcal mol(-1) decrease in native state stability, independent of its location or nature. However, the stability of D* with respect to U, the unfolded monomer, is the same for all mutants. The stability of the eAATase interface cannot be ascribed to the contribution of a few hot spots, or to the accumulation of a large number of weak interactions, but only to the presence of multiple important and interconnected interactions. It is proposed that a "molten interface" structure, flexible enough to accommodate point mutations, accounts for the stability of D*. Nuclei of tertiary structure, which are not involved in native intersubunit contacts, likely provide a scaffold for the unstructured interface of D*. Such a scaffold would account for the cooperative unfolding of the intermediate.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206, USA
| | | | | |
Collapse
|
16
|
Walters J, Milam SL, Clark AC. Practical approaches to protein folding and assembly: spectroscopic strategies in thermodynamics and kinetics. Methods Enzymol 2009; 455:1-39. [PMID: 19289201 DOI: 10.1016/s0076-6879(08)04201-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe here the use of several spectroscopies, such as fluorescence emission, circular dichroism, and differential quenching by acrylamide, in examining the equilibrium and kinetic folding of proteins. The first section regarding equilibrium techniques provides practical information for determining the conformational stability of a protein. In addition, several equilibrium-folding models are discussed, from two-state monomer to four-state homodimer, providing a comprehensive protocol for interpretation of folding curves. The second section focuses on the experimental design and interpretation of kinetic data, such as burst-phase analysis and exponential fits, used in elucidating kinetic folding pathways. In addition, simulation programs are used routinely to support folding models generated by kinetic experiments, and the fundamentals of simulations are covered.
Collapse
Affiliation(s)
- Jad Walters
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
17
|
Rumfeldt JAO, Galvagnion C, Vassall KA, Meiering EM. Conformational stability and folding mechanisms of dimeric proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:61-84. [PMID: 18602415 DOI: 10.1016/j.pbiomolbio.2008.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The folding of multisubunit proteins is of tremendous biological significance since the large majority of proteins exist as protein-protein complexes. Extensive experimental and computational studies have provided fundamental insights into the principles of folding of small monomeric proteins. Recently, important advances have been made in extending folding studies to multisubunit proteins, in particular homodimeric proteins. This review summarizes the equilibrium and kinetic theory and models underlying the quantitative analysis of dimeric protein folding using chemical denaturation, as well as the experimental results that have been obtained. Although various principles identified for monomer folding also apply to the folding of dimeric proteins, the effects of subunit association can manifest in complex ways, and are frequently overlooked. Changes in molecularity typically give rise to very different overall folding behaviour than is observed for monomeric proteins. The results obtained for dimers have provided key insights pertinent to understanding biological assembly and regulation of multisubunit proteins. These advances have set the stage for future advances in folding involving protein-protein interactions for natural multisubunit proteins and unnatural assemblies involved in disease.
Collapse
Affiliation(s)
- Jessica A O Rumfeldt
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
18
|
Rumfeldt JAO, Stathopulos PB, Chakrabarrty A, Lepock JR, Meiering EM. Mechanism and Thermodynamics of Guanidinium Chloride-induced Denaturation of ALS-associated Mutant Cu,Zn Superoxide Dismutases. J Mol Biol 2006; 355:106-23. [PMID: 16307756 DOI: 10.1016/j.jmb.2005.10.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 09/16/2005] [Accepted: 10/18/2005] [Indexed: 11/21/2022]
Abstract
Mutations in human copper zinc superoxide dismutase (hSOD) that are associated with amyotrophic lateral sclerosis (ALS) have been proposed to destabilize the protein and thereby enhance toxic protein aggregation. In previous studies, denaturation of metallated (holo) hSODs was found to be irreversible, and complicated by the formation of intermolecular disulfide bonds. Here, ALS-associated mutations (E100G, G93A, G85R and A4V) are introduced into a pseudo wild-type background containing no free cysteine residues. The guanidinium chloride-induced denaturation of the holo proteins is generally found to be highly reversible (except for A4V, which tended to aggregate), enabling quantitative analysis of the effects of the mutations on protein stability. Denaturation and renaturation curves were monitored by tryptophan fluorescence, circular dichroism, enzyme activity, chemical cross-linking and analytical sedimentation, as a function of equilibration time and protein concentration. There is strong kinetic hysteresis, with curves requiring exceptionally long times (many days for pseudo wild-type) to reach equilibrium, and evidence for the formation of kinetic and equilibrium intermediate(s), which are more highly populated at lower protein concentrations. The effects of metal dissociation were included in the data fitting. The full protein concentration dependence is best described using a three-state model involving metallated native dimer, metallated monomeric intermediate and unfolded monomers with no bound metals; however, at high protein concentrations the unfolding approaches a two-state transition with metal binding to both the native dimers and unfolded monomers. We show that the E100G, G93A and G85R mutations decrease overall protein stability, largely by decreasing monomer stability with little effect on dimer dissociation. Comparison of the chemical denaturation data with ALS disease characteristics suggests that aggregation of some mutant hSOD may occur through increased population of partially folded states that are less stable than the monomeric intermediate and accessed from the destabilized holo protein.
Collapse
Affiliation(s)
- Jessica A O Rumfeldt
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry and Department of Chemistry, University of Waterloo, Waterloo, Ont. Canada N2L 3G1
| | | | | | | | | |
Collapse
|
19
|
Ruller R, Aragão EA, Chioato L, Ferreira TL, de Oliveira AHC, Sà JM, Ward RJ. A predominant role for hydrogen bonding in the stability of the homodimer of bothropstoxin-I, A lysine 49-phospholipase A2. Biochimie 2005; 87:993-1003. [PMID: 15967564 DOI: 10.1016/j.biochi.2005.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/01/2005] [Accepted: 04/15/2005] [Indexed: 11/17/2022]
Abstract
Bothropstoxin-I (BthTx-I) is a homodimeric Lys49-phospholipase A(2) isolated from Bothrops jararacussu venom which damages liposome membranes via a Ca(2+)-independent mechanism. The Glu12/Trp77/Lys80 triad at the dimer interface forms extensive intermolecular hydrogen bonds and hydrophobic contacts, and equilibrium chemical denaturation was used to evaluate the effect on homodimer stability of site-directed mutagenesis of these residues. Changes in the intrinsic fluorescence anisotropy and farUV circular dichroism signals were analyzed using a two-step unfolding model of the BthTx-I dimer to estimate the Gibbs free energy changes of transitions between the dimer and native monomer and between the native and denatured monomers. Whereas the Trp77His, Trp77Gln and Glu12Gln mutants showed native-like dimer stabilities, the Trp77Phe, Lys80Met and Lys80Gly mutants showed significantly reduced K(d) values. A reduced dimer stability is correlated with a decrease in the Ca(2+)-independent membrane damaging activity as monitored by the release of a liposome entrapped fluorescent marker. Although the membrane damaging activity of the monomer is fivefold less than the dimer, the myotoxic activity was unaffected, indicating that these two effects are not correlated. These data suggest that the BthTx-I dimer is predominantly stabilized by hydrogen bonding interactions, and highlight the importance of the homodimeric form for efficient Ca(2+)-independent membrane damage.
Collapse
Affiliation(s)
- R Ruller
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, FMRP-USP, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Li L, Gunasekaran K, Gan JGK, Zhanhua C, Shapshak P, Sakharkar MK, Kangueane P. Structural features differentiate the mechanisms between 2S (2 state) and 3S (3 state) folding homodimers. Bioinformation 2005; 1:42-9. [PMID: 17597851 PMCID: PMC1891634 DOI: 10.6026/97320630001042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/28/2005] [Accepted: 09/02/2005] [Indexed: 11/23/2022] Open
Abstract
The formation of homodimer complexes for interface stability, catalysis and regulation is intriguing. The mechanisms of homodimer complexations are even more interesting. Some homodimers form without intermediates (two-state (2S)) and others through the formation of stable intermediates (three-state (3S)). Here, we analyze 41 homodimer (25 2S and 16 3S) structures determined by X-ray crystallography to estimate structural differences between them. The analysis suggests that a combination of structural properties such as monomer length, subunit interface area, ratio of interface to interior hydrophobicity can predominately distinguish 2S and 3S homodimers. These findings are useful in the prediction of homodimer folding and binding mechanisms using structural data.
Collapse
Affiliation(s)
- Lei Li
- School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798
| | - Kannan Gunasekaran
- Basic Research Program, SAIC-Frederick, Inc., Laboratory of Experimental and
Computational Biology, National Cancer Institute, Frederick, MD 21702, USA
| | - Jacob Gah-Kok Gan
- School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798
| | - Cui Zhanhua
- School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798
| | - Paul Shapshak
- Dementia/HIV Laboratory, Elliot Building Room 2013, Department of Psychiatry
and Beh Sci, University of Miami Miller Medical School, 1800 NW 10th Avenue, Miami, Florida 33136
| | - Meena Kishore Sakharkar
- School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798
| | - Pandjassarame Kangueane
- School of Mechanical and Aerospace Engineering,
Nanyang Technological University, Singapore 639798
| |
Collapse
|
21
|
Monsellier E, Bedouelle H. Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng Des Sel 2005; 18:445-56. [PMID: 16087653 DOI: 10.1093/protein/gzi046] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fluorescence of tryptophan is used as a signal to monitor the unfolding of proteins, in particular the intensity of fluorescence and the wavelength of its maximum lambda(max). The law of the signal is linear with respect to the concentrations of the reactants for the intensity but not for lambda(max). Consequently, the stability of a protein and its variation upon mutation cannot be deduced directly from measurements made with lambda(max). Here, we established a rigorous law of the signal for lambda(max). We then compared the stability DeltaG(H(2)O) and coefficient of cooperativity m for a two-state equilibrium of unfolding, monitored with lambda(max), when the rigorous and empirical linear laws of the signal are applied. The corrective terms involve the curvature of the emission spectra at their lambda(max) and can be determined experimentally. The rigorous and empirical values of the cooperativity coefficient m are equal within the experimental error for this parameter. In contrast, the rigorous and empirical values of the stability DeltaG(H(2)O) generally differ. However, they are equal within the experimental error if the curvatures of the spectra for the native and unfolded states are identical. We validated this analysis experimentally using domain 3 of the envelope glycoprotein of the dengue virus and the single-chain variable fragment (scFv) of antibody mAbD1.3, directed against lysozyme.
Collapse
Affiliation(s)
- Elodie Monsellier
- Unit of Molecular Prevention and Therapy of Human Diseases (CNRS FRE 2849), Institut Pasteur, 28 rue Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
22
|
Abstract
Why are there so many dimeric proteins and enzymes? While for heterodimers a functional explanation seems quite reasonable, the case of homodimers is more puzzling. The number of homodimers found in all living organisms is rapidly increasing. A thorough inspection of the structural data from the available literature and stability (measured from denaturation-renaturation experiments) allows one to suggest that homodimers can be divided into three main types according to their mass and the presence of a (relatively) stable monomeric intermediate in the folding-unfolding pathway. Among other explanations, we propose that an essential advantage for a protein being dimeric may be the proper and rapid assembly in the cellular milieu.
Collapse
Affiliation(s)
- Giampiero Mei
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', Rome, Italy.
| | | | | | | |
Collapse
|
23
|
Mallam AL, Jackson SE. Folding studies on a knotted protein. J Mol Biol 2005; 346:1409-21. [PMID: 15713490 DOI: 10.1016/j.jmb.2004.12.055] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Revised: 12/20/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
YibK is a 160 residue homodimeric protein belonging to the SPOUT class of methyltransferases. Proteins in this group all display a unique topological feature; the backbone polypeptide chain folds to form a deep trefoil knot. Such knotted structures were completely unpredicted, it being thought impossible for a protein to fold efficiently in this way. However, they are becoming more common and there are now a growing number of examples in the Protein Data Bank. These intriguing knotted structures represent a new and significant challenge in the field of protein folding. Here, we present an initial characterisation of the folding of YibK, one of the smallest knotted proteins to be identified. This is the first detailed folding study on a knotted protein to be reported. We have established conditions under which the protein can be denatured reversibly in vitro using urea, thereby showing that molecular chaperones are not required for the efficient folding of this protein. A series of equilibrium unfolding experiments were performed over a 400-fold range of protein concentration. Both secondary and tertiary structural probes show a single, protein concentration-dependent unfolding transition, and data are most consistent with a three-state equilibrium denaturation model involving a monomeric intermediate. Thermodynamic parameters obtained from the fit of the data to this model indicate that the intermediate is a stable species with appreciable secondary and tertiary structure; whether the topological knot remains in the intermediate state is still to be shown. Together, these results demonstrate that, despite its complex knotted structure, YibK is able to fold efficiently and behaves remarkably similarly to other dimeric proteins under equilibrium conditions.
Collapse
Affiliation(s)
- Anna L Mallam
- Chemistry Department, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
24
|
Lee HJ, Lu SW, Chang GG. Monomeric molten globule intermediate involved in the equilibrium unfolding of tetrameric duck δ2-crystallin. ACTA ACUST UNITED AC 2003; 270:3988-95. [PMID: 14511381 DOI: 10.1046/j.1432-1033.2003.03787.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Duck delta2-crystallin is a soluble tetrameric lens protein. In the presence of guanidinium hydrochloride (GdnHCl), it undergoes stepwise dissociation and unfolding. Gel-filtration chromatography and sedimentation velocity analysis has demonstrated the dissociation of the tetramer protein to a monomeric intermediate with a dissociation constant of 0.34 microM3. Dimers were also detected during the dissociation and refolding processes. The sharp enhancement of 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence at 1 M GdnHCl strongly suggested that the dissociated monomers were in a molten globule state under these conditions. The similar binding affinity (approximately 60 microM) of ANS to protein in the presence or absence of GdnHCl suggested the potential assembly of crystallins via hydrophobic interactions, which might also produce off-pathway aggregates in higher protein concentrations. The dynamic quenching constant corresponding to GdnHCl concentration followed a multistate unfolding model implying that the solvent accessibility of tryptophans was a sensitive probe for analyzing delta2-crystallin unfolding.
Collapse
Affiliation(s)
- Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | | | | |
Collapse
|
25
|
Zhu L, Zhang XJ, Wang LY, Zhou JM, Perrett S. Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: a quantitative analysis of the effects of pH and buffer system. J Mol Biol 2003; 328:235-54. [PMID: 12684011 DOI: 10.1016/s0022-2836(03)00249-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dimeric yeast protein Ure2 shows prion-like behaviour in vivo and forms amyloid fibrils in vitro. A dimeric intermediate is populated transiently during refolding and is apparently stabilized at lower pH, conditions suggested to favour Ure2 fibril formation. Here we present a quantitative analysis of the effect of pH on the thermodynamic stability of Ure2 in Tris and phosphate buffers over a 100-fold protein concentration range. We find that equilibrium denaturation is best described by a three-state model via a dimeric intermediate, even under conditions where the transition appears two-state by multiple structural probes. The free energy for complete unfolding and dissociation of Ure2 is up to 50 kcal mol(-1). Of this, at least 20 kcal mol(-1) is contributed by inter-subunit interactions. Hence the native dimer and dimeric intermediate are significantly more stable than either of their monomeric counterparts. The previously observed kinetic unfolding intermediate is suggested to represent the dissociated native-like monomer. The native state is stabilized with respect to the dimeric intermediate at higher pH and in Tris buffer, without significantly affecting the dissociation equilibrium. The effects of pH, buffer, protein concentration and temperature on the kinetics of amyloid formation were quantified by monitoring thioflavin T fluorescence. The lag time decreases with increasing protein concentration and fibril formation shows pseudo-first order kinetics, consistent with a nucleated assembly mechanism. In Tris buffer the lag time is increased, suggesting that stabilization of the native state disfavours amyloid nucleation.
Collapse
Affiliation(s)
- Li Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Ruller R, Ferreira TL, de Oliveira AHC, Ward RJ. Chemical denaturation of a homodimeric lysine-49 phospholipase A2: a stable dimer interface and a native monomeric intermediate. Arch Biochem Biophys 2003; 411:112-20. [PMID: 12590929 DOI: 10.1016/s0003-9861(02)00712-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Bothropstoxin I (4BthTx-I) is a homodimeric lysine-49 (Lys49) phospholipase A(2) isolated from Bothrops jararacussu venom, which damages liposome membranes via a Ca(2+)-independent mechanism. The stability of the BthTx-I homodimer was evaluated by equilibrium chemical denaturation with guanidinium hydrochloride monitored by changes in the intrinsic tryptophan fluorescence anisotropy, far-UV circular dichroism, dynamic light scattering, and 1-anilinonaphthalene-8-sulfonate binding. Unfolding of the BthTx-I dimer proceeds via a monomeric intermediate with native-like structure, with Gibbs free energy (DeltaG(0)) values of 10.0 and 7.2 kcal mol(-1) for the native dimer-to-native monomer and native-to-denatured monomer transitions, respectively. The experimentally determined DeltaG(0) value for the dimer-to-native monomer transition is higher than the value expected for an interaction dominated by hydrophobic forces, and suggests that an unusually high propensity of hydrogen-bonded side chains found at the BthTx-I homodimer interface make a significant contribution to dimer stability.
Collapse
Affiliation(s)
- Roberto Ruller
- Departamento de Bioqui;mica e Immunologia, FMRP-USP, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | | | | | | |
Collapse
|
27
|
Sanchez-Perez GF, Gasset M, Calvete JJ, Pajares MA. Role of an intrasubunit disulfide in the association state of the cytosolic homo-oligomer methionine adenosyltransferase. J Biol Chem 2003; 278:7285-93. [PMID: 12496263 DOI: 10.1074/jbc.m210177200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombinant rat liver methionine adenosyltransferase has been refolded into fully active tetramers (MAT I) and dimers (MAT III), using as a source chaotrope-solubilized aggregates resulting from specific washes of inclusion bodies. The conditions of refolding, dialysis in the presence of 10 mm dithiothreitol or 10 mm GSH with 1 mm GSSG, allowed the production of both isoforms, the nature of the redox agent determining the capacity of the final product (MAT I/III) to interconvert. Refolding in the presence of 10 mm dithiothreitol yielded mainly MAT III in a concentration-dependent equilibrium with the homotetramer MAT I. However, refolding in the presence of the redox pair GSH/GSSG resulted in a stable MAT I and III mixture. Blockage of dimer-tetramer interconversion has been found related to the production of a single intramolecular disulfide in methionine adenosyltransferase during the GSH/GSSG folding process. The residues involved in this disulfide have been identified by mass spectrometry and using a set of single cysteine mutants as cysteines 35 and 61. In addition, a kinetic intermediate in the MAT I dissociation to MAT III has been detected. The physiological importance of these results is discussed in light of the structural and regulatory data available.
Collapse
Affiliation(s)
- Gabino F Sanchez-Perez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Renard M, Belkadi L, Bedouelle H. Deriving topological constraints from functional data for the design of reagentless fluorescent immunosensors. J Mol Biol 2003; 326:167-75. [PMID: 12547199 DOI: 10.1016/s0022-2836(02)01334-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The possibility of obtaining, from any antibody, a fluorescent conjugate which responds to the binding of the antigen by a variation of fluorescence, would be of great interest in the micro- and nano-analytical sciences. This possibility was explored with antibody mAb4E11, which is directed against the dengue virus and for which no structural data is available. Three rules of design were developed to identify residues of the antibody to which a fluorophore could be chemically coupled, after changing them to cysteine by mutagenesis. (i) The target residue belonged to the hypervariable loops of the antibody. (ii) It was adjacent, along the amino acid sequence of the antibody, to a residue which was functionally important for the interaction with the antigen. (iii) It was not important in itself for the interaction with the antigen. Eight conjugates between a single chain variable fragment of mAb4E11 and an environment-sensitive fluorophore were constructed. Three of them showed an increase in their fluorescence intensity by 1.5-2.8-fold on antigen binding, without loss of affinity. This increase allowed the titration of the antigen in serum above a threshold concentration of 10nM. Experiments of quenching with potassium iodide suggested that the fluorescence variation was due to a shielding of the fluorescent group from the solvent by the binding of the antigen, and that therefore its mechanism is general.
Collapse
Affiliation(s)
- Martial Renard
- Department of Structural Biology and Chemistry, (CNRS URA 2185), Institut Pasteur, 28 Rue de Docteur Roux, 75724, Cedex 15, Paris, France
| | | | | |
Collapse
|
29
|
Gasset M, Alfonso C, Neira JL, Rivas G, Pajares MA. Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochem J 2002; 361:307-15. [PMID: 11772402 PMCID: PMC1222310 DOI: 10.1042/0264-6021:3610307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reversible unfolding of rat liver methionine adenosyltransferase dimer by urea under equilibrium conditions has been monitored by fluorescence spectroscopy, CD, size-exclusion chromatography, analytical ultracentrifugation and enzyme activity measurements. The results obtained indicate that unfolding takes place through a three-state mechanism, involving an inactive monomeric intermediate. This intermediate has a 70% native secondary structure, binds less 8-anilinonaphthalene-1-sulphonic acid than the native dimer and has a sedimentation coefficient of 4.24+/-0.15. The variations of free energy in the absence of denaturant [DeltaG(H(2)O)] and its coefficients of urea dependence (m), calculated by the linear extrapolation model, were 36.15+/-2.3 kJ.mol(-1) and 19.87+/-0.71 kJ.mol(-1).M(-1) for the dissociation of the native dimer and 14.77+/-1.63 kJ.mol(-1) and 5.23+/-0.21 kJ.mol(-1).M(-1) for the unfolding of the monomeric intermediate respectively. Thus the global free energy change in the absence of denaturant and the m coefficient were calculated to be 65.69 kJ.mol(-1) and 30.33 kJ.mol(-1).M(-1) respectively. Analysis of the calculated thermodynamical parameters indicate the instability of the dimer in the presence of denaturant, and that the major exposure to the solvent is due to dimer dissociation. Finally, a minimum-folding mechanism for methionine adenosyltransferase III is established.
Collapse
Affiliation(s)
- María Gasset
- Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
30
|
Kim DH, Nam GH, Jang DS, Yun S, Choi G, Lee HC, Choi KY. Roles of dimerization in folding and stability of ketosteroid isomerase from Pseudomonas putida biotype B. Protein Sci 2001; 10:741-52. [PMID: 11274465 PMCID: PMC2373975 DOI: 10.1110/ps.18501] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Revised: 01/05/2001] [Accepted: 01/05/2001] [Indexed: 10/17/2022]
Abstract
Equilibrium and kinetic analyses have been performed to elucidate the roles of dimerization in folding and stability of KSI from Pseudomonas putida biotype B. Folding was reversible in secondary and tertiary structures as well as in activity. Equilibrium unfolding transition, as monitored by fluorescence and ellipticity measurements, could be modeled by a two-state mechanism without thermodynamically stable intermediates. Consistent with the two-state model, one dimensional (1D) NMR spectra and gel-filtration chromatography analysis did not show any evidence for a folded monomeric intermediate. Interestingly enough, Cys 81 located at the dimeric interface was modified by DTNB before unfolding. This inconsistent result might be explained by increased dynamic motion of the interface residues in the presence of urea to expose Cys 81 more frequently without the dimer dissociation. The refolding process, as monitored by fluorescence change, could best be described by five kinetic phases, in which the second phase was a bimolecular step. Because <30% of the total fluorescence change occurred during the first step, most of the native tertiary structure may be driven to form by the bimolecular step. During the refolding process, negative ellipticity at 225 nm increased very fast within 80 msec to account for >80% of the total amplitude. This result suggests that the protein folds into a monomer containing most of the alpha-helical structures before dimerization. Monitoring the enzyme activity during the refolding process could estimate the activity of the monomer that is not fully active. Together, these results stress the importance of dimerization in the formation and maintenance of the functional native tertiary structure.
Collapse
Affiliation(s)
- D H Kim
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Unfolding of Bombyx mori glycyl-tRNA synthetase was examined by multiple spectroscopic techniques. Tryptophan fluorescence of wild type enzyme and an N-terminally truncated form (N55) increased at low concentrations of urea or guanidine-HCl followed by a reduction in intensity at intermediate denaturant concentrations; a transition at higher denaturant was detected as decreased fluorescence intensity and a red-shifted emission. Solute quenching of fluorescence indicated that tryptophans become progressively solvent-exposed during unfolding. Wild type enzyme had stronger negative CD bands between 220 and 230 nm than the mutant, indicative of greater alpha-helical content. Urea or guanidine-HCl caused a reduction in ellipticity at 222 nm at low denaturant concentration with the wild type enzyme, a transition that is absent in the mutant; both enzymes exhibited a cooperative transition at higher denaturant concentrations. Both enzymes dissociate to monomers in 1.5 m urea. Unfolding of wild type enzyme is described by a multistate unfolding and a parallel two state unfolding; the two-state component is absent in the mutant. Changes in spectral properties associated with unfolding were largely reversible after dilution to low denaturant. Unfolding of glycyl-tRNA synthetase is complex with a native state, a native-like monomer, partially unfolded states, and the unfolded state.
Collapse
Affiliation(s)
- J D Dignam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Block Health Science Building, Toledo, Ohio 43614-5804, USA
| | | | | |
Collapse
|
32
|
Abstract
Coiled coils consist of two or more amphipathic a-helices wrapped around each other to form a superhelical structure stabilized at the interhelical interface by hydrophobic residues spaced in a repeating 3-4 sequence pattern. Dimeric coiled coils have been shown to often form in a single step reaction in which association and folding of peptide chains are tightly coupled. Here, we ask whether such a simple folding mechanism may also apply to the formation of a three-stranded coiled coil. The designed 29-residue peptide LZ16A was shown previously to be in a concentration-dependent equilibrium between unfolded monomer (M), folded dimer (D), and folded trimer (T). We show by time-resolved fluorescence change experiments that folding of LZ16A to D and T can be described by 2M (k1)<==>(k(-1)) D and M + D (k2)<==>(k(-2)) T. The following rate constants were determined (25 degrees C, pH 7): k1 = 7.8 x 10(4) M(-1) s(-1), k(-1) = 0.015 s(-1), k2 = 6.5 x 10(5) M(-1) s(-1), and k(-2) = 1.1 s(-1). In a separate experiment, equilibrium binding constants were determined from the change with concentration of the far-ultraviolet circular dichroism spectrum of LZ16A and were in good agreement with the kinetic rate constants according to K(D) = k1/2k(-1) and K(T) = k2/k(-2). Furthermore, pulsed hydrogen-exchange experiments indicated that only unfolded M and folded D and T were significantly populated during folding. The results are compatible with a two-step reaction in which a subpopulation of association competent (e.g., partly helical) monomers associate to dimeric and trimeric coiled coils.
Collapse
Affiliation(s)
- E Dürr
- The Scripps Reseach Institute, Department of Experimental Medicine & Vascular Biology MEM 275, La Jolla, Califomia 92037, USA
| | | |
Collapse
|
33
|
Park YC, Guez V, Bedouelle H. Experimental evolution of a dense cluster of residues in tyrosyl-tRNA synthetase: quantitative effects on activity, stability and dimerization. J Mol Biol 1999; 286:563-77. [PMID: 9973571 DOI: 10.1006/jmbi.1998.2501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A dense cluster of eight residues was identified at the crossing of two alpha-helices in tyrosyl-tRNA synthetase (TyrRS) from the thermophile Bacillus stearothermophilus. Its mechanism of evolution was characterized. Four residues of this cluster are not conserved in TyrRS from the mesophile Escherichia coli. The corresponding mutations were constructed in TyrRS(Delta1), a derivative of TyrRS from B. stearothermophilus in which the anticodon binding domain is deleted. Mutations I52L (i.e. Ile52 into Leu), M55L and L105V did not affect the activity of TyrRS(Delta1) in the pyrophosphate exchange reaction whereas T51P increased it. The kinetic stabilities of TyrRS(Delta1) and its mutant derivatives at 68.5 degreesC were determined from experiments of irreversible thermal precipitation. They were in the order L105V<I52L<T51P<Wild Type</=M55L; mutation I52L partially compensated L105V in these experiments whereas M55L was coupled neither to I52L nor to L105V. Mutations I52L and L105V affected the stability of the dimeric TyrRS(Delta1) at different steps of its unfolding by urea, monitored under equilibrium conditions by spectrofluorometry or size exclusion chromatography. I52L destabilized the association between the subunits even though residue Ile52 is more than 20 A away from the subunit interface. L105V destabilized the monomeric intermediate of unfolding. The two mutational pathways, going from the wild-type TyrRS(Delta1) to the I52L-L105V double mutant through each of the single mutants were not equivalent for the stability of the monomeric intermediate and for the total stability of the dimer. One pathway contained two neutral steps whereas the other pathway contained a destabilizing step followed by a stabilizing step. Mutation I52L allowed L105V along the first pathway and compensated it along the second pathway. Thus, the effects of I52L and L105V on stability depended on the structural context. The gain in activity due to T51P was at the expense of a slight destabilization.
Collapse
Affiliation(s)
- Y C Park
- Unité de Biochimie Cellulaire, Institut Pasteur, 28 rue du Docteur Roux, Paris Cedex 15, 75724, France
| | | | | |
Collapse
|