1
|
Murakami C, Dilimulati K, Atsuta-Tsunoda K, Kawai T, Inomata S, Hijikata Y, Sakai H, Sakane F. Multiple activities of sphingomyelin synthase 2 generate saturated fatty acid- and/or monounsaturated fatty acid-containing diacylglycerol. J Biol Chem 2024:107960. [PMID: 39510177 DOI: 10.1016/j.jbc.2024.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024] Open
Abstract
Phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) (EC 3.1.4.3) and phosphatidylethanolamine (PE)-specific PLC (PE-PLC) (EC 3.1.4.62), which generate diacylglycerol (DG) and are tricyclodecan-9-yl-xanthogenate (D609)-sensitive, were detected in detergent-insoluble fractions of mammalian tissues approximately 70 and 35 years ago, respectively. However, the genes and proteins involved in PC-PLC and PE-PLC activities remain unknown. In a recent study, we observed that mammalian sphingomyelin synthase (SMS) 1 and SMS-related protein (SMSr) display PC-PLC and PE-PLC activities in vitro. In the present study, we showed that human SMS2, which is located in detergent-insoluble fractions of the plasma membrane, also possesses PC-PLC activity (approximately 41% of SMS activity), PE-PLC activity (approximately 4%), ceramide phosphoethanolamine synthase (CPES) activity (approximately 46%), and SMS activity in the presence of phospholipid-detergent mixed micelles. Moreover, purified SMS2 reconstituted in detergent-free proteoliposomes (near-native environments) showed PC-PLC, PE-PLC, and CPES activities. Notably, in the presence of approximately 2 mol% ceramide and 4 mol% PC (1:2 ratio), PC-PLC activity was almost equal to SMS activity. SMS2 as PC/PE-PLC showed substrate selectivity for saturated fatty acid- and/or monounsaturated fatty acid-containing PC and PE species. The PC-PLC/SMS inhibitor D609 inhibited all enzyme activities (SMS, PC-PLC, PE-PLC, and CPES) of SMS2. Moreover, Zn2+ strongly inhibited all the enzymatic activities of SMS2. Interestingly, DG inhibited the SMS activity of SMS2 (feedback control). These results indicate that mammalian SMS2 has unique enzymatic properties and is a candidate for a long-sought mammalian PC/PE-PLC.
Collapse
Affiliation(s)
- Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kyoko Atsuta-Tsunoda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Takuma Kawai
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Sho Inomata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yasuhisa Hijikata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, 693-8501, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
2
|
Scrima S, Lambrughi M, Tiberti M, Fadda E, Papaleo E. ASM variants in the spotlight: A structure-based atlas for unraveling pathogenic mechanisms in lysosomal acid sphingomyelinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167260. [PMID: 38782304 DOI: 10.1016/j.bbadis.2024.167260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Lysosomal acid sphingomyelinase (ASM), a critical enzyme in lipid metabolism encoded by the SMPD1 gene, plays a crucial role in sphingomyelin hydrolysis in lysosomes. ASM deficiency leads to acid sphingomyelinase deficiency, a rare genetic disorder with diverse clinical manifestations, and the protein can be found mutated in other diseases. We employed a structure-based framework to comprehensively understand the functional implications of ASM variants, integrating pathogenicity predictions with molecular insights derived from a molecular dynamics simulation in a lysosomal membrane environment. Our analysis, encompassing over 400 variants, establishes a structural atlas of missense variants of lysosomal ASM, associating mechanistic indicators with pathogenic potential. Our study highlights variants that influence structural stability or exert local and long-range effects at functional sites. To validate our predictions, we compared them to available experimental data on residual catalytic activity in 135 ASM variants. Notably, our findings also suggest applications of the resulting data for identifying cases suited for enzyme replacement therapy. This comprehensive approach enhances the understanding of ASM variants and provides valuable insights for potential therapeutic interventions.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark
| | - Elisa Fadda
- Department of Chemistry and Hamilton Institute, Maynooth University, Maynooth, co. Kildare, Ireland
| | - Elena Papaleo
- Cancer Structural Biology, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
3
|
Luo S, Luo Y, Wang Z, Yin H, Wu Q, Du X, Xie X. Super-enhancer mediated upregulation of MYEOV suppresses ferroptosis in lung adenocarcinoma. Cancer Lett 2024; 589:216811. [PMID: 38490328 DOI: 10.1016/j.canlet.2024.216811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Super-enhancers (SEs) exerted a crucial role in regulating the transcription of oncogenes across various malignancies while the roles of SEs driven genes and the core regulatory elements remain elusive in LUAD. In this study, cancer-specific-SE-genes of lung adenocarcinoma (LUAD) were profiled through H3K27ac ChIP-seq data of cancer cell lines and normal lung tissues, which enriched in in biological processes and pathways integral to the pathophysiology of LUAD. Based on this study, LUAD cells were susceptible to SEs inhibitors, with a reduction of cell proliferation as well as an elevation of apoptosis upon JQ1 or THZ1 intervention. Moreover, the integration of SEs landscapes, CRISPRi, ChIP-PCR, Hi-C data analysis and dual-luciferase reporter assays revealed that myeloma overexpressed gene (MYEOV) was aberrantly overexpressed in LUAD via transcriptional activation by the core SE elements. Functionally, the knockdown of MYEOV undermined cell proliferation in vitro and tumor growth in vivo. In addition, the knockdown of MYEOV generated a prominent ferroptotic phenotype, characterized by elevation of intracellular ferrous iron, reactive oxygen species and lipid peroxidation, together with alteration in marker proteins (SLC7A11, GPX4, FTH1, and ACSL4). Instead, the overexpression of MYEOV accelerated cell proliferation and abrogated ferroptosis. Clinically, the overexpression of MYEOV was observed in LUAD tissues indicating a poor prognosis in patients with LUAD. Mechanistically, SMPD1-induced autophagic degradation of GPX4 assumed a crucial role in the process of ferroptosis triggered by MYEOV knockdown. Serving as an oncogene repressing ferroptosis, promoting proliferation as well as shortening survival in LUAD, SEs-mediated activation of MYEOV might distinguish as a promising therapeutic target.
Collapse
Affiliation(s)
- Shuimei Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yang Luo
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Ziming Wang
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Haofeng Yin
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Qing Wu
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiaowei Du
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xianhe Xie
- Department of Oncology, Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China; Department of Oncology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350000, China.
| |
Collapse
|
4
|
Choi BJ, Park MH, Jin HK, Bae JS. Acid sphingomyelinase as a pathological and therapeutic target in neurological disorders: focus on Alzheimer's disease. Exp Mol Med 2024; 56:301-310. [PMID: 38337058 PMCID: PMC10907607 DOI: 10.1038/s12276-024-01176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024] Open
Abstract
Over the past decade, numerous studies have highlighted the importance of acid sphingomyelinase (ASM) in disease treatment in humans. This enzyme functions primarily to generate ceramide, maintain the cellular membrane, and regulate cellular function. However, in the blood and brain of patients with neurological disorders, including major depression, ischemic stroke, amyotrophic lateral sclerosis, multiple sclerosis, and Alzheimer's disease (AD), elevated ASM levels significantly suggest disease onset or progression. In these diseases, increased ASM is profoundly involved in neuronal death, abnormal autophagy, neuroinflammation, blood-brain barrier disruption, hippocampal neurogenesis loss, and immune cell dysfunction. Moreover, genetic and pharmacological inhibition of ASM can prevent or ameliorate various diseases. The therapeutic effects of ASM inhibition have prompted the urgent need to develop ASM inhibitors, and several ASM inhibitors have been identified. In this review, we summarize the current knowledge on the critical roles and mechanisms of ASM in brain cells and blood that are associated with different neuropathological features, especially those observed in AD. Furthermore, we elucidate the potential possibility and limitations of existing ASM-targeting drugs according to experimental studies in neurological disorder mouse models.
Collapse
Affiliation(s)
- Byung Jo Choi
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Min Hee Park
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Hee Kyung Jin
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Sung Bae
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea.
| |
Collapse
|
5
|
Fenizia S, Gaggini M, Vassalle C. The Sphingolipid-Signaling Pathway as a Modulator of Infection by SARS-CoV-2. Curr Issues Mol Biol 2023; 45:7956-7973. [PMID: 37886946 PMCID: PMC10605018 DOI: 10.3390/cimb45100503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Ceramides and other related sphingolipids, important cellular components linked to metabolic homeostasis and cardiometabolic diseases, have been found to be involved in different steps of the SARS-CoV-2 life cycle. Hence, changes in their physiological levels are identified as predictors of COVID-19 severity and prognosis, as well as potential therapeutic targets. In this review, an overview of the SARS-CoV-2 life cycle is given, followed by a description of the sphingolipid metabolism and its role in viral infection, with a particular focus on those steps required to finalize the viral life cycle. Furthermore, the use and development of pharmaceutical strategies to target sphingolipids to prevent and treat severe and long-term symptoms of infectious diseases, particularly COVID-19, are reviewed herein. Finally, research perspectives and current challenges in this research field are highlighted. Although many aspects of sphingolipid metabolism are not fully known, this review aims to highlight how the discovery and use of molecules targeting sphingolipids with reliable and selective properties may offer new therapeutic alternatives to infectious and other diseases, including COVID-19.
Collapse
Affiliation(s)
- Simona Fenizia
- Istituto di Fisiologia Clinica, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Melania Gaggini
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| | - Cristina Vassalle
- Fondazione CNR-Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
6
|
Petrache I, Pujadas E, Ganju A, Serban KA, Borowiec A, Babbs B, Bronova IA, Egersdorf N, Hume PS, Goel K, Janssen WJ, Berdyshev EV, Cordon-Cardo C, Kolesnick R. Marked elevations in lung and plasma ceramide in COVID-19 linked to microvascular injury. JCI Insight 2023; 8:e156104. [PMID: 37212278 PMCID: PMC10322682 DOI: 10.1172/jci.insight.156104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/05/2023] [Indexed: 05/23/2023] Open
Abstract
The pathogenesis of the marked pulmonary microvasculature injury, a distinguishing feature of COVID-19 acute respiratory distress syndrome (COVID-ARDS), remains unclear. Implicated in the pathophysiology of diverse diseases characterized by endothelial damage, including ARDS and ischemic cardiovascular disease, ceramide and in particular palmitoyl ceramide (C16:0-ceramide) may be involved in the microvascular injury in COVID-19. Using deidentified plasma and lung samples from COVID-19 patients, ceramide profiling by mass spectrometry was performed. Compared with healthy individuals, a specific 3-fold C16:0-ceramide elevation in COVID-19 patient plasma was identified. Compared with age-matched controls, autopsied lungs of individuals succumbing to COVID-ARDS displayed a massive 9-fold C16:0-ceramide elevation and exhibited a previously unrecognized microvascular ceramide-staining pattern and markedly enhanced apoptosis. In COVID-19 plasma and lungs, the C16-ceramide/C24-ceramide ratios were increased and reversed, respectively, consistent with increased risk of vascular injury. Indeed, exposure of primary human lung microvascular endothelial cell monolayers to C16:0-ceramide-rich plasma lipid extracts from COVID-19, but not healthy, individuals led to a significant decrease in endothelial barrier function. This effect was phenocopied by spiking healthy plasma lipid extracts with synthetic C16:0-ceramide and was inhibited by treatment with ceramide-neutralizing monoclonal antibody or single-chain variable fragment. These results indicate that C16:0-ceramide may be implicated in the vascular injury associated with COVID-19.
Collapse
Affiliation(s)
- Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Elisabet Pujadas
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya Ganju
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Karina A. Serban
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Alexander Borowiec
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Beatrice Babbs
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Irina A. Bronova
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Nicholas Egersdorf
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Patrick S. Hume
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Evgeny V. Berdyshev
- Department of Medicine, Division of Pulmonary and Critical Care, National Jewish Health, Denver, Colorado, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
7
|
Pauletto PJT, Delgado CP, da Rocha JBT. Acid sphingomyelinase (ASM) and COVID-19: A review of the potential use of ASM inhibitors against SARS-CoV-2. Cell Biochem Funct 2023; 41:284-295. [PMID: 36929117 DOI: 10.1002/cbf.3789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/18/2023]
Abstract
In the last 2 years, different pharmacological agents have been indicated as potential inhibitors of SARS-CoV-2 in vitro. Specifically, drugs termed as functional inhibitors of acid sphingomyelinase (FIASMAs) have proved to inhibit the SARS-CoV-2 replication using different types of cells. Those therapeutic agents share several chemical structure characteristics and some well-known representatives are fluoxetine, escitalopram, fluvoxamine, and others. Most of the FIASMAs are primarily used as effective therapeutic agents to treat different pathologies, therefore, they are natural drug candidates for repositioning strategy. In this review, we summarize the two main proposed mechanisms mediating acid sphingomyelinase (ASM) inhibition and how they can explain the inhibition of SARS-CoV-2 replication by FIASMAs. The first mechanism implies a disruption in the lysosomal pH fall as the endosome-lysosome moves toward the interior of the cell. In fact, changes in cholesterol levels in endosome-lysosome membranes, which are associated with ASM inhibition is thought to be mediated by lysosomal proton pump (ATP-ase) inactivation. The second mechanism involves the formation of an extracellular ceramide-rich domain, which is blocked by FIASMAs. The ceramide-rich domains are believed to facilitate the SARS-CoV-2 entrance into the host cells.
Collapse
Affiliation(s)
- Pedro José Tronco Pauletto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - Cassia Pereira Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| | - João Batista Teixeira da Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
9
|
Acid Sphingomyelinase Inhibitor, Imipramine, Reduces Hippocampal Neuronal Death after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms232314749. [PMID: 36499076 PMCID: PMC9740309 DOI: 10.3390/ijms232314749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Traumatic brain injury (TBI) broadly degrades the normal function of the brain after a bump, blow, or jolt to the head. TBI leads to the aggravation of pre-existing brain dysfunction and promotes neurotoxic cascades that involve processes such as oxidative stress, loss of dendritic arborization, and zinc accumulation. Acid sphingomyelinase (ASMase) is an enzyme that hydrolyzes sphingomyelin to ceramide in cells. Under normal conditions, ceramide plays an important role in various physiological functions, such as differentiation and apoptosis. However, under pathological conditions, excessive ceramide production is toxic and activates the neuronal-death pathway. Therefore, we hypothesized that the inhibition of ASMase activity by imipramine would reduce ceramide formation and thus prevent TBI-induced neuronal death. To test our hypothesis, an ASMase inhibitor, imipramine (10 mg/kg, i.p.), was administrated to rats immediately after TBI. Based on the results of this study, we confirmed that imipramine significantly reduced ceramide formation, dendritic loss, oxidative stress, and neuronal death in the TBI-imipramine group compared with the TBI-vehicle group. Additionally, we validated that imipramine prevented TBI-induced cognitive dysfunction and the modified neurological severity score. Consequently, we suggest that ASMase inhibition may be a promising therapeutic strategy to reduce hippocampal neuronal death after TBI.
Collapse
|
10
|
Shi XX, Zhang H, Quais MK, Chen M, Wang N, Zhang C, Mao C, Zhu ZR. Knockdown of sphingomyelinase (NlSMase) causes ovarian malformation of brown planthopper, Nilaparvata lugens (Stål). INSECT MOLECULAR BIOLOGY 2022; 31:391-402. [PMID: 35156743 DOI: 10.1111/imb.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Sphingomyelinases (SMases) are a group of enzymes that catalyse the hydrolysis of sphingomyelins into ceramides and phosphorylcholine. They have been intensively investigated for their pathophysiological roles in mammals whereas much remains unclear about their counterparts in insects. Herein we report the cloning and functional characterization of four SMase homologue genes, designated NlSMase1-4, from brown planthopper (BPH). The phylogenetic analysis revealed that NlSMase1 and NlSMase2 were clustered into acid SMase family, and NlSMase3 and NlSMase4 with neutral SMase family. NlSMase1, NlSMase3 and NlSMase4 were highly expressed in BPH females, and NlSMaes2 in the 5th instar nymph. All four NlSMases had the lowest transcription in BPH males. NlSMase1 and NlSMase4 were highly expressed in BPH ovaries, while NlSMase2 and NlSMase3 in midgut and wings, respectively. Knocking-down of each NlSMase individual by RNA interference (RNAi) caused the ovarian malformation in BPH. The transcriptomic analysis revealed that NlSMase4 knockdown could strongly affect diacylglycerol (DAG)-related metabolisms and their downstream pathways. Further, qRT-PCR analysis of vitellogenin (Vg) genes indicates that the DAG metabolism disorder could interrupt the essential Vg accumulation for BPH oogenesis. Our study demonstrates the vital role of NlSMases in BPH reproductive development and provides new insights into the mediated mechanism of how SMases function.
Collapse
Affiliation(s)
- Xiao-Xiao Shi
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejian, China
| | - He Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Md Khairul Quais
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Senior Scientific Officer, Rice Farming Systems Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ming Chen
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ni Wang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Zhang
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cungui Mao
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology; Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, and Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Hainan Research Institute, Zhejiang University, Sanya, Hainan, China
| |
Collapse
|
11
|
Sharma D, Czarnota GJ. Involvement of Ceramide Signalling in Radiation-Induced Tumour Vascular Effects and Vascular-Targeted Therapy. Int J Mol Sci 2022; 23:ijms23126671. [PMID: 35743121 PMCID: PMC9223569 DOI: 10.3390/ijms23126671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are well-recognized critical components in several biological processes. Ceramides constitute a class of sphingolipid metabolites that are involved in important signal transduction pathways that play key roles in determining the fate of cells to survive or die. Ceramide accumulated in cells causes apoptosis; however, ceramide metabolized to sphingosine promotes cell survival and angiogenesis. Studies suggest that vascular-targeted therapies increase endothelial cell ceramide resulting in apoptosis that leads to tumour cure. Specifically, ultrasound-stimulated microbubbles (USMB) used as vascular disrupting agents can perturb endothelial cells, eliciting acid sphingomyelinase (ASMase) activation accompanied by ceramide release. This phenomenon results in endothelial cell death and vascular collapse and is synergistic with other antitumour treatments such as radiation. In contrast, blocking the generation of ceramide using multiple approaches, including the conversion of ceramide to sphingosine-1-phosphate (S1P), abrogates this process. The ceramide-based cell survival "rheostat" between these opposing signalling metabolites is essential in the mechanotransductive vascular targeting following USMB treatment. In this review, we aim to summarize the past and latest findings on ceramide-based vascular-targeted strategies, including novel mechanotransductive methodologies.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +1-416-480-6100 (ext. 89533)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| |
Collapse
|
12
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
13
|
Ueda S, Manabe Y, Kubo N, Morino N, Yuasa H, Shiotsu M, Tsuji T, Sugawara T, Kambe T. Early secretory pathway-resident Zn transporter proteins contribute to cellular sphingolipid metabolism through activation of sphingomyelin phosphodiesterase 1. Am J Physiol Cell Physiol 2022; 322:C948-C959. [PMID: 35294847 DOI: 10.1152/ajpcell.00020.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingomyelin phosphodiesterase 1 (SMPD1) converts sphingomyelin into ceramide and phosphocholine; hence, loss of SMPD1 function causes abnormal accumulation of sphingomyelin in lysosomes, which results in the lipid-storage disorder Niemann-Pick disease (types A and B). SMPD1 activity is dependent on zinc, which is coordinated at the active site of the enzyme, and although SMPD1 has been suggested to acquire zinc at the sites where the enzyme is localized, precisely how SMPD1 acquires zinc remains to be clarified. Here, we addressed this using a gene-disruption/re-expression strategy. Our results revealed that Zn transporter 5 (ZNT5)-ZNT6 heterodimers and ZNT7 homodimers, which localize in the compartments of the early secretory pathway, play essential roles in SMPD1 activation. Both ZNT complexes contribute to cellular sphingolipid metabolism by activating SMPD1 because cells lacking the functions of the two complexes exhibited a reduced ceramide to sphingomyelin content ratio in terms of their dominant molecular species and an increase in the sphingomyelin content in terms of three minor species. Moreover, mutant cells contained multilamellar body-like structures, indicative of membrane stacking and accumulation, in the cytoplasm. These findings provide novel insights into the molecular mechanism underlying the activation of SMPD1, a key enzyme in sphingolipid metabolism.
Collapse
Affiliation(s)
- Sachiko Ueda
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoya Kubo
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naho Morino
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hana Yuasa
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Kyoto, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Administration of an Acidic Sphingomyelinase (ASMase) Inhibitor, Imipramine, Reduces Hypoglycemia-Induced Hippocampal Neuronal Death. Cells 2022; 11:cells11040667. [PMID: 35203316 PMCID: PMC8869983 DOI: 10.3390/cells11040667] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Severe hypoglycemia (below 35 mg/dL) appears most often in diabetes patients who continuously inject insulin. To rapidly cease the hypoglycemic state in this study, glucose reperfusion was conducted, which can induce a secondary neuronal death cascade following hypoglycemia. Acid sphingomyelinase (ASMase) hydrolyzes sphingomyelin into ceramide and phosphorylcholine. ASMase activity can be influenced by cations, pH, redox, lipids, and other proteins in the cells, and there are many changes in these factors in hypoglycemia. Thus, we expect that ASMase is activated excessively after hypoglycemia. Ceramide is known to cause free radical production, excessive inflammation, calcium dysregulation, and lysosomal injury, resulting in apoptosis and the necrosis of neurons. Imipramine is mainly used in the treatment of depression and certain anxiety disorders, and it is particularly known as an ASMase inhibitor. We hypothesized that imipramine could decrease hippocampal neuronal death by reducing ceramide via the inhibition of ASMase after hypoglycemia. In the present study, we confirmed that the administration of imipramine significantly reduced hypoglycemia-induced neuronal death and improved cognitive function. Therefore, we suggest that imipramine may be a promising therapeutic tool for preventing hypoglycemia-induced neuronal death.
Collapse
|
15
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
16
|
Acid Sphingomyelinase Deficiency: A Clinical and Immunological Perspective. Int J Mol Sci 2021; 22:ijms222312870. [PMID: 34884674 PMCID: PMC8657623 DOI: 10.3390/ijms222312870] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disease caused by deficient activity of acid sphingomyelinase (ASM) enzyme, leading to the accumulation of varying degrees of sphingomyelin. Lipid storage leads to foam cell infiltration in tissues, and clinical features including hepatosplenomegaly, pulmonary insufficiency and in some cases central nervous system involvement. ASM enzyme replacement therapy is currently in clinical trial being the first treatment addressing the underlying pathology of the disease. Therefore, presently, it is critical to better comprehend ASMD to improve its diagnose and monitoring. Lung disease, including recurrent pulmonary infections, are common in ASMD patients. Along with lung disease, several immune system alterations have been described both in patients and in ASMD animal models, thus highlighting the role of ASM enzyme in the immune system. In this review, we summarized the pivotal roles of ASM in several immune system cells namely on macrophages, Natural Killer (NK) cells, NKT cells, B cells and T cells. In addition, an overview of diagnose, monitoring and treatment of ASMD is provided highlighting the new enzyme replacement therapy available.
Collapse
|
17
|
Davis AN, Myers WA, Eduardo Rico J, Feng Wang L, Chang C, Richards AT, Moniruzzaman M, Haughey NJ, McFadden JW. Effects of serine palmitoyltransferase inhibition by myriocin in ad libitum-fed and nutrient-restricted ewes. J Anim Sci 2021; 99:6330562. [PMID: 34324668 DOI: 10.1093/jas/skab221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/27/2021] [Indexed: 11/14/2022] Open
Abstract
The fungal isolate myriocin inhibits serine palmitoyltransferase and de novo ceramide synthesis in rodents; however, the effects of myriocin on ceramide concentrations and metabolism have not been previously investigated in ruminants. In our study, 12 non-lactating crossbred ewes received an intravenous bolus of myriocin (0, 0.1, 0.3, or 1.0 mg/kg/body weight [BW]; CON, LOW, MOD, or HIGH) every 48 h for 17 d. Ewes consumed a high-energy diet from day 1 to 14 and were nutrient-restricted (straw only) from day 15 to 17. Blood was collected preprandial and at 1, 6, and 12 h relative to bolus and nutrient restriction. Tissues were collected following euthanasia on day 17. Plasma was analyzed for free fatty acids (FFAs), glucose, and insulin. Plasma and tissue ceramides were quantified using mass spectrometry. HIGH selectively decreased metabolizable energy intake, BW, and plasma insulin, and increased plasma FFA (Dose, P < 0.05). Myriocin linearly decreased plasma very-long-chain (VLC) ceramide and dihydroceramide (DHCer) by day 13 (Linear, P < 0.05). During nutrient restriction, fold-change in FFA was lower with increasing dose (P < 0.05). Nutrient restriction increased plasma C16:0-Cer, an effect suppressed by MOD and HIGH (Dose × Time, P < 0.05). Myriocin linearly decreased most ceramide and DHCer species in the liver and omental and mesenteric adipose, VLC ceramide and DHCer in the pancreas, and C18:0-Cer in skeletal muscle and subcutaneous adipose tissue (Linear, P ≤ 0.05). We conclude that the intravenous delivery of 0.3 mg of myriocin/kg of BW/48 h decreases circulating and tissue ceramide without modifying energy intake in ruminants.
Collapse
Affiliation(s)
- Amanda N Davis
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.,Biological Sciences Department, State University of New York College at Cortland, Cortland, NY 13045, USA
| | - William A Myers
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Lin Feng Wang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zengzhou 450002, China
| | - Crystal Chang
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Andrew T Richards
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| | - Mohammed Moniruzzaman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Cottrill KA, Giacalone VD, Margaroli C, Bridges RJ, Koval M, Tirouvanziam R, McCarty NA. Mechanistic analysis and significance of sphingomyelinase-mediated decreases in transepithelial CFTR currents in nHBEs. Physiol Rep 2021; 9:e15023. [PMID: 34514718 PMCID: PMC8436056 DOI: 10.14814/phy2.15023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). In the lungs, this manifests as immune cell infiltration and bacterial infections, leading to tissue destruction. Previous work has determined that acute bacterial sphingomyelinase (SMase) decreases CFTR function in bronchial epithelial cells from individuals without CF (nHBEs) and with CF (cfHBEs, homozygous ΔF508-CFTR mutation). This study focuses on exploring the mechanisms underlying this effect. SMase increased the abundance of dihydroceramides, a result mimicked by blockade of ceramidase enzyme using ceranib-1, which also decreased CFTR function. The SMase-mediated inhibitory mechanism did not involve the reduction of cellular CFTR abundance or removal of CFTR from the apical surface, nor did it involve the activation of 5' adenosine monophosphate-activated protein kinase. In order to determine the pathological relevance of these sphingolipid imbalances, we evaluated the sphingolipid profiles of cfHBEs and cfHNEs (nasal) as compared to non-CF controls. Sphingomyelins, ceramides, and dihydroceramides were largely increased in CF cells. Correction of ΔF508-CFTR trafficking with VX445 + VX661 decreased some sphingomyelins and all ceramides, but exacerbated increases in dihydroceramides. Additional treatment with the CFTR potentiator VX770 did not affect these changes, suggesting rescue of misfolded CFTR was sufficient. We furthermore determined that cfHBEs express more acid-SMase protein than nHBEs. Lastly, we determined that airway-like neutrophils, which are increased in the CF lung, secrete acid-SMase. Identifying the mechanism of SMase-mediated inhibition of CFTR will be important, given the imbalance of sphingolipids in CF cells and the secretion of acid-SMase from cell types relevant to CF.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Vincent D. Giacalone
- Immunology and Molecular Pathogenesis PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Camilla Margaroli
- Department of MedicineDivision of PulmonaryAllergy & Critical Care MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Program in Protease/Matrix BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth ChicagoIllinoisUSA
| | - Michael Koval
- Department of MedicineDivision of Pulmonary, Allergy, Critical Care and Sleep Medicine and Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Rabindra Tirouvanziam
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
19
|
Breiden B, Sandhoff K. Acid Sphingomyelinase, a Lysosomal and Secretory Phospholipase C, Is Key for Cellular Phospholipid Catabolism. Int J Mol Sci 2021; 22:9001. [PMID: 34445706 PMCID: PMC8396676 DOI: 10.3390/ijms22169001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Here, we present the main features of human acid sphingomyelinase (ASM), its biosynthesis, processing and intracellular trafficking, its structure, its broad substrate specificity, and the proposed mode of action at the surface of the phospholipid substrate carrying intraendolysosomal luminal vesicles. In addition, we discuss the complex regulation of its phospholipid cleaving activity by membrane lipids and lipid-binding proteins. The majority of the literature implies that ASM hydrolyses solely sphingomyelin to generate ceramide and ignores its ability to degrade further substrates. Indeed, more than twenty different phospholipids are cleaved by ASM in vitro, including some minor but functionally important phospholipids such as the growth factor ceramide-1-phosphate and the unique lysosomal lysolipid bis(monoacylglycero)phosphate. The inherited ASM deficiency, Niemann-Pick disease type A and B, impairs mainly, but not only, cellular sphingomyelin catabolism, causing a progressive sphingomyelin accumulation, which furthermore triggers a secondary accumulation of lipids (cholesterol, glucosylceramide, GM2) by inhibiting their turnover in late endosomes and lysosomes. However, ASM appears to be involved in a variety of major cellular functions with a regulatory significance for an increasing number of metabolic disorders. The biochemical characteristics of ASM, their potential effect on cellular lipid turnover, as well as a potential impact on physiological processes will be discussed.
Collapse
Affiliation(s)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, LIMES Institute, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
20
|
Sindhu S, Leung YH, Arefanian H, Madiraju SRM, Al‐Mulla F, Ahmad R, Prentki M. Neutral sphingomyelinase-2 and cardiometabolic diseases. Obes Rev 2021; 22:e13248. [PMID: 33738905 PMCID: PMC8365731 DOI: 10.1111/obr.13248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Sphingolipids, in particular ceramides, play vital role in pathophysiological processes linked to metabolic syndrome, with implications in the development of insulin resistance, pancreatic ß-cell dysfunction, type 2 diabetes, atherosclerosis, inflammation, nonalcoholic steatohepatitis, and cancer. Ceramides are produced by the hydrolysis of sphingomyelin, catalyzed by different sphingomyelinases, including neutral sphingomyelinase 2 (nSMase2), whose dysregulation appears to underlie many of the inflammation-related pathologies. In this review, we discuss the current knowledge on the biochemistry of nSMase2 and ceramide production and its regulation by inflammatory cytokines, with particular reference to cardiometabolic diseases. nSMase2 contribution to pathogenic processes appears to involve cyclical feed-forward interaction with proinflammatory cytokines, such as TNF-α and IL-1ß, which activate nSMase2 and the production of ceramides, that in turn triggers the synthesis and release of inflammatory cytokines. We elaborate these pathogenic interactions at the molecular level and discuss the potential therapeutic benefits of inhibiting nSMase2 against inflammation-driven cardiometabolic diseases.
Collapse
Affiliation(s)
- Sardar Sindhu
- Animal and Imaging core facilityDasman Diabetes InstituteDasmanKuwait
| | - Yat Hei Leung
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Hossein Arefanian
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - S. R. Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| | - Fahd Al‐Mulla
- Department of Genetics and BioinformaticsDasman Diabetes InstituteDasmanKuwait
| | - Rasheed Ahmad
- Immunology and Microbiology DepartmentDasman Diabetes InstituteDasmanKuwait
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular MedicineUniversity of MontrealMontréalQuebecCanada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)Montreal Diabetes Research CenterMontréalQuebecCanada
| |
Collapse
|
21
|
Helmholz H, Will O, Penate-Medina T, Humbert J, Damm T, Luthringer-Feyerabend B, Willumeit-Römer R, Glüer CC, Penate-Medina O. Tissue responses after implantation of biodegradable Mg alloys evaluated by multimodality 3D micro-bioimaging in vivo. J Biomed Mater Res A 2021; 109:1521-1529. [PMID: 33590952 DOI: 10.1002/jbm.a.37148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
The local response of tissue triggered by implantation of degradable magnesium-based implant materials was investigated in vivo in a murine model. Pins (5.0 mm length by 0.5 mm diameter) made of Mg, Mg-10Gd, and Ti were implanted in the leg muscle tissue of C57Bl/6N mice (n = 6). Implantation was generally well tolerated as documented by only a mild short term increase in a multidimensional scoring index. Lack of difference between the groups indicated that the response was systemic and surgery related rather than material dependent. Longitudinal in vivo monitoring utilizing micro-computed tomography over 42 days demonstrated the highest and most heterogeneous degradation for Mg-10Gd. Elemental imaging of the explants by micro X-ray fluorescence spectrometry showed a dense calcium-phosphate-containing degradation layer. In order to monitor resulting surgery induced and/or implant material associated local cell stress, sphingomyelin based liposomes containing indocyanine green were administered. An initial increase in fluorescent signals (3-7 days after implantation) indicating cell stress at the site of the implantation was measured by in vivo fluorescent molecular tomography. The signal decreased until the 42nd day for all materials. These findings demonstrate that Mg based implants are well tolerated causing only mild and short term adverse reactions.
Collapse
Affiliation(s)
- Heike Helmholz
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Olga Will
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Tuula Penate-Medina
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jana Humbert
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Timo Damm
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Berengere Luthringer-Feyerabend
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Department Biological Characterization, Helmholtz-Center Geesthacht Institute for Material and Coastal Research; Institute of Materials Research, Division of Metallic Biomaterials, Geesthacht, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Oula Penate-Medina
- Section Biomedical Imaging and Molecular Imaging, North Competence Center, Department of Radiology and Neuroradiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
22
|
Quinville BM, Deschenes NM, Ryckman AE, Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci 2021; 22:ijms22115793. [PMID: 34071409 PMCID: PMC8198874 DOI: 10.3390/ijms22115793] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are a specialized group of lipids essential to the composition of the plasma membrane of many cell types; however, they are primarily localized within the nervous system. The amphipathic properties of sphingolipids enable their participation in a variety of intricate metabolic pathways. Sphingoid bases are the building blocks for all sphingolipid derivatives, comprising a complex class of lipids. The biosynthesis and catabolism of these lipids play an integral role in small- and large-scale body functions, including participation in membrane domains and signalling; cell proliferation, death, migration, and invasiveness; inflammation; and central nervous system development. Recently, sphingolipids have become the focus of several fields of research in the medical and biological sciences, as these bioactive lipids have been identified as potent signalling and messenger molecules. Sphingolipids are now being exploited as therapeutic targets for several pathologies. Here we present a comprehensive review of the structure and metabolism of sphingolipids and their many functional roles within the cell. In addition, we highlight the role of sphingolipids in several pathologies, including inflammatory disease, cystic fibrosis, cancer, Alzheimer’s and Parkinson’s disease, and lysosomal storage disorders.
Collapse
|
23
|
Xiang H, Jin S, Tan F, Xu Y, Lu Y, Wu T. Physiological functions and therapeutic applications of neutral sphingomyelinase and acid sphingomyelinase. Biomed Pharmacother 2021; 139:111610. [PMID: 33957567 DOI: 10.1016/j.biopha.2021.111610] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/15/2022] Open
Abstract
Sphingomyelin (SM) can be converted into ceramide (Cer) by neutral sphingomyelinase (NSM) and acid sphingomyelinase (ASM). Cer is a second messenger of lipids and can regulate cell growth and apoptosis. Increasing evidence shows that NSM and ASM play key roles in many processes, such as apoptosis, immune function and inflammation. Therefore, NSM and ASM have broad prospects in clinical treatments, especially in cancer, cardiovascular diseases (such as atherosclerosis), nervous system diseases (such as Alzheimer's disease), respiratory diseases (such as chronic obstructive pulmonary disease) and the phenotype of dwarfisms in adolescents, playing a complex regulatory role. This review focuses on the physiological functions of NSM and ASM and summarizes their roles in certain diseases and their potential applications in therapy.
Collapse
Affiliation(s)
- Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenglang Tan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Xu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
24
|
Lin CH, Kornhuber J, Zheng F, Alzheimer C. Tonic Control of Secretory Acid Sphingomyelinase Over Ventral Hippocampal Synaptic Transmission and Neuron Excitability. Front Cell Neurosci 2021; 15:660561. [PMID: 33897374 PMCID: PMC8062921 DOI: 10.3389/fncel.2021.660561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
The acid sphingomyelinase (ASM) converts sphingomyelin into ceramide. Recent work has advanced the ASM/ceramide system as a major player in the pathogenesis of major depressive disorder (MDD). Indeed, ASM activity is enhanced in MDD patients and antidepressant drugs like fluoxetine act as functional inhibitors of ASM. Here, we employed the specific ASM inhibitor ARC39 to explore the acute effects of the enzyme on hippocampal synaptic transmission and cell excitability in adult mouse brain slice preparations. In both field potential and whole-cell recordings, ARC39 (1-3 μM) enhanced excitatory synaptic input onto ventral hippocampal CA1 pyramidal cells. The specificity of drug action was demonstrated by its lacking effect in slices from ASM knockout mice. In control condition, ARC39 strongly reduced firing in most CA1 pyramidal cells, together with membrane hyperpolarization. Such pronounced inhibitory action of ARC39 on soma excitability was largely reversed when GABAA receptors were blocked. The idea that ARC39 recruits GABAergic inhibition to dampen cell excitability was further reinforced by the drug's ability to enhance the inhibitory synaptic drive onto pyramidal cells. In pyramidal cells that were pharmacologically isolated from synaptic input, the overall effect of ARC39 on cell firing was inhibitory, but some neurons displayed a biphasic response with a transient increase in firing, suggesting that ARC39 might alter intrinsic firing properties in a cell-specific fashion. Because ARC39 is charged at physiological pH and exerted all its effects within minutes of application, we propose that the neurophysiological actions reported here are due to the inhibition of secretory rather than lysosomal ASM. In summary, the ASM inhibitor ARC39 reveals a tonic control of the enzyme over ventral hippocampal excitability, which involves the intrinsic excitability of CA1 pyramidal cells as well as their excitatory and inhibitory synaptic inputs.
Collapse
Affiliation(s)
- Chih-Hung Lin
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
25
|
Chung HY, Claus RA. Keep Your Friends Close, but Your Enemies Closer: Role of Acid Sphingomyelinase During Infection and Host Response. Front Med (Lausanne) 2021; 7:616500. [PMID: 33553211 PMCID: PMC7859284 DOI: 10.3389/fmed.2020.616500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Breakdown of the inert and constitutive membrane building block sphingomyelin to the highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is tightly regulated during stress response and opens the gate for invading pathogens, triggering the immune response, development of remote organ failure, and tissue repair following severe infection. How do one enzyme and one mediator manage all of these affairs? Under physiological conditions, the enzyme is located in the lysosomes and takes part in the noiseless metabolism of sphingolipids, but following stress the protein is secreted into circulation. When secreted, acid sphingomyelinase (ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to ceramide. Its generation troubles the biophysical context of cellular membranes resulting in functional assembly and reorganization of proteins and receptors, also embedded in highly conserved response mechanisms. As a consequence of cellular signaling, not only induction of cell death but also proliferation, differentiation, and fibrogenesis are affected. Here, we discuss the current state of the art on both the impact and function of the enzyme during host response and damage control. Also, the potential role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade is highlighted.
Collapse
Affiliation(s)
- Ha-Yeun Chung
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ralf A Claus
- Department for Anaesthesiology and Intensive Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
26
|
Peñate Medina T, Gerle M, Humbert J, Chu H, Köpnick AL, Barkmann R, Garamus VM, Sanz B, Purcz N, Will O, Appold L, Damm T, Suojanen J, Arnold P, Lucius R, Willumeit-Römer R, Açil Y, Wiltfang J, Goya GF, Glüer CC, Peñate Medina O. Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers (Basel) 2020; 12:cancers12123767. [PMID: 33327621 PMCID: PMC7765112 DOI: 10.3390/cancers12123767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Most available cancer chemotherapies are based on systemically administered small organic molecules, and only a tiny fraction of the drug reaches the disease site. The approach causes significant side effects and limits the outcome of the therapy. Targeted drug delivery provides an alternative to improve the situation. However, due to the poor release characteristics of the delivery systems, limitations remain. This report presents a new approach to address the challenges using two fundamentally different mechanisms to trigger the release from the liposomal carrier. We use an endogenous disease marker, an enzyme, combined with an externally applied magnetic field, to open the delivery system at the correct time only in the disease site. This site-activated release system is a novel two-switch nanomachine that can be regulated by a cell stress-induced enzyme at the cellular level and be remotely controlled using an applied magnetic field. We tested the concept using sphingomyelin-containing liposomes encapsulated with indocyanine green, fluorescent marker, or the anticancer drug cisplatin. We engineered the liposomes by adding paramagnetic beads to act as a receiver of outside magnetic energy. The developed multifunctional liposomes were characterized in vitro in leakage studies and cell internalization studies. The release system was further studied in vivo in imaging and therapy trials using a squamous cell carcinoma tumor in the mouse as a disease model. In vitro studies showed an increased release of loaded material when stress-related enzyme and magnetic field was applied to the carrier liposomes. The theranostic liposomes were found in tumors, and the improved therapeutic effect was shown in the survival studies.
Collapse
Affiliation(s)
- Tuula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Mirko Gerle
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Jana Humbert
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Hanwen Chu
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
- Department of Oral and Maxillofacial Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Anna-Lena Köpnick
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Reinhard Barkmann
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Vasil M. Garamus
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Beatriz Sanz
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Nicolai Purcz
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Lia Appold
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Juho Suojanen
- Cleft Palate and Craniofacial Center, Department of Plastic Surgery, Helsinki University Hospital, 00029 HUS Helsinki, Finland;
- Päijät-Häme Joint Authority for Health and Wellbeing, Department of Oral and Maxillo-Facial Surgery, 15850 Lahti, Finland
| | - Philipp Arnold
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Ralph Lucius
- Anatomical Institute, Christian-Albrechts-University Kiel, 24105 Kiel, Germany or (P.A.); (R.L.)
| | - Regina Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, Max Planck Straße 1, 21502 Geesthacht, Germany; (V.M.G.); (R.W.-R.)
| | - Yahya Açil
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Joerg Wiltfang
- Klinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (M.G.); (H.C.); (N.P.); (Y.A.); (J.W.)
| | - Gerardo F. Goya
- Institute of Nanoscience of Aragon (INA) and Condensed Matter Physics Dept., University of Zaragoza, C.P. 50.018 Zaragoza, Spain; (B.S.); (G.F.G.)
| | - Claus C. Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
| | - Oula Peñate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology Universitätsklinikum Schleswig-Holstein Campus Kiel, Christian Albrechts Universität zu Kiel, 24105 Kiel, Germany; (T.P.M.); (J.H.); (A.-L.K.); (R.B.); (O.W.); (T.D.); (C.C.G.)
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel, 24105 Kiel, Germany;
- Correspondence: ; Tel.: +491605559588
| |
Collapse
|
27
|
Zeitler S, Schumacher F, Monti J, Anni D, Guhathakurta D, Kleuser B, Friedland K, Fejtová A, Kornhuber J, Rhein C. Acid Sphingomyelinase Impacts Canonical Transient Receptor Potential Channels 6 (TRPC6) Activity in Primary Neuronal Systems. Cells 2020; 9:E2502. [PMID: 33218173 PMCID: PMC7698877 DOI: 10.3390/cells9112502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 11/13/2020] [Indexed: 12/30/2022] Open
Abstract
: The acid sphingomyelinase (ASM)/ceramide system exhibits a crucial role in the pathology of major depressive disorder (MDD). ASM hydrolyzes the abundant membrane lipid sphingomyelin to ceramide that regulates the clustering of membrane proteins via microdomain and lipid raft organization. Several commonly used antidepressants, such as fluoxetine, rely on the functional inhibition of ASM in terms of their antidepressive pharmacological effects. Transient receptor potential canonical 6 (TRPC6) ion channels are located in the plasma membrane of neurons and serve as receptors for hyperforin, a phytochemical constituent of the antidepressive herbal remedy St. John's wort. TRPC6 channels are involved in the regulation of neuronal plasticity, which likely contributes to their antidepressant effect. In this work, we investigated the impact of reduced ASM activity on the TRPC6 function in neurons. A lipidomic analysis of cortical brain tissue of ASM deficient mice revealed a decrease in ceramide/sphingomyelin molar ratio and an increase in sphingosine. In neurons with ASM deletion, hyperforin-mediated Ca2+-influx via TRPC6 was decreased. Consequently, downstream activation of nuclear phospho-cAMP response element-binding protein (pCREB) was changed, a transcriptional factor involved in neuronal plasticity. Our study underlines the importance of balanced ASM activity, as well as sphingolipidome composition for optimal TRPC6 function. A better understanding of the interaction of the ASM/ceramide and TRPC6 systems could help to draw conclusions about the pathology of MDD.
Collapse
Affiliation(s)
- Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, 14558 Nuthetal, Germany;
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute of Molecular Biology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Juliana Monti
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Daniela Anni
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Burkhard Kleuser
- Department of Pharmacology & Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Kristina Friedland
- Institute for Pharmacy and Biochemistry, Johannes-Gutenberg Universität Mainz, 55128 Mainz, Germany;
| | - Anna Fejtová
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
| | - Cosima Rhein
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.Z.); (J.M.); (D.A.); (D.G.); (A.F.); (J.K.)
- Department of Psychosomatic Medicine and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
28
|
Sphingomyelinases and Liver Diseases. Biomolecules 2020; 10:biom10111497. [PMID: 33143193 PMCID: PMC7692672 DOI: 10.3390/biom10111497] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) are critical components of membrane bilayers that play a crucial role in their physico-chemical properties. Ceramide is the prototype and most studied SL due to its role as a second messenger in the regulation of multiple signaling pathways and cellular processes. Ceramide is a heterogeneous lipid entity determined by the length of the fatty acyl chain linked to its carbon backbone sphingosine, which can be generated either by de novo synthesis from serine and palmitoyl-CoA in the endoplasmic reticulum or via sphingomyelin (SM) hydrolysis by sphingomyelinases (SMases). Unlike de novo synthesis, SMase-induced SM hydrolysis represents a rapid and transient mechanism of ceramide generation in specific intracellular sites that accounts for the diverse biological effects of ceramide. Several SMases have been described at the molecular level, which exhibit different pH requirements for activity: neutral, acid or alkaline. Among the SMases, the neutral (NSMase) and acid (ASMase) are the best characterized for their contribution to signaling pathways and role in diverse pathologies, including liver diseases. As part of a Special Issue (Phospholipases: From Structure to Biological Function), the present invited review summarizes the physiological functions of NSMase and ASMase and their role in chronic and metabolic liver diseases, of which the most relevant is nonalcoholic steatohepatitis and its progression to hepatocellular carcinoma, due to the association with the obesity and type 2 diabetes epidemic. A better understanding of the regulation and role of SMases in liver pathology may offer the opportunity for novel treatments of liver diseases.
Collapse
|
29
|
Samaranch L, Pérez-Cañamás A, Soto-Huelin B, Sudhakar V, Jurado-Arjona J, Hadaczek P, Ávila J, Bringas JR, Casas J, Chen H, He X, Schuchman EH, Cheng SH, Forsayeth J, Bankiewicz KS, Ledesma MD. Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A. Sci Transl Med 2020; 11:11/506/eaat3738. [PMID: 31434754 DOI: 10.1126/scitranslmed.aat3738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 01/23/2019] [Accepted: 07/29/2019] [Indexed: 11/02/2022]
Abstract
Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.
Collapse
Affiliation(s)
- Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | | | - Vivek Sudhakar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | - Piotr Hadaczek
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | - Jesús Ávila
- Centro Biologia Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain
| | - John R Bringas
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | | | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA.
| | | |
Collapse
|
30
|
Inverse Correlation Between Plasma Sphingosine-1-Phosphate and Ceramide Concentrations in Septic Patients and Their Utility in Predicting Mortality. Shock 2020; 51:718-724. [PMID: 30080743 PMCID: PMC6511430 DOI: 10.1097/shk.0000000000001229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Supplemental Digital Content is available in the text Introduction: The aim of this study was to investigate the correlation between plasma sphingosine-1-phosphate (S1P) and ceramide concentrations in sepsis, and the possible mechanisms for altered expression. Methods: Plasma S1P and ceramide concentrations were measured by HPLC-ESI-MS/MS. HLA-DR (human leukocyte antigen-DR) expression on peripheral blood mononuclear cells was examined by flow cytometry. Platelet sphingosine kinases 1/2 (SphK1/2) mRNA expression, protein content, and enzyme activities were determined by qRT-PCR, western blot, and commercial enzyme assay kits, respectively. Results: Compared with healthy and ICU controls, septic patients had significantly decreased plasma S1P but increased ceramide concentrations (P < 0.05). S1P concentration was negatively associated with the ceramide concentration in the septic patients (r = −0.36, P < 0.05). Linear regression analysis found that plasma S1P and ceramide were linked not only to sequential (sepsis-related) organ failure assessment (SOFA) score but also the HLA-DR expression on circulating monocytes. An receiver operating characteristic analysis, including S1P, ceramide, SOFA score and HLA-DR, showed integrated analysis of S1P and ceramide as the better powerful predictors of septic lethality with area under the curve value of 0.95. More importantly, we found the platelet SphKs activities and the expression levels of SphK1 were significantly decreased in septic patients (P < 0.05). Linear regression analysis revealed platelet SphKs activity was positively associated with the plasma S1P concentration of the septic patients (r = −0.41, P = 0.02). Conclusions: Integrated analysis of plasma S1P and ceramide predict septic mortality with high accuracy. The decreased platelet SphK1 expression and subsequent reduced SphKs activity might be responsible for the decreased plasma S1P levels during sepsis.
Collapse
|
31
|
Potential therapeutic target for aging and age-related neurodegenerative diseases: the role of acid sphingomyelinase. Exp Mol Med 2020; 52:380-389. [PMID: 32203096 PMCID: PMC7156489 DOI: 10.1038/s12276-020-0399-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/07/2020] [Accepted: 01/15/2020] [Indexed: 12/21/2022] Open
Abstract
Aging, which is associated with age-related changes in physiological processes, is the most significant risk factor for the development and progression of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Accumulating evidence has indicated that sphingolipids are significant regulators that are associated with pathogenesis in aging and several age-related neurodegenerative diseases. In particular, abnormal levels of acid sphingomyelinase (ASM), one of the significant sphingolipid-metabolizing enzymes, have been found in the blood and some tissues under various neuropathological conditions. Moreover, recent studies have reported the importance of ASM as a critical mediator that contributes to pathologies in aging and age-related neurodegenerative diseases. In this review, we describe the pathophysiological processes that are regulated by ASM, focusing on the age-related neurodegenerative environment. Furthermore, we discuss novel insights into how new therapeutics targeting ASM may potentially lead to effective strategies to combat aging and age-related neurodegenerative diseases.
Collapse
|
32
|
Ramírez-Montiel F, Mendoza-Macías C, Andrade-Guillén S, Rangel-Serrano Á, Páramo-Pérez I, Rivera-Cuéllar PE, España-Sánchez BL, Luna-Bárcenas G, Anaya-Velázquez F, Franco B, Padilla-Vaca F. Plasma membrane damage repair is mediated by an acid sphingomyelinase in Entamoeba histolytica. PLoS Pathog 2019; 15:e1008016. [PMID: 31461501 PMCID: PMC6713333 DOI: 10.1371/journal.ppat.1008016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Entamoeba histolytica is a pathogen that during its infective process confronts the host defenses, which damages the amoebic plasma membrane (PM), resulting in the loss of viability. However, it is unknown whether amoebic trophozoites are able to repair their PM when it is damaged. Acid sphingomyelinases (aSMases) have been reported in mammalian cells to promote endocytosis and removal of PM lesions. In this work, six predicted amoebic genes encoding for aSMases were found to be transcribed in the HM1:IMSS strain, finding that the EhaSM6 gene is the most transcribed in basal growth conditions and rendered a functional protein. The secreted aSMase activity detected was stimulated by Mg+2 and inhibited by Co+2. Trophozoites that overexpress the EhaSM6 gene (HM1-SM6HA) exhibit an increase of 2-fold in the secreted aSMase activity. This transfectant trophozoites exposed to pore-forming molecules (SLO, Magainin, β-Defensin 2 and human complement) exhibited an increase from 6 to 25-fold in the secreted aSMase activity which correlated with higher amoebic viability in a Ca+2 dependent process. However, other agents that affect the PM such as hydrogen peroxide also induced an increase of secreted aSMase, but to a lesser extent. The aSMase6 enzyme is N- and C-terminal processed. Confocal and transmission electron microscopy showed that trophozoites treated with SLO presented a migration of lysosomes containing the aSMase towards the PM, inducing the formation of membrane patches and endosomes in the control strain. These cellular structures were increased in the overexpressing strain, indicating the involvement of the aSMase6 in the PM injury repair. The pore-forming molecules induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile, hydrogen peroxide induced an increase in all of them. In all the conditions evaluated, the EhaSM6 gene exhibited the highest levels of induction. Overall, these novel findings show that the aSMase6 enzyme from E. histolytica promotes the repair of the PM damaged with pore-forming molecules to prevent losing cell integrity. This novel system could act when encountered with the lytic defense systems of the host. The host-amoeba relationship is based on a series of interplays between host defense mechanisms and parasite survival strategies. While host cells elaborate diverse mechanisms for pathogen elimination, Entamoeba histolytica trophozoites have also developed complex strategies to counteract host immune response and facilitate its own survival while confronting host defenses. E. histolytica exposed to pore-forming proteins such as β-Defensin 2, human complement and Streptolysin O (SLO), increases the activity of secreted aSMase, which is related to greater amoebic viability. Other agents that affect plasma membrane (PM) may also increase secreted aSMase but to a lesser extent. SLO form pores in the PM of E. histolytica trophozoites that initiates the uncontrolled entry of Ca2+, recognized as the primary trigger for cell responses which favors the migration of the lysosomes to the periphery of the cell, fuses with the PM and release their content, including aSMase to the external side of the cell. The secreted aSMase favoring the internalization of the lesion for its degradation in phagolysosomes. During the early stages of PM damage, the pores are rapidly blocked by patch-like structures that prevent the lysis of the trophozoite and immediately begin internalizing the lesion. The aSMase6 overexpression favors the repair of the lesion and the survival of E. histolytica trophozoites. Pore-forming proteins induced an increase in the expression of EhaSM1, 2, 5 and 6 genes, meanwhile oxidative stress induced an increase in all of them. Here we report, for the first time, that E. histolytica possess a mechanism for PM damage repair mediated by aSMase similar to the system described in mammalian cells.
Collapse
Affiliation(s)
- Fátima Ramírez-Montiel
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Claudia Mendoza-Macías
- Departmento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Sairy Andrade-Guillén
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Ángeles Rangel-Serrano
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Itzel Páramo-Pérez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Paris E. Rivera-Cuéllar
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - B. Liliana España-Sánchez
- CONACYT_Centro de Investigación y Desarrollo en Electroquímica (CIDETEQ) S.C. Parque Tecnológico, San Fandila, Querétaro, México
| | - Gabriel Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV) Unidad Querétaro, Fracc. Real de Juriquilla, Querétaro, Querétaro, México
| | - Fernando Anaya-Velázquez
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| | - Felipe Padilla-Vaca
- Departmento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, Mexico
- * E-mail: (BF); (FPV)
| |
Collapse
|
33
|
McFadden JW, Rico JE. Invited review: Sphingolipid biology in the dairy cow: The emerging role of ceramide. J Dairy Sci 2019; 102:7619-7639. [PMID: 31301829 DOI: 10.3168/jds.2018-16095] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023]
Abstract
The physiological control of lactation through coordinated adaptations is of fundamental importance for mammalian neonatal life. The putative actions of reduced insulin sensitivity and responsiveness and enhanced adipose tissue lipolysis spare glucose for the mammary synthesis of milk. However, severe insulin antagonism and body fat mobilization may jeopardize hepatic health and lactation in dairy cattle. Interestingly, lipolysis- and dietary-derived fatty acids may impair insulin sensitivity in cows. The mechanisms are undefined yet have major implications for the development of postpartum fatty liver disease. In nonruminants, the sphingolipid ceramide is a potent mediator of saturated fat-induced insulin resistance that defines in part the mechanisms of type 2 diabetes mellitus and nonalcoholic fatty liver disease. In ruminants including the lactating dairy cow, the functions of ceramide had remained virtually undescribed. Through a series of hypothesis-centered studies, ceramide has emerged as a potential antagonist of insulin-stimulated glucose utilization by adipose and skeletal muscle tissues in dairy cattle. Importantly, bovine data suggest that the ability of ceramide to inhibit insulin action likely depends on the lipolysis-dependent hepatic synthesis and secretion of ceramide during early lactation. Although these mechanisms appear to fade as lactation advances beyond peak milk production, early evidence suggests that palmitic acid feeding is a means to augment ceramide supply. Herein, we review a body of work that focuses on sphingolipid biology and the role of ceramide in the dairy cow within the framework of hepatic and fatty acid metabolism, insulin function, and lactation. The potential involvement of ceramide within the endocrine control of lactation is also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| |
Collapse
|
34
|
Andrews NW. Solving the secretory acid sphingomyelinase puzzle: Insights from lysosome-mediated parasite invasion and plasma membrane repair. Cell Microbiol 2019; 21:e13065. [PMID: 31155842 DOI: 10.1111/cmi.13065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Acid sphingomyelinase (ASM) is a lysosomal enzyme that cleaves the phosphorylcholine head group of sphingomyelin, generating ceramide. Recessive mutations in SMPD1, the gene encoding ASM, cause Niemann-Pick Disease Types A and B. These disorders are attributed not only to lipid accumulation inside lysosomes but also to changes on the outer leaflet of the plasma membrane, highlighting an extracellular role for ASM. Secretion of ASM occurs under physiological conditions, and earlier studies proposed two forms of the enzyme, one resident in lysosomes and another form that would be diverted to the secretory pathway. Such differential intracellular trafficking has been difficult to explain because there is only one SMPD1 transcript that generates an active enzyme, found primarily inside lysosomes. Unexpectedly, studies of cell invasion by the protozoan parasite Trypanosoma cruzi revealed that conventional lysosomes can fuse with the plasma membrane in response to elevations in intracellular Ca2+ , releasing their contents extracellularly. ASM exocytosed from lysosomes remodels the outer leaflet of the plasma membrane, promoting parasite invasion and wound repair. Here, we discuss the possibility that ASM release during lysosomal exocytosis, in response to various forms of stress, may represent a major source of the secretory form of this enzyme.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
35
|
Wu Y, Gulbins E, Grassmé H. The function of sphingomyelinases in mycobacterial infections. Biol Chem 2019; 399:1125-1133. [PMID: 29924725 DOI: 10.1515/hsz-2018-0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the deadliest and most important infectious diseases worldwide. The sphingomyelinase/ceramide system, which has been shown several times to be a crucial factor in the internalization, processing and killing of diverse pathogens, also modulates the pro-inflammatory response and the state of mycobacteria in macrophages. Both acid and neutral sphingomyelinases are important in this activity. However, studies of the role of sphingomyelinases in TB are still at an early stage.
Collapse
Affiliation(s)
- Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany.,Department of Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, D-45122 Essen, Germany
| |
Collapse
|
36
|
Davis AN, Rico JE, Myers WA, Coleman MJ, Clapham ME, Haughey NJ, McFadden JW. Circulating low-density lipoprotein ceramide concentrations increase in Holstein dairy cows transitioning from gestation to lactation. J Dairy Sci 2019; 102:5634-5646. [PMID: 30904311 DOI: 10.3168/jds.2018-15850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/04/2019] [Indexed: 01/12/2023]
Abstract
Low-density lipoprotein (LDL) ceramide causes insulin resistance in obese diabetic nonruminants. Because previous work suggests that liver-derived ceramide may impair insulin action in postpartum cows, our objectives were to characterize peripartal changes in lipoprotein ceramides. We further studied the effects of prepartum adiposity on lipoprotein ceramide levels. Twenty-eight pregnant Holstein cows (parity = 3.65 ± 1.62) with lean (body condition score, BCS = 2.97 ± 0.16; body weight, BW = 630 ± 55.2 kg; n = 15) or overweight (BCS = 3.93 ± 0.27; BW = 766 ± 46.1 kg; n = 13) body condition 28 d before expected parturition were evaluated. Sampling occurred on d -20.5 ± 1.74, -13.8 ± 1.71, -7.84 ± 4.07, -6.71 ± 1.00, -3.92 ± 0.64, and -1.28 ± 0.61 (before parturition); daily until d 8 postpartum; and on d 10, 12, 14, 21, and 28. Adipose tissue and liver were biopsied on d -7.84 ± 4.07 and 10. Postpartum insulin sensitivity was assessed using the hyperinsulinemic-euglycemic clamp. Lipoprotein fractions were isolated using liquid chromatography. Sphingolipids were quantified using mass spectrometry. Data were analyzed using a mixed model with repeated measures. Overweight cows had a higher BCS and BW at enrollment relative to lean cows, but BCS and BW were similar postpartum. Overweight cows lost more body condition (0.97 ± 0.36 vs. 0.55 ± 0.16 BCS units) and BW (291 ± 67.3 vs. 202 ± 54.5 kg) during transition relative to lean cows. Adipocyte volume and counts declined from prepartum to postpartum (50.4 and 13.7%, respectively), and adipocyte volume was greater (48.2%) in overweight cows prepartum relative to lean cows. Although DMI was comparable between BCS groups, milk yield tended to be greater in overweight cows. Plasma free fatty acid and β-hydroxybutyrate and liver lipid levels were 40, 16, and 37% greater, respectively, in overweight cows compared with lean cows. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp tended to be lower in overweight cows. Ceramide levels within triacylglycerol-rich lipoprotein fractions declined postpartum, whereas LDL ceramide increased postpartum. Overweight cows had lower triacylglycerol-rich lipoprotein C16:0-ceramide levels relative to lean cows. Prepartum LDL C24:0-ceramide levels were greater in overweight cows relative to lean cows. Independent of prepartum adiposity, we concluded that serum LDL ceramide levels are elevated in early-lactation cows experiencing adipose tissue free fatty acid mobilization and hepatic steatosis.
Collapse
Affiliation(s)
- A N Davis
- Department of Animal Science, Cornell University, Ithaca, NY 14853; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - J E Rico
- Department of Animal Science, Cornell University, Ithaca, NY 14853; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - W A Myers
- Department of Animal Science, Cornell University, Ithaca, NY 14853; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - M J Coleman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - M E Clapham
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505
| | - N J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853; Division of Animal and Nutritional Sciences, West Virginia University, Morgantown 26505.
| |
Collapse
|
37
|
Li C, Wu Y, Riehle A, Orian-Rousseau V, Zhang Y, Gulbins E, Grassmé H. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 2018; 28:916-934. [PMID: 28747072 DOI: 10.1089/ars.2017.6994] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aims: Staphylococcus aureus plays an important role in sepsis, pneumonia, and wound infections. Acid sphingomyelinase (Asm)-deficient mice are highly susceptible to pulmonary S. aureus infections. Here, we investigated the role of CD44 as a molecule that mediates important aspects of the infection of macrophages with S. aureus. Results: We showed that CD44 activation by S. aureus stimulated Asm via the formation of reactive oxygen species, resulting in ceramide release, clustering of CD44 in ceramide-enriched membrane platforms, CD44/Asm-dependent activation of Rho family GTPases, translocation of phospho-ezrin/radixin/moesin to the plasma-membrane, and a rapid rearrangement of the actin cytoskeleton with cortical actin polymerization. Genetic deficiency of CD44 or Asm abrogated these signaling events and thereby reduced internalization of S. aureus into macrophages by 60-80%. Asm-deficient macrophages also exhibited reduced fusion of phagosomes with lysosomes, which prevented intracellular killing of S. aureus in macrophages and thereby allowed internalized S. aureus to replicate and cause severe pneumonia. Innovation and Conclusion: The CD44-Asm-ceramide system plays an important role in the infection of macrophages with S. aureus. Antioxid. Redox Signal. 28, 916-934.
Collapse
Affiliation(s)
- Cao Li
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andrea Riehle
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | | | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
38
|
Yang K, Nong K, Gu Q, Dong J, Wang J. Discovery of N-hydroxy-3-alkoxybenzamides as direct acid sphingomyelinase inhibitors using a ligand-based pharmacophore model. Eur J Med Chem 2018; 151:389-400. [PMID: 29649738 DOI: 10.1016/j.ejmech.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Acid sphingomyelinase (ASM) has been shown to be involved in many physiological processes, emerging to be a promising drug target. In this study, we constructed a ligand-based pharmacophore model of ASM inhibitors and applied this model to optimize the lead compound α-mangostin, a known inhibitor of ASM. 23 compounds were designed and evaluated in vitro for ASM inhibition, of these, 10 compounds were found to be more potent than α-mangostin. This high hit ratio confirmed that the presented model is very effective and practical. The most potent hit, 1c, was found to selectively and competitively inhibit the enzyme and inhibit the generation of ceramide in a dose-dependent manner. Furthermore, 1c showed favorable anti-apoptosis and anti-inflammatory activity. Interactions with key residues and the Zn2+ cofactor of 1c were found by docking simulation. These results provide promising leads and important guidance for further development of efficient ASM inhibitors and drug candidates.
Collapse
Affiliation(s)
- Kan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Keyi Nong
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qinlan Gu
- Senior Vocational School, China Pharmaceutical University, Nanjing, 210009, China
| | - Jibin Dong
- Department of Biochemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Jinxin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
39
|
Acid sphingomyelinase activity as an indicator of the cell stress in HPV-positive and HPV-negative head and neck squamous cell carcinoma. Med Oncol 2018; 35:58. [PMID: 29564578 DOI: 10.1007/s12032-018-1117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Human papillomavirus (HPV) infection, especially HPV-16 and HPV-18, has been increasingly associated with head and neck squamous cell carcinoma. The treatment of HPV-positive squamous cell carcinoma has a better response to both radiotherapy and chemotherapy and presents a better prognosis for the patient. Defining the underlying mechanism of the difference might help in developing future treatment options and could be an important factor in personal therapy planning. Endogenously secreted acid sphingomyelinase (ASMase) levels in the cellular stress caused by irradiation and cisplatin were investigated. MTT assay was performed to evaluate the viability of the treated cells. Keratinocytes were used to evaluate the effects of radiation on normal tissues. Irradiation caused a dose-dependent increase in ASMase activity in both SCC9 HPV-negative, and UDSCC2 HPV-positive cells. ASMase activity in UDSCC2 cells was significantly higher than that in SCC9 cells. UDSCC cells were more sensitive to cisplatin treatment than SCC cells, and the dose-response in the activity was observed in long-time treatments when high doses of cisplatin were used. The results of the current study have clearly showed that HPV positivity should be considered as one of the determinative factors which should be considered when tumor treatments are planned. However, further studies are needed to determine the differences in cellular responses and pathways among HPV-negative and HPV-positive cells.
Collapse
|
40
|
Morris TG, Borland SJ, Clarke CJ, Wilson C, Hannun YA, Ohanian V, Canfield AE, Ohanian J. Sphingosine 1-phosphate activation of ERM contributes to vascular calcification. J Lipid Res 2017; 59:69-78. [PMID: 29167409 DOI: 10.1194/jlr.m079731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/11/2017] [Indexed: 02/07/2023] Open
Abstract
Vascular calcification is the deposition of mineral in the artery wall by vascular smooth muscle cells (VSMCs) in response to pathological stimuli. The process is similar to bone formation and is an independent risk factor for cardiovascular disease. Given that ceramide and sphingosine 1-phosphate (S1P) are involved in cardiovascular pathophysiology and biomineralization, their role in VSMC matrix mineralization was investigated. During phosphate-induced VSMC mineralization, endogenous S1P levels increased accompanied by increased sphingosine kinase (SK) activity and increased mRNA expression of SK1 and SK2. Consistent with this, mineralization was increased by exogenous S1P, but decreased by C2-ceramide. Mechanistically, exogenous S1P stimulated ezrin-radixin-moesin (ERM) phosphorylation in VSMCs and ERM phosphorylation was increased concomitantly with endogenous S1P during mineralization. Moreover, inhibition of acid sphingomyelinase and ceramidase with desipramine prevented increased S1P levels, ERM activation, and mineralization. Finally, pharmacological inhibition of ERM phosphorylation with NSC663894 decreased mineralization induced by phosphate and exogenous S1P. Although further studies will be needed to verify these findings in vivo, this study defines a novel role for the SK-S1P-ERM pathways in phosphate-induced VSMC matrix mineralization and shows that blocking these pathways with pharmacological inhibitors reduces mineralization. These results may inform new therapeutic approaches to inhibit or delay vascular calcification.
Collapse
Affiliation(s)
- Thomas G Morris
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Samantha J Borland
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher J Clarke
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Claire Wilson
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yusuf A Hannun
- Department of Medicine and Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Vasken Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ann E Canfield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jacqueline Ohanian
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
41
|
Rice TC, Pugh AM, Seitz AP, Gulbins E, Nomellini V, Caldwell CC. Sphingosine rescues aged mice from pulmonary pseudomonas infection. J Surg Res 2017; 219:354-359. [PMID: 29078905 PMCID: PMC5663241 DOI: 10.1016/j.jss.2017.06.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/24/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Bacterial lung infection is a leading cause of death for those 65 y or older, often requiring intensive care unit admission and mechanical ventilation, which consumes considerable health care resources. Although administration of antibiotics is the standard of care for bacterial pneumonia, its overuse has led to the emergence of multidrug resistant organisms. Therefore, alternative strategies to help minimize the effects of bacterial pneumonia in the elderly are necessary. As studies have shown that sphingosine (SPH) has inherent bacterial killing properties, our goal was to assess whether it could act as a prophylactic treatment to protect aged mice from pulmonary infection by Pseudomonas aeruginosa. METHODS Aged (51 wk) and young (8 wk) C57Bl/6 mice were used in this study. Pulmonary SPH levels were determined by histology. SPH content of microparticles was quantified using a SPH kinase assay. Pneumonia was induced by intranasally treating mice with 106 Colony Forming Unit (CFU) P aeruginosa. Microparticles were isolated from young mice, whereas some were further incubated with SPH. RESULTS We observed that SPH levels are reduced in the bronchial epithelial cells as well as the bronchoalveolar lavage microparticles isolated from aged mice, which correlates with a susceptibility to infection. We demonstrate that SPH or microparticle treatment can protect aged mice from pulmonary P aeruginosa infection. Finally, we observed that enriching microparticles with SPH before treatment eliminated the bacterial load in P aeruginosa-infected aged mice. CONCLUSIONS These data suggest that prophylactic treatment with SPH could reduce lung bacterial infections for the at-risk elderly population.
Collapse
Affiliation(s)
- Teresa C Rice
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Amanda M Pugh
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Aaron P Seitz
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Erich Gulbins
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Vanessa Nomellini
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| | - Charles C Caldwell
- Division of Research, Department of Surgery, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
42
|
Lee WK, Kolesnick RN. Sphingolipid abnormalities in cancer multidrug resistance: Chicken or egg? Cell Signal 2017; 38:134-145. [PMID: 28687494 DOI: 10.1016/j.cellsig.2017.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 12/12/2022]
Abstract
The cancer multidrug resistance (MDR) phenotype encompasses a myriad of molecular, genetic and cellular alterations resulting from progressive oncogenic transformation and selection. Drug efflux transporters, in particular the MDR P-glycoprotein ABCB1, play an important role in MDR but cannot confer the complete phenotype alone indicating parallel alterations are prerequisite. Sphingolipids are essential constituents of lipid raft domains and directly participate in functionalization of transmembrane proteins, including providing an optimal lipid microenvironment for multidrug transporters, and are also perturbed in cancer. Here we postulate that increased sphingomyelin content, developing early in some cancers, recruits and functionalizes plasma membrane ABCB1 conferring a state of partial MDR, which is completed by glycosphingolipid disturbance and the appearance of intracellular vesicular ABCB1. In this review, the independent and interdependent roles of sphingolipid alterations and ABCB1 upregulation during the transformation process and resultant conferment of partial and complete MDR phenotypes are discussed.
Collapse
Affiliation(s)
- Wing-Kee Lee
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States; Institute for Physiology, Pathophysiology and Toxicology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| | - Richard N Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, United States
| |
Collapse
|
43
|
Kobayashi K, Ishizaki Y, Kojo S, Kikuzaki H. Strong Inhibition of Secretory Sphingomyelinase by Catechins, Particularly by (-)-Epicatechin 3-O-Gallate and (-)-3'-O-Methylepigallocatechin 3-O-Gallate. J Nutr Sci Vitaminol (Tokyo) 2017; 62:123-9. [PMID: 27264097 DOI: 10.3177/jnsv.62.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sphingomyelinases (SMases) are key enzymes involved in many diseases which are caused by oxidative stress, such as atherosclerosis, diabetes mellitus, nonalcoholic fatty liver disease, and Alzheimer's disease. SMases hydrolyze sphingomyelin to generate ceramide, a well-known pro-apoptotic lipid. SMases are classified into five types based on pH optimum, subcellular localization, and cation dependence. Previously, we demonstrated that elevation of secretory sphingomyelinase (sSMase) activity increased the plasma ceramide concentration under oxidative stress induced by diabetes and atherosclerosis in murine models. These results suggest that sSMase inhibitors can prevent the progress of these diseases. The present study demonstrated that sSMase activity was activated by oxidation and inhibited by reduction. Furthermore, we examined whether catechins inhibited the sSMase activity in a physiological plasma concentration. Among catechins, (-)-epicatechin 3-O-gallate (ECg) exhibited strong inhibitory effect on sSMase (IC50=25.7 μM). This effect was attenuated by methylation at the 3″- or 4″-position. On the other hand, (-)-epigallocatechin 3-O-gallate (EGCg) and (-)-catechin 3-O-gallate (Cg) exhibited weaker inhibitory activity than ECg, and (-)-epicatechin and (-)-epigallocatechin did not affect sSMase activity. Additionally, one synthetic catechin, (-)-3'-O-methylepigallocatechin 3-O-gallate (EGCg-3'-O-Me), showed the strongest inhibitory effect (IC50=1.7 μM) on sSMase. This phenomenon was not observed for (-)-4'-O-methylepigallocatechin 3-O-gallate. These results suggest that the reduction potential, the presence of the galloyl residue at the C-3 position, and the steric requirement to interact with sSMase protein are important for effective inhibition of sSMase.
Collapse
Affiliation(s)
- Keiko Kobayashi
- Department of Food Science and Nutrition, Nara Women's University
| | | | | | | |
Collapse
|
44
|
van Hell AJ, Haimovitz-Friedman A, Fuks Z, Tap WD, Kolesnick R. Gemcitabine kills proliferating endothelial cells exclusively via acid sphingomyelinase activation. Cell Signal 2017; 34:86-91. [PMID: 28238856 DOI: 10.1016/j.cellsig.2017.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/15/2017] [Accepted: 02/22/2017] [Indexed: 12/20/2022]
Abstract
Gemcitabine is a widely-used anti-cancer drug with a well-defined mechanism of action in normal and transformed epithelial cells. However, its effect on endothelial cells is largely unknown. Acid sphingomyelinase (ASMase) is highly expressed in endothelial cells, converting plasma membrane sphingomyelin to pro-apoptotic ceramide upon activation by diverse stresses. In the current study, we investigated gemcitabine impact in primary cultures of endothelial cells. We find baseline ASMase increases markedly in bovine aortic endothelial cells (BAEC) as they transit from a proliferative to a confluent growth-arrested state. Further, gemcitabine activates ASMase and induces release of a secretory ASMase form into the media only in proliferating endothelial cells. Additionally, proliferative, but not growth-arrested BAEC, are sensitive to gemcitabine-induced apoptotic death, an effect blocked by inhibiting ASMase with imipramine or by binding ceramide on the cell surface with an anti-ceramide Ab. Confluent growth-arrested BAEC can be re-sensitized to gemcitabine-induced apoptosis by provision of exogenous sphingomyelinase. A highly similar phenotype was observed in primary cultures of human coronary artery endothelial cells. These findings reveal a previously-unrecognized mechanism of gemcitabine cytotoxicity in endothelium that may well contribute to its clinical benefit, and suggest the potential for further improvement of its clinical efficacy via pharmacologic modulation of ASMase/ceramide signaling in proliferative tumor endothelium.
Collapse
Affiliation(s)
- Albert J van Hell
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
45
|
Becker KA, Beckmann N, Adams C, Hessler G, Kramer M, Gulbins E, Carpinteiro A. Melanoma cell metastasis via P-selectin-mediated activation of acid sphingomyelinase in platelets. Clin Exp Metastasis 2016; 34:25-35. [PMID: 27744579 DOI: 10.1007/s10585-016-9826-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/06/2016] [Indexed: 12/19/2022]
Abstract
Metastatic dissemination of cancer cells is one of the hallmarks of malignancy and accounts for approximately 90 % of human cancer deaths. Within the blood vasculature, tumor cells may aggregate with platelets to form clots, adhere to and spread onto endothelial cells, and finally extravasate to form metastatic colonies. We have previously shown that sphingolipids play a central role in the interaction of tumor cells with platelets; this interaction is a prerequisite for hematogenous tumor metastasis in at least some tumor models. Here we show that the interaction between melanoma cells and platelets results in rapid and transient activation and secretion of acid sphingomyelinase (Asm) in WT but not in P-selectin-deficient platelets. Stimulation of P-selectin resulted in activation of p38 MAPK, and inhibition of p38 MAPK in platelets prevented the secretion of Asm after interaction with tumor cells. Intravenous injection of melanoma cells into WT mice resulted in multiple lung metastases, while in P-selectin-deficient mice pulmonary tumor metastasis and trapping of tumor cells in the lung was significantly reduced. Pre-incubation of tumor cells with recombinant ASM restored trapping of B16F10 melanoma cells in the lung in P-selectin-deficient mice. These findings indicate a novel pathway in tumor metastasis, i.e., tumor cell mediated activation of P-selectin in platelets, followed by activation and secretion of Asm and in turn release of ceramide and tumor metastasis. The data suggest that p38 MAPK acts downstream from P-selectin and is necessary for the secretion of Asm.
Collapse
Affiliation(s)
- Katrin Anne Becker
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Nadine Beckmann
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Constantin Adams
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Melanie Kramer
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0558, USA
| | - Alexander Carpinteiro
- Department of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
- Clinic for Hematology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
46
|
Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat Commun 2016; 7:13082. [PMID: 27725636 PMCID: PMC5062611 DOI: 10.1038/ncomms13082] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022] Open
Abstract
Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients. Genetic alterations in the protein acid sphingomyelinase (ASM) lead to ASM deficiency and have been associated with Niemann–Pick disease. Here, the authors report the crystal structures of ASM alone and bound to its product, and discuss the catalytic mechanism and its possible significance for patients with ASM deficiency.
Collapse
|
47
|
Mintzer RJ, Appell KC, Cole A, Johns A, Pagila R, Polokoff MA, Tabas I, Snider RM, Meurer-Ogden JA. A Novel High-Throughput Screening Format to Identify Inhibitors of Secreted Acid Sphingomyelinase. ACTA ACUST UNITED AC 2016; 10:225-34. [PMID: 15809318 DOI: 10.1177/1087057104272546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secreted extracellular acid sphingomyelinase (sASM) activity has been suggested to promote atherosclerosis by enhancing subendothelial aggregation and retention of low-density lipoprotein (LDL) with resultant foam cell formation. Compounds that inhibit sASM activity, at neutral pH, may prevent lipid retention and thus would be expected to be anti-atherosclerotic. With the goal of identifying novel compounds that inhibit sASM at pH 7.4, a high-throughput screen was performed. Initial screening was run using a modification of a proven system that measures the hydrolysis of radiolabeled sphingomyelin presented in detergent micelles in a 96-well format. Separation of the radiolabeled aqueous phosphorylcholine reaction product from uncleaved sphingomyelin lipid substrate was achieved by chloroform/methanol extraction. During the screening campaign, a novel extraction procedure was developed to eliminate the use of the hazardous organic reagents. This new procedure exploited the ability of uncleaved, radiolabeled lipid substrate to interact with hydrophobic phenyl-sepharose beads. A comparison of the organic-based and the bead-based extraction sASM screening assays revealed Z′ factor values ranging from 0.7 to 0.95 for both formats. In addition, both assay formats led to the identification of sub- to low micromolar inhibitors of sASM at pH 7.4 with similar IC50values. Subsequent studies demonstrated that both methods were also adaptable to run in a 384-well format. In contrast to the results observed at neutral pH, however, only the organic extraction assay was capable of accurately measuring sASM activity at its pH optimum of 5.0. The advantages and disadvantages of both sASM assay formats are discussed.
Collapse
Affiliation(s)
- Robert J Mintzer
- Departments of Molecular Pharmacology and Cardiovascular Research, Berlex Biosciences, Richmond, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Carpinteiro A, Becker KA, Japtok L, Hessler G, Keitsch S, Požgajovà M, Schmid KW, Adams C, Müller S, Kleuser B, Edwards MJ, Grassmé H, Helfrich I, Gulbins E. Regulation of hematogenous tumor metastasis by acid sphingomyelinase. EMBO Mol Med 2016; 7:714-34. [PMID: 25851537 PMCID: PMC4459814 DOI: 10.15252/emmm.201404571] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis.
Collapse
Affiliation(s)
- Alexander Carpinteiro
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Hematology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lukasz Japtok
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Gabriele Hessler
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Miroslava Požgajovà
- Department of Genetics and Breeding Biology, Slovak University of Agriculture, Nitra, Slovakia
| | - Kurt W Schmid
- Department of Pathology and Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Constantin Adams
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Müller
- Department of Nuclear Medicine, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Institute for Nutritional Science University of Potsdam, Nuthetal, Germany
| | - Michael J Edwards
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Iris Helfrich
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany Department of Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
49
|
Lim SM, Yeung K, Trésaugues L, Ling TH, Nordlund P. The structure and catalytic mechanism of human sphingomyelin phosphodiesterase like 3a--an acid sphingomyelinase homologue with a novel nucleotide hydrolase activity. FEBS J 2016; 283:1107-23. [PMID: 26783088 DOI: 10.1111/febs.13655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/29/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Human sphingomyelinase phosphodiesterase like 3a (SMPDL3a) is a secreted enzyme that shares a conserved catalytic domain with human acid sphingomyelinase (aSMase), the enzyme carrying mutations causative of Niemann-Pick disease. We have solved the structure of SMPDL3a revealing a calcineurin-like fold. A dimetal site, glycosylation pattern and a disulfide bond network are likely to be conserved also in human aSMase. We show that the binuclear site of SMPDL3a is occupied by two Zn(2+) ions and that excess Zn(2+) leads to inhibition of enzyme activity through binding to additional sites. As an extension of recent biochemical work we uncovered that SMPDL3a catalyses the hydrolysis of several modified nucleotides that include cytidine 5'-diphosphocholine, cytidine diphosphate ethanolamine and ADP-ribose, but not the aSMase substrate, sphingomyelin. We subsequently determined the structure of SMPDL3a in complex with the product 5'-cytidine monophosphate (CMP), a structure that is consistent with several distinct coordination modes of the substrate/product in the active site during the reaction cycle. Based on the structure of CMP complexes, we propose a phosphoryl transfer mechanism for SMPDL3a. Finally, a homology model of human aSMase was constructed to allow for the mapping of selected Niemann-Pick disease mutations on a three-dimensional framework to guide further characterization of their effects on aSMase function. DATABASE Structural data are available in the PDB database under the accession numbers 5EBB and 5EBE.
Collapse
Affiliation(s)
- Sing Mei Lim
- Division of Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kit Yeung
- Division of Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Lionel Trésaugues
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Teo Hsiang Ling
- Division of Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Pär Nordlund
- Division of Biomedical Structural Biology, School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Institute of Molecular and Cell Biology, A*STAR, Singapore city, Singapore
| |
Collapse
|
50
|
Ke LY, Chan HC, Chen CC, Lu J, Marathe GK, Chu CS, Chan HC, Wang CY, Tung YC, McIntyre TM, Yen JH, Chen CH. Enhanced Sphingomyelinase Activity Contributes to the Apoptotic Capacity of Electronegative Low-Density Lipoprotein. J Med Chem 2016; 59:1032-40. [DOI: 10.1021/acs.jmedchem.5b01534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Liang-Yin Ke
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Hua-Chen Chan
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Chih-Chieh Chen
- Institute
of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan 80424
| | - Jonathan Lu
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
| | - Gopal K. Marathe
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
- Department
of Studies in Biochemistry, Manasagangothri, University of Mysore, Mysore-570006, India
| | | | | | | | | | - Thomas M. McIntyre
- Departments of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, United States
| | | | - Chu-Huang Chen
- Vascular
and Medicinal Research, Texas Heart Institute, Houston, Texas 77030, United States
- New York Heart Research
Foundation, Mineola, New York 11501, United States
| |
Collapse
|