1
|
Wang J, Kimura E, Mongan M, Xia Y. Genetic Control of MAP3K1 in Eye Development and Sex Differentiation. Cells 2021; 11:cells11010034. [PMID: 35011600 PMCID: PMC8750206 DOI: 10.3390/cells11010034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Ying Xia
- Correspondence: ; Tel.: +1-513-558-0371
| |
Collapse
|
2
|
Stoll K, Bergmann M, Spiliotis M, Brehm K. A MEKK1 - JNK mitogen activated kinase (MAPK) cascade module is active in Echinococcus multilocularis stem cells. PLoS Negl Trop Dis 2021; 15:e0010027. [PMID: 34879059 PMCID: PMC8687709 DOI: 10.1371/journal.pntd.0010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. Methodology/Principal findings Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. Conclusions/Significance We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis. The metacestode larva of the tapeworm E. multilocularis grows infiltrative, like a malignant tumour, within the liver of the host thus causing the lethal disease alveolar echinococcosis. Previous work established that the metacestode senses signals of host hormones and cytokines by expressing surface receptors that share high homology with respective host receptors. However, little is known how these signals are transmitted from the parasite cell surface to the nucleus to alter gene expression. In this work, the authors present a module of several protein kinases that typically transmit cytokine signals from surface receptors to central regulators called mitogen-activated protein kinases (MAPK). The authors demonstrate that this module is active in parasite stem cells, which drive the development of metacestode larva. They also show that inhibitors directed against one component of the module, EmMPK3, affect maintenance and/or survival of stem cells in the metacestode and prevent the formation of metacestode larva from parasite cell cultures. This information facilitates molecular and cellular studies to unravel the complex signalling network that regulate Echinococcus stem cell proliferation in response to host signals. Furthermore, these data could open new ways of anti-parasitic chemotherapy by introducing EmMPK3 as a possible drug target.
Collapse
Affiliation(s)
- Kristin Stoll
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Monika Bergmann
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
3
|
Suddason T, Gallagher E. A RING to rule them all? Insights into the Map3k1 PHD motif provide a new mechanistic understanding into the diverse roles of Map3k1. Cell Death Differ 2015; 22:540-8. [PMID: 25613373 PMCID: PMC4356348 DOI: 10.1038/cdd.2014.239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022] Open
Abstract
Despite the sizable number of components that comprise Mapk cascades, Map3k1 is the only element that contains both a kinase domain and a plant homeodomain (PHD) motif, allowing Map3k1 to regulate the protein phosphorylation and ubiquitin proteasome systems. As such, Map3k1 has complex roles in the regulation of cell death, survival, migration and differentiation. Numerous mouse and human genetic analyses have demonstrated that Map3k1 is of critical importance for the immune system, cardiac tissue, testis, wound healing, tumorigenesis and cancer. Recent gene knockin of Map3k1 to mutate the E2 binding site within the Map3k1 PHD motif and high throughput ubiquitin protein array screening for Map3k1 PHD motif substrates provide critical novel insights into Map3k1 PHD motif signal transduction and bring a brand-new understanding to Map3k1 signaling in mammalian biology.
Collapse
Affiliation(s)
- T Suddason
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| | - E Gallagher
- Department of Medicine, Imperial College London, Du Cane Road, London, UK
| |
Collapse
|
4
|
Pham TT, Angus SP, Johnson GL. MAP3K1: Genomic Alterations in Cancer and Function in Promoting Cell Survival or Apoptosis. Genes Cancer 2014; 4:419-26. [PMID: 24386504 DOI: 10.1177/1947601913513950] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 11/02/2013] [Indexed: 12/15/2022] Open
Abstract
MAP3K1 is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of serine/threonine kinases. MAP3K1 regulates JNK activation and is unique among human kinases in that it also encodes an E3 ligase domain that ubiquitylates c-Jun and ERK1/2. Full length MAP3K1 regulates cell migration and contributes to pro-survival signaling while its caspase 3-mediated cleavage generates a C-terminal kinase domain that promotes apoptosis. The critical function of MAP3K1 in cell fate decisions suggests that it may be a target for deregulation in cancer. Recent large-scale genomic studies have revealed that MAP3K1 copy number loss and somatic missense or nonsense mutations are observed in a significant number of different cancers, being most prominent in luminal breast cancer. The alteration of MAP3K1 in diverse cancer types demonstrates the importance of defining phenotypes for possible therapeutic targeting of tumor cell vulnerabilities created when MAP3K1 function is lost or gained.
Collapse
Affiliation(s)
- Trang T Pham
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Koyama N, Hayashi T, Mizukoshi K, Matsumoto T, Gresik EW, Kashimata M. Extracellular regulated kinase5 is expressed in fetal mouse submandibular glands and is phosphorylated in response to epidermal growth factor and other ligands of the ErbB family of receptors. Dev Growth Differ 2012; 54:801-8. [PMID: 23078124 DOI: 10.1111/dgd.12008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/09/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022]
Abstract
Growth factors and their receptors regulate development of many organs through activation of multiple intracellular signaling cascades including a mitogen-activated protein kinase (MAPK). Extracellular regulated kinases (ERK)1/2, classic MAPK family members, are expressed in fetal mouse submandibular glands (SMG), and stimulate branching morphogenesis. ERK5, also called big mitogen-activated protein kinase 1, was recently found as a new member of MAPK super family, and its biological roles are still largely unknown. In this study, we investigated the expression and function of ERK5 in developing fetal mouse SMGs. Western blotting analysis showed that the expression pattern of ERK5 was different from the pattern of ERK1/2 in developing fetal SMGs. Both ERK1/2 and ERK5 were phosphorylated after exposure to ligands of the ErbB family of receptor tyrosine kinases (RTKs). Phosphorylation of ERK1/2 was strongly induced by epidermal growth factor (EGF) in SMG rudiments at embryonic day 14 (E14), E16 and E18. However, ERK5 phosphorylation induced by EGF was clearly observed at E14 and E16, but not at E18. Branching morphogenesis of cultured E13 SMG rudiments was strongly suppressed by administration of U0126, an inhibitor for ERK1/2 activation, whereas the phosphorylation of ERK5 was not inhibited by U0126. BIX02188, a specific inhibitor for ERK5 activation, also inhibited branching morphogenesis in cultured SMG rudiments. These results show that EGF-responsive ERK5 is expressed in developing fetal mouse SMG, and suggest that both ERK1/2 and ERK5 signaling cascades might play an important role in the regulation of branching morphogenesis.
Collapse
Affiliation(s)
- Noriko Koyama
- Department of Pharmacology, Asahi University School of Dentistry, Hozumi, Mizuho, Gifu, 501-0296, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Meng Q, Xia Y. c-Jun, at the crossroad of the signaling network. Protein Cell 2011; 2:889-98. [PMID: 22180088 DOI: 10.1007/s13238-011-1113-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/11/2011] [Indexed: 01/22/2023] Open
Abstract
c-Jun, the most extensively studied protein of the activator protein-1 (AP-1) complex, is involved in numerous cell activities, such as proliferation, apoptosis, survival, tumorigenesis and tissue morphogenesis. Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper (bZIP) transcription factor that acts as homo- or heterodimer, binding to DNA and regulating gene transcription. Later on, it was shown that extracellular signals can induce post-translational modifications of c-Jun, resulting in altered transcriptional activity and target gene expression. More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk, amplify and integrate different signals for tissue development and disease. One example of such scheme is the autocrine amplification loop, in which signal-induced AP-1 activates the c-Jun gene promoter, while increased c-Jun expression feedbacks to potentiate AP-1 activity. Another example of such scheme, based on recent characterization of gene knockout mice, is that c-Jun integrates signals of several developmental pathways, including EGFR-ERK, EGFR-RhoA-ROCK, and activin B-MAP3K1-JNK for embryonic eyelid closure. After more than two decades of extensive research, c-Jun remains at the center stage of a molecular network with mysterious functional properties, some of which are yet to be discovered. In this article, we will provide a brief historical overview of studies on c-Jun regulation and function, and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.
Collapse
Affiliation(s)
- Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | | |
Collapse
|
7
|
Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One 2009; 4:e7841. [PMID: 19924227 PMCID: PMC2773007 DOI: 10.1371/journal.pone.0007841] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/23/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND THE COMPLEXITY OF WNT SIGNALING LIKELY STEMS FROM TWO SOURCES: multiple pathways emanating from frizzled receptors in response to wnt binding, and modulation of those pathways and target gene responsiveness by context-dependent signals downstream of growth factor and matrix receptors. Both rac1 and c-jun have recently been implicated in wnt signaling, however their upstream activators have not been identified. METHODOLOGY/PRINCIPAL FINDINGS Here we identify the adapter protein Grb2, which is itself an integrator of multiple signaling pathways, as a modifier of beta-catenin-dependent wnt signaling. Grb2 synergizes with wnt3A, constitutively active (CA) LRP6, Dvl2 or CA-beta-catenin to drive a LEF/TCF-responsive reporter, and dominant negative (DN) Grb2 or siRNA to Grb2 block wnt3A-mediated reporter activity. MMP9 is a target of beta-catenin-dependent wnt signaling, and an MMP9 promoter reporter is also responsive to signals downstream of Grb2. Both a jnk inhibitor and DN-c-jun block transcriptional activation downstream of Dvl2 and Grb2, as does DN-rac1. Integrin ligation by collagen also synergizes with wnt signaling as does overexpression of Focal Adhesion Kinase (FAK), and this is blocked by DN-Grb2. CONCLUSIONS/SIGNIFICANCE These data suggest that integrin ligation and FAK activation synergize with wnt signaling through a Grb2-rac-jnk-c-jun pathway, providing a context-dependent mechanism for modulation of wnt signaling.
Collapse
|
8
|
Ung CY, Li H, Ma XH, Jia J, Li BW, Low BC, Chen YZ. Simulation of the regulation of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-EGFR crosstalk. FEBS Lett 2008; 582:2283-90. [PMID: 18505685 DOI: 10.1016/j.febslet.2008.05.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/28/2008] [Accepted: 05/16/2008] [Indexed: 12/24/2022]
Abstract
Deregulations of EGFR endocytosis in EGFR-ERK signaling are known to cause cancers and developmental disorders. Mutations that impaired c-Cbl-EGFR association delay EGFR endocytosis and produce higher mitogenic signals in lung cancer. ROCK, an effector of small GTPase RhoA was shown to negatively regulate EGFR endocytosis via endophilin A1. A mathematical model was developed to study how RhoA and ROCK regulate EGFR endocytosis. Our study suggested that over-expressing RhoA as well as ROCK prolonged ERK activation partly by reducing EGFR endocytosis. Overall, our study hypothesized an alternative role of RhoA in tumorigenesis in addition to its regulation of cytoskeleton and cell motility.
Collapse
Affiliation(s)
- Choong Yong Ung
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | |
Collapse
|
9
|
Pourazar J, Blomberg A, Kelly FJ, Davies DE, Wilson SJ, Holgate ST, Sandström T. Diesel exhaust increases EGFR and phosphorylated C-terminal Tyr 1173 in the bronchial epithelium. Part Fibre Toxicol 2008; 5:8. [PMID: 18460189 PMCID: PMC2405801 DOI: 10.1186/1743-8977-5-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 05/06/2008] [Indexed: 01/13/2023] Open
Abstract
Background Epidemiological studies have demonstrated adverse health effects of environmental pollution. Diesel exhaust (DE) is a major contributor to particulate matter pollution. DE exposure has been shown to induce a pronounced inflammatory response in the airways, together with an enhanced epithelial expression of cytokines such as IL-8, Gro-α, IL-13 and activation of redox sensitive transcription factors (NFκB, AP-1), and MAP kinases (p38, JNK). The aim of the present investigation was to elucidate the involvement of the epidermal growth factor receptor (EGFR) signalling pathway in the epithelial response to DE in-vivo. Results Immunohistochemical staining was used to quantify the expression of the EGFR, phosphorylated Tyrosine residues, MEK and ERK in the bronchial epithelium of archived biopsies from 15 healthy subjects following exposure to DE (PM10, 300 μg/m3) and air. DE induced a significant increases in the expression of EGFR (p = 0.004) and phosphorylated C-terminal Tyr 1173 (p = 0.02). Other investigated EGFR tyrosine residues, Src related tyrosine (Tyr 416), MEK and ERK pathway were not changed significantly by DE. Conclusion Exposure to DE (PM10, 300 μg/m3) caused enhanced EGFR expression and phosphorylation of the tyrosine residue (Tyr 1173) which is in accordance with the previously demonstrated activation of the JNK, AP-1, p38 MAPK and NFkB pathways and associated downstream signalling and cytokine production. No effects were seen on the MEK and ERK pathway suggesting that at the investigated time point (6 hours post exposure) there was no proliferative/differentiation signalling in the bronchial epithelium. The present findings suggest a key role for EGFR in the bronchial response to diesel exhaust.
Collapse
Affiliation(s)
- Jamshid Pourazar
- Department of Respiratory Medicine and Allergy, University Hospital, Umeå, Sweden.
| | | | | | | | | | | | | |
Collapse
|
10
|
Song JJ, Lee YJ. Differential activation of the JNK signal pathway by UV irradiation and glucose deprivation. Cell Signal 2006; 19:563-72. [PMID: 17029735 DOI: 10.1016/j.cellsig.2006.08.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 08/13/2006] [Indexed: 11/29/2022]
Abstract
Exposure of mammalian cells to ultraviolet (UV) light or glucose deprivation activates c-Jun NH2-terminal protein kinase (JNK). However, the exact mechanism by which UV induces JNK activation is not yet understood completely. Previously, we have observed that glucose deprivation activates the ASK1-SEK1-JNK signal transduction pathway. In the present study, we reveal that UVC irradiation-induced JNK activation has a different signal transduction pathway from glucose deprivation. UVC irradiation increases the interaction between JIP3 and MEKK1, SEK1, while glucose deprivation increases the interaction between JIP3 and ASK1, SEK1, and JNK. UVC irradiation activates MEKK1 rather than ASK1. We also observed that MEKK1 interacted with Grb2 and Grb2-MEKK1 complex was recruited to epidermal growth factor receptor (EGFR) after UVC irradiation. Taken together, our data demonstrate that UVC-induced JNK activation adopts a different signaling cascade (EGFR-Grb2-MEKK1-SEK1-JNK) from glucose deprivation (ASK1-SEK1-JNK).
Collapse
Affiliation(s)
- Jae J Song
- Department of Surgery and Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
11
|
Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJB, den Dunnen JT, 't Hoen PAC. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 2005; 6:98. [PMID: 16011810 PMCID: PMC1190170 DOI: 10.1186/1471-2164-6-98] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 07/13/2005] [Indexed: 01/19/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is lethal. In contrast, dystrophin-deficient mdx mice recover due to effective regeneration of affected muscle tissue. To characterize the molecular processes associated with regeneration, we compared gene expression levels in hindlimb muscle tissue of mdx and control mice at 9 timepoints, ranging from 1–20 weeks of age. Results Out of 7776 genes, 1735 were differentially expressed between mdx and control muscle at at least one timepoint (p < 0.05 after Bonferroni correction). We found that genes coding for components of the dystrophin-associated glycoprotein complex are generally downregulated in the mdx mouse. Based on functional characteristics such as membrane localization, signal transduction, and transcriptional activation, 166 differentially expressed genes with possible functions in regeneration were analyzed in more detail. The majority of these genes peak at the age of 8 weeks, where the regeneration activity is maximal. The following pathways are activated, as shown by upregulation of multiple members per signalling pathway: the Notch-Delta pathway that plays a role in the activation of satellite cells, and the Bmp15 and Neuregulin 3 signalling pathways that may regulate proliferation and differentiation of satellite cells. In DMD patients, only few of the identified regeneration-associated genes were found activated, indicating less efficient regeneration processes in humans. Conclusion Based on the observed expression profiles, we describe a model for muscle regeneration in mdx mice, which may provide new leads for development of DMD therapies based on the improvement of muscle regeneration efficacy.
Collapse
Affiliation(s)
- R Turk
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Department of Physiology and Biophysics, Howard Hughes Medical Institute, University of Iowa, 400 Eckstein Medical Research Building, Iowa City, IA52240-1101, U.S.A
| | - E Sterrenburg
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - EJ de Meijer
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - G-JB van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - JT den Dunnen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
- Leiden Genome Technology Center, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| | - PAC 't Hoen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Nederland
| |
Collapse
|
12
|
Xia Y, Kao WWY. The signaling pathways in tissue morphogenesis: a lesson from mice with eye-open at birth phenotype. Biochem Pharmacol 2004; 68:997-1001. [PMID: 15313393 DOI: 10.1016/j.bcp.2004.05.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 05/05/2004] [Indexed: 02/06/2023]
Abstract
Tissue morphogenesis during development is regulated by growth factors and cytokines, and is characterized by constant remodeling of extracellular matrix in response to signaling molecules. MEK kinase 1 (MEKK1) is a mitogen-activated protein kinase (MAPK) kinase kinase originally identified as an upstream activator for several MAPK pathways. During mouse embryogenesis, MEKK1 controls cell shape changes and formation of actin stress fibers that are required for sealing epidermis in the embryos in a process known as eyelid closure. MEKK1-null mice display eye-open at birth (EOB), a phenotype found also in mice impaired in activin, a subgroup of the transforming growth factor beta (TGFbeta) family, or in epidermal growth factor receptor (EGFR) or its ligand TGFalpha, or in transcription factor c-Jun. Molecular analyses have revealed at least two signaling mechanisms in the control of eyelid closure. One is originated from the activins and is transduced through MEKK1, leading to transcription-independent actin stress fiber formation and transcription-dependent keratinocyte migration. Another is the TGFalpha/EGFR signal that is transduced through a MEKK1-independent pathway to the activation of the ERK MAPK, which also leads to keratinocyte migration. c-Jun might serve as a connection between the two pathways. As embryonic eyelid closure is a specific morphogenetic process that is easily detectable, genetic mutant mice with EOB will be ideal models to understand the signaling mechanisms in the control of epithelial cell migration and the morphogenetic process of epithelial sheet movement.
Collapse
Affiliation(s)
- Ying Xia
- Department of Environmental Health, Center for Environmental Genetics, University of Cincinnati Medical Center, OH 45267-0056, USA.
| | | |
Collapse
|
13
|
Saito T, Okada S, Ohshima K, Yamada E, Sato M, Uehara Y, Shimizu H, Pessin JE, Mori M. Differential activation of epidermal growth factor (EGF) receptor downstream signaling pathways by betacellulin and EGF. Endocrinology 2004; 145:4232-43. [PMID: 15192046 DOI: 10.1210/en.2004-0401] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine the downstream signaling pathways regulated by betacellulin (BTC) in comparison with epidermal growth factor (EGF), we used Chinese hamster ovary cells overexpressing the human EGF receptor (ErbB1/EGFR). The overall time-dependent activation of EGFR autophosphorylation was identical in cells treated with 1 nm BTC or 1.5 nm EGF. Analysis of site-specific EGFR phosphorylation demonstrated that the BTC and EGF tyrosine phosphorylation of Y1086 was not significantly different. In contrast, the autophosphorylation of Y1173 was markedly reduced in BTC-stimulated cells, compared with EGF stimulation that directly correlated with a reduced BTC stimulation of Shc tyrosine phosphorylation, Ras, and Raf-1 activation. On the other hand, Y1068 phosphorylation was significantly increased after BTC stimulation, compared with EGF in parallel with a greater extent of Erk phosphorylation. Expression of a dominant interfering MEK kinase 1 (MEKK1) and Y1068F EGFR more efficiently blocked the enhanced Erk activation by BTC, compared with EGF. Interestingly BTC had a greater inhibitory effect on apoptosis, compared with EGF, and expression of Y1068F EGFR abolished this enhanced inhibitory effect. Together, these data indicated that although BTC and EGF share overlapping signaling properties, the ability of BTC to enhance Erk activation occurs independent of Ras. The increased BTC activation results from a greater extent of Y1068 EGFR tyrosine phosphorylation and subsequent increased recruitment of the Grb2-MEKK1 complex to the plasma membrane, compared with EGF stimulation. The increased Erk activation by BTC associated with antiapoptotic function.
Collapse
Affiliation(s)
- Tsugumichi Saito
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kendrick TS, Lipscombe RJ, Rausch O, Nicholson SE, Layton JE, Goldie-Cregan LC, Bogoyevitch MA. Contribution of the Membrane-distal Tyrosine in Intracellular Signaling by the Granulocyte Colony-stimulating Factor Receptor. J Biol Chem 2004; 279:326-40. [PMID: 14557262 DOI: 10.1074/jbc.m310144200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have evaluated the contribution of intracellular tyrosine residues of the granulocyte colony-stimulating factor receptor (GCSF-R) to its signaling and cellular outcomes. We began with stable BaF3 cell lines overexpressing wild-type or mutant GCSF-Rs. When all four intracellular tyrosines of the GCSF-R were replaced with phenylalanine (FFFF GCSF-R), cell proliferation and survival were compromised. Replacement of only the membrane-distal tyrosine (YYYF GCSF-R) also showed reduced survival following a GCSF withdrawal/replacement protocol, suggesting a role for this tyrosine. Proliferation by FFFY GCSF-R cells was attenuated by approximately 70%. In evaluating the biochemical steps involved in signaling, we then showed that the membrane-distal tyrosine was necessary and sufficient for c-Jun N-terminal kinase (JNK) activation. With the use of a cell-permeable JNK-inhibitory peptide, JNK was implicated in the proliferation of the FFFY GCSF-R mutant. To further define the events linking the membrane-distal tyrosine and JNK activation, the Src homology 2 domains of Shc, Grb2, and 3BP2 were shown to bind the full-length GCSF-R and a phosphopeptide encompassing the membrane-distal tyrosine. When binding to variant phosphopeptides based on this membrane-distal tyrosine was tested, altering the amino acids immediately following the phosphotyrosine could selectively abolish the interaction with Shc or Grb2, or the binding to both Grb2 and 3BP2. When these changes were introduced into the full-length GCSF-R and new cell lines created, only the mutant that did not interact with Grb2 and 3BP2 did not activate JNK. Our results suggest that direct binding of Shc by the GCSF-R is not essential for JNK activation.
Collapse
Affiliation(s)
- Tulene S Kendrick
- Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Yamazaki T, Zaal K, Hailey D, Presley J, Lippincott-Schwartz J, Samelson LE. Role of Grb2 in EGF-stimulated EGFR internalization. J Cell Sci 2002; 115:1791-802. [PMID: 11956311 DOI: 10.1242/jcs.115.9.1791] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Grb2 is an adaptor molecule that couples membrane receptors such as the epidermal growth factor receptor (EGFR) to intracellular signaling pathways. To gain insight into the trafficking pathways followed by these molecules after activation by EGF, we visualized Grb2 and EGFR fused to GFP spectral variants in single live cells. In nonstimulated cells, Grb2-YFP was primarily localized diffusely in the cytoplasm, whereas EGFR-CFP was found on the plasma membrane and in endocytic structures localized in the perinuclear area. Within 1 minute of EGF stimulation, Grb2 redistributed to the plasma membrane where it bound EGFR-CFP in an SH2 dependent manner. The plasma membrane then began to dynamically ruffle, and Grb2-YFP and EGFR-CFP were found to internalize together in large macropinocytic structures. These structures were morphologically distinct from conventional, clathrin-derived endosomes and did not label with transferrin, AP-2 or clathrin heavy chain. Evidence that these structures did not require clathrin for internalization came from experiments showing that expression of the C-terminus of AP-180, which inhibited transferrin uptake, had no effect on EGF-induced internalization of EGFR. YFP-tagged Grb2 containing an inhibitory mutation in either N- or C-SH3 domain redistributed to the plasma membrane upon EGF stimulation, but the macropinocytic structures containing Grb2-YFP and EGFR-CFP did not translocate inward and appeared to remain tethered to the plasma membrane. This suggested that the Grb2 SH3 domain was responsible for coupling the membranes containing EGFR with downstream effectors involved in internalization of these membranes. Transferrin uptake was unaffected in the presence of all of the SH3 domain mutants, consistent with the EGF-stimulated EGFR internalization pathway being clathrin-independent. These results demonstrate a role for Grb2 in events associated with a macropinocytic internalization pathway for EGFR in activated cells.
Collapse
Affiliation(s)
- Tetsuo Yamazaki
- Laboratory of Cellular and Molecular Biology, Division of Basic Science, National Cancer Institute, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
16
|
Müller M, Morotti A, Ponzetto C. Activation of NF-kappaB is essential for hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol 2002; 22:1060-72. [PMID: 11809798 PMCID: PMC134627 DOI: 10.1128/mcb.22.4.1060-1072.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte growth factor (HGF) and its receptor, Met, regulate a number of biological functions in epithelial and nonepithelial cells, such as survival, motility, proliferation, and tubular morphogenesis. The transcription factor NF-kappaB is activated in response to a wide variety of stimuli, including growth factors, and is involved in biological responses in part overlapping with those triggered by HGF. In this work we used the liver-derived MLP29 cell line to study the possible involvement of NF-kappaB in HGF/Met signaling. HGF stimulates NF-kappaB DNA binding and transcriptional activation via the canonical IkappaB phosphorylation-degradation cycle and via the extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase cascades. Phosphatidylinositol 3-kinase is not involved in Met-mediated NF-kappaB activation. Blockage of NF-kappaB activation in MLP29 cells by forced expression of the NF-kappaB super-repressor IkappaB(alpha)2A does not interfere with HGF-induced scatter but inhibits proliferation and tubulogenesis. Surprisingly, in the same cells NF-kappaB appears to be dispensable for the antiapoptotic function of HGF.
Collapse
Affiliation(s)
- Markus Müller
- Department of Anatomy and Pharmacology, University of Turin, 10126 Turin, Italy
| | | | | |
Collapse
|
17
|
Li S, Couvillon AD, Brasher BB, Van Etten RA. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. EMBO J 2001; 20:6793-804. [PMID: 11726515 PMCID: PMC125747 DOI: 10.1093/emboj/20.23.6793] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Growth factor receptor-binding protein-2 (Grb2) plays a key role in signal transduction initiated by Bcr/Abl oncoproteins and growth factors, functioning as an adaptor protein through its Src homology 2 and 3 (SH2 and SH3) domains. We found that Grb2 was tyrosine-phosphorylated in cells expressing BCR/ABL and in A431 cells stimulated with epidermal growth factor (EGF). Phosphorylation of Grb2 by Bcr/Abl or EGF receptor reduced its SH3-dependent binding to Sos in vivo, but not its SH2-dependent binding to Bcr/Abl. Tyr209 within the C-terminal SH3 domain of Grb2 was identified as one of the tyrosine phosphorylation sites, and phosphorylation of Tyr209 abolished the binding of the SH3 domain to a proline-rich Sos peptide in vitro. In vivo expression of a Grb2 mutant where Tyr209 was changed to phenylalanine enhanced BCR/ABL-induced ERK activation and fibroblast transformation, and potentiated and prolonged Grb2-mediated activation of Ras, mitogen-activated protein kinase and c-Jun N-terminal kinase in response to EGF stimulation. These results suggest that tyrosine phosphorylation of Grb2 is a novel mechanism of down-regulation of tyrosine kinase signaling.
Collapse
Affiliation(s)
- Shaoguang Li
- Center for Blood Research, Department of Genetics, Harvard Medical School, Boston, MA 02115 and
Division of Signal Transduction, Beth Israel-Deaconess Medical Center, Boston, MA, USA Present address: The Jackson Laboratory, Bar Harbor, ME, USA Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA Present address: Enanta Pharmaceuticals, Watertown, MA, USA Corresponding authors e-mail:
| | - Anthony D. Couvillon
- Center for Blood Research, Department of Genetics, Harvard Medical School, Boston, MA 02115 and
Division of Signal Transduction, Beth Israel-Deaconess Medical Center, Boston, MA, USA Present address: The Jackson Laboratory, Bar Harbor, ME, USA Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA Present address: Enanta Pharmaceuticals, Watertown, MA, USA Corresponding authors e-mail:
| | - Bradley B. Brasher
- Center for Blood Research, Department of Genetics, Harvard Medical School, Boston, MA 02115 and
Division of Signal Transduction, Beth Israel-Deaconess Medical Center, Boston, MA, USA Present address: The Jackson Laboratory, Bar Harbor, ME, USA Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA Present address: Enanta Pharmaceuticals, Watertown, MA, USA Corresponding authors e-mail:
| | - Richard A. Van Etten
- Center for Blood Research, Department of Genetics, Harvard Medical School, Boston, MA 02115 and
Division of Signal Transduction, Beth Israel-Deaconess Medical Center, Boston, MA, USA Present address: The Jackson Laboratory, Bar Harbor, ME, USA Present address: Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA Present address: Enanta Pharmaceuticals, Watertown, MA, USA Corresponding authors e-mail:
| |
Collapse
|
18
|
Abstract
MEK kinases (MEKKs) comprise a family of related serine-threonine protein kinases that regulate mitogen-activated protein kinase (MAPK) signalling pathways leading to c-Jun NH2-terminal kinase (JNK) and p38 activation, induced by cellular stress (e.g., UV and gamma irradiation, osmotic stress, heat shock, protein synthesis inhibitors), inflammatory cytokines (e.g., tumour necrosis factor alpha, TNFalpha, and interleukin-1, IL1) and G protein-coupled receptor agonists (e.g., thrombin). These stress-activated kinases have been implicated in apoptosis, oncogenic transformation, and inflammatory responses in various cell types. At present, the signalling events involving MEKKs are not well understood. This review summarises our current knowledge concerning the regulation and function of MEKK family members, with particular emphasis on those factors capable of directly interacting with distinct MEKK isoforms.
Collapse
Affiliation(s)
- C Hagemann
- Department of Cell Physiology and Pharmacology, University of Leicester, Medical Sciences Building, University Road, LE1 9HN, Leicester, UK
| | | |
Collapse
|
19
|
Craig R, Wagner M, McCardle T, Craig AG, Glembotski CC. The cytoprotective effects of the glycoprotein 130 receptor-coupled cytokine, cardiotrophin-1, require activation of NF-kappa B. J Biol Chem 2001; 276:37621-9. [PMID: 11448959 DOI: 10.1074/jbc.m103276200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cell types mount elaborate, compensatory responses to stress that enhance survival; however, the intracellular signals that govern these responses are poorly understood. Cardiotrophin-1 (CT-1), a stress-induced cytokine, belongs to the interleukin-6/glycoprotein 130 receptor-coupled cytokine family. CT-1 is released from the heart in response to hypoxic stress, and it protects cardiac myocytes from hypoxia-induced apoptosis, thus establishing a central role for this cytokine in the cardiac stress response. In the present study, CT-1 activated p38 and ERK MAPKs as well as Akt in cultured cardiac myocytes; these three pathways were activated in a parallel manner. CT-1 also induced the degradation of the NF-kappa B cytosolic anchor, I kappa B, as well as the translocation of the p65 subunit of NF-kappa B to the nucleus and increased expression of an NF-kappa B-dependent reporter gene. Inhibitors of the p38, ERK, or Akt pathways each partially reduced CT-1-mediated NF-kappa B activation, as well as the cytoprotective effects of CT-1 against hypoxic stress. Together, the inhibitors completely blocked CT-1-dependent NF-kappa B activation and cytoprotection. A cell-permeable peptide that selectively disrupted NF-kappa B activation also completely inhibited the cytoprotective effects of CT-1. These results indicate that CT-1 signals through p38, ERK, and Akt in a parallel manner to activate NF-kappa B and that NF-kappa B is required for CT-1 to mediate its full cytoprotective effects in cardiac myocytes.
Collapse
Affiliation(s)
- R Craig
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | |
Collapse
|
20
|
Wheeler M, Domin J. Recruitment of the class II phosphoinositide 3-kinase C2beta to the epidermal growth factor receptor: role of Grb2. Mol Cell Biol 2001; 21:6660-7. [PMID: 11533253 PMCID: PMC99811 DOI: 10.1128/mcb.21.19.6660-6667.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we demonstrated that the class II phosphoinositide 3-kinase C2beta (PI3K-C2beta) is rapidly recruited to a phosphotyrosine signaling complex containing the activated receptor for epidermal growth factor (EGF). Although this association was shown to be dependent upon specific phosphotyrosine residues present on the EGF receptor, the underlying mechanism remained unclear. In this study the interaction between PI3K-C2beta and the EGF receptor is competitively attenuated by synthetic peptides derived from each of three proline-rich motifs present within the N-terminal region of the PI3K. Further, a series of N-terminal PI3K-C2beta fragments, truncated prior to each proline-rich region, bound the receptor with decreased efficiency. A single proline-rich region was unable to mediate receptor association. Finally, an equivalent N-terminal fragment of PI3K-C2alpha that lacks similar proline-rich motifs was unable to affinity purify the activated EGF receptor from cell lysates. Since these findings revealed that the interaction between the EGF receptor and PI3K-C2beta is indirect, we sought to identify an adaptor molecule that could mediate their association. In addition to the EGF receptor, PI3K-C2beta(2-298) also isolated both Shc and Grb2 from A431 cell lysates. Recombinant Grb2 directly bound PI3K-C2beta in vitro, and this effect was reproduced using either SH3 domain expressed as a glutathione S-transferase (GST) fusion. Interaction with Grb2 dramatically increased the catalytic activity of this PI3K. The relevance of this association was confirmed when PI3K-C2beta was isolated by coimmunoprecipitation with anti-Grb2 antibody from numerous cell lines. Using immobilized, phosphorylated EGF receptor, recombinant PI3K-C2beta was only purified in the presence of Grb2. We conclude that proline-rich motifs within the N terminus of PI3K-C2beta mediate the association of this enzyme with activated EGF receptor and that this interaction involves the Grb2 adaptor.
Collapse
Affiliation(s)
- M Wheeler
- Division of Medicine, Imperial College School of Medicine, London W12 0NN, United Kingdom
| | | |
Collapse
|
21
|
Li X, Josef J, Marasco WA. Hiv-1 Tat can substantially enhance the capacity of NIK to induce IkappaB degradation. Biochem Biophys Res Commun 2001; 286:587-94. [PMID: 11511100 DOI: 10.1006/bbrc.2001.5442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat is a virally encoded protein that dramatically up-regulates viral replication through interactions with the HIV-1 5' long terminal repeat (LTR) and cellular transcription factors. The HIV-1 LTR is divided into three major regions: modulatory, core and TAR. The modulatory region contains numerous cis-acting sequences for the binding of transcription factors including NF-kappaB, NF-AT, and AP-1. In several reports, Tat has been found to induce NF-kappaB activation of the HIV-1 LTR, while in other studies Tat has been reported to have no effect on activation of NF-kappaB. These discrepancies may arise from differences in experimental conditions such as the source of Tat (exogenous versus endogenous), the detection methods for NF-kappaB activation (DNA binding capability versus IkappaB degradation), and the types of reporters used (HIV-1 versus non-HIV-1 derived). To reconcile these differences we examined the effect of endogenous Tat on NF-kappaB activation, on IkappaB degradation and its interaction with upstream MAP3Ks. We demonstrate that although an 80% reduction in Tat-induced HIV-1 LTR activity can be detected if the kappaB binding sites are mutated, surprisingly endogenous Tat (expressed intracellularly by transfection) lacks direct effect on IkappaB degradation. Further analysis demonstrates that although Tat alone lacks direct effect on IkappaBalpha degradation or dissociation from NF-kappaB, Tat can substantially enhance the capacity of NF-kappaB-inducing kinase (NIK), but not MEKK1, to accelerate degradation of IkappaB. We propose a model to explain these collective experimental findings.
Collapse
Affiliation(s)
- X Li
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
22
|
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81:807-69. [PMID: 11274345 DOI: 10.1152/physrev.2001.81.2.807] [Citation(s) in RCA: 2524] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular details of mammalian stress-activated signal transduction pathways have only begun to be dissected. This, despite the fact that the impact of these pathways on the pathology of chronic inflammation, heart disease, stroke, the debilitating effects of diabetes mellitus, and the side effects of cancer therapy, not to mention embryonic development, innate and acquired immunity, is profound. Cardiovascular disease and diabetes alone represent the most significant health care problems in the developed world. Thus it is not surprising that understanding these pathways has attracted wide interest, and in the past 10 years, dramatic progress has been made. Accordingly, it is now becoming possible to envisage the transition of these findings to the development of novel treatment strategies. This review focuses on the biochemical components and regulation of mammalian stress-regulated mitogen-activated protein kinase (MAPK) pathways. The nuclear factor-kappa B pathway, a second stress signaling paradigm, has been the subject of several excellent recent reviews (258, 260).
Collapse
Affiliation(s)
- J M Kyriakis
- Diabetes Research Laboratory, Medical Services, Massachusetts General Hospital, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|
23
|
Lewitzky M, Kardinal C, Gehring NH, Schmidt EK, Konkol B, Eulitz M, Birchmeier W, Schaeper U, Feller SM. The C-terminal SH3 domain of the adapter protein Grb2 binds with high affinity to sequences in Gab1 and SLP-76 which lack the SH3-typical P-x-x-P core motif. Oncogene 2001; 20:1052-62. [PMID: 11314042 DOI: 10.1038/sj.onc.1204202] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
The adapter Grb2 is an important mediator of normal cell proliferation and oncogenic signal transduction events. It consists of a central SH2 domain flanked by two SH3 domains. While the binding specificities of the Grb2 SH2 and N-terminal SH3 domain [Grb2 SH3(N)] have been studied in detail, binding properties of the Grb2 SH3(C) domain remained poorly defined. Gab1, a receptor tyrosine kinase substrate which associates with Grb2 and the c-Met receptor, was previously shown to bind Grb2 via a region which lacks a Grb2 SH3(N)-typical motif (P-x-x-P-x-R). Precipitation experiments with the domains of Grb2 show now that Gab1 can bind stably to the Grb2 SH3(C) domain. For further analyses, Gab1 mutants were generated by PCR to test in vivo residues thought to be crucial for Grb2 SH3(C) binding. The Grb2 SH3(C) binding region of Gab1 has significant homology to a region of the adapter protein SLP-76. Peptides corresponding to epitopes SLP-76, Gab1, SoS and other proteins with related sequences, as well as mutant peptides were synthesized and analysed by tryptophan-fluorescence spectrometry and by in vitro competition experiments. These experiments define a 13 amino acid sequence with the unusual consensus motif P-x-x-x-R-x-x-K-P as required for a stable binding to the SH3(C) domain of Grb2. Additional analyses point to a distinct binding specificity of the Grb2-homologous adapter protein Mona (Gads), indicating that the proteins of the Grb2 adapter family may have partially overlapping, yet distinct protein binding properties.
Collapse
Affiliation(s)
- M Lewitzky
- Laboratory of Molecular Oncology, MSZ, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gong Q, Cheng AM, Akk AM, Alberola-Ila J, Gong G, Pawson T, Chan AC. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol 2001; 2:29-36. [PMID: 11135575 DOI: 10.1038/83134] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The developmental processes of positive and negative selection in the thymus shape the T cell antigen receptor (TCR) repertoire and require the integration of multiple signaling networks. These networks involve the efficient assembly of macromolecular complexes and are mediated by multimodular adaptor proteins that permit the functional integration of distinct signaling molecules. We show here that decreased expression of the adaptor protein Grb2 in Grb2+/- mice weakens TCR-induced c-Jun N-terminal kinase (JNK) and p38, but not extracellular signal-regulated kinase (ERK), activation. In turn, this selective effect decreases the ability of thymocytes to undergo negative, but not positive, selection. We also show that there are differences in the signaling thresholds of the three mitogen-activated protein kinase (MAPK) families. These differences may provide a mechanism by which quantitative differences in signal strength can alter the balance of downstream signaling pathways to induce the qualitatively distinct biological outcomes of proliferation, differentiation or apoptosis.
Collapse
Affiliation(s)
- Q Gong
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pomerance M, Abdullah HB, Kamerji S, Correze C, Blondeau JP. Thyroid-stimulating hormone and cyclic AMP activate p38 mitogen-activated protein kinase cascade. Involvement of protein kinase A, rac1, and reactive oxygen species. J Biol Chem 2000; 275:40539-46. [PMID: 11006268 DOI: 10.1074/jbc.m002097200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p38 mitogen-activated protein kinases (p38-MAPKs) are activated by cytokines, cellular stresses, growth factors, and hormones. We show here that p38-MAPKs are activated upon stimulation by thyroid-stimulating hormone (TSH) or cAMP. TSH caused the phosphorylation of p38-MAPK in Chinese hamster ovary cells stably transfected with the human TSH receptor but not in wild-type Chinese hamster ovary cells. The effect of TSH was fully mimicked by the adenylyl cyclase activator, forskolin, and by a permeant analog of cAMP. The effect of forskolin was reproduced in FRTL5 rat thyroid cells. TSH also stimulated the phosphorylation of MAPK kinase 3 or 6, over the same time scale as that of p38-MAPKs. TSH and forskolin stimulated the activity of the alpha-isoform of p38-MAPK assayed by phosphorylation of the transcription factor ATF2. The activity of MAPK-activated protein kinase-2 was stimulated by TSH and forskolin. This stimulation was abolished by SB203580, a specific inhibitor of p38-MAPKs. The protein kinase A inhibitor H89 inhibited the stimulation of phosphorylation of p38-MAPKs by forskolin, whereas inhibitors of protein kinase C, p70(S6k), and phosphatidylinositol 3-kinase were ineffective. Expression of the dominant negative form of Rac1, but not that of Ras, blocked forskolin-induced p38-MAPK activation. Diphenylene iodonium, a potent inhibitor of NADPH oxidase(s), and ascorbic acid, an effective free radical scavenger, suppressed TSH- or forskolin-stimulated p38-MAPK phosphorylation, indicating that the generation of reactive oxygen species plays a key role in signaling from cAMP to p38-MAPKs. Inhibition of the p38-MAPK pathway with SB203580 partially but significantly, attenuates cAMP- and TSH-induced expression of the sodium iodide symporter in FRTL-5 cells. These results point to a new signaling pathway for the G(s)-coupled TSH receptor, involving cAMP, protein kinase A, Rac1, and reactive oxygen species and resulting in the activation of a signaling kinase cascade that includes MAPK kinase 3 or 6, p38-MAPK, and MAPK-activated protein kinase-2.
Collapse
Affiliation(s)
- M Pomerance
- Unité 486 INSERM, Transduction Hormonale et Régulation Cellulaire, Faculté de Pharmacie, 92296 Châtenay-Malabry, France.
| | | | | | | | | |
Collapse
|
26
|
Li X, Multon MC, Henin Y, Schweighoffer F, Venot C, Josef J, Zhou C, LaVecchio J, Stuckert P, Raab M, Mhashilkar A, Tocque B, Marasco WA. Grb3-3 is up-regulated in HIV-1-infected T-cells and can potentiate cell activation through NFATc. J Biol Chem 2000; 275:30925-33. [PMID: 10906142 DOI: 10.1074/jbc.m005535200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MAPK pathway is required for T-cell activation; however, its role in modulating T-cell function following human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. In this report, we investigated whether Grb3-3, an isoform of the Grb2 (growth factor receptor-bound protein-2) adaptor molecule that is associated with the MAPK pathway, could be involved. We found that Grb3-3, but not its isoform Grb2, is markedly up-regulated in CD4(+) peripheral blood mononuclear cells derived from either in vitro HIV-1-infected cultures or HIV-1-infected human subjects. Analysis of HIV-1 gene products indicated that Tat and Nef, both of which have been implicated in modulating T-cell function, can independently induce expression of Grb3-3. By using NFAT/AP-1, AP-1, or NFAT reporter assays, we found that Grb3-3 can potentiate NFAT (but not AP-1) promoter activity in Jurkat T-cells upon engagement of the T-cell receptor and CD28 co-receptor. In addition, potentiation of NFAT by Grb3-3 is substantially suppressed by MEKK1, a kinase that may play an important role in retaining NFAT in the cytoplasm, and by cyclosporin A. Finally, we also found that Grb3-3 potentiates HIV-1 long terminal (LTR) repeat promoter activity following T-cell receptor stimulation, an effect that can be largely suppressed by cyclosporin A. Taken together, this study indicates that Grb3-3 is a cellular factor that can be up-regulated by HIV-1. In addition, Grb3-3 can also function as a positive factor for T-cell activation and, in doing so, may aid in establishing an intracellular environment that can optimally support HIV-1 replication.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Antibodies, Monoclonal/metabolism
- Blotting, Western
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/virology
- Cell Nucleus/metabolism
- Cyclosporine/pharmacology
- Cytoplasm/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- GRB2 Adaptor Protein
- Gene Products, nef/metabolism
- Gene Products, tat/metabolism
- HIV Infections/metabolism
- HIV-1/metabolism
- Humans
- Immunosuppressive Agents/pharmacology
- Jurkat Cells
- Leukocytes, Mononuclear/virology
- Luciferases/metabolism
- MAP Kinase Kinase Kinase 1
- MAP Kinase Signaling System
- Male
- Middle Aged
- NFATC Transcription Factors
- Nuclear Proteins
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Isoforms
- Protein Serine-Threonine Kinases/metabolism
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- Terminal Repeat Sequences
- Time Factors
- Transcription Factor AP-1/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transfection
- Up-Regulation
- nef Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- X Li
- Departments of Cancer Immunology and AIDS and Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roberson MS, Ban M, Zhang T, Mulvaney JM. Role of the cyclic AMP response element binding complex and activation of mitogen-activated protein kinases in synergistic activation of the glycoprotein hormone alpha subunit gene by epidermal growth factor and forskolin. Mol Cell Biol 2000; 20:3331-44. [PMID: 10779323 PMCID: PMC85626 DOI: 10.1128/mcb.20.10.3331-3344.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of these studies was to elucidate a role for epidermal growth factor (EGF) signaling in the transcriptional regulation of the glycoprotein hormone alpha subunit gene, a subunit of chorionic gonadotropin. Studies examined the effects of EGF and the adenylate cyclase activator forskolin on the expression of a transfected alpha subunit reporter gene in a human choriocarcinoma cell line (JEG3). At maximal doses, administration of EGF resulted in a 50% increase in a subunit reporter activity; forskolin administration induced a fivefold activation; the combined actions of EGF and forskolin resulted in synergistic activation (greater than eightfold) of the alpha subunit reporter. Mutagenesis studies revealed that the cyclic AMP response elements (CRE) were required and sufficient to mediate EGF-forskolin-induced synergistic activation. The combined actions of EGF and forskolin resulted in potentiated activation of extracellular signal-regulated kinase (ERK) enzyme activity compared with EGF alone. Specific blockade of ERK activation was sufficient to block EGF-forskolin-induced synergistic activation of the alpha subunit reporter. Pretreatment of JEG3 cells with a p38 mitogen-activated protein kinase inhibitor did not influence activation of the alpha reporter. However, overexpression of c-Jun N-terminal kinase (JNK)-interacting protein 1 as a dominant interfering molecule abolished the synergistic effects of EGF and forskolin on the alpha subunit reporter. CRE binding studies suggested that the CRE complex consisted of CRE binding protein and EGF-ERK-dependent recruitment of c-Jun-c-Fos (AP-1) to the CRE. A dominant negative form of c-Fos (A-Fos) that specifically disrupts c-Jun-c-Fos DNA binding inhibited synergistic activation of the alpha subunit. Thus, synergistic activation of the alpha subunit gene induced by EGF-forskolin requires the ERK and JNK cascades and the recruitment of AP-1 to the CRE binding complex.
Collapse
Affiliation(s)
- M S Roberson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
28
|
Kashimata M, Sayeed S, Ka A, Onetti-Muda A, Sakagami H, Faraggiana T, Gresik EW. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev Biol 2000; 220:183-96. [PMID: 10753509 DOI: 10.1006/dbio.2000.9639] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that epidermal growth factor (EGF) stimulates branching morphogenesis of the fetal mouse submandibular gland (SMG) (M. Kashimata and E. W. Gresik, 1997, Dev. Dyn. 208, 149-161) and that the EGF receptor (EGFR) is localized principally, if not exclusively, on the epithelial components of the fetal SMG (E. W. Gresik, M. Kashimata, Y. Kadoya, R. Mathews, N. Minami, and S. Yamashina, 1997, J. Histochem. Cytochem. 45, 1651-1657). The EGFR is a receptor tyrosine kinase, and after binding of its ligand, it triggers several intracellular signaling cascades, among them the one activating the mitogen-activated protein kinases (MAPK) ERK-1/2. Here we investigated whether EGF utilizes the ERK-1/2 signaling cascade to stimulate branching morphogenesis in the fetal mouse SMG. SMG rudiments were collected as matched pairs at E14, E16, and E18 (E0 = day of vaginal plug); placed into wells of defined medium (BGJb); and exposed to EGF for 5 or 30 min or to medium alone (controls). By Western blotting we found that EGF induced the appearance of multiple bands of phosphotyrosine-containing proteins, including bands at 170 kDa and 44 kDa/42 kDa, presumably corresponding to the phosphorylated forms of EGFR and ERK-1/2, respectively. Other blots showed the specific appearance of the phosphorylated EGFR and of phospho-ERK-1/2 in response to EGF. Immunohistochemical staining for phosphotyrosine increased at the plasma membrane after EGF stimulation for 5 or 30 min. Diffuse cytoplasmic staining for MEK-1/2 (the MAPK kinase that activates ERK-1/2) increased near the cell membrane after EGF stimulation. Phospho-ERK-1/2 was localized in the nuclei of a few epithelial cells after EGF for 5 min, but in the nuclei of many cells after EGF for 30 min. PD98059, an inhibitor of phosphorylation and activation of MEK-1/2, by itself inhibited branching morphogenesis and, furthermore, decreased the stimulatory effect of EGF on branching. Western blots confirmed that this inhibitor blocked phosphorylation of ERK-1/2 in fetal SMGs exposed to EGF. These results show that components of the ERK-1/2 signaling cascade are present in epithelial cells of the fetal SMG, that they are activated by EGF, and that inhibition of this cascade perturbs branching morphogenesis. However, EGF did not cause phosphorylation of two other MAPKs, SAPK/JNK or p38MAPK, in fetal SMGs. These results imply that the ERK-1/2 signaling is responsible, at least in part, for the stimulatory effect of EGF on branching morphogenesis of the fetal mouse SMG.
Collapse
Affiliation(s)
- M Kashimata
- Department of Pharmacology, Meikai University, Saitama, Sakado, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Neo SY, Wang X, Han J, Lin SC. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling. J Biol Chem 1999; 274:35247-54. [PMID: 10575011 DOI: 10.1074/jbc.274.49.35247] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axin negatively regulates the Wnt pathway during axis formation and plays a central role in cell growth control and tumorigenesis. We found that Axin also serves as a scaffold protein for mitogen-activated protein kinase activation and further determined the structural requirement for this activation. Overexpression of Axin in 293T cells leads to differential activation of mitogen-activated protein kinases, with robust induction for c-Jun NH(2)-terminal kinase (JNK)/stress-activated protein kinase, moderate induction for p38, and negligible induction for extracellular signal-regulated kinase. Axin forms a complex with MEKK1 through a novel domain that we term MEKK1-interacting domain. MKK4 and MKK7, which act downstream of MEKK1, are also involved in Axin-mediated JNK activation. Domains essential in Wnt signaling, i. e. binding sites for adenomatous polyposis coli, glycogen synthase kinase-3beta, and beta-catenin, are not required for JNK activation, suggesting distinct domain utilization between the Wnt pathway and JNK signal transduction. Dimerization/oligomerization of Axin through its C terminus is required for JNK activation, although MEKK1 is capable of binding C terminus-deleted monomeric Axin. Furthermore, Axin without the MEKK1-interacting domain has a dominant-negative effect on JNK activation by wild-type Axin. Our results suggest that Axin, in addition to its function in the Wnt pathway, may play a dual role in cells through its activation of JNK/stress-activated protein kinase signaling cascade.
Collapse
Affiliation(s)
- Y Zhang
- Regulatory Biology Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
30
|
Wang D, Yu X, Brecher P. Nitric oxide inhibits angiotensin II-induced activation of the calcium-sensitive tyrosine kinase proline-rich tyrosine kinase 2 without affecting epidermal growth factor receptor transactivation. J Biol Chem 1999; 274:24342-8. [PMID: 10446212 DOI: 10.1074/jbc.274.34.24342] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we showed that nitric oxide donors and N-acetylcysteine, either alone or in combination, inhibited the activation of several mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts (Wang, D., Yu, X., and Brecher, P. (1998) J. Biol. Chem. 273, 33027-33034). In the present study, we have focused on the mechanism by which nitric oxide exerts this effect on the activation of extracellular signal-regulated kinase (ERK). We contrasted the effects of nitric oxide on ERK activation by angiotensin II and epidermal growth factor (EGF), since the transactivation of the EGF receptor has been implicated as a response to angiotensin II. We found that nitric oxide inhibited ERK activation by angiotensin II but did not inhibit the relatively slight but significant transactivation of the EGF receptor by angiotensin II. The tyrphostin AG1478, known to inhibit EGF receptor phosphorylation, also inhibited the angiotensin II and EGF-induced activation of ERK, the phosphorylation of the EGF receptor, and the subsequent association of Shc and Grb2. Nitric oxide did not affect either EGF receptor phosphorylation or Shc-Grb2 activation induced by either Ang II or EGF. However, the activation of the calcium-sensitive tyrosine kinase PYK2, which occurred in response to angiotensin II, but not EGF, was inhibited by nitric oxide. The data suggested that PYK2 activation may be an important inhibitory site in signaling pathways affected by nitric oxide.
Collapse
Affiliation(s)
- D Wang
- Whitaker Cardiovascular Institute and Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
31
|
Buday L. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:187-204. [PMID: 10393272 DOI: 10.1016/s0304-4157(99)00005-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
SH2/SH3 domain-containing adaptor proteins play a critical role in regulating tyrosine kinase signalling pathways. The major function of these adaptors, such as Grb2, Nck, and Crk, is to recruit proline-rich effector molecules to tyrosine-phosphorylated kinases or their substrates. In recent years dozens of novel proteins have emerged that are capable of associating with the SH2 and the SH3 domains of adaptors. In this review, the author attempts to summarise these novel binding partners of Grb2, Nck, and Crk, and to discuss current controversies regarding function and regulation of protein multicomplexes held together by SH2/SH3 adaptor molecules at the plasma membrane.
Collapse
Affiliation(s)
- L Buday
- Department of Medical Chemistry, Semmelweis University Medical School, 9 Puskin Street, 1088, Budapest, Hungary.
| |
Collapse
|
32
|
Blaukat A, Ivankovic-Dikic I, Grönroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem 1999; 274:14893-901. [PMID: 10329689 DOI: 10.1074/jbc.274.21.14893] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein tyrosine kinase Pyk2 acts as an upstream regulator of mitogen-activated protein (MAP) kinase cascades in response to numerous extracellular signals. The precise molecular mechanisms by which Pyk2 activates distinct MAP kinase pathways are not yet fully understood. In this report, we provide evidence that the protein tyrosine kinase Src and adaptor proteins Grb2, Crk, and p130Cas act as downstream mediators of Pyk2 leading to the activation of extracellular signal-regulated kinase (ERK) and c-Jun amino-terminal kinase (JNK). Pyk2-induced activation of Src is necessary for phosphorylation of Shc and p130Cas and their association with Grb2 and Crk, respectively, and for the activation of ERK and JNK cascades. Expression of a Grb2 mutant with a deletion of the amino-terminal Src homology 3 domain or the carboxyl-terminal tail of Sos strongly reduced Pyk2-induced ERK activation, with no apparent effect on JNK activity. Grb2 with a deleted carboxyl-terminal Src homology 3 domain partially blocked Pyk2-induced ERK and JNK pathways, whereas expression of dominant interfering mutants of p130Cas or Crk specifically inhibited JNK but not ERK activation by Pyk2. Taken together, our data reveal specific pathways that couple Pyk2 with MAP kinases: the Grb2/Sos complex connects Pyk2 to the activation of ERK, whereas adaptor proteins p130Cas and Crk link Pyk2 with the JNK pathway.
Collapse
Affiliation(s)
- A Blaukat
- Ludwig Institute for Cancer Research, Box 595, Husargatan 3, Uppsala S-75124, Sweden
| | | | | | | | | | | | | |
Collapse
|
33
|
Garrington TP, Johnson GL. Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 1999; 11:211-8. [PMID: 10209154 DOI: 10.1016/s0955-0674(99)80028-3] [Citation(s) in RCA: 955] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.
Collapse
Affiliation(s)
- T P Garrington
- Program in Molecular Signal Transduction, Division of Basic Sciences, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|