1
|
Strøm TB, Asprusten E, Laerdahl JK, Øygard I, Hussain MM, Bogsrud MP, Leren TP. Missense mutation Q384K in the APOB gene affecting the large lipid transfer module of apoB reduces the secretion of apoB-100 in the liver without reducing the secretion of apoB-48 in the intestine. J Clin Lipidol 2023; 17:800-807. [PMID: 37718180 DOI: 10.1016/j.jacl.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/10/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Molecular genetic testing of patients with hypobetalipoproteinemia may identify a genetic cause that can form the basis for starting proper therapy. Identifying a genetic cause may also provide novel data on the structure-function relationship of the mutant protein. OBJECTIVE To identify a genetic cause of hypobetalipoproteinemia in a patient with levels of low density lipoprotein cholesterol at the detection limit of 0.1 mmol/l. METHODS DNA sequencing of the translated exons with flanking intron sequences of the genes adenosine triphosphate-binding cassette transporter 1, angiopoietin-like protein 3, apolipoprotein B, apolipoprotein A1, lecithin-cholesterol acyltransferase, microsomal triglyceride transfer protein and proprotein convertase subtilisin/kexin type 9. RESULTS The patient was homozygous for mutation Q384K (c.1150C>A) in the apolipoprotein B gene, and this mutation segregated with hypobetalipoproteinemia in the family. Residue Gln384 is located in the large lipid transfer module of apoB that has been suggested to be important for lipidation of apolipoprotein B through interaction with microsomal triglyceride transfer protein. Based on measurements of serum levels of triglycerides and apolipoprotein B-48 after an oral fat load, we conclude that the patient was able to synthesize apolipoprotein B-48 in the intestine in a seemingly normal fashion. CONCLUSION Our data indicate that mutation Q384K severely reduces the secretion of apolipoprotein B-100 in the liver without reducing the secretion of apolipoprotein B-48 in the intestine. Possible mechanisms for the different effects of this and other missense mutations affecting the large lipid transfer module on the two forms of apoB are discussed.
Collapse
Affiliation(s)
- Thea Bismo Strøm
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren).
| | - Emil Asprusten
- Lipid Clinic, Oslo University Hospital, Oslo, Norway (Dr Asprusten)
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Oslo, Norway (Dr Laerdahl); ELIXIR Norway, Department of Informatics, University of Oslo, Oslo, Norway (Dr Laerdahl)
| | - Irene Øygard
- Fagernes Medical Center, Fagernes, Norway (Dr Øygard)
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA (Dr. Hussain)
| | - Martin Prøven Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| | - Trond P Leren
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway (Drs Strøm, Bogsrud and Leren)
| |
Collapse
|
2
|
Dai W, Zhang H, Lund H, Zhang Z, Castleberry M, Rodriguez M, Kuriakose G, Gupta S, Lewandowska M, Powers HR, Valmiki S, Zhu J, Shapiro AD, Hussain MM, López JA, Sorci-Thomas MG, Silverstein RL, Ginsberg HN, Sahoo D, Tabas I, Zheng Z. Intracellular tPA-PAI-1 interaction determines VLDL assembly in hepatocytes. Science 2023; 381:eadh5207. [PMID: 37651538 PMCID: PMC10697821 DOI: 10.1126/science.adh5207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/13/2023] [Indexed: 09/02/2023]
Abstract
Apolipoprotein B (apoB)-lipoproteins initiate and promote atherosclerotic cardiovascular disease. Plasma tissue plasminogen activator (tPA) activity is negatively associated with atherogenic apoB-lipoprotein cholesterol levels in humans, but the mechanisms are unknown. We found that tPA, partially through the lysine-binding site on its Kringle 2 domain, binds to the N terminus of apoB, blocking the interaction between apoB and microsomal triglyceride transfer protein (MTP) in hepatocytes, thereby reducing very-low-density lipoprotein (VLDL) assembly and plasma apoB-lipoprotein cholesterol levels. Plasminogen activator inhibitor 1 (PAI-1) sequesters tPA away from apoB and increases VLDL assembly. Humans with PAI-1 deficiency have smaller VLDL particles and lower plasma levels of apoB-lipoprotein cholesterol. These results suggest a mechanism that fine-tunes VLDL assembly by intracellular interactions among tPA, PAI-1, and apoB in hepatocytes.
Collapse
Affiliation(s)
- Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Heng Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Hayley Lund
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ziyu Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Maya Rodriguez
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- College of Arts and Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - George Kuriakose
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sweta Gupta
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | | | - Hayley R. Powers
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Swati Valmiki
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jieqing Zhu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Amy D. Shapiro
- Indiana Hemophilia and Thrombosis Center, Indianapolis, IN 46260, USA
| | - M. Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - José A. López
- Bloodworks Research Institute, Seattle, WA 98102, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary G. Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Rajan S, Hofer P, Christiano A, Stevenson M, Ragolia L, Villa-Cuesta E, Fried SK, Lau R, Braithwaite C, Zechner R, Schwartz GJ, Hussain MM. Microsomal triglyceride transfer protein regulates intracellular lipolysis in adipocytes independent of its lipid transfer activity. Metabolism 2022; 137:155331. [PMID: 36228741 DOI: 10.1016/j.metabol.2022.155331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The triglyceride (TG) transfer activity of microsomal triglyceride transfer protein (MTP) is essential for lipoprotein assembly in the liver and intestine; however, its function in adipose tissue, which does not assemble lipoproteins, is unknown. Here we have elucidated the function of MTP in adipocytes. APPROACH AND RESULTS We demonstrated that MTP is present on lipid droplets in human adipocytes. Adipose-specific MTP deficient (A-Mttp-/-) male and female mice fed an obesogenic diet gained less weight than Mttpf/f mice, had less fat mass, smaller adipocytes and were insulin sensitive. A-Mttp-/- mice showed higher energy expenditure than Mttpf/f mice. During a cold challenge, A-Mttp-/- mice maintained higher body temperature by mobilizing more fatty acids. Biochemical studies indicated that MTP deficiency de-repressed adipose triglyceride lipase (ATGL) activity and increased TG lipolysis. Both wild type MTP and mutant MTP deficient in TG transfer activity interacted with and inhibited ATGL activity. Thus, the TG transfer activity of MTP is not required for ATGL inhibition. C-terminally truncated ATGL that retains its lipase activity interacted less efficiently than full-length ATGL. CONCLUSION Our findings demonstrate that adipose-specific MTP deficiency increases ATGL-mediated TG lipolysis and enhances energy expenditure, thereby resisting diet-induced obesity. We speculate that the regulatory function of MTP involving protein-protein interactions might have evolved before the acquisition of TG transfer activity in vertebrates. Adipose-specific inhibition of MTP-ATGL interactions may ameliorate obesity while avoiding the adverse effects associated with inhibition of the lipid transfer activity of MTP.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Peter Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Amanda Christiano
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Matthew Stevenson
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Louis Ragolia
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Eugenia Villa-Cuesta
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY 11530, United States of America
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Raymond Lau
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Collin Braithwaite
- Department of Surgery, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed-Graz, Austria; BioHealth Field of Excellence, University of Graz, Graz, Austria
| | - Gary J Schwartz
- Department of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, United States of America.
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, United States of America; Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY, United States of America.
| |
Collapse
|
4
|
Pan X. The Roles of Fatty Acids and Apolipoproteins in the Kidneys. Metabolites 2022; 12:metabo12050462. [PMID: 35629966 PMCID: PMC9145954 DOI: 10.3390/metabo12050462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
The kidneys are organs that require energy from the metabolism of fatty acids and glucose; several studies have shown that the kidneys are metabolically active tissues with an estimated energy requirement similar to that of the heart. The kidneys may regulate the normal and pathological function of circulating lipids in the body, and their glomerular filtration barrier prevents large molecules or large lipoprotein particles from being filtered into pre-urine. Given the permeable nature of the kidneys, renal lipid metabolism plays an important role in affecting the rest of the body and the kidneys. Lipid metabolism in the kidneys is important because of the exchange of free fatty acids and apolipoproteins from the peripheral circulation. Apolipoproteins have important roles in the transport and metabolism of lipids within the glomeruli and renal tubules. Indeed, evidence indicates that apolipoproteins have multiple functions in regulating lipid import, transport, synthesis, storage, oxidation and export, and they are important for normal physiological function. Apolipoproteins are also risk factors for several renal diseases; for example, apolipoprotein L polymorphisms induce kidney diseases. Furthermore, renal apolipoprotein gene expression is substantially regulated under various physiological and disease conditions. This review is aimed at describing recent clinical and basic studies on the major roles and functions of apolipoproteins in the kidneys.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, NY 11501, USA;
- Diabetes and Obesity Research Center, NYU Langone Hospital—Long Island, Mineola, New York, NY 11501, USA
| |
Collapse
|
5
|
Vanhoye X, Janin A, Caillaud A, Rimbert A, Venet F, Gossez M, Dijk W, Marmontel O, Nony S, Chatelain C, Durand C, Lindenbaum P, Rieusset J, Cariou B, Moulin P, Di Filippo M. APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants. Int J Mol Sci 2022; 23:4281. [PMID: 35457099 PMCID: PMC9030618 DOI: 10.3390/ijms23084281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Hypobetalipoproteinemia is characterized by LDL-cholesterol and apolipoprotein B (apoB) plasma levels below the fifth percentile for age and sex. Familial hypobetalipoproteinemia (FHBL) is mostly caused by premature termination codons in the APOB gene, a condition associated with fatty liver and steatohepatitis. Nevertheless, many families with a FHBL phenotype carry APOB missense variants of uncertain significance (VUS). We here aimed to develop a proof-of-principle experiment to assess the pathogenicity of VUS using the genome editing of human liver cells. We identified a novel heterozygous APOB-VUS (p.Leu351Arg), in a FHBL family. We generated APOB knock-out (KO) and APOB-p.Leu351Arg knock-in Huh7 cells using CRISPR-Cas9 technology and studied the APOB expression, synthesis and secretion by digital droplet PCR and ELISA quantification. The APOB expression was decreased by 70% in the heterozygous APOB-KO cells and almost abolished in the homozygous-KO cells, with a consistent decrease in apoB production and secretion. The APOB-p.Leu351Arg homozygous cells presented with a 40% decreased APOB expression and undetectable apoB levels in cellular extracts and supernatant. Thus, the p.Leu351Arg affected the apoB secretion, which led us to classify this new variant as likely pathogenic and to set up a hepatic follow-up in this family. Therefore, the functional assessment of APOB-missense variants, using gene-editing technologies, will lead to improvements in the molecular diagnosis of FHBL and the personalized follow-up of these patients.
Collapse
Affiliation(s)
- Xavier Vanhoye
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
| | - Alexandre Janin
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Université de Lyon, F-69008 Lyon, France
| | - Amandine Caillaud
- Institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, F-44000 Nantes, France; (A.C.); (B.C.)
| | - Antoine Rimbert
- Institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (A.R.); (W.D.); (P.L.)
| | - Fabienne Venet
- Laboratoire d’Immunologie, Edouard Herriot Hospital, Hospices Civils de Lyon, F-69437 Lyon, France; (F.V.); (M.G.)
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, F-69364 Lyon, France
| | - Morgane Gossez
- Laboratoire d’Immunologie, Edouard Herriot Hospital, Hospices Civils de Lyon, F-69437 Lyon, France; (F.V.); (M.G.)
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard-Lyon 1, F-69364 Lyon, France
| | - Wieneke Dijk
- Institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (A.R.); (W.D.); (P.L.)
| | - Oriane Marmontel
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69364 Lyon, France; (C.D.); (J.R.); (P.M.)
| | - Séverine Nony
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
| | - Charlotte Chatelain
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
| | - Christine Durand
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69364 Lyon, France; (C.D.); (J.R.); (P.M.)
| | - Pierre Lindenbaum
- Institut du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France; (A.R.); (W.D.); (P.L.)
| | - Jennifer Rieusset
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69364 Lyon, France; (C.D.); (J.R.); (P.M.)
| | - Bertrand Cariou
- Institut du Thorax, Nantes Université, CHU Nantes, CNRS, INSERM, F-44000 Nantes, France; (A.C.); (B.C.)
| | - Philippe Moulin
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69364 Lyon, France; (C.D.); (J.R.); (P.M.)
- Fédération d’Endocrinologie, Maladies Métaboliques, Diabète et Nutrition, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Bron, France
| | - Mathilde Di Filippo
- Service de Biochimie et de Biologie Moléculaire, Laboratoire de Biologie Médicale MultiSites, Hospices Civils de Lyon, F-69677 Bron, France; (X.V.); (A.J.); (O.M.); (S.N.); (C.C.)
- CarMen Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, F-69364 Lyon, France; (C.D.); (J.R.); (P.M.)
| |
Collapse
|
6
|
Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
|
7
|
Iqbal J, Jahangir Z, Al-Qarni AA. Microsomal Triglyceride Transfer Protein: From Lipid Metabolism to Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1276:37-52. [DOI: 10.1007/978-981-15-6082-8_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Thierer JH, Ekker SC, Farber SA. The LipoGlo reporter system for sensitive and specific monitoring of atherogenic lipoproteins. Nat Commun 2019; 10:3426. [PMID: 31366908 PMCID: PMC6668417 DOI: 10.1038/s41467-019-11259-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein-B (ApoB) is the structural component of atherogenic lipoproteins, lipid-rich particles that drive atherosclerosis by accumulating in the vascular wall. As atherosclerotic cardiovascular disease is the leading cause of death worldwide, there is an urgent need to develop new strategies to prevent lipoproteins from causing vascular damage. Here we report the LipoGlo system, which uses a luciferase enzyme (NanoLuc) fused to ApoB to monitor several key determinants of lipoprotein atherogenicity including particle abundance, size, and localization. Using LipoGlo, we comprehensively characterize the lipoprotein profile of individual larval zebrafish and collect images of atherogenic lipoprotein localization in an intact organism. We report multiple extravascular lipoprotein localization patterns, as well as identify Pla2g12b as a potent regulator of lipoprotein size. ApoB-fusion proteins thus represent a sensitive and specific approach to study atherogenic lipoproteins and their genetic and small molecule modifiers. Atherosclerosis results from the accumulation of lipoproteins in the vascular wall. Here, Thierer et al. report the design of a chemiluminescent reporter for atherogenic lipoproteins using fusion of apolipoprotein-B to a luciferase enzyme, and find it bears potential for the identification of regulators of lipoprotein metabolism in vivo.
Collapse
Affiliation(s)
- James H Thierer
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA.,Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Steven A Farber
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA. .,Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
9
|
Goder V, Alanis-Dominguez E, Bustamante-Sequeiros M. Lipids and their (un)known effects on ER-associated protein degradation (ERAD). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158488. [PMID: 31233887 DOI: 10.1016/j.bbalip.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 02/09/2023]
Abstract
Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is a conserved cellular process that apart from protein quality control and maintenance of ER membrane identity has pivotal functions in regulating the lipid composition of the ER membrane. A general trigger for ERAD activation is the exposure of normally buried protein domains due to protein misfolding, absence of binding partners or conformational changes. Several feedback loops for ER lipid homeostasis exploit the induction of conformational changes in key enzymes of lipid biosynthesis or in ER membrane-embedded transcription factors upon shortage or abundance of specific lipids, leading to enzyme degradation or mobilization of transcription factors. Similarly, an insufficient amount of lipids triggers ERAD of apolipoproteins during lipoprotein formation. Lipids might even have a role in ER protein quality control: when proteins destined for ER export are covalently modified with lipids their ER residence time and their susceptibility to ERAD is reduced. Here we summarize and compare the various interconnections of lipids with ER membrane proteins and ERAD. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Veit Goder
- Department of Genetics, University of Seville, 6, Ave Reina Mercedes, 41012 Seville, Spain.
| | | | | |
Collapse
|
10
|
Jiang L, He Y, Luo G, Yang Y, Li G, Zhang Y. Discovery of potential novel microsomal triglyceride transfer protein inhibitors via virtual screening of pharmacophore modelling and molecular docking. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1149701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ludi Jiang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yusu He
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Ganggang Luo
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yongqiang Yang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Gongyu Li
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| | - Yanling Zhang
- Key Laboratory of TCM-information Engineer of State Administration of TCM, School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, P.R. China
| |
Collapse
|
11
|
Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci 2016; 54:26-48. [PMID: 27690713 DOI: 10.1080/10408363.2016.1221883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a polygenic disease arising from defects in the clearance of plasma low-density lipoprotein (LDL), which results in extremely elevated plasma LDL cholesterol (LDL-C) and increased risk of atherosclerosis, coronary heart disease, and premature death. Conventional lipid-lowering therapies, such as statins and ezetimibe, are ineffective at lowering plasma cholesterol to safe levels in these patients. Other therapeutic options, such as LDL apheresis and liver transplantation, are inconvenient, costly, and not readily available. Recently, lomitapide was approved by the Federal Drug Administration as an adjunct therapy for the treatment of HoFH. Lomitapide inhibits microsomal triglyceride transfer protein (MTP), reduces lipoprotein assembly and secretion, and lowers plasma cholesterol levels by over 50%. Here, we explain the steps involved in lipoprotein assembly, summarize the role of MTP in lipoprotein assembly, explore the clinical and molecular basis of HoFH, and review pre-clinical studies and clinical trials with lomitapide and other MTP inhibitors for the treatment of HoFH. In addition, ongoing research and new approaches underway for better treatment modalities are discussed.
Collapse
Affiliation(s)
- Meghan T Walsh
- a School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center , Brooklyn , NY , USA.,b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA
| | - M Mahmood Hussain
- b Department of Cell Biology , State University of New York Downstate Medical Center , Brooklyn , NY , USA.,c Department of Pediatrics , SUNY Downstate Medical Center , Brooklyn , NY , USA.,d VA New York Harbor Healthcare System , Brooklyn , NY , USA , and.,e Winthrop University Hospital , Mineola , NY , USA
| |
Collapse
|
12
|
Walsh MT, Di Leo E, Okur I, Tarugi P, Hussain MM. Structure-function analyses of microsomal triglyceride transfer protein missense mutations in abetalipoproteinemia and hypobetalipoproteinemia subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1623-1633. [PMID: 27487388 DOI: 10.1016/j.bbalip.2016.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
We describe two new hypolipidemic patients with very low plasma triglyceride and apolipoprotein B (apoB) levels with plasma lipid profiles similar to abetalipoproteinemia (ABL) patients. In these patients, we identified two previously uncharacterized missense mutations in the microsomal triglyceride transfer protein (MTP) gene, R46G and D361Y, and studied their functional effects. We also characterized three missense mutations (H297Q, D384A, and G661A) reported earlier in a familial hypobetalipoproteinemia patient. R46G had no effect on MTP expression or function and supported apoB secretion. H297Q, D384A, and G661A mutants also supported apoB secretion similarly to WT MTP. Contrary to these four missense mutations, D361Y was unable to support apoB secretion. Functional analysis revealed that this mutant was unable to bind protein disulfide isomerase (PDI) or transfer lipids. The negative charge at residue 361 was critical for MTP function as D361E was able to support apoB secretion and transfer lipids. D361Y most likely disrupts the tightly packed middle α-helical region of MTP, mitigates PDI binding, abolishes lipid transfer activity, and causes ABL. On the other hand, the hypolipidemia in the other two patients was not due to MTP dysfunction. Thus, in this study of five missense mutations spread throughout MTP's three structural domains found in three hypolipidemic patients, we found that four of the mutations did not affect MTP function. Thus, novel mutations that cause severe hypolipidemia probably exist in other genes in these patients, and their recognition may identify novel proteins involved in the synthesis and/or catabolism of plasma lipoproteins.
Collapse
Affiliation(s)
- Meghan T Walsh
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Enza Di Leo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ilyas Okur
- Department of Pediatric Metabolism and Nutrition, Gazi University School of Medicine, Ankara, Turkey
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, United States; VA New York Harbor Healthcare System, Brooklyn, NY 11209, United States; Winthrop University Hospital, Mineola, NY 11501, United States.
| |
Collapse
|
13
|
Mansbach CM, Siddiqi S. Control of chylomicron export from the intestine. Am J Physiol Gastrointest Liver Physiol 2016; 310:G659-68. [PMID: 26950854 DOI: 10.1152/ajpgi.00228.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/22/2016] [Indexed: 01/31/2023]
Abstract
The control of chylomicron output by the intestine is a complex process whose outlines have only recently come into focus. In this review we will cover aspects of chylomicron formation and prechylomicron vesicle generation that elucidate potential control points. Substrate (dietary fatty acids and monoacylglycerols) availability is directly related to the output rate of chylomicrons. These substrates must be converted to triacylglycerol before packaging in prechylomicrons by a series of endoplasmic reticulum (ER)-localized acylating enzymes that rapidly convert fatty acids and monoacylglycerols to triacylglycerol. The packaging of the prechylomicron with triacylglycerol is controlled by the microsomal triglyceride transport protein, another potential limiting step. The prechylomicrons, once loaded with triacylglycerol, are ready to be incorporated into the prechylomicron transport vesicle that transports the prechylomicron from the ER to the Golgi. Control of this exit step from the ER, the rate-limiting step in the transcellular movement of the triacylglycerol, is a multistep process involving the activation of PKCζ, the phosphorylation of Sar1b, releasing the liver fatty acid binding protein from a heteroquatromeric complex, which enables it to bind to the ER and organize the prechylomicron transport vesicle budding complex. We propose that control of PKCζ activation is the major physiological regulator of chylomicron output.
Collapse
Affiliation(s)
- Charles M Mansbach
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| | - Shahzad Siddiqi
- Department of Medicine, Division of Gastroenterology, University of Tennessee Health Science Center, Memphis, Tennessee; and Department of Medicine, Veterans Affairs Medical Center, Memphis, Tennessee
| |
Collapse
|
14
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
15
|
Walsh MT, Iqbal J, Josekutty J, Soh J, Di Leo E, Özaydin E, Gündüz M, Tarugi P, Hussain MM. Novel Abetalipoproteinemia Missense Mutation Highlights the Importance of the N-Terminal β-Barrel in Microsomal Triglyceride Transfer Protein Function. ACTA ACUST UNITED AC 2015. [PMID: 26224785 DOI: 10.1161/circgenetics.115.001106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The use of microsomal triglyceride transfer protein (MTP) inhibitors is limited to severe hyperlipidemias because of associated hepatosteatosis and gastrointestinal adverse effects. Comprehensive knowledge about the structure-function of MTP might help design new molecules that avoid steatosis. Characterization of mutations in MTP causing abetalipoproteinemia has revealed that the central α-helical and C-terminal β-sheet domains are important for protein disulfide isomerase binding and lipid transfer activity. Our aim was to identify and characterize mutations in the N-terminal domain to understand its function. METHODS AND RESULTS We identified a novel missense mutation (D169V) in a 4-month-old Turkish male child with severe signs of abetalipoproteinemia. To study the effect of this mutation on MTP function, we created mutants via site-directed mutagenesis. Although D169V was expressed in the endoplasmic reticulum and interacted with apolipoprotein B (apoB) 17, it was unable to bind protein disulfide isomerase, transfer lipids, and support apoB secretion. Computational modeling suggested that D169 could form an internal salt bridge with K187 and K189. Mutagenesis of these lysines to leucines abolished protein disulfide isomerase heterodimerization, lipid transfer, and apoB secretion, without affecting apoB17 binding. Furthermore, mutants with preserved charges (D169E, K187R, and K189R) rescued these activities. CONCLUSIONS D169V is detrimental because it disrupts an internal salt bridge leading to loss of protein disulfide isomerase binding and lipid transfer activities; however, it does not affect apoB binding. Thus, the N-terminal domain of MTP is also important for its lipid transfer activity.
Collapse
Affiliation(s)
- Meghan T Walsh
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Jahangir Iqbal
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Joby Josekutty
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - James Soh
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Enza Di Leo
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Eda Özaydin
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Mehmet Gündüz
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - Patrizia Tarugi
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.)
| | - M Mahmood Hussain
- From the School of Graduate Studies, Molecular and Cell Biology Program (M.T.W., J.J., J.S.), Department of Cell Biology (M.T.W., J.I., J.J., J.S., M.M.H.), Department of Pediatrics (M.M.H.), State University of New York Downstate Medical Center, Brooklyn, NY; Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy (E.D.L., P.T.); Infancy Services, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (E.O); Department of Nutrition and Metabolism, Ankara Children's Health and Diseases Hematology-Oncology Training and Research Hospital, Ankara, Turkey (M.G.); and Department of Research, VA New York Harbor Healthcare System, Brooklyn, NY (M.M.H.).
| |
Collapse
|
16
|
Côté I, Chapados NA, Lavoie JM. Impaired VLDL assembly: a novel mechanism contributing to hepatic lipid accumulation following ovariectomy and high-fat/high-cholesterol diets? Br J Nutr 2014; 112:1592-600. [PMID: 25263431 DOI: 10.1017/s0007114514002517] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of the present study was to identify molecular mechanisms involved in liver fat and cholesterol accumulation in ovariectomised (Ovx) rats fed with high-cholesterol diets. VLDL assembly and bile acid metabolism were specifically targeted. After being either Ovx or sham-operated, the rats were fed a standard diet or a high-fat diet containing 0, 0·25 or 0·5 % cholesterol for 6 weeks. Although Ovx rats exposed to dietary cholesterol intake accumulated the greatest amount of hepatic fat and cholesterol, plasma cholesterol levels were lower (P< 0·05) in these animals than in the corresponding control rats. Accompanying this observation, ovariectomy and dietary cholesterol intake resulted in a down-regulation (P< 0·05) of the expression of genes associated with VLDL assembly, including microsomal TAG transfer protein, diacylglycerol acyltransferase 2, acyl-CoA:cholesterol acyltransferase 2 and apoB-100 as well as genes associated with bile acid metabolism including farnesoid X receptor and bile salt export pump (P< 0·01). These results indicate that high-fat/high-cholesterol diets and ovariectomy concomitantly disrupt hepatic lipid output through defects in VLDL assembly and, most probably, secretion. The results also point to a defect in hepatic bile acid secretion. The present study offers novel insights into intrahepatic lipid metabolism, which may be relevant to metabolic complications found in postmenopausal women.
Collapse
Affiliation(s)
- Isabelle Côté
- Department of Kinesiology,Université de Montréal, 2100, Boulevard Édouard-Montpetit,Montréal,QC,CanadaH3C 3J7
| | | | - Jean-Marc Lavoie
- Department of Kinesiology,Université de Montréal, 2100, Boulevard Édouard-Montpetit,Montréal,QC,CanadaH3C 3J7
| |
Collapse
|
17
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
18
|
Molecular cloning, expression, and hormonal regulation of the chicken microsomal triglyceride transfer protein. Gene 2013; 523:1-9. [DOI: 10.1016/j.gene.2013.03.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/03/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
|
19
|
Tiwari S, Siddiqi S, Siddiqi SA. CideB protein is required for the biogenesis of very low density lipoprotein (VLDL) transport vesicle. J Biol Chem 2013; 288:5157-65. [PMID: 23297397 DOI: 10.1074/jbc.m112.434258] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nascent very low density lipoprotein (VLDL) exits the endoplasmic reticulum (ER) in a specialized ER-derived vesicle, the VLDL transport vesicle (VTV). Similar to protein transport vesicles (PTVs), VTVs require coat complex II (COPII) proteins for their biogenesis from the ER membranes. Because the size of the VTV is large, we hypothesized that protein(s) in addition to COPII components might be required for VTV biogenesis. Our proteomic analysis, supported by Western blotting data, shows that a 26-kDa protein, CideB, is present in the VTV but not in other ER-derived vesicles such as PTV and pre-chylomicron transport vesicle. Western blotting and immunoelectron microscopy analyses suggest that CideB is concentrated in the VTV. Our co-immunoprecipitation data revealed that CideB specifically interacts with VLDL structural protein, apolipoprotein B100 (apoB100), but not with albumin, a PTV cargo protein. Confocal microscopic data indicate that CideB co-localizes with apoB100 in the ER. Additionally, CideB interacts with COPII components, Sar1 and Sec24. To investigate the role of CideB in VTV biogenesis, we performed an in vitro ER budding assay. We show that the blocking of CideB inhibits VTV budding, indicating a direct requirement of CideB in VTV formation. To confirm our findings, we knocked down CideB in primary hepatocytes and isolated ER and cytosol to examine whether they support VTV budding. Our data suggest that CideB knockdown significantly reduces VTV biogenesis. These findings suggest that CideB forms an intricate COPII coat and regulates the VTV biogenesis.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | | | | |
Collapse
|
20
|
Abstract
Steady increase in the incidence of atherosclerosis is becoming a major concern not only in the United States but also in other countries. One of the major risk factors for the development of atherosclerosis is high concentrations of plasma low-density lipoprotein, which are metabolic products of very low-density lipoprotein (VLDL). VLDLs are synthesized and secreted by the liver. In this review, we discuss various stages through which VLDL particles go from their biogenesis to secretion in the circulatory system. Once VLDLs are synthesized in the lumen of the endoplasmic reticulum, they are transported to the Golgi. The transport of nascent VLDLs from the endoplasmic reticulum to Golgi is a complex multistep process, which is mediated by a specialized transport vesicle, the VLDL transport vesicle. The VLDL transport vesicle delivers VLDLs to the cis-Golgi lumen where nascent VLDLs undergo a number of essential modifications. The mature VLDL particles are then transported to the plasma membrane and secreted in the circulatory system. Understanding of molecular mechanisms and identification of factors regulating the complex intracellular VLDL trafficking will provide insight into the pathophysiology of various metabolic disorders associated with abnormal VLDL secretion and identify potential new therapeutic targets.
Collapse
Affiliation(s)
- Samata Tiwari
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
| | | |
Collapse
|
21
|
Hussain MM, Rava P, Walsh M, Rana M, Iqbal J. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond) 2012; 9:14. [PMID: 22353470 PMCID: PMC3337244 DOI: 10.1186/1743-7075-9-14] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/21/2012] [Indexed: 02/08/2023] Open
Abstract
Microsomal triglyceride transfer protein (MTP) was first identified as a major cellular protein capable of transferring neutral lipids between membrane vesicles. Its role as an essential chaperone for the biosynthesis of apolipoprotein B (apoB)-containing triglyceride-rich lipoproteins was established after the realization that abetalipoproteinemia patients carry mutations in the MTTP gene resulting in the loss of its lipid transfer activity. Now it is known that it also plays a role in the biosynthesis of CD1, glycolipid presenting molecules, as well as in the regulation of cholesterol ester biosynthesis. In this review, we will provide a historical perspective about the identification, purification and characterization of MTP, describe methods used to measure its lipid transfer activity, and discuss tissue expression and function. Finally, we will review the role MTP plays in the assembly of apoB-lipoprotein, the regulation of cholesterol ester synthesis, biosynthesis of CD1 proteins and propagation of hepatitis C virus. We will also provide a brief overview about the clinical potentials of MTP inhibition.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Paul Rava
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Meghan Walsh
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Muhammad Rana
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Jahangir Iqbal
- Department of Cell Biology and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
22
|
Pereira IVA, Stefano JT, Oliveira CPMS. Microsomal triglyceride transfer protein and nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2011; 5:245-51. [PMID: 21476919 DOI: 10.1586/egh.11.22] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease is currently one of the most common forms of liver disease, covering cases from simple steatosis without inflammation, to cases of steatohepatitis and fibrosis, and may lead to liver cirrhosis and hepatocellular carcinoma. The pathophysiology of nonalcoholic fatty liver disease is based on multiple events; changes in the secretion of lipoproteins can lead to steatosis. Liver lipid secretion is mediated by apoB100 and microsomal triglyceride transfer protein (MTP). The pharmacological suppression of MTP is suggested as a possible treatment for hyperlipidemia, although the upregulation of this protein can be a treatment for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Isabel V A Pereira
- Department of Gastroenterology, University of Sao Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar n° 255, Instituto Central, # 9159, 05403-000 Sao Paulo, Brazil
| | | | | |
Collapse
|
23
|
Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 2010; 49:3898-907. [PMID: 20353182 DOI: 10.1021/bi100056v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
24
|
Sundaram M, Yao Z. Recent progress in understanding protein and lipid factors affecting hepatic VLDL assembly and secretion. Nutr Metab (Lond) 2010; 7:35. [PMID: 20423497 PMCID: PMC2873297 DOI: 10.1186/1743-7075-7-35] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 02/06/2023] Open
Abstract
Excess lipid induced metabolic disorders are one of the major existing challenges for the society. Among many different causes of lipid disorders, overproduction and compromised catabolism of triacylglycerol-rich very low density lipoproteins (VLDL) have become increasingly prevalent leading to hyperlipidemia worldwide. This review provides the latest understanding in different aspects of VLDL assembly process, including structure-function relationships within apoB, mutations in APOB causing hypobetalipoproteinemia, significance of modulating microsomal triglyceride-transfer protein activity in VLDL assembly, alterations of VLDL assembly by different fatty acid species, and hepatic proteins involved in vesicular trafficking, and cytosolic lipid droplet metabolism that contribute to VLDL assembly. The role of lipoprotein receptors and exchangeable apolipoproteins that promote or diminish VLDL assembly and secretion is discussed. New understanding on dysregulated insulin signaling as a consequence of excessive triacylglycerol-rich VLDL in the plasma is also presented. It is hoped that a comprehensive view of protein and lipid factors that contribute to molecular and cellular events associated with VLDL assembly and secretion will assist in the identification of pharmaceutical targets to reduce disease complications related to hyperlipidemia.
Collapse
Affiliation(s)
- Meenakshi Sundaram
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
25
|
Rutledge AC, Su Q, Adeli K. Apolipoprotein B100 biogenesis: a complex array of intracellular mechanisms regulating folding, stability, and lipoprotein assemblyThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process. Biochem Cell Biol 2010; 88:251-67. [DOI: 10.1139/o09-168] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein B100 (apoB) is a large amphipathic lipid-binding protein that is synthesized by hepatocytes and used to assemble and stabilize very low density lipoproteins (VLDL). It may have been derived through evolution from other lipid-associating proteins such as microsomal triglyceride transfer protein or vitellogenin. The correct folding of apoB requires assistance from chaperone proteins in co-translational lipidation, disulfide bond formation, and glycosylation. Any impairment in these processes results in co-translational targeting of the misfolded apoB molecule for proteasomal degradation. In fact, most of the regulation of apoB production is mediated by intracellular degradation. ApoB that misfolds post-translationally, perhaps as a result of oxidative stress, may be eliminated through autophagy. This review focuses on the proposed pentapartite domain structure of apoB, the role that each domain plays in the binding of lipid species and regulation of apoB synthesis, and the process of VLDL assembly. The factors involved in the recognition, ubiquitination, and proteasomal delivery of defective apoB molecules are also discussed.
Collapse
Affiliation(s)
- Angela C. Rutledge
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Qiaozhu Su
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Khosrow Adeli
- Molecular Structure and Function Program, Research Institute, The Hospital for Sick Children, Room 3652, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Medical Sciences Building, Room 6243, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
26
|
Zhong S, Magnolo AL, Sundaram M, Zhou H, Yao EF, Di Leo E, Loria P, Wang S, Bamji-Mirza M, Wang L, McKnight CJ, Figeys D, Wang Y, Tarugi P, Yao Z. Nonsynonymous mutations within APOB in human familial hypobetalipoproteinemia: evidence for feedback inhibition of lipogenesis and postendoplasmic reticulum degradation of apolipoprotein B. J Biol Chem 2009; 285:6453-64. [PMID: 20032471 DOI: 10.1074/jbc.m109.060467] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five nontruncating missense APOB mutations, namely A31P, G275S, L324M, G912D, and G945S, were identified in heterozygous carriers of familial hypobetalipoproteinemia (FHBL) in the Italian population. To test that the FHBL phenotype was a result of impaired hepatic secretion of mutant apoB proteins, we performed transfection studies using McA-RH7777 cells stably expressing wild type or mutant forms of human apolipoprotein B-48 (apoB-48). All mutant proteins displayed varied impairment in secretion, with G912D the least affected and A31P barely secreted. Although some A31P was degraded by proteasomes, a significant proportion of it (although inappropriately glycosylated) escaped endoplasmic reticulum (ER) quality control and presented in the Golgi compartment. Degradation of the post-ER A31P was achieved by autophagy. Expression of A31P also decreased secretion of endogenous apoB and triglycerides, yet the impaired lipoprotein secretion did not lead to lipid accumulation in the cells or ER stress. Rather, expression of genes involved in lipogenesis was down-regulated, including liver X receptor alpha, sterol regulator element-binding protein 1c, fatty acid synthase, acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, and lipin-1. These results suggest that feedback inhibition of hepatic lipogenesis in conjunction with post-ER degradation of misfolded apoB proteins can contribute to reduce fat accumulation in the FHBL liver.
Collapse
Affiliation(s)
- Shumei Zhong
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Microsomal triglyceride transfer protein (MTP), a chaperone for the biosynthesis of apolipoprotein B lipoproteins and CD1d, is a therapeutic candidate to decrease plasma lipids and to diminish inflammation. MTP inhibition increases plasma transaminases and tissue lipids, and therefore new approaches are needed to avoid them. RECENT FINDINGS Inositol requiring enzyme1beta has been identified as a novel intestine-specific regulator of MTP. A new function of MTP in cholesterol ester biosynthesis has been reported. The importance of the phospholipid transfer activity of MTP in the lipidation of apolipoprotein B and CD1d has been indicated. Diurnal variations in MTP expression and its induction by food availability have been observed. On the basis of these and other findings, we propose that upregulation of inositol requiring enzyme 1beta, a combined reduction of cellular free cholesterol or triglyceride or both and MTP activity, specific inhibition of phospholipid or triglyceride transfer activities, and targeting of apolipoprotein B-MTP protein-protein interactions might be pursued to avoid some of the side effects associated with the inhibition of triglyceride transfer activity of MTP. We further speculate that short-lived MTP antagonists may be useful in controlling plasma and tissue lipids and in avoiding steatosis. SUMMARY We have highlighted the importance of addressing the causal relationship between MTP inhibition and aberrant elevations in plasma liver enzymes. The proposed approaches may show that MTP targeting is a viable approach to lower plasma lipids.
Collapse
Affiliation(s)
- Mohammed Mahmood Hussain
- Departments of Anatomy and Cell Biology, and Pediatrics, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
28
|
Jiang ZG, Liu Y, Hussain MM, Atkinson D, McKnight CJ. Reconstituting initial events during the assembly of apolipoprotein B-containing lipoproteins in a cell-free system. J Mol Biol 2008; 383:1181-94. [PMID: 18804479 DOI: 10.1016/j.jmb.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/02/2008] [Accepted: 09/04/2008] [Indexed: 12/12/2022]
Abstract
The synthesis of apolipoprotein B (apoB) dictates the formation of chylomicrons and very low-density lipoproteins, two major lipoprotein precursors in the human plasma. Despite its biological significance, the mechanism of the assembly of these apoB-containing lipoproteins remains elusive. An essential obstacle is the lack of systems that allow fine dissection of key components during assembly, including nascent apoB peptide, lipids in defined forms, chaperones, and microsomal triglyceride transfer protein (MTP). In this study, we used a prokaryotic cell-free expression system to reconstitute early events in the assembly of apoB-containing lipoprotein that involve the N-terminal domains of apoB. Our study shows that N-terminal domains larger than 20.5% of apoB (B20.5) have an intrinsic ability to remodel vesicular phospholipid bilayers into discrete protein-lipid complexes. The presence of appropriate lipid substrates during apoB translation plays a pivotal role for successful lipid recruitment, and similar lipid recruitment fails to occur if the lipids are added posttranslationally. Cotranslational presence of MTP can dramatically promote the folding of B6.4-20.5 and B6.4-22. Furthermore, apoB translated in the presence of MTP retains its phospholipid recruitment capability posttranslationally. Our data suggest that during the synthesis of apoB, the N-terminal domain has a short window for intrinsic phospholipid recruitment, the time frame of which is predetermined by the environment where apoB synthesis occurs. The presence of MTP prolongs this window of time by acting as a chaperone. The absence of either proper lipid substrate or MTP may result in the improper folding of apoB and, consequently, its degradation.
Collapse
Affiliation(s)
- Z Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
29
|
Burnett JR, Zhong S, Jiang ZG, Hooper AJ, Fisher EA, McLeod RS, Zhao Y, Barrett PHR, Hegele RA, van Bockxmeer FM, Zhang H, Vance DE, McKnight CJ, Yao Z. Missense mutations in APOB within the betaalpha1 domain of human APOB-100 result in impaired secretion of ApoB and ApoB-containing lipoproteins in familial hypobetalipoproteinemia. J Biol Chem 2007; 282:24270-83. [PMID: 17588943 DOI: 10.1074/jbc.m702442200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Familial hypobetalipoproteinemia (FHBL) is associated with mutations in the APOB gene. We reported the first missense APOB mutation, R463W, in an FHBL kindred (Burnett, J. R., Shan, J., Miskie, B. A., Whitfield, A. J., Yuan, J., Tran, K., Mc-Knight, C. J., Hegele, R. A., and Yao, Z. (2003) J. Biol. Chem. 278, 13442-13452). Here we identified a second nonsynonymous APOB mutation, L343V, in another FHBL kindred. Heterozygotes for L343V (n = 10) had a mean plasma apoB at 0.31 g/liter as compared with 0.80 g/liter in unaffected family members (n = 22). The L343V mutation impaired secretion of apoB-100 and very low density lipoproteins. The secretion efficiency was 20% for B100wt and 10% for B100LV and B100RW. Decreased secretion of mutant apoB-100 was associated with increased endoplasmic reticulum retention and increased binding to microsomal triglyceride transfer protein and BiP. Reduced secretion efficiency was also observed with B48LV and B17LV. Biochemical and biophysical analyses of apoB domain constructs showed that L343V and R463W altered folding of the alpha-helical domain within the N terminus of apoB. Thus, proper folding of the alpha-helical domain of apoB-100 is essential for efficient secretion.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. J Biol Chem 2007; 282:17078-89. [PMID: 17405876 DOI: 10.1074/jbc.m701742200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon tetrachloride (CCl(4)) interferes with triglyceride secretion and causes steatosis, fibrosis, and necrosis. In mice, CCl(4) decreased plasma triglyceride-rich lipoproteins, increased cellular lipids, and reduced microsomal triglyceride transfer protein (MTP) without diminishing mRNA levels. Similarly, CCl(4) decreased apoB-lipoprotein production and MTP activity but had no effect on mRNA levels in primary enterocytes and colon carcinoma and hepatoma cells. CCl(4) did not affect MTP synthesis but induced post-translational degradation involving ubiquitinylation and proteasomes in McA-RH7777 cells. By contrast, MTP inhibitor increased cellular lipids without affecting MTP protein. MTP was covalently modified when cells were incubated with (14)CCl(4). This modification was prevented by the inhibition of P450 oxygenases, indicating that CCl(3)(.) generated by these enzymes targets MTP for degradation. To determine whether inhibition of proteolysis could prevent CCl(4) toxicity, mice were fed with CCl(4) with or without lactacystin. Lactacystin increased ubiquitinylated MTP and prevented lipid accumulation in tissues. Thus, CCl(4) induces post-translational degradation without affecting lipid transfer activity, whereas MTP antagonist inhibits lipid transfer activity without causing its destruction. These studies identify MTP as a major target of CCl(4) and its degradation as a novel mechanism involved in the onset of steatosis, suggesting that inhibition of proteolysis may prevent some forms of steatosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Anatomy, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
31
|
Burnett JR, Watts GF. MTP inhibition as a treatment for dyslipidaemias: time to deliver or empty promises? Expert Opin Ther Targets 2007; 11:181-9. [PMID: 17227233 DOI: 10.1517/14728222.11.2.181] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The development of cholesterol-lowering drugs, including a statins, bile acid sequestrants and cholesterol absorption inhibitors has expanded the options for cardiovascular prevention. Recent treatment guidelines emphasise that individuals at substantial risk for atherosclerotic coronary heart disease should meet defined lipid targets. Combination therapy with drugs that have different and complementary mechanisms of action is often needed to achieve these goals. Existing approaches to the treatment of hypercholesterolaemia are still ineffective in halting the progression of coronary artery disease in some patients despite combination therapies. Other patients are resistant to, or intolerant of, conventional pharmacotherapy and remain at high-risk of atherosclerotic cardiovascular disease, so that alternative approaches are needed. New agents, including inhibitors of microsomal triglyceride transfer protein (MTP), may play a future role, either alone or in combination, in the treatment of hyperlipidaemias. This review focuses on novel approaches to treat dyslipidaemias via the inhibition of MTP. Patients most suitable for use of MTP inhibitors include those with hepatic hypersecretion of apoB, including the metabolic syndrome, Type 2 diabetes mellitus and familial combined hyperlipidaemia, as well as homozygous and heterozygous familial hypercholesterolaemia. However, certain safety issues with these agents need resolving, particularly fatty liver disease.
Collapse
Affiliation(s)
- John R Burnett
- PathWest Laboratory Medicine, Department of Core Clinical Pathology & Biochemistry, Royal Perth Hospital, Wellington Street Campus, GPO Box X2213, Perth, WA 6847, Australia.
| | | |
Collapse
|
32
|
Jiang ZG, Simon MN, Wall JS, McKnight CJ. Structural analysis of reconstituted lipoproteins containing the N-terminal domain of apolipoprotein B. Biophys J 2007; 92:4097-108. [PMID: 17369413 PMCID: PMC1868998 DOI: 10.1529/biophysj.106.101105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apolipoproteins play a central role in lipoprotein metabolism, and are directly implicated in cardiovascular diseases, but their structural characterization has been complicated by their structural flexibility and heterogeneity. Here we describe the structural characterization of the N-terminal region of apolipoprotein B (apoB), the major protein component of very low-density lipoprotein and low-density lipoprotein, in the presence of phospholipids. Specifically, we focus on the N-terminal 6.4-17% of apoB (B6.4-17) complexed with the phospholipid dimyristoylphosphatidylcholine in vitro. In addition to circular dichroism spectroscopy and limited proteolysis, our strategy incorporates nanogold-labeling of the protein in the reconstituted lipoprotein complex followed by visualization and molecular weight determination with scanning transmission electron microscopy imaging. Based on the scanning transmission electron microscopy imaging analysis of approximately 1300 individual particles where the B6.4-17 is labeled with nanogold through a six-His tag, most complexes contain either two or three B6.4-17 molecules. Circular dichroism spectroscopy and limited proteolysis of these reconstituted particles indicate that there are no large conformational changes in B6.4-17 upon lipoprotein complex formation. This is in contrast to the large structural changes that occur during apolipoprotein A-I-lipid interactions. The method described here allows a direct measurement of the stoichiometry and molecular weight of individual particles, rather than the average of the entire sample. Thus, it represents a useful strategy to characterize the structure of lipoproteins, which are not structurally uniform, but can still be defined by an ensemble of related patterns.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Boston University School of Medicine, Department of Physiology & Biophysics, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
33
|
Jiang ZG, Gantz D, Bullitt E, McKnight CJ. Defining lipid-interacting domains in the N-terminal region of apolipoprotein B. Biochemistry 2006; 45:11799-808. [PMID: 17002280 PMCID: PMC2519233 DOI: 10.1021/bi060600w] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein that dictates the synthesis of chylomicrons and very low density lipoproteins. ApoB is the major protein in low density lipoprotein, also known as the "bad cholesterol" that is directly implicated in atherosclerosis. It has been suggested that the N-terminal domain of apoB plays a critical role in the formation of apoB-containing lipoproteins through the initial recruitment of phospholipids in the endoplasmic reticulum. However, very little is known about the mechanism of lipoprotein nucleation by apoB. Here we demonstrate that a strong phospholipid remodeling function is associated with the predicted alpha-helical and C-sheet domains in the N-terminal 17% of apoB (B17). Using dimyristoylphosphatidylcholine (DMPC) as a model lipid, these domains can convert multilamellar DMPC vesicles into discoidal-shaped particles. The nascent particles reconstituted from different apoB domains are distinctive and compositionally homogeneous. This phospholipid remodeling activity is also observed with egg phosphatidylcholine (egg PC) and is therefore not DMPC-dependent. Using kinetic analysis of the DMPC clearance assay, we show that the identified phospholipid binding sequences all map to the surface of the lipid binding pocket in the B17 model based on the homologous protein, lipovitellin. Since both B17 and microsomal triglyceride transfer protein (MTP), a critical chaperone during lipoprotein assembly, are homologous with lipovitellin, the identification of these phospholipid remodeling sequences in B17 provides important insights into the potential mechanism that initiates the assembly of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
34
|
Domitrovich AM, Felmlee DJ, Siddiqui A. Hepatitis C virus nonstructural proteins inhibit apolipoprotein B100 secretion. J Biol Chem 2005; 280:39802-8. [PMID: 16203724 DOI: 10.1074/jbc.m510391200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host genes involved in lipid metabolism are differentially regulated during the early stages of hepatitis C virus (HCV) infection. The majority of lipids synthesized in the liver are exported to other tissues in the form of lipoproteins. The formation of these lipoproteins is dependent upon the association of triglycerides with apolipoprotein B100. Using the HCV subgenomic replicon expression system, we show that secretion of apoB100 is significantly reduced. Inhibition of apoB100 degradation by ALLN did not improve secretion. Triglyceride levels as well as microsomal triglyceride transfer protein mRNA and activity levels were reduced in replicon-expressing cells, indicating potential reasons for the observed decrease. Further evidence is presented for the interaction between the HCV nonstructural protein 5A and apoB100. These results provide further insight into the alteration of lipid metabolism by HCV.
Collapse
Affiliation(s)
- Angela M Domitrovich
- Department of Medicine, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093-0803, USA
| | | | | |
Collapse
|
35
|
Rava P, Athar H, Johnson C, Hussain MM. Transfer of cholesteryl esters and phospholipids as well as net deposition by microsomal triglyceride transfer protein. J Lipid Res 2005; 46:1779-85. [PMID: 15897609 DOI: 10.1194/jlr.d400043-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) activity is classically measured using radioactive lipids. We described a simple fluorescence assay to measure its triacylglycerol (TAG) transfer activity. Here, we describe fluorescence-based methods to measure the transfer of phospholipids (PLs) and cholesteryl esters (CEs) by MTP. Both transfer activities increased with time and MTP amounts and were inhibited to different extents by an MTP antagonist, BMS197636. We also describe a method to measure the net deposition of fluorescent lipids in acceptor vesicles. In this procedure, negatively charged donor vesicles are incubated with MTP and acceptor vesicles, and lipids transferred to acceptors are quantified after the removal of donor vesicles and MTP by the addition of DE52. Lipid deposition in acceptor vesicles was dependent on time and MTP. Using these methods, TAG transfer activity was the most robust activity present in purified MTP; CE and PL transfer activities were 60-71% and 5-13% of the TAG transfer activity, respectively. The method to determine lipid transfer is recommended for routine MTP activity measurements for its simplicity. These methods may help identify specific inhibitors for individual lipid transfer activities, in characterizing different domains involved in transfer, and in the isolation of mutants that bind but cannot transfer lipids.
Collapse
Affiliation(s)
- Paul Rava
- Department of Anatomy and Cell Biology and Department of Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
36
|
Jiang ZG, Carraway M, McKnight CJ. Limited proteolysis and biophysical characterization of the lipovitellin homology region in apolipoprotein B. Biochemistry 2005; 44:1163-73. [PMID: 15667210 DOI: 10.1021/bi048286y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apolipoprotein B (apoB) is the essential nonexchangeable protein in chylomicrons and very low-density lipoprotein-derived lipoprotein particles, including low-density lipoprotein (LDL). ApoB has been a key target for cardiovascular research because of its essential role in the assembly, secretion, delivery, and receptor binding of LDL. The three-dimensional structure of apoB has not been determined. However, the N-terminal region of apoB is homologous to the lipid storage protein lipovitellin, which allows the modeling of this region based on the X-ray structure of lipovitellin. The model of the N-terminal 17% of apoB (B17) suggests that, like lipovitellin, B17 consists of an N-terminal beta-barrel domain, a helical domain, and a beta-sheet domain (C-sheet). Here we test the validity of this model by limited proteolysis of B17 and the characterization of individual domains expressed in Escherichia coli and insect cell systems that are consistent with the model and proteolysis data. Circular dichroism studies of the individual domains indicate that they are folded and their secondary structures are in agreement with the model. We find that the helical domain and C-sheet of apoB interact with each other in vitro, suggesting a strong interaction between these two domains, even without a covalent peptide bond linkage. Our data suggest that the three lipovitellin-like domains exist in B17. Furthermore, the domains fold independently with secondary structures and stabilities like those of intact B17.
Collapse
Affiliation(s)
- Zhenghui Gordon Jiang
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
37
|
Abstract
Increased serum concentrations of low density lipoproteins represent a major cardiovascular risk factor. Low-density lipoproteins are derived from very low density lipoproteins secreted by the liver. Apolipoprotein (apo)B that constitutes the essential structural protein of these lipoproteins exists in two forms, the full length form apoB-100 and the carboxy-terminal truncated apoB-48. The generation of apoB-48 is due to editing of the apoB mRNA which generates a premature stop translation codon. The editing of apoB mRNA is an important regulatory event because apoB-48-containing lipoproteins cannot be converted into the atherogenic low density lipoproteins. The apoB gene is constitutively expressed in liver and intestine, and the rate of apoB secretion is regulated post-transcriptionally. The translocation of apoB into the endoplasmic reticulum is complicated by the hydrophobicity of the nascent polypeptide. The assembly and secretion of apoB-containing lipoproteins within the endoplasmic reticulum is strictly dependent on the microsomal tricylceride transfer protein which shuttles triglycerides onto the nascent lipoprotein particle. The overall synthesis of apoB lipoproteins is regulated by proteosomal and nonproteosomal degradation and is dependent on triglyceride availability. Noninsulin dependent diabetes mellitus, obesity and the metabolic syndrome are characterized by an increased hepatic synthesis of apoB-containing lipoproteins. Interventions aimed to reduce the hepatic secretion of apoB-containing lipoproteins are therefore of great clinical importance. Lead targets in these pathways are discussed.
Collapse
Affiliation(s)
- J Greeve
- Klinik für Allgemeine Innere Medizin, Inselspital-Universitätsspital Bern, Switzerland.
| |
Collapse
|
38
|
Manchekar M, Richardson PE, Forte TM, Datta G, Segrest JP, Dashti N. Apolipoprotein B-containing lipoprotein particle assembly: lipid capacity of the nascent lipoprotein particle. J Biol Chem 2004; 279:39757-66. [PMID: 15254032 DOI: 10.1074/jbc.m406302200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously proposed that the N-terminal 1000-residue betaalpha(1) domain of apolipoprotein B (apoB) forms a bulk lipid pocket homologous to that of lamprey lipovitellin. In support of this "lipid pocket" hypothesis, we demonstrated that apoB:1000 (residues 1-1000) is secreted by a stable transformant of McA-RH7777 cells as a monodisperse particle with high density lipoprotein 3 (HDL(3)) density. In contrast, apoB:931 (residues 1-931), missing only 69 residues of the sequence homologous to lipovitellin, was secreted as a particle considerably more dense than HDL(3). In the present study we have determined the stoichiometry of the lipid component of the apoB:931 and apoB:1000 particles. The secreted [(3)H]glycerol-labeled apoB:1000 particles, isolated by nondenaturing gradient gel electrophoresis, contained 50 phospholipid (PL) and 11 triacylglycerol (TAG) molecules/particle. In contrast, apoB:931 particles contained only a few molecules of PL and were devoid of TAG. The unlabeled apoB:1000 particles, isolated by immunoaffinity chromatography, contained 56 PL, 8 TAG, and 7 cholesteryl ester molecules/particle. The surface to core lipid ratio of apoB:1000-containing particles was approximately 4:1 and was not affected by oleate supplementation. Although very small amounts of microsomal triglyceride transfer protein (MTP) were associated with apoB:1000 particles, it never approached a 1:1 molar ratio of MTP to apoB. These results support a model in which (i) the first 1000 amino acid residues of apoB are competent to complete the lipid pocket without a structural requirement for MTP; (ii) a portion, or perhaps all, of the amino acid residues between 931 and 1000 of apoB-100 are critical for the formation of a stable, bulk lipid-containing nascent lipoprotein particle, and (iii) the lipid pocket created by the first 1000 residues of apoB-100 is PL-rich, suggesting a small bilayer type organization and has a maximum capacity on the order of 50 molecules of phospholipid.
Collapse
Affiliation(s)
- Medha Manchekar
- Department of Medicine, Atherosclerosis Research Unit, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|
39
|
Athar H, Iqbal J, Jiang XC, Hussain MM. A simple, rapid, and sensitive fluorescence assay for microsomal triglyceride transfer protein. J Lipid Res 2004; 45:764-72. [PMID: 14754905 DOI: 10.1194/jlr.d300026-jlr200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is critical for the assembly and secretion of apolipoprotein B (apoB) lipoproteins. Its activity is classically measured by incubating purified MTP or cellular homogenates with donor vesicles containing radiolabeled lipids, precipitating the donor vesicles, and measuring the radioactivity transferred to acceptor vesicles. Here, we describe a simple, rapid, and sensitive fluorescence assay for MTP. In this assay, purified MTP or cellular homogenates are incubated with small unilamellar donor vesicles containing quenched fluorescent lipids (triacylglycerols, cholesteryl esters, and phospholipids) and different types of acceptor vesicles made up of phosphatidylcholine or phosphatidylcholine and triacylglycerols. Increases in fluorescence attributable to MTP-mediated lipid transfer are measured after 30 min. MTP's lipid transfer activity could be assayed using apoB lipoproteins but not with high density lipoproteins as acceptors. The assay was used to measure MTP activity in cell and tissue homogenates. Furthermore, the assay was useful in studying the inhibition of the cellular as well as purified MTP by its antagonists. This new method is amenable to automation and can be easily adopted for large-scale, high-throughput screening.
Collapse
Affiliation(s)
- Humra Athar
- Department of Anatomy and Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
40
|
Sellers JA, Hou L, Athar H, Hussain MM, Shelness GS. A Drosophila microsomal triglyceride transfer protein homolog promotes the assembly and secretion of human apolipoprotein B. Implications for human and insect transport and metabolism. J Biol Chem 2003; 278:20367-73. [PMID: 12657646 DOI: 10.1074/jbc.m300271200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and secretion of triglyceride-rich lipoproteins in vertebrates requires apolipoprotein B (apoB) and the endoplasmic reticulum-localized cofactor, microsomal triglyceride transfer protein (MTP). Invertebrates, particularly insects, transport the majority of their neutral and polar lipids in lipophorins; however, the assembly of lipophorin precursor particles was presumed to be MTP-independent. A Drosophila melanogaster expressed gene sequence (CG9342), displaying 23% identity with human MTP, was recently identified. When coexpressed in COS cells, CG9342 promoted the assembly and secretion of apoB34 and apoB41 (N-terminal 34 and 41% of human apoB). The apoB34-containing particles assembled by human MTP and CG9342 displayed similar peak densities of approximately 1.169 g/ml and similar lipid compositions. However, CG9342 displayed differential sensitivities to two inhibitors of human MTP and low vesicle-based lipid transfer activity, in vitro. In addition, important predicted structural distinctions exist between the human and Drosophila proteins suggesting overlapping but not identical functional roles. We conclude that CG9342 and human MTP are orthologs that share only a subset of functions, consistent with known differences in intracellular and extracellular aspects of vertebrate and invertebrate lipid transport and metabolism.
Collapse
Affiliation(s)
- Jeremy A Sellers
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1040, USA
| | | | | | | | | |
Collapse
|
41
|
Burnett JR, Shan J, Miskie BA, Whitfield AJ, Yuan J, Tran K, McKnight CJ, Hegele RA, Yao Z. A novel nontruncating APOB gene mutation, R463W, causes familial hypobetalipoproteinemia. J Biol Chem 2003; 278:13442-52. [PMID: 12551903 DOI: 10.1074/jbc.m300235200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial hypobetalipoproteinemia (FHBL), an autosomal co-dominant disorder, is associated with reduced plasma concentrations (<5th percentile for age and sex) of apolipoprotein (apo) B and beta-migrating lipoproteins. To date, only mutations in APOB encoding prematurely truncated apoB have been found in FHBL. We discovered a novel APOB gene mutation, namely R463W, in an extended Christian Lebanese FHBL kindred. Heterozygotes for R463W had the typical FHBL phenotype, whereas homozygotes had barely detectable apoB-100. The effect of the R463W mutation on apoB secretion was examined using transfected McA-RH7777 cells that expressed one of two recombinant human apoBs, namely B48 and B17. In both cases, the mutant proteins (B48RW and B17RW) were retained within the endoplasmic reticulum and were secreted poorly compared with their wild-type counterparts. Pulse-chase analysis showed that secretion efficiencies of B48RW and B17RW were, respectively, 45 and 40% lower than those of the wild-types. Substitution of Arg(463) with Ala in apoB-17 (B17RA) decreased secretion efficiency by approximately 50%, but substitution with Lys (B17RK) had no effect on secretion, indicating that the positive charge was important. Molecular modeling of apoB predicted that Arg(463) was in close proximity to Glu(756) and Asp(456). Substitution of Glu(756) with Gln (B17EQ) had no effect on secretion, but substitution of Asp(456) with Asn (B17DN) decreased secretion to the same extent as B17RW. In co-transfection experiments, the mutant B17RW showed increased binding to microsomal triglyceride transfer protein as compared with wild-type B17. Thus, the naturally occurring R463W mutant reveals a key local domain governing assembly and secretion of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- John R Burnett
- Department of Core Clinical Pathology and Biochemistry, Royal Perth Hospital and Department of Pathology, University of Western Australia, Perth WA 6847, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44:22-32. [PMID: 12518019 DOI: 10.1194/jlr.r200014-jlr200] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are necessary for lipoprotein assembly. ApoB consists of five structural domains, betaalpha(1)-beta(1)-alpha(2)-beta(2)-alpha(3). We propose that MTP contains three structural motifs (N-terminal beta-barrel, central alpha-helix, and C-terminal lipid cavity) and three functional domains (lipid transfer, membrane associating, and apoB binding). MTP's lipid transfer activity is required for the assembly of lipoproteins. This activity renders nascent apoB secretion-competent and may be involved in the import of triglycerides into the lumen of endoplasmic reticulum. In addition, MTP binds to apoB with high affinity involving ionic interactions. MTP interacts at multiple sites in the N-terminal betaalpha(1) structural domain of apoB. A novel antagonist that inhibits apoB-MTP binding decreases apoB secretion. Furthermore, site-directed mutagenesis and deletion analyses that inhibit apoB-MTP binding decrease apoB secretion. Lipids modulate protein-protein interactions between apoB and MTP. Lipids associated with MTP increase apoB-MTP binding whereas lipids associated with apoB decrease this binding. Thus, specific antagonist, site-directed mutagenesis, deletion analyses, and modulation studies support the notion that apoB-MTP binding plays a role in lipoprotein biogenesis. However, specific steps in lipoprotein assembly that require apoB-MTP binding have not been identified. ApoB-MTP binding may be important for the prevention of degradation and lipidation of nascent apoB.
Collapse
Affiliation(s)
- M Mahmood Hussain
- Department of Anatomy, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
43
|
Vukmirica J, Nishimaki-Mogami T, Tran K, Shan J, McLeod RS, Yuan J, Yao Z. The N-linked oligosaccharides at the amino terminus of human apoB are important for the assembly and secretion of VLDL. J Lipid Res 2002; 43:1496-507. [PMID: 12235182 DOI: 10.1194/jlr.m200077-jlr200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the role of N-linked glycosylation of apolipoprotein B (apoB) in the assembly and secretion of lipoproteins using transfected rat hepatoma McA-RH7777 cells expressing human apoB-17, apoB-37, and apoB-50, three apoB variants with different ability to recruit neutral lipids. Substituting Asn residue with Gln at the single glycosylation site within apoB-17 (N(158)) decreased its secretion efficiency to a level equivalent to that of wild-type apoB-17 treated with tunicamycin, but had little effect on its synthesis or intracellular distribution. When selective N-to-Q substitution was introduced at one or more of the five N-linked glycosylation sites within apoB-37 (N(158), N(956), N(1341), N(1350), and N(1496)), secretion efficiency of apoB-37 from transiently transfected cells was variably affected. When all five N-linked glycosylation sites were mutated within apoB-37, the secretion efficiency and association with lipoproteins were decreased by >50% as compared with wild-type apoB-37. Similarly, mutant apoB-50 with all of its N-linked glycosylation sites mutagenized showed decreased secretion efficiency and decreased lipoprotein association in both d < 1.02 and d > 1.02 g/ml fractions. The inability of mutant apoB-37 and apoB-50 to associate with very low-density lipoproteins was attributable to impaired assembly and was not due to the limitation of lipid availability. The decreased secretion of mutant apoB-17 and apoB-37 was not accompanied by accumulation within the cells, suggesting that the proportion of mutant apoB not secreted was rapidly degraded. However unlike apoB-17 or apoB-37, accumulation of mutant apoB-50 was observed within the endoplasmic reticulum and Golgi compartments. These data imply that the N-glycans at the amino terminus of apoB play an important role in the assembly and secretion of lipoproteins containing the carboxyl terminally truncated apoB.
Collapse
Affiliation(s)
- Jelena Vukmirica
- Lipoprotein and Atherosclerosis Group, Department of Pathology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada, K1Y 4W7
| | | | | | | | | | | | | |
Collapse
|
44
|
Kulinski A, Rustaeus S, Vance JE. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation. J Biol Chem 2002; 277:31516-25. [PMID: 12072432 DOI: 10.1074/jbc.m202015200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly of very low density lipoproteins in hepatocytes requires the microsomal triacylglycerol transfer protein (MTP). This microsomal lumenal protein transfers lipids, particularly triacylglycerols (TG), between membranes in vitro and has been proposed to transfer TG to nascent apolipoprotein (apo) B in vivo. We examined the role of MTP in the assembly of apoB-containing lipoproteins in cultured murine primary hepatocytes using an inhibitor of MTP. The MTP inhibitor reduced TG secretion from hepatocytes by 85% and decreased the amount of apoB100 in the microsomal lumen, as well as that secreted into the medium, by 70 and 90%, respectively, whereas the secretion of apoB48 was only slightly decreased and the amount of lumenal apoB48 was unaffected. However, apoB48-containing particles formed in the presence of inhibitor were lipid-poor compared with those produced in the absence of inhibitor. We also isolated a pool of apoB-free TG from the microsomal lumen and showed that inhibition of MTP decreased the amount of TG in this pool by approximately 45%. The pool of TG associated with apoB was similarly reduced. However, inhibition of MTP did not directly block TG transfer from the apoB-independent TG pool to partially lipidated apoB in the microsomal lumen. We conclude that MTP is required for TG accumulation in the microsomal lumen and as a source of TG for assembly with apoB, but normal levels of MTP are not required for transferring the bulk of TG to apoB during VLDL assembly in murine hepatocytes.
Collapse
Affiliation(s)
- Agnes Kulinski
- Canadian Institutes for Health Research Group in Molecular and Cell Biology of Lipids, and the Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
45
|
Flood C, Gustafsson M, Richardson PE, Harvey SC, Segrest JP, Borén J. Identification of the proteoglycan binding site in apolipoprotein B48. J Biol Chem 2002; 277:32228-33. [PMID: 12070165 DOI: 10.1074/jbc.m204053200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An initial event in atherosclerosis is the retention of lipoproteins within the intima of the vessel wall. Previously we identified Site B (residues 3359-3369) in apolipoprotein (apo) B100 as the proteoglycan binding sequence in low density lipoproteins (LDLs) and showed that the atherogenicity of apoB-containing lipoproteins is linked to their affinity for artery wall proteoglycans. However, both apoB100- and apoB48-containing lipoproteins are equally atherogenic even though Site B lies in the carboxyl-terminal half of apoB100 and is absent in apoB48. If binding to proteoglycans is a key step in atherogenesis, apoB48-containing lipoproteins must bind to proteoglycans via other proteoglycan binding sites in the amino-terminal 48% of apoB. In vitro studies have identified five clusters of basic amino acids in delipidated apoB48 that bind negatively charged glycosaminoglycans. To determine which of these sites is functional on LDL particles, we analyzed the proteoglycan binding activity of recombinant human LDLs from transgenic mice or rat hepatoma cells. Substitution of neutral amino acids for the basic amino acids in Site B-Ib (residues 84-94) abolished the proteoglycan binding activity of recombinant apoB53. Carboxyl-truncated apoB80 bound biglycan with higher affinity than apoB100 and apoB48. ApoB80 in which Site B was mutated had the same affinity for proteoglycans as apoB48. These data support the hypothesis that the carboxyl terminus of apoB100 "masks" Site B-Ib, the amino-terminal proteoglycan binding site, and that this site is exposed in carboxyl-truncated forms of apoB. The presence of a proteoglycan binding site in the amino-terminal region of apoB may explain why apoB48- and apoB100-containing lipoproteins are equally atherogenic.
Collapse
Affiliation(s)
- Christofer Flood
- Wallenberg Laboratory for Cardiovascular Research, The Sahlgrenska Academy at Göteborg University, S-413 45 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Dashti N, Gandhi M, Liu X, Lin X, Segrest JP. The N-terminal 1000 residues of apolipoprotein B associate with microsomal triglyceride transfer protein to create a lipid transfer pocket required for lipoprotein assembly. Biochemistry 2002; 41:6978-87. [PMID: 12033930 DOI: 10.1021/bi011757l] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apolipoprotein (apo) B, the major protein component of the atherogenic low-density lipoprotein (LDL), has a pentapartite structure, NH2-betaalpha1-beta1-alpha2-beta2-alpha3-COOH, the beta domains containing multiple amphipathic beta strands and the alpha domains containing multiple amphipathic alpha helixes. We recently reported that the first 1000 residues of human apoB-100 have sequence and amphipathic motif homologies to the lipid-pocket of lamprey lipovitellin (LV) [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416]. The lipid-pocket of LV is a small triangular space lined by three antiparallel amphipathic beta sheets, betaA, betaB, and betaD. The betaA and betaB sheets are joined together by an antiparallel alpha helical bundle, alpha domain. We proposed [Segrest, J. P., Jones, M. K., and Dashti, N. (1999) J. Lipid Res. 40, 1401-1416] that formation of a LV-like lipid-pocket is necessary for lipid-transfer to apoB-containing lipoprotein particles and that this pocket is formed by association of the region of the betaalpha1 domain homologous to the betaA and betaB sheets of LV with a betaD-like amphipathic beta sheet from microsomal triglyceride transfer protein (MTP). To test this hypothesis, we generated four truncated cDNA constructs terminating at or near the juncture of the betaalpha1 and beta1 domains: Residues 1-800 (apoB:800), 1-931 (apoB:931), 1-1000 (apoB:1000), and 1-1200 (apoB:1200). Characterization of particles secreted by stable transformants of the McA-RH7777 cell line demonstrated that (i) ApoB:800, missing the betaB domain, was secreted as a lipid-poor aggregate. (ii) ApoB:931, containing most, but not all, of the betaB domain, was secreted as lipid-poor particles unassociated with MTP. (iii) ApoB:1000, containing the entire betaB domain, was secreted as a relatively lipid-rich particle associated hydrophobically with MTP. (iv) ApoB:1200, containing the betaalpha1 domain plus 200 residues of the beta1 domain, was secreted predominantly as a lipid-poor particle but also as a minor relatively lipid-rich, MTP-associated particle. We thus have captured an intermediate in apoB-containing particle assembly, a lipid transfer competent pocket formed by association of the complete betaalpha1 domain of apoB with MTP.
Collapse
Affiliation(s)
- Nassrin Dashti
- Department of Medicine, University of Alabama at Birmingham Medical Center, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
47
|
Fisher EA, Ginsberg HN. Complexity in the secretory pathway: the assembly and secretion of apolipoprotein B-containing lipoproteins. J Biol Chem 2002; 277:17377-80. [PMID: 12006608 DOI: 10.1074/jbc.r100068200] [Citation(s) in RCA: 343] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Edward A Fisher
- Cardiovascular Institute and Departments of Medicine and Biochemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
48
|
Levy E, Stan S, Delvin E, Menard D, Shoulders C, Garofalo C, Slight I, Seidman E, Mayer G, Bendayan M. Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem 2002; 277:16470-7. [PMID: 11830580 DOI: 10.1074/jbc.m102385200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although a critical role of microsomal transfer protein (MTP) has been recognized in the assembly of nascent apolipoprotein B (apoB)-containing lipoproteins, it remains unclear where and how MTP transfers lipids in the secretory pathway during the maturational process of apoB lipidation. The aims of this study were to determine whether MTP functions in the secretory pathway as well as in the endoplasmic reticulum and whether its large 97-kDa subunit interacts with the small 58-kDa protein disulfide isomerase (PDI) subunit and apoB, particularly in the Golgi apparatus. Using a high resolution immunogold approach combined with specific polyclonal antibodies, the large and small subunits of MTP were observed over the rough endoplasmic reticulum and the Golgi. Double immunocytochemical detection unraveled the colocalization of MTP and PDI as well as MTP and apoB in these same subcellular compartments. To confirm the spatial contact of these proteins, Golgi fractions were isolated, homogenized, and incubated with an anti-MTP large subunit antibody. Immunoprecipitates were applied on SDS-PAGE and then transferred on to nitrocellulose. Immunoblotting the membrane with PDI and apoB antibodies confirmed the colocalization of these proteins with MTP. Furthermore, MTP activity assay disclosed a substantial triglyceride transfer in the Golgi fractions. The occurrence of membrane-associated apoB in the Golgi, coupled with its interaction with active MTP, suggests an important role for the Golgi in the biogenesis of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Emile Levy
- Department of Nutrition, Hôpital Sainte-Justine and University of Montreal, Montreal, Quebec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cartwright IJ, Higgins JA. Direct evidence for a two-step assembly of ApoB48-containing lipoproteins in the lumen of the smooth endoplasmic reticulum of rabbit enterocytes. J Biol Chem 2001; 276:48048-57. [PMID: 11675380 DOI: 10.1074/jbc.m104229200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the types and characteristics of chylomicron precursors in the lumen of the secretory compartment of rabbit enterocytes. Luminal contents were separated into density subfractions in two continuous self-generating gradients of different density profiles. In enterocytes from rabbits fed a low fat diet, newly synthesized and immunodetectable apoB48 was only in the subfraction of density similar to high density lipoprotein (dense particles); the luminal triacylglycerol (TAG) content was low and only in the subfraction of density similar to that of chylomicrons/very low density lipoproteins (light particles). After feeding fat, newly synthesized, and immunodetectable apoB48 was in both dense (phospholipid-rich) and light (TAG-rich) particles. Luminal TAG mass and synthesis increased after fat feeding and was only in light particles. Pulse-chase experiments showed that the luminal-radiolabeled apoB48 lost from the dense particles was recovered in the light particles and the secreted chylomicrons. All of the light particle lipids (mass and newly synthesized) co-immunoprecipitated with apoB48. However, in the dense particles, there was a preferential co-precipitation of the preexisting rather than newly synthesized phospholipid. Assembly of apoB48-containing TAG-enriched lipoproteins is therefore a two-step process. The first step produces dense apoB48 phospholipid-rich particles, which accumulate in the smooth endoplasmic reticulum lumen. In the second step, these dense particles rapidly acquire the bulk of the TAG and additional phospholipid in a single and rapid step.
Collapse
Affiliation(s)
- I J Cartwright
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
50
|
Sellers JA, Shelness GS. Lipoprotein assembly capacity of the mammary tumor-derived cell line C127 is due to the expression of functional microsomal triglyceride transfer protein. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31516-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|