1
|
Chung YK, Chan HY, Lee TY, Wong YH. Inhibition of adenylyl cyclase by GTPase-deficient Gα i is mechanistically different from that mediated by receptor-activated Gα i. Cell Commun Signal 2024; 22:218. [PMID: 38581012 PMCID: PMC10996109 DOI: 10.1186/s12964-024-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
Signal transduction through G protein-coupled receptors (GPCRs) has been a major focus in cell biology for decades. Numerous disorders are associated with GPCRs that utilize Gi proteins to inhibit adenylyl cyclase (AC) as well as regulate other effectors. Several early studies have successfully defined the AC-interacting domains of several members of Gαi by measuring the loss of activity upon homologous replacements of putative regions of constitutive active Gαi mutants. However, whether such findings can indeed be translated into the context of a receptor-activated Gαi have not been rigorously verified. To address this issue, an array of known and new chimeric mutations was introduced into GTPase-deficient Q204L (QL) and R178C (RC) mutants of Gαi1, followed by examinations on their ability to inhibit AC. Surprisingly, most chimeras failed to abolish the constitutive activity brought on by the QL mutation, while some were able to eliminate the inhibitory activity of RC mutants. Receptor-mediated inhibition of AC was similarly observed in the same chimeric constructs harbouring the pertussis toxin (PTX)-resistant C351I mutation. Moreover, RC-bearing loss-of-function chimeras appeared to be hyper-deactivated by endogenous RGS protein. Molecular docking revealed a potential interaction between AC and the α3/β5 loop of Gαi1. Subsequent cAMP assays support a cooperative action of the α3/β5 loop, the α4 helix, and the α4/β6 loop in mediating AC inhibition by Gαi1-i3. Our results unveiled a notable functional divergence between constitutively active mutants and receptor-activated Gαi1 to inhibit AC, and identified a previously unknown AC-interacting domain of Gαi subunits. These results collectively provide valuable insights on the mechanism of AC inhibition in the cellular environment.
Collapse
Affiliation(s)
- Yin Kwan Chung
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Ho Yung Chan
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tung Yeung Lee
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China.
- State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Zhang Q, Sjögren B. Palmitoylation of RGS20 affects Gα o-mediated signaling independent of its GAP activity. Cell Signal 2023; 107:110682. [PMID: 37075876 DOI: 10.1016/j.cellsig.2023.110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/21/2023]
Abstract
Regulator of protein signaling (RGS20) is a member of the RGS protein superfamily, which serve as key negative regulators of G protein-mediated signal transduction. Through their GTPase accelerating protein (GAP) activity, RGS proteins deactivate α-subunits of heterotrimeric G proteins. In addition, the majority of RGS proteins also have the ability to act through other, non-GAP related, functions. RGS20 is one of three members of the RZ subfamily, which all show selective GAP activity towards Gαz, however emerging data suggest that RGS20 can also regulate Gi/o-mediated signaling. While increased RGS20 expression is associated with the progression of multiple cancers, a large gap still exists relating to the mechanisms of RGS20 regulation and function. RGS20 contains a poly-cysteine string motif and a conserved cysteine in RGS domain, which are assumed to be palmitoylated. Palmitoylation, an important post-translational modification, plays an important role in cells by changing cellular functions of proteins. Consequently, the aim of this study was to confirm that RGS20 is palmitoylated and determine how palmitoylation affects its inhibition of Gαo-mediated signaling. We found a significant positive correlation between RGS20 palmitoylation and its association with active Gαo. We also showed that a conserved cysteine residue in the RGS domain is a critical site for its palmitoylation, with large impact on its association with Gαo. Palmitoylation on this site did not affect its GAP activity, however, it increased the inhibition of Gαo-mediated cAMP signaling. Altogether these data suggest that palmitoylation is a regulatory mechanism controlling RGS20 function, and that RGS20 can inhibit Gαo signaling through both GAP activity and non-GAP mechanisms.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America
| | - Benita Sjögren
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States of America.
| |
Collapse
|
3
|
Sakloth F, Sanchez-Reyes OB, Ruiz A, Nicolais A, Serafini RA, Pryce KD, Bertherat F, Torres-Berrío A, Gomes I, Devi LA, Wacker D, Zachariou V. A Regional and Projection-Specific Role of RGSz1 in the Ventrolateral Periaqueductal Grey in the Modulation of Morphine Reward. Mol Pharmacol 2023; 103:1-8. [PMID: 36310031 PMCID: PMC11033942 DOI: 10.1124/molpharm.122.000528] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023] Open
Abstract
Opioid analgesics exert their therapeutic and adverse effects by activating μ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Omar B Sanchez-Reyes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Anne Ruiz
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Randal A Serafini
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Angélica Torres-Berrío
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Ivone Gomes
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Lakshmi A Devi
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Daniel Wacker
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute (F.S., A.R., A.N., R.A.S., K.D.P., F.B., A.T.-B., L.A.D., D.W., V.Z.) and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (O.B.S.R., I.G., L.A.D., D.W., V.Z.)
| |
Collapse
|
4
|
Tian M, Ma Y, Li T, Wu N, Li J, Jia H, Yan M, Wang W, Bian H, Tan X, Qi J. Functions of regulators of G protein signaling 16 in immunity, inflammation, and other diseases. Front Mol Biosci 2022; 9:962321. [PMID: 36120550 PMCID: PMC9478547 DOI: 10.3389/fmolb.2022.962321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) act as guanosine triphosphatase activating proteins to accelerate guanosine triphosphate hydrolysis of the G protein α subunit, leading to the termination of the G protein-coupled receptor (GPCR) downstream signaling pathway. RGS16, which is expressed in a number of cells and tissues, belongs to one of the small B/R4 subfamilies of RGS proteins and consists of a conserved RGS structural domain with short, disordered amino- and carboxy-terminal extensions and an α-helix that classically binds and de-activates heterotrimeric G proteins. However, with the deepening of research, it has been revealed that RGS16 protein not only regulates the classical GPCR pathway, but also affects immune, inflammatory, tumor and metabolic processes through other signaling pathways including the mitogen-activated protein kinase, phosphoinositide 3-kinase/protein kinase B, Ras homolog family member A and stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 pathways. Additionally, the RGS16 protein may be involved in the Hepatitis B Virus -induced inflammatory response. Therefore, given the continuous expansion of knowledge regarding its role and mechanism, the structure, characteristics, regulatory mechanisms and known functions of the small RGS proteinRGS16 are reviewed in this paper to prepare for diagnosis, treatment, and prognostic evaluation of different diseases such as inflammation, tumor, and metabolic disorders and to better study its function in other diseases.
Collapse
Affiliation(s)
- Miaomiao Tian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Ma
- Zibo Central Hospital, Zibo, China
| | - Tao Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqi Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenwen Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xu Tan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Provincial Engineering and Technological Research Center for Liver Diseases Prevention and Control, Jinan, China
- *Correspondence: Jianni Qi, ; Xu Tan,
| |
Collapse
|
5
|
RGS20 Promotes Tumor Progression through Modulating PI3K/AKT Signaling Activation in Penile Cancer. JOURNAL OF ONCOLOGY 2022; 2022:1293622. [PMID: 35498542 PMCID: PMC9042636 DOI: 10.1155/2022/1293622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Regulator of G protein signaling 20 (RGS20) plays an important role in regulating neuronal G protein-coupled receptor signaling; however, its expression and oncogenic function in penile cancer (PC) remains unclear. Here, we observed high RGS20 expression in PC tissues compared to normal/adjacent penile tissues, which was closely associated with tumor stage, nodal status, and pelvic metastasis in our PC cohort. The cellular functional analysis of RGS20 revealed that manipulation of the RGS20 expression markedly affected cell viability, BrdU incorporation, soft agar clonogenesis, caspase-3 activity, and cell migration/invasion in PC cell models. Moreover, RGS20 could interact with PI3K p85α subunit and regulate PI3K/AKT signaling activation in PC cell lines. Knockdown of the PI3K p85α or p110α subunit attenuated cell viability, BrdU incorporation, soft agar clonogenesis, and cell migration/invasion in PC cell lines. In contrast, the overexpression of constitutively activated PI3K p110α mutant restored cell proliferation and cell migration/invasion caused by RGS20 depletion in PC cells. Consistent with the in vitro findings, RGS20 depletion attenuated PI3K/AKT signaling activation and suppressed tumor growth in a murine xenograft model. Importantly, the high RGS20 expression was associated with PI3K/AKT signaling activation and unfavorable progression-free/overall survival, highlighting the clinical relevance of RGS20/PI3K/AKT signaling in PC. In conclusion, the aberrant RGS20 expression may serve as a diagnostic and prognostic marker for PC. RGS20 may promote PC progression through modulating PI3K/AKT signaling activation, which may assist with the development of RGS20-targeting therapeutics in the future.
Collapse
|
6
|
Jiang L, Shen J, Zhang N, He Y, Wan Z. Association of RGS20 expression with the progression and prognosis of renal cell carcinoma. Oncol Lett 2021; 22:643. [PMID: 34386065 PMCID: PMC8299006 DOI: 10.3892/ol.2021.12904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Regulator of G protein signaling 20 (RGS20) has been shown to be highly expressed in various types of cancer. The present study aimed to investigate the effects of RGS20 in patients with renal cell carcinoma (RCC) and in RCC cells. Bioinformatics analysis was performed to analyze the role of RGS20 in RCC. Quantitative PCR and western blotting were used to determine the mRNA and protein expression levels of RGS20 in cells, respectively. After RGS20 inhibition, the proliferation, apoptosis, migration and invasiveness of A-498 cells were tested using MTT assay, EdU assay, propidium iodide staining, Annexin V-FITC/PI kit, wound healing assay and Transwell assay. High RGS20 expression was closely associated with the progression and immune infiltration of RCC, and may be considered as an independent indicator of poor prognosis in RCC. After knocking down RGS20, the proliferation, migration and invasiveness of cells were impaired, the cell cycle was arrested at the G0/G1 phase, and the level of apoptosis was increased. In addition, the mRNA expression levels of securin, CDC20 and cyclin B1 were decreased in RGS20-knockdown cells. RGS20 expression was significantly associated with the infiltration level of activated CD4 T cells, type 1 T helper cells and activated dendritic cells. In summary, RGS20 expression was associated with RCC progression and poor prognosis; thus, it may be used to estimate the prognosis of RCC and may serve as a new potential treatment strategy for RCC.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Jiangwei Shen
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Ning Zhang
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Yongchao He
- Department of Urology, Caoxian People's Hospital, Heze, Shandong 274400, P.R. China
| | - Zhenghua Wan
- Department of Urology, The Fifth Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| |
Collapse
|
7
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
Masuho I, Balaji S, Muntean BS, Skamangas NK, Chavali S, Tesmer JJG, Babu MM, Martemyanov KA. A Global Map of G Protein Signaling Regulation by RGS Proteins. Cell 2020; 183:503-521.e19. [PMID: 33007266 PMCID: PMC7572916 DOI: 10.1016/j.cell.2020.08.052] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 07/03/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
The control over the extent and timing of G protein signaling is provided by the regulator of G protein signaling (RGS) proteins that deactivate G protein α subunits (Gα). Mammalian genomes encode 20 canonical RGS and 16 Gα genes with key roles in physiology and disease. To understand the principles governing the selectivity of Gα regulation by RGS, we examine the catalytic activity of all canonical human RGS proteins and their selectivity for a complete set of Gα substrates using real-time kinetic measurements in living cells. The data reveal rules governing RGS-Gα recognition, the structural basis of its selectivity, and provide principles for engineering RGS proteins with defined selectivity. The study also explores the evolution of RGS-Gα selectivity through ancestral reconstruction and demonstrates how naturally occurring non-synonymous variants in RGS alter signaling. These results provide a blueprint for decoding signaling selectivity and advance our understanding of molecular recognition principles. Systematic analysis reveals G protein selectivity of all canonical RGS proteins RGS proteins rely on selectivity bar codes for selective G protein recognition Transplantation of bar codes across RGS proteins switches their G protein preferences Natural variants, mutations, and evolution shape RGS selectivity
Collapse
Affiliation(s)
- Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brian S Muntean
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Nickolas K Skamangas
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karakambadi Road, Tirupati 517 507, India
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907-2054, USA
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Departments of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Sieng M, Hayes MP, O'Brien JB, Andrew Fowler C, Houtman JC, Roman DL, Lyon AM. High-resolution structure of RGS17 suggests a role for Ca 2+ in promoting the GTPase-activating protein activity by RZ subfamily members. J Biol Chem 2019; 294:8148-8160. [PMID: 30940727 DOI: 10.1074/jbc.ra118.006059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/27/2019] [Indexed: 11/06/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are negative regulators of G protein-coupled receptor (GPCR) signaling through their ability to act as GTPase-activating proteins (GAPs) for activated Gα subunits. Members of the RZ subfamily of RGS proteins bind to activated Gαo, Gαz, and Gαi1-3 proteins in the nervous system and thereby inhibit downstream pathways, including those involved in Ca2+-dependent signaling. In contrast to other RGS proteins, little is known about RZ subfamily structure and regulation. Herein, we present the 1.5-Å crystal structure of RGS17, the most complete and highest-resolution structure of an RZ subfamily member to date. RGS17 cocrystallized with Ca2+ bound to conserved positions on the predicted Gα-binding surface of the protein. Using NMR chemical shift perturbations, we confirmed that Ca2+ binds in solution to the same site. Furthermore, RGS17 had greater than 55-fold higher affinity for Ca2+ than for Mg2+ Finally, we found that Ca2+ promotes interactions between RGS17 and activated Gα and decreases the Km for GTP hydrolysis, potentially by altering the binding mechanism between these proteins. Taken together, these findings suggest that Ca2+ positively regulates RGS17, which may represent a general mechanism by which increased Ca2+ concentration promotes the GAP activity of the RZ subfamily, leading to RZ-mediated inhibition of Ca2+ signaling.
Collapse
Affiliation(s)
- Monita Sieng
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Joseph B O'Brien
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - C Andrew Fowler
- NMR Facility, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Jon C Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa 52242
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242
| | - Angeline M Lyon
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907; Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.
| |
Collapse
|
10
|
Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochem Biophys Res Commun 2018; 503:2736-2741. [DOI: 10.1016/j.bbrc.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
|
11
|
Squires KE, Montañez-Miranda C, Pandya RR, Torres MP, Hepler JR. Genetic Analysis of Rare Human Variants of Regulators of G Protein Signaling Proteins and Their Role in Human Physiology and Disease. Pharmacol Rev 2018; 70:446-474. [PMID: 29871944 PMCID: PMC5989036 DOI: 10.1124/pr.117.015354] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulators of G protein signaling (RGS) proteins modulate the physiologic actions of many neurotransmitters, hormones, and other signaling molecules. Human RGS proteins comprise a family of 20 canonical proteins that bind directly to G protein-coupled receptors/G protein complexes to limit the lifetime of their signaling events, which regulate all aspects of cell and organ physiology. Genetic variations account for diverse human traits and individual predispositions to disease. RGS proteins contribute to many complex polygenic human traits and pathologies such as hypertension, atherosclerosis, schizophrenia, depression, addiction, cancers, and many others. Recent analysis indicates that most human diseases are due to extremely rare genetic variants. In this study, we summarize physiologic roles for RGS proteins and links to human diseases/traits and report rare variants found within each human RGS protein exome sequence derived from global population studies. Each RGS sequence is analyzed using recently described bioinformatics and proteomic tools for measures of missense tolerance ratio paired with combined annotation-dependent depletion scores, and protein post-translational modification (PTM) alignment cluster analysis. We highlight selected variants within the well-studied RGS domain that likely disrupt RGS protein functions and provide comprehensive variant and PTM data for each RGS protein for future study. We propose that rare variants in functionally sensitive regions of RGS proteins confer profound change-of-function phenotypes that may contribute, in newly appreciated ways, to complex human diseases and/or traits. This information provides investigators with a valuable database to explore variation in RGS protein function, and for targeting RGS proteins as future therapeutic targets.
Collapse
Affiliation(s)
- Katherine E Squires
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Carolina Montañez-Miranda
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Rushika R Pandya
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - Matthew P Torres
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| | - John R Hepler
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia (K.E.S., C.M.-M., J.R.H.); and School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia (R.R.P., M.P.T.)
| |
Collapse
|
12
|
Suppression of RGSz1 function optimizes the actions of opioid analgesics by mechanisms that involve the Wnt/β-catenin pathway. Proc Natl Acad Sci U S A 2018; 115:E2085-E2094. [PMID: 29440403 DOI: 10.1073/pnas.1707887115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulator of G protein signaling z1 (RGSz1), a member of the RGS family of proteins, is present in several networks expressing mu opioid receptors (MOPRs). By using genetic mouse models for global or brain region-targeted manipulations of RGSz1 expression, we demonstrated that the suppression of RGSz1 function increases the analgesic efficacy of MOPR agonists in male and female mice and delays the development of morphine tolerance while decreasing the sensitivity to rewarding and locomotor activating effects. Using biochemical assays and next-generation RNA sequencing, we identified a key role of RGSz1 in the periaqueductal gray (PAG) in morphine tolerance. Chronic morphine administration promotes RGSz1 activity in the PAG, which in turn modulates transcription mediated by the Wnt/β-catenin signaling pathway to promote analgesic tolerance to morphine. Conversely, the suppression of RGSz1 function stabilizes Axin2-Gαz complexes near the membrane and promotes β-catenin activation, thereby delaying the development of analgesic tolerance. These data show that the regulation of RGS complexes, particularly those involving RGSz1-Gαz, represents a promising target for optimizing the analgesic actions of opioids without increasing the risk of dependence or addiction.
Collapse
|
13
|
Li B, Tunc-Ozdemir M, Urano D, Jia H, Werth EG, Mowrey DD, Hicks LM, Dokholyan NV, Torres MP, Jones AM. Tyrosine phosphorylation switching of a G protein. J Biol Chem 2018; 293:4752-4766. [PMID: 29382719 DOI: 10.1074/jbc.ra117.000163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/26/2018] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."
Collapse
Affiliation(s)
- Bo Li
- Departments of Biology, Chapel Hill, North Carolina 27599
| | | | - Daisuke Urano
- Departments of Biology, Chapel Hill, North Carolina 27599; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Haiyan Jia
- Departments of Biology, Chapel Hill, North Carolina 27599
| | - Emily G Werth
- Department of Chemistry, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- Biochemistry/Biophysics, Chapel Hill, North Carolina 27599
| | - Leslie M Hicks
- Department of Chemistry, Chapel Hill, North Carolina 27599
| | | | - Matthew P Torres
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Alan M Jones
- Departments of Biology, Chapel Hill, North Carolina 27599; Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
14
|
Yang L, Lee MMK, Leung MMH, Wong YH. Regulator of G protein signaling 20 enhances cancer cell aggregation, migration, invasion and adhesion. Cell Signal 2016; 28:1663-72. [PMID: 27495875 DOI: 10.1016/j.cellsig.2016.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 12/12/2022]
Abstract
Several RGS (regulator of G protein signaling) proteins are known to be upregulated in a variety of tumors but their roles in modulating tumorigenesis remain undefined. Since the expression of RGS20 is elevated in metastatic melanoma and breast tumors, we examined the effects of RGS20 overexpression and knockdown on the cell mobility and adhesive properties of different human cancer cell lines, including cervical cancer HeLa, breast adenocarcinoma MDA-MB-231, and non-small cell lung carcinoma H1299 and A549 cells. Expression of RGS20 enhanced cell aggregation, migration, invasion and adhesion as determined by hanging drop aggregation, wound healing, transwell chamber migration and invasion assays. Conversely, shRNA-mediated knockdown of endogenous RGS20 impaired these responses. In addition, RGS20 elevated the expression of vimentin (a mesenchymal cell marker) but down-regulated the expression of E-cadherin, two indicators commonly associated with metastasis. These results suggest that the expression of RGS20 may promote metastasis of tumor cells.
Collapse
Affiliation(s)
- Lei Yang
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Maggie M K Lee
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Manton M H Leung
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yung H Wong
- Division of Life Science, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
15
|
Hayes MP, Roman DL. Regulator of G Protein Signaling 17 as a Negative Modulator of GPCR Signaling in Multiple Human Cancers. AAPS JOURNAL 2016; 18:550-9. [PMID: 26928451 DOI: 10.1208/s12248-016-9894-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/15/2016] [Indexed: 02/08/2023]
Abstract
Regulators of G protein signaling (RGS) proteins modulate G protein-coupled receptor (GPCR) signaling networks by terminating signals produced by active Gα subunits. RGS17, a member of the RZ subfamily of RGS proteins, is typically only expressed in appreciable amounts in the human central nervous system, but previous works have shown that RGS17 expression is selectively upregulated in a number of malignancies, including lung, breast, prostate, and hepatocellular carcinoma. In addition, this upregulation of RGS17 is associated with a more aggressive cancer phenotype, as increased proliferation, migration, and invasion are observed. Conversely, decreased RGS17 expression diminishes the response of ovarian cancer cells to agents commonly used during chemotherapy. These somewhat contradictory roles of RGS17 in cancer highlight the need for selective, high-affinity inhibitors of RGS17 to use as chemical probes to further the understanding of RGS17 biology. Based on current evidence, these compounds could potentially have clinical utility as novel chemotherapeutics in the treatment of lung, prostate, breast, and liver cancers. Recent advances in screening technologies to identify potential inhibitors coupled with increasing knowledge of the structural requirements of RGS-Gα protein-protein interaction inhibitors make the future of drug discovery efforts targeting RGS17 promising. This review highlights recent findings related to RGS17 as both a canonical and atypical RGS protein, its role in various human disease states, and offers insights on small molecule inhibition of RGS17.
Collapse
Affiliation(s)
- Michael P Hayes
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA
| | - David L Roman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, Iowa, USA. .,Cancer Signaling and Experimental Therapeutics Program, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA. .,, 115 S. Grand Avenue, S327 PHAR, Iowa City, Iowa, 52242, USA.
| |
Collapse
|
16
|
Gpr176 is a Gz-linked orphan G-protein-coupled receptor that sets the pace of circadian behaviour. Nat Commun 2016; 7:10583. [PMID: 26882873 PMCID: PMC4757782 DOI: 10.1038/ncomms10583] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/30/2015] [Indexed: 01/26/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions. A priority for fundamental and clinical research, therefore, is to decipher the function of over 140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain's circadian pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons, and molecular characterization reveals that it represses cAMP signalling in an agonist-independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not through the canonical Gi, but via the unique G-protein subclass Gz. The suprachiasmatic nucleus (SCN) is the central regulator of circadian rhythms. Here the authors identify mouse Gpr176 as a pace modulator of this circadian clock and characterize its mode of action as coupling to Gz rather than Gi subunits.
Collapse
|
17
|
Sun H, Calipari ES, Beveridge TJR, Jones SR, Chen R. The brain gene expression profile of dopamine D2/D3 receptors and associated signaling proteins following amphetamine self-administration. Neuroscience 2015; 307:253-61. [PMID: 26321241 DOI: 10.1016/j.neuroscience.2015.08.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/11/2015] [Accepted: 08/22/2015] [Indexed: 01/11/2023]
Abstract
Persistent neuroadaptations following chronic psychostimulant exposure include reduced striatal dopamine D2 receptor (D2R) levels. The signaling of D2Rs is initiated by Gαi/o proteins and terminated by regulator of G protein signaling (RGS) proteins. The purpose of this study is to examine the association of the drug taking behavior and gene expression profile of D2/D3Rs, and their associated signaling proteins in the ventral tegmental area (VTA) and nucleus accumbens (NAc) using a rodent model of amphetamine (AMPH) self-administration. Rats were allowed to self-administer AMPH (0.187 mg/kg/infusion for a maximum of 40 injections in 6h daily sessions) for 5 days during which rats showed an escalated rate of AMPH intake across days. AMPH self-administration induced profound brain region-dependent alterations of the targeted genes. There was a positive correlation of the messenger ribonucleic acid (mRNA) levels of RGS10 between the VTA and the NAc in the control animals, which was abolished by AMPH self-administration. AMPH self-administration also produced a negative correlation of the mRNA levels of RGS7 and RGS19 between the two brain regions, which was not present in the control group. Furthermore, AMPH taking behavior was associated with changes in certain gene expression levels. The mRNA levels of RGS2 and RGS4 in both the VTA and NAc were positively correlated with the rate of AMPH intake. Additionally, the rate of AMPH intake was also positively correlated with RGS10 and negatively correlated with RGS17 and the short form of D2Rs mRNA level in the VTA. Although there were significant changes in the mRNA levels of RGS7 and RGS8 in the NAc, none of these measures were correlated with the rate of AMPH intake. The present study suggested that short-term AMPH self-administration produced pronounced changes in the VTA that were more associated with AMPH taking behavior than changes in the NAc.
Collapse
Affiliation(s)
- H Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - E S Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - T J R Beveridge
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - S R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| | - R Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
18
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
19
|
Nuclear targeting of dystroglycan promotes the expression of androgen regulated transcription factors in prostate cancer. Sci Rep 2013; 3:2792. [PMID: 24077328 PMCID: PMC3786294 DOI: 10.1038/srep02792] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/06/2013] [Indexed: 11/16/2022] Open
Abstract
Dystroglycan is frequently lost in adenocarcinoma, but the mechanisms and consequences are poorly understood. We report an analysis of β-dystroglycan in prostate cancer in human tissue samples and in LNCaP cells in vitro. There is progressive loss of β-dystroglycan immunoreactivity from basal and lateral surfaces of prostate epithelia which correlates significantly with increasing Gleason grade. In about half of matched bone metastases there is significant dystroglycan re-expression. In tumour tissue and in LNCaP cells there is also a tyrosine phosphorylation-dependent translocation of β-dystroglycan to the nucleus. Analysis of gene expression data by microarray, reveals that nuclear targeting of β-dystroglycan in LNCaP cells alters the transcription of relatively few genes, the most unregulated being the transcription factor ETV1. These data suggest that proteolysis, tyrosine phosphorylation and translocation of dystroglycan to the nucleus resulting in altered gene transcription could be important mechanisms in the progression of prostate cancer.
Collapse
|
20
|
GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus. Psychoneuroendocrinology 2012; 37:1248-60. [PMID: 22265196 PMCID: PMC3342396 DOI: 10.1016/j.psyneuen.2011.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling.
Collapse
|
21
|
Stewart A, Huang J, Fisher RA. RGS Proteins in Heart: Brakes on the Vagus. Front Physiol 2012; 3:95. [PMID: 22685433 PMCID: PMC3368389 DOI: 10.3389/fphys.2012.00095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/27/2012] [Indexed: 12/14/2022] Open
Abstract
It has been nearly a century since Otto Loewi discovered that acetylcholine (ACh) release from the vagus produces bradycardia and reduced cardiac contractility. It is now known that parasympathetic control of the heart is mediated by ACh stimulation of G(i/o)-coupled muscarinic M2 receptors, which directly activate G protein-coupled inwardly rectifying potassium (GIRK) channels via Gβγ resulting in membrane hyperpolarization and inhibition of action potential (AP) firing. However, expression of M2R-GIRK signaling components in heterologous systems failed to recapitulate native channel gating kinetics. The missing link was identified with the discovery of regulator of G protein signaling (RGS) proteins, which act as GTPase-activating proteins to accelerate the intrinsic GTPase activity of Gα resulting in termination of Gα- and Gβγ-mediated signaling to downstream effectors. Studies in mice expressing an RGS-insensitive Gα(i2) mutant (G184S) implicated endogenous RGS proteins as key regulators of parasympathetic signaling in heart. Recently, two RGS proteins have been identified as critical regulators of M2R signaling in heart. RGS6 exhibits a uniquely robust expression in heart, especially in sinoatrial (SAN) and atrioventricular nodal regions. Mice lacking RGS6 exhibit increased bradycardia and inhibition of SAN AP firing in response to CCh as well as a loss of rapid activation and deactivation kinetics and current desensitization for ACh-induced GIRK current (I(KACh)). Similar findings were observed in mice lacking RGS4. Thus, dysregulation in RGS protein expression or function may contribute to pathologies involving aberrant electrical activity in cardiac pacemaker cells. Moreover, RGS6 expression was found to be up-regulated in heart under certain pathological conditions, including doxorubicin treatment, which is known to cause life-threatening cardiotoxicity and atrial fibrillation in cancer patients. On the other hand, increased vagal tone may be cardioprotective in heart failure where acetylcholinesterase inhibitors and vagal stimulation have been proposed as potential therapeutics. Together, these studies identify RGS proteins, especially RGS6, as new therapeutic targets for diseases such as sick sinus syndrome or other maladies involving abnormal autonomic control of the heart.
Collapse
Affiliation(s)
- Adele Stewart
- Department of Pharmacology, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | | | | |
Collapse
|
22
|
Creech RD, Li Q, Carrasco GA, Van de Kar LD, Muma NA. Estradiol induces partial desensitization of serotonin 1A receptor signaling in the paraventricular nucleus of the hypothalamus and alters expression and interaction of RGSZ1 and Gαz. Neuropharmacology 2012; 62:2040-9. [PMID: 22251927 DOI: 10.1016/j.neuropharm.2012.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 10/14/2022]
Abstract
Hyperactivity of hypothalamic-pituitary mediated hormone responses, such as to stimulation with a serotonin 1A (5-HT(1A)) receptor agonist, are a feature of depression which are normalized with clinical improvement during drug therapy. We previously reported that SSRIs induce desensitization of 5-HT(1A) receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) while estradiol benzoate (EB) produces a more rapid, partial desensitization. In the current study, time course and dose-response experiments demonstrated that two once daily doses of EB is the minimum needed to induce the desensitization response as indicated by 5-HT(1A) receptor-stimulated release of oxytocin and that 10 μg/kg/day EB produces the maximal response, a partial desensitization of approximately 40%. The effects of two once daily injections of 10 μg/kg/day EB on Gαz and RGSZ1 proteins were examined as components of the 5-HT(1A) receptor signaling system, which mediates the release of oxytocin and adrenocorticotropic hormone. RGSZ1 appears to be a major target for EB-mediated responses in the 5-HT(1A) receptor signaling system. A 55 kD membrane-associate RGSZ1 protein was greatly increased in the PVN and rest of the hypothalamus and moderately increased in the dorsal hippocampus and amygdala after EB treatment as well as after an acute dose of a 5-HT(1A) receptor agonist. These results suggest that EB is a candidate for adjuvant therapy with SSRIs to hasten the therapeutic response and that RGSZ1 is a major target of EB therapy which could be explored as a target for novel therapeutic approaches for the treatment of depression.
Collapse
Affiliation(s)
- R D Creech
- Department of Pharmacology and Toxicology, University of Kansas, School of Pharmacy, 1251 Wescoe Hall Dr, 5064 Malott Hall, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
23
|
Garzón J, Rodríguez-Muñoz M, Vicente-Sánchez A, García-López MÁ, Martínez-Murillo R, Fischer T, Sánchez-Blázquez P. SUMO-SIM interactions regulate the activity of RGSZ2 proteins. PLoS One 2011; 6:e28557. [PMID: 22163035 PMCID: PMC3232247 DOI: 10.1371/journal.pone.0028557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/10/2011] [Indexed: 11/18/2022] Open
Abstract
The RGSZ2 gene, a regulator of G protein signaling, has been implicated in cognition, Alzheimer's disease, panic disorder, schizophrenia and several human cancers. This 210 amino acid protein is a GTPase accelerating protein (GAP) on Gαi/o/z subunits, binds to the N terminal of neural nitric oxide synthase (nNOS) negatively regulating the production of nitric oxide, and binds to the histidine triad nucleotide-binding protein 1 at the C terminus of different G protein-coupled receptors (GPCRs). We now describe a novel regulatory mechanism of RGS GAP function through the covalent incorporation of Small Ubiquitin-like MOdifiers (SUMO) into RGSZ2 RGS box (RH) and the SUMO non covalent binding with SUMO-interacting motifs (SIM): one upstream of the RH and a second within this region. The covalent attachment of SUMO does not affect RGSZ2 binding to GPCR-activated GαGTP subunits but abolishes its GAP activity. By contrast, non-covalent binding of SUMO with RH SIM impedes RGSZ2 from interacting with GαGTP subunits. Binding of SUMO to the RGSZ2 SIM that lies outside the RH does not affect GαGTP binding or GAP activity, but it could lead to regulatory interactions with sumoylated proteins. Thus, sumoylation and SUMO-SIM interactions constitute a new regulatory mechanism of RGS GAP function and therefore of GPCR cell signaling as well.
Collapse
Affiliation(s)
- Javier Garzón
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | - Ana Vicente-Sánchez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
| | | | | | - Thierry Fischer
- Department of Immunology and Oncology, National Centre of Biotechnology, CSIC, Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Cajal Institute, CSIC, Madrid, Spain
- CIBER of Mental Health, ISCIII, Madrid, Spain
- * E-mail:
| |
Collapse
|
24
|
Molecular organization and dynamics of the melatonin MT₁ receptor/RGS20/G(i) protein complex reveal asymmetry of receptor dimers for RGS and G(i) coupling. EMBO J 2010; 29:3646-59. [PMID: 20859254 DOI: 10.1038/emboj.2010.236] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/27/2010] [Indexed: 12/27/2022] Open
Abstract
Functional asymmetry of G-protein-coupled receptor (GPCR) dimers has been reported for an increasing number of cases, but the molecular architecture of signalling units associated to these dimers remains unclear. Here, we characterized the molecular complex of the melatonin MT₁ receptor, which directly and constitutively couples to G(i) proteins and the regulator of G-protein signalling (RGS) 20. The molecular organization of the ternary MT₁/G(i)/RGS20 complex was monitored in its basal and activated state by bioluminescence resonance energy transfer between probes inserted at multiple sites of the complex. On the basis of the reported crystal structures of G(i) and the RGS domain, we propose a model wherein one G(i) and one RGS20 protein bind to separate protomers of MT₁ dimers in a pre-associated complex that rearranges upon agonist activation. This model was further validated with MT₁/MT₂ heterodimers. Collectively, our data extend the concept of asymmetry within GPCR dimers, reinforce the notion of receptor specificity for RGS proteins and highlight the advantage of GPCRs organized as dimers in which each protomer fulfils its specific task by binding to different GPCR-interacting proteins.
Collapse
|
25
|
Regulators of G Protein Signaling Proteins as Targets for Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 91:81-119. [DOI: 10.1016/s1877-1173(10)91004-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Terzi D, Stergiou E, King SL, Zachariou V. Regulators of G protein signaling in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:299-333. [PMID: 20374720 DOI: 10.1016/s1877-1173(09)86010-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regulators of G protein signaling (RGS) comprise a diverse group of about 40 proteins which determine signaling amplitude and duration via modulation of receptor/G protein or receptor/effector coupling. Several members of the RGS family are expressed in the brain, where they have precise roles in regulation of important physiological processes. The unique functions of each RGS can be attributed to its structure, distinct pattern of expression, and regulation, and its preferential interactions with receptors, Galpha subunits and other signaling proteins. Evidence suggests dysfunction of RGS proteins is related to several neuropathological conditions. Moreover, clinical and preclinical work reveals that the efficacy and/or side effects of treatments are highly influenced by RGS activity. This article summarizes findings on RGS proteins in vulnerability to several neuropsychiatric disorders, the mechanism via which RGS proteins control neuronal responses and their potential use as drug targets.
Collapse
Affiliation(s)
- Dimitra Terzi
- Department of Pharmacology, Faculty of Medicine, University of Crete, Heraklion 71003, Crete, Greece
| | | | | | | |
Collapse
|
27
|
Suzuki N, Hajicek N, Kozasa T. Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 2009; 17:55-70. [PMID: 19212140 DOI: 10.1159/000186690] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/10/2008] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicate that G12 subfamily (Galpha12/13)-mediated signaling pathways play pivotal roles in a variety of physiological processes, while aberrant regulation of this pathway has been identified in various human diseases. It has been demonstrated that Galpha12/13-mediated signals form networks with other signaling proteins at various levels, from cell surface receptors to transcription factors, to regulate cellular responses. Galpha12/13 have slow rates of nucleotide exchange and GTP hydrolysis, and specifically target RhoGEFs containing an amino-terminal RGS homology domain (RH-RhoGEFs), which uniquely function both as a GAP and an effector for Galpha12/13. In this review, we will focus on the mechanisms regulating the Galpha12/13 signaling system, particularly the Galpha12/13-RH-RhoGEF-Rho pathway, which can regulate a wide variety of cellular functions from migration to transformation.
Collapse
Affiliation(s)
- Nobuchika Suzuki
- Laboratory of Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
28
|
Abstract
G-protein-mediated signaling is intrinsically kinetic. Signal output at steady state is a balance of the rates of GTP binding, which causes activation, and of GTP hydrolysis, which terminates activation. This GTPase catalytic cycle is regulated by receptors, which accelerate GTP binding, and GTPase-activating proteins (GAPs), which accelerate hydrolysis. Receptors and GAPs similarly control the rates of signal initiation and termination. To allow independent control of signal amplitude and of the rates of turning the signal on and off, the activities of receptors and GAPs must be coordinated. Here, the principles of such coordination and the mechanisms by which it is achieved are discussed.
Collapse
Affiliation(s)
- Elliott M Ross
- Department of Pharmacology, Graduate Programs in Molecular Biophysics and Cell Regulation, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390-9041, USA.
| |
Collapse
|
29
|
Maurice P, Daulat AM, Broussard C, Mozo J, Clary G, Hotellier F, Chafey P, Guillaume JL, Ferry G, Boutin JA, Delagrange P, Camoin L, Jockers R. A generic approach for the purification of signaling complexes that specifically interact with the carboxyl-terminal domain of G protein-coupled receptors. Mol Cell Proteomics 2008; 7:1556-69. [PMID: 18448421 DOI: 10.1074/mcp.m700435-mcp200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of membrane receptors and are major drug targets. Recent progress has shown that GPCRs are part of large protein complexes that regulate their activity. We present here a generic approach for identification of these complexes that is based on the use of receptor subdomains and that overcomes the limitations of currently used genetics and proteomics approaches. Our approach consists of a carefully balanced combination of chemically synthesized His6-tagged baits, immobilized metal affinity chromatography, one- and two-dimensional gel electrophoresis separation and mass spectrometric identification. The carboxyl-terminal tails (C-tails) of the human MT1 and MT2 melatonin receptors, two class A GPCRs, were used as models to purify protein complexes from mouse brain lysates. We identified 32 proteins that interacted with the C-tail of MT1, 14 proteins that interacted with the C-tail of MT2, and eight proteins that interacted with both C-tails. Several randomly selected proteins were validated by Western blotting, and the functional relevance of our data was further confirmed by showing the interaction between the full-length MT1 and the regulator of G protein signaling Z1 in transfected HEK 293 cells and native tissue. Taken together, we have established an integrated and generic purification strategy for the identification of high quality and functionally relevant GPCR-associated protein complexes that significantly widens the repertoire of available techniques.
Collapse
Affiliation(s)
- Pascal Maurice
- Department of Cell Biology, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris F-75014, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc Natl Acad Sci U S A 2008; 105:6457-62. [PMID: 18434541 DOI: 10.1073/pnas.0801508105] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and thus facilitate termination of signaling initiated by G protein-coupled receptors (GPCRs). RGS proteins hold great promise as disease intervention points, given their signature role as negative regulators of GPCRs-receptors to which the largest fraction of approved medications are currently directed. RGS proteins share a hallmark RGS domain that interacts most avidly with Galpha when in its transition state for GTP hydrolysis; by binding and stabilizing switch regions I and II of Galpha, RGS domain binding consequently accelerates Galpha-mediated GTP hydrolysis. The human genome encodes more than three dozen RGS domain-containing proteins with varied Galpha substrate specificities. To facilitate their exploitation as drug-discovery targets, we have taken a systematic structural biology approach toward cataloging the structural diversity present among RGS domains and identifying molecular determinants of their differential Galpha selectivities. Here, we determined 14 structures derived from NMR and x-ray crystallography of members of the R4, R7, R12, and RZ subfamilies of RGS proteins, including 10 uncomplexed RGS domains and 4 RGS domain/Galpha complexes. Heterogeneity observed in the structural architecture of the RGS domain, as well as in engagement of switch III and the all-helical domain of the Galpha substrate, suggests that unique structural determinants specific to particular RGS protein/Galpha pairings exist and could be used to achieve selective inhibition by small molecules.
Collapse
|
31
|
Molecular architecture of Galphao and the structural basis for RGS16-mediated deactivation. Proc Natl Acad Sci U S A 2008; 105:6243-8. [PMID: 18434540 DOI: 10.1073/pnas.0801569105] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G proteins relay extracellular cues from heptahelical transmembrane receptors to downstream effector molecules. Composed of an alpha subunit with intrinsic GTPase activity and a betagamma heterodimer, the trimeric complex dissociates upon receptor-mediated nucleotide exchange on the alpha subunit, enabling each component to engage downstream effector targets for either activation or inhibition as dictated in a particular pathway. To mitigate excessive effector engagement and concomitant signal transmission, the Galpha subunit's intrinsic activation timer (the rate of GTP hydrolysis) is regulated spatially and temporally by a class of GTPase accelerating proteins (GAPs) known as the regulator of G protein signaling (RGS) family. The array of G protein-coupled receptors, Galpha subunits, RGS proteins and downstream effectors in mammalian systems is vast. Understanding the molecular determinants of specificity is critical for a comprehensive mapping of the G protein system. Here, we present the 2.9 A crystal structure of the enigmatic, neuronal G protein Galpha(o) in the GTP hydrolytic transition state, complexed with RGS16. Comparison with the 1.89 A structure of apo-RGS16, also presented here, reveals plasticity upon Galpha(o) binding, the determinants for GAP activity, and the structurally unique features of Galpha(o) that likely distinguish it physiologically from other members of the larger Galpha(i) family, affording insight to receptor, GAP and effector specificity.
Collapse
|
32
|
Gu Z, Jiang Q, Yan Z. RGS4 modulates serotonin signaling in prefrontal cortex and links to serotonin dysfunction in a rat model of schizophrenia. Mol Pharmacol 2007; 71:1030-9. [PMID: 17220354 DOI: 10.1124/mol.106.032490] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulator of G protein signaling 4 (RGS4) has recently been identified as one of the genes linked to the susceptibility of schizophrenia. However, the functional roles of RGS4 and how it may be involved in the pathophysiology of schizophrenia remain largely unknown. In this study, we investigated the possible impact of RGS4 on the function of serotonin and dopamine receptors, two main targets for schizophrenia treatment. Activation of serotonin 5-HT(1A) receptors or dopamine D(4) receptors down-regulates the function of NMDA receptor (NMDAR) channel, a key player controlling cognition and emotion, in pyramidal neurons of prefrontal cortex (PFC). Blocking RGS4 function significantly potentiated the 5-HT(1A) regulation of NMDAR current; conversely, overexpression of RGS4 attenuated the 5-HT(1A) effect. In contrast, the D(4) regulation of NMDAR current was not altered by RGS4 manipulation. Moreover, the 5-HT(1A) regulation of NMDA receptors was significantly enhanced in a subset of PFC pyramidal neurons from rats treated with subchronic phencyclidine, an animal model of schizophrenia, which was found to be associated with specifically decreased RGS4 expression in these cells. Thus, our study has revealed an important coupling of RGS4 to serotonin signaling in cortical neurons and provided a molecular and cellular mechanism underlying the potential involvement of RGS4 in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Zhenglin Gu
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 124 Sherman Hall, Buffalo NY 14214.
| | | | | |
Collapse
|
33
|
Rodríguez-Muñoz M, Bermúdez D, Sánchez-Blázquez P, Garzón J. Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 2007; 32:842-50. [PMID: 16900103 DOI: 10.1038/sj.npp.1301184] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RGSZ1 and RGSZ2 proteins, members of the RGS-Rz subfamily of GTPase-activating proteins (GAP), are involved in Mu-opioid receptor desensitization. The expression of these proteins, as well as of their main target the Gz protein, is virtually restricted to the nervous tissue. In synaptosomal membranes, these Rz proteins undergo post-translational modifications such as glycosylation and phosphorylation, and they may covalently attach to small ubiquitin-like modifier (SUMO) proteins. While RGSZ1 exists in conjugated and non-conjugated forms, RGSZ2 is mostly conjugated to SUMO-1, SUMO-2 and SUMO-3 proteins. These sumoylated forms of the GAPs readily associated with Mu-opioid receptors but they associated only poorly with Delta receptors. Furthermore, G alpha i2 and G alpha z subunits co-precipitated with the sumoylated forms of RGSZ1/Z2 proteins, but to a lesser extent with the Ser phosphorylated SUMO-free form of RGSZ1. Upon Mu-opioid receptor activation, there is a strong increase in the association of G alpha proteins with RGSZ2 proteins that persists for intervals longer than 24 h. This effect probably accounts for their role in Mu-opioid receptor desensitization. Only a moderate increase was observed with RGSZ1, the non-sumoylated form of which probably acts as an efficient GAP for these G alpha subunits. Therefore, sumoylation regulates the biological activity of RGS-Rz proteins and it is likely that it serves to switch their behavior, from that of a GAP for activated G alpha subunits to that of a scaffold protein for specific signaling proteins.
Collapse
|
34
|
Abstract
The majority of intracellular signalling cascades in higher eukaryotes are initiated by GPCRs (G-protein-coupled receptors). Hundreds of GPCRs signal through a handful of trimeric G-proteins, raising the issue of signal specificity. In the present paper, we illustrate a simple kinetic model of G-protein signalling. This model shows that stable production of significant amounts of free Galpha(GTP) (GTP-bound Galpha subunit) and betagamma is only one of multiple modes of behaviour of the G-protein system upon activation. Other modes, previously uncharacterized, are sustained production of betagamma without significant levels of Galpha(GTP) and transient production of Galpha(GTP) with sustained betagamma. The system can flip between different modes upon changes in conditions. This model demonstrates further that the negative feedback of receptor uncoupling or internalization, when combined with a positive feedback within the G-protein cycle, under a broad range of conditions results not in termination of the response but in relaxed oscillations in GPCR signalling. This variety of G-protein responses may serve to encode signal specificity in GPCR signal transduction.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- University of Konstanz, Department of Biology, Universitätstrasse 10, Box M643, Konstanz 78457, Germany.
| | | |
Collapse
|
35
|
Sprang SR, Chen Z, Du X. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins. ADVANCES IN PROTEIN CHEMISTRY 2007; 74:1-65. [PMID: 17854654 DOI: 10.1016/s0065-3233(07)74001-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter addresses, from a molecular structural perspective gained from examination of x-ray crystallographic and biochemical data, the mechanisms by which GTP-bound Galpha subunits of heterotrimeric G proteins recognize and regulate effectors. The mechanism of GTP hydrolysis by Galpha and rate acceleration by GAPs are also considered. The effector recognition site in all Galpha homologues is formed almost entirely of the residues extending from the C-terminal half of alpha2 (Switch II) together with the alpha3 helix and its junction with the beta5 strand. Effector binding does not induce substantial changes in the structure of Galpha*GTP. Effectors are structurally diverse. Different effectors may recognize distinct subsets of effector-binding residues of the same Galpha protein. Specificity may also be conferred by differences in the main chain conformation of effector-binding regions of Galpha subunits. Several Galpha regulatory mechanisms are operative. In the regulation of GMP phospodiesterase, Galphat sequesters an inhibitory subunit. Galphas is an allosteric activator and inhibitor of adenylyl cyclase, and Galphai is an allosteric inhibitor. Galphaq does not appear to regulate GRK, but is rather sequestered by it. GTP hydrolysis terminates the signaling state of Galpha. The binding energy of GTP that is used to stabilize the Galpha:effector complex is dissipated in this reaction. Chemical steps of GTP hydrolysis, specifically, formation of a dissociative transition state, is rate limiting in Ras, a model G protein GTPase, even in the presence of a GAP; however, the energy of enzyme reorganization to produce a catalytically active conformation appears to be substantial. It is possible that the collapse of the switch regions, associated with Galpha deactivation, also encounters a kinetic barrier, and is coupled to product (Pi) release or an event preceding formation of the GDP*Pi complex. Evidence for a catalytic intermediate, possibly metaphosphate, is discussed. Galpha GAPs, whether exogenous proteins or effector-linked domains, bind to a discrete locus of Galpha that is composed of Switch I and the N-terminus of Switch II. This site is immediately adjacent to, but does not substantially overlap, the Galpha effector binding site. Interactions of effectors and exogenous GAPs with Galpha proteins can be synergistic or antagonistic, mediated by allosteric interactions among the three molecules. Unlike GAPs for small GTPases, Galpha GAPs supply no catalytic residues, but rather appear to reduce the activation energy for catalytic activation of the Galpha catalytic site.
Collapse
Affiliation(s)
- Stephen R Sprang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
36
|
Ladds G, Goddard A, Hill C, Thornton S, Davey J. Differential effects of RGS proteins on Gαq and Gα11 activity. Cell Signal 2007; 19:103-13. [PMID: 16843638 DOI: 10.1016/j.cellsig.2006.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 05/28/2006] [Indexed: 10/24/2022]
Abstract
Heterotrimeric G proteins play a pivotal role in GPCR signalling; they link receptors to intracellular effectors and their inactivation by RGS proteins is a key factor in resetting the pathway following stimulation. The precise GPCR:G protein:RGS combination determines the nature and duration of the response. Investigating the activity of particular combinations is difficult in cells which contain multiples of each component. We have therefore utilised a previously characterised yeast system to express mammalian proteins in isolation. Human G alpha(q) and G alpha(11) spontaneously activated the yeast pheromone-response pathway by a mechanism which required the formation of G alpha-GTP. This provided an assay for the specific activity of human RGS proteins. RGS1, RGS2, RGS3 and RGS4 inhibited the spontaneous activity of both G alpha(q) and G alpha(11) but, in contrast, RGS5 and RGS16 were much less effective against G alpha(11) than G alpha(q). Interestingly, RGS2 and RGS3 were able to inhibit signalling from the constitutively active G alpha(q)QL/G alpha(11)QL mutants, confirming the GAP-independent activity of these RGS proteins. To determine if the RGS-G alpha specificity was maintained under conditions of GPCR stimulation, minor modifications to the C-terminus of G alpha(q)/G alpha(11) enabled coupling to an endogenous receptor. RGS2 and RGS3 were effective inhibitors of both G alpha subunits even at high levels of receptor stimulation, emphasising their GAP-independent activity. At low levels of stimulation RGS5 and RGS16 retained their differential G alpha activity, further highlighting that RGS proteins can discriminate between two very closely related G alpha subunits.
Collapse
Affiliation(s)
- Graham Ladds
- Division of Clinical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
37
|
Ajit SK, Ramineni S, Edris W, Hunt RA, Hum WT, Hepler JR, Young KH. RGSZ1 interacts with protein kinase C interacting protein PKCI-1 and modulates mu opioid receptor signaling. Cell Signal 2006; 19:723-30. [PMID: 17126529 DOI: 10.1016/j.cellsig.2006.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/26/2022]
Abstract
Protein kinase C interacting protein (PKCI-1) was identified among the potential interactors from a yeast two hybrid screen of human brain library using N terminal of RGSZ1 as a bait. The cysteine string region, unique to the RZ subfamily, contributes to the observed interaction because PKCI-1 interacted with N-terminus of RGS17 and GAIP, but not with that of RGS2 or RGS7 where cysteine string motif is absent. The interaction between RGSZ1 and PKCI-1 was confirmed by coimmunoprecipitation and immunofluorescence. PKCI-1 and RGSZ1 could be detected by coimmunoprecipitation using 14-3-3 antibody in cells transfected with PKCI-1 or RGSZ1 respectively, but when transfected with PKCI-1 and RGSZ1 together, only RGSZ1 could be detected. Phosphorylation of Galphaz by protein kinase C (PKC) reduces the ability of the RGS to effectively function as GTPase accelerating protein for Galphaz, and interferes with ability of Galphaz to interact with betagamma complex. We investigated the roles of 14-3-3 and PKCI-1 in phosphorylation of Galphaz. Phosphorylation of Galphaz by PKC was inhibited by 14-3-3 and the presence of PKCI-1 did not provide any further inhibition. PKCI-1 interacts with mu opioid receptor and suppresses receptor desensitization and PKC related mu opioid receptor phosphorylation [W. Guang, H. Wang, T. Su, I.B. Weinstein, J.B. Wang, Mol. Pharmacol. 66 (2004) 1285.]. Previous studies have also shown that mu opioid receptor co-precipitates with RGSZ1 and influence mu receptor signaling by acting as effector antagonists [J. Garzon, M. Rodriguez-Munoz, P. Sanchez-Blazquez, Neuropharmacology 48 (2005) 853., J. Garzon, M. Rodriguez-Munoz, A. Lopez-Fando, P. Sanchez-Blazquez Neuropsychopharmacology 30 (2005) 1632.]. Inhibition of cAMP by mu opioid receptor was significantly reduced by RGSZ1 and this effect was enhanced in combination with PKCI-1. Our studies thus provide a link between the previous observations mentioned above and indicate that the major function of PKCI-1 is to modulate mu opioid receptor signaling pathway along with RGSZ1, rather than directly mediating the Galphaz RGSZ1 interaction.
Collapse
Affiliation(s)
- Seena K Ajit
- Neuroscience Discovery, Wyeth Research CN 8000, Princeton NJ 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Leck KJ, Blaha CD, Matthaei KI, Forster GL, Holgate J, Hendry IA. Gz proteins are functionally coupled to dopamine D2-like receptors in vivo. Neuropharmacology 2006; 51:597-605. [PMID: 16814816 DOI: 10.1016/j.neuropharm.2006.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 05/03/2006] [Accepted: 05/03/2006] [Indexed: 11/18/2022]
Abstract
The receptors that couple to the G protein Gz in vivo are still relatively unknown. In this study, we investigated the effects of various dopamine receptor agonists in a mouse deficient in the alpha subunit of Gz. The dopamine D1-like receptor agonist SKF38393 stimulated comparable locomotor activity in both wildtype mice and mice lacking Galphaz. In contrast, the dopamine D2-like receptor agonist quinpirole suppressed locomotor activity in both groups of mice, but this suppression was significantly smaller in Galphaz knockout mice. Consistent with these behavioural observations, quinpirole inhibition of dopamine release in the forebrain nucleus accumbens evoked by electrical stimulation of dopamine axons was significantly attenuated in mice lacking Galphaz. In addition, hypothermia and adrenocorticotropic hormone release resulting from activation of dopamine D2-like receptors were also significantly reduced in Galphaz knockout mice. However, adrenocorticotropic hormone secretion induced by corticotrophin releasing hormone and the serotonin 1A receptor agonist 8-hydroxy-dipropylamino-tetralin were similar between wildtype and Galphaz knockout mice. Western blot analysis showed that the expression levels of Galphai, Galphao, Galphas, Galphaq and Gbeta were the same in the brains of mice of both genotypes. Overall, our data suggest that Gz proteins are functionally coupled to dopamine D2-like receptors in vivo.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Adrenocorticotropic Hormone/blood
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Blotting, Western/methods
- Body Temperature/drug effects
- Body Temperature/physiology
- Dopamine/metabolism
- Dopamine Agonists/pharmacology
- GTP-Binding Protein alpha Subunits/deficiency
- GTP-Binding Protein alpha Subunits/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Nucleus Accumbens/drug effects
- Quinpirole/pharmacology
- Receptors, Dopamine D2/physiology
- Serotonin Receptor Agonists/pharmacology
- Tetrahydronaphthalenes/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Kwong J Leck
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT Australia, 0200
| | | | | | | | | | | |
Collapse
|
39
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Nunn C, Mao H, Chidiac P, Albert PR. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling. Semin Cell Dev Biol 2006; 17:390-9. [PMID: 16765607 DOI: 10.1016/j.semcdb.2006.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.
Collapse
Affiliation(s)
- Caroline Nunn
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ont., Canada, N6A 5C1
| | | | | | | |
Collapse
|
41
|
Tang W, Tu Y, Nayak SK, Woodson J, Jehl M, Ross EM. Gbetagamma inhibits Galpha GTPase-activating proteins by inhibition of Galpha-GTP binding during stimulation by receptor. J Biol Chem 2005; 281:4746-53. [PMID: 16407201 DOI: 10.1074/jbc.m510573200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gbetagamma subunits modulate several distinct molecular events involved with G protein signaling. In addition to regulating several effector proteins, Gbetagamma subunits help anchor Galpha subunits to the plasma membrane, promote interaction of Galpha with receptors, stabilize the binding of GDP to Galpha to suppress spurious activation, and provide membrane contact points for G protein-coupled receptor kinases. Gbetagamma subunits have also been shown to inhibit the activities of GTPase-activating proteins (GAPs), both phospholipase C (PLC)-betas and RGS proteins, when assayed in solution under single turnover conditions. We show here that Gbetagamma subunits inhibit G protein GAP activity during receptor-stimulated, steady-state GTPase turnover. GDP/GTP exchange catalyzed by receptor requires Gbetagamma in amounts approximately equimolar to Galpha, but GAP inhibition was observed with superstoichiometric Gbetagamma. The potency of inhibition varied with the GAP and the Galpha subunit, but half-maximal inhibition of the GAP activity of PLC-beta1 was observed with 5-10 nM Gbetagamma, which is at or below the concentrations of Gbetagamma needed for regulation of physiologically relevant effector proteins. The kinetics of GAP inhibition of both receptor-stimulated GTPase activity and single turnover, solution-based GAP assays suggested a competitive mechanism in which Gbetagamma competes with GAPs for binding to the activated, GTP-bound Galpha subunit. An N-terminal truncation mutant of PLC-beta1 that cannot be directly regulated by Gbetagamma remained sensitive to inhibition of its GAP activity, suggesting that the Gbetagamma binding site relevant for GAP inhibition is on the Galpha subunit rather than on the GAP. Using fluorescence resonance energy transfer between cyan or yellow fluorescent protein-labeled G protein subunits and Alexa532-labeled RGS4, we found that Gbetagamma directly competes with RGS4 for high-affinity binding to Galpha(i)-GDP-AlF4.
Collapse
Affiliation(s)
- Wei Tang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hubbard KB, Hepler JR. Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 2005; 18:135-50. [PMID: 16182515 DOI: 10.1016/j.cellsig.2005.08.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 08/19/2005] [Indexed: 12/31/2022]
Abstract
Many receptors for neurotransmitters and hormones rely upon members of the Gqalpha family of heterotrimeric G proteins to exert their actions on target cells. Galpha subunits of the Gq class of G proteins (Gqalpha, G11alpha, G14alpha and G15/16alpha) directly link receptors to activation of PLC-beta isoforms which, in turn, stimulate inositol lipid (i.e. calcium/PKC) signalling. Although Gqalpha family members share a capacity to activate PLC-beta, they also differ markedly in their biochemical properties and tissue distribution which predicts functional diversity. Nevertheless, established models suggest that Gqalpha family members are functionally redundant and that their cellular responses are a result of PLC-beta activation and downstream calcium/PKC signalling. Growing evidence, however, indicates that Gqalpha, G11alpha, G14alpha and G15/16alpha are functionally diverse and that many of their cellular actions are independent of inositol lipid signalling. Recent findings show that Gqalpha family members differ with regard to their linked receptors and downstream binding partners. Reported binding partners distinct from PLC-beta include novel candidate effector proteins, various regulatory proteins, and a growing list of scaffolding/adaptor proteins. Downstream of these signalling proteins, Gqalpha family members exhibit unexpected differences in the signalling pathways and the gene expression profiles they regulate. Finally, genetic studies using whole animal models demonstrate the importance of certain Gqalpha family members in cardiac, lung, brain and platelet functions among other physiological processes. Taken together, these findings demonstrate that Gqalpha, G11alpha, G14alpha and G15/16alpha regulate both overlapping and distinct signalling pathways, indicating that they are more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Katherine B Hubbard
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Rd., Atlanta, GA 30322, USA
| | | |
Collapse
|
43
|
Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA, Casey PJ. A Role for Gz in Pancreatic Islet β-Cell Biology. J Biol Chem 2005; 280:31708-13. [PMID: 16157560 DOI: 10.1074/jbc.m506700200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-stimulated insulin secretion and beta-cell growth are important facets of pancreatic islet beta-cell biology. As a result, factors that modulate these processes are of great interest for the potential treatment of Type 2 diabetes. Here, we present evidence that the heterotrimeric G protein G(z) and its effectors, including some previously thought to be confined in expression to neuronal cells, are present in pancreatic beta-cells, the largest cellular constituent of the islets of Langerhans. Furthermore, signaling pathways upon which G alpha(z) impacts are intact in beta-cells, and G alpha(z) activation inhibits both cAMP production and glucose-stimulated insulin secretion in the Ins-1(832/13) beta-cell-derived line. Inhibition of glucose-stimulated insulin secretion by prostaglandin E (PGE1) is pertussis-toxin insensitive, indicating that other G alpha(i) family members are not involved in this process in this beta-cell line. Indeed, overexpression of a selective deactivator of G alpha(z), the RGS domain of RGSZ1, blocks the inhibitory effect of PGE1 on glucose-stimulated insulin secretion. Finally, the inhibition of glucose-stimulated insulin secretion by PGE1 is substantially blunted by small interfering RNA-mediated knockdown of G alpha(z) expression. Taken together, these data strongly imply that the endogenous E prostanoid receptor in the Ins-1(832/13) beta-cell line couples to G(z) predominantly and perhaps even exclusively. These data provide the first evidence for G(z) signaling in pancreatic beta-cells, and identify an endogenous receptor-mediated signaling process in beta-cells that is dependent on G alpha(z) function.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Garzón J, Rodríguez-Muñoz M, López-Fando A, Sánchez-Blázquez P. The RGSZ2 protein exists in a complex with mu-opioid receptors and regulates the desensitizing capacity of Gz proteins. Neuropsychopharmacology 2005; 30:1632-48. [PMID: 15827571 DOI: 10.1038/sj.npp.1300726] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The regulator of G-protein signaling RGS17(Z2) is a member of the RGS-Rz subfamily of GTPase-activating proteins (GAP) that efficiently deactivate GalphazGTP subunits. We have found that in the central nervous system (CNS), the levels of RGSZ2 mRNA and protein are elevated in the hypothalamus, midbrain, and pons-medulla, and that RGSZ2 is glycosylated in synaptosomal membranes isolated from CNS tissue. In analyzing the function of RGSZ2 in the CNS, we found that when the expression of RGSZ2 was impaired, the antinociceptive response to morphine and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO) augmented. This potentiation involved mu-opioid receptors and increased tolerance to further doses of these agonists administered 24 h later. High doses of morphine promoted agonist desensitization even within the analgesia time-course, a phenomenon that appears to be related to the great capacity of morphine to activate Gz proteins. In contrast, the knockdown of RGSZ2 proteins did not affect the activity of delta receptor agonists, [D-Pen2,5]-enkephalin (DPDPE), and [D-Ala2] deltorphin II. In membranes from periaqueductal gray matter (PAG), both RGSZ2 and the related RGS20(Z1) co-precipitated with mu-opioid receptors. While a morphine challenge reduced the association of Gi/o/z with mu receptors, it increased their association with the RGSZ2 and RGSZ1 proteins. However, only Galphaz subunits co-precipitated with RGSZ2. Doses of morphine that produced acute tolerance maintained the association of Galpha subunits with RGSZ proteins even after the analgesic effects had ceased. These results indicate that both RGSZ1 and RGSZ2 proteins influence mu receptor signaling by sequestering Galpha subunits, therefore behaving as effector antagonists.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal
- Blotting, Northern
- Blotting, Western/methods
- Central Nervous System/anatomy & histology
- Central Nervous System/drug effects
- Central Nervous System/metabolism
- Dose-Response Relationship, Drug
- Drug Interactions
- Drug Tolerance
- GTP-Binding Protein alpha Subunits/metabolism
- GTP-Binding Proteins/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Glycosylation/drug effects
- Immunoprecipitation/methods
- Mice
- Mice, Knockout
- Models, Biological
- Morphine/pharmacology
- Narcotics/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Pain Measurement/drug effects
- RGS Proteins/chemistry
- RGS Proteins/genetics
- RGS Proteins/immunology
- RGS Proteins/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Opioid, mu/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Javier Garzón
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, CSIC, Madrid, Spain.
| | | | | | | |
Collapse
|
45
|
Garzón J, Rodríguez-Muñoz M, Sánchez-Blázquez P. Morphine alters the selective association between mu-opioid receptors and specific RGS proteins in mouse periaqueductal gray matter. Neuropharmacology 2005; 48:853-68. [PMID: 15829256 DOI: 10.1016/j.neuropharm.2005.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/03/2004] [Accepted: 01/06/2005] [Indexed: 11/28/2022]
Abstract
In the CNS, several regulators of G-protein signalling (RGS) modulate the activity of mu-opioid receptors. In pull-down assays performed on membranes from mouse periaqueductal gray matter (PAG), mu-opioid receptors co-precipitated with delta-opioid receptors, Gi/o/z/q proteins, and the regulators of G-protein signalling RGS4, RGS9-2, RGS14, RGSZ1 and RGSZ2. No RGS2, RGS7, RGS10 and RGS11 proteins were associated with the mu receptors in these PAG membranes. In mice, an intracerebroventricular dose of 10 nmol morphine produced acute tolerance at mu receptors but did not disrupt the co-precipitation of mu-delta receptor complexes. However, this opioid reduced by more than 50% the co-precipitation of G alpha i/o/z subunits with mu receptors, and altered their association with some of the RGS proteins at 30 min, 3 h and 24 h after its administration. The association of RGS9-2 with mu receptors diminished by 30-40% 24 h after the administration of morphine, while that of RGSZ2 and of RGSZ1 increased. Morphine treatment recruited RGS4 to the PAG membranes, and 30 min and 3 h after the opioid challenge its association with mu receptors had increased. However, 24 h after morphine administration, the co-precipitation of RGS4 had decreased by about 30%. The opioid produced no change in the membrane levels of RGS9-2, RGS14, RGSZ1 and RGSZ2. Thus, in PAG synaptosomal membranes, a dynamic and selective link exists between, mu-opioid receptors, Gi/o/z proteins and certain RGS proteins.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Cell Membrane/drug effects
- Cell Membrane/metabolism
- Chemical Precipitation
- Chromatography, Affinity/methods
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Immunoblotting/methods
- Iodine Isotopes/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/pharmacology
- Narcotics/pharmacology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- RGS Proteins/classification
- RGS Proteins/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Time Factors
- beta-Endorphin/pharmacology
Collapse
Affiliation(s)
- Javier Garzón
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Consejo Superior de Investigaciones Científicas, Doctor Arce 37, E-28002 Madrid, Spain.
| | | | | |
Collapse
|
46
|
Sánchez-Blázquez P, Rodríguez-Muñoz M, Montero C, Garzón J. RGS-Rz and RGS9-2 proteins control mu-opioid receptor desensitisation in CNS: the role of activated Galphaz subunits. Neuropharmacology 2005; 48:134-50. [PMID: 15617734 DOI: 10.1016/j.neuropharm.2004.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/29/2004] [Accepted: 08/17/2004] [Indexed: 11/21/2022]
Abstract
Two consecutive i.c.v. administrations of analgesic doses of mu-opioid receptor agonists lead to a profound desensitisation of the latter receptors; a third dose produced less than 20% of the effect obtained with the first administration. Desensitisation was still effective 24h later. Impairing the activity of Galphaz but not Galphai2 subunits prevented tolerance developing after the administration of three consecutive doses of morphine. Further, the i.c.v. injection of Galphai2 subunits potentiated morphine analgesia and abolished acute tolerance, whereas i.c.v.-administered Galphaz subunits produced a rapid and robust loss of the response to morphine. The RGSZ1 and RGSZ2 proteins selectively deactivate GalphazGTP subunits, and their knockdown increased the effects produced by the first dose of morphine. However, impairing their activity also accelerated tachyphylaxis following successive doses of morphine, and facilitated the development of acute morphine tolerance. In contrast, inhibiting the RGS9-2 proteins, which bind to GalphaoGTP and GalphaiGTP but only weakly deactivates them, preserved the effects of consecutive morphine doses and abolished the generation of acute tolerance. Therefore, desensitisation of mu-opioid receptors can be achieved by reducing the responsiveness of post-receptor elements (via the possible action of activated Galphaz subunits) and/or by depleting the pool of receptor-regulated G proteins that agonists need to propagate their effects, e.g., through the activity of RGS9-2 proteins.
Collapse
|
47
|
Abstract
RGSZ1 has been reported to interact with G-protein subunits of the Galphai family and function as a GTPase-accelerating protein on intrinsic Galphai GTPase activity. This article describes several experimental approaches and assays used to investigate the effect of RGSZ1 on Galphai subunits. The formats described here include physical and functional interaction assays by which the association of RGSZ1 with Galphai is explored both in vitro and in vivo. The methods analyzing physical interaction include pull-down and coimmunoprecipitation assays. We also apply yeast two-hybrid techniques to detect RGSZ1 protein interaction with Galpha subunits. Additionally, we developed several functional assay systems to identify the functional relationship between RGSZ1 and Galphai, such as the single turnover GTPase assay, yeast pheromone response assay, mitogen-activated protein kinase assay, and serum response element reporter assay.
Collapse
Affiliation(s)
- Yuren Wang
- Neuroscience Discovery Research, Wyeth Research, Princeton, New Jersey 08543, USA
| | | |
Collapse
|
48
|
Luo X, Ahn W, Muallem S, Zeng W. Analyses of RGS protein control of agonist-evoked Ca2+ signaling. Methods Enzymol 2004; 389:119-30. [PMID: 15313563 DOI: 10.1016/s0076-6879(04)89008-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Analysis of the function of regulator of G-protein signaling (RGS) protein function and their selectivity of action in vivo is complicated by the expression of multiple RGS proteins in a single cell and requires precise control of cytosolic RGS protein concentration. This article describes two experimental systems using pancreatic acinar cells suitable for such analyses. The first is pancreatic acini permeabilized with streptolysin O, which retains agonist responsiveness while allowing RGS proteins and molecules with molecular masses of up to 25-30 kDa access to the cytosol. The second is a whole cell recording of the Ca(2+)-activated Cl- current of single pancreatic acinar cells as a reporter of [Ca2+]i. This system can be used to introduce to the cytosol any protein of interest, including recombinant RGS proteins and RGS protein-scavenging antibodies. The use of these systems to study the specificity of RGS proteins action, the function of their domains, and the role of RGS proteins in controlling Ca2+ oscillations is discussed.
Collapse
Affiliation(s)
- Xiang Luo
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75390-9040, USA
| | | | | | | |
Collapse
|
49
|
Carrasco GA, Barker SA, Zhang Y, Damjanoska KJ, Sullivan NR, Garcia F, D'souza DN, Muma NA, van De Kar LD. Estrogen treatment increases the levels of regulator of G protein signaling-Z1 in the hypothalamic paraventricular nucleus: possible role in desensitization of 5-hydroxytryptamine1A receptors. Neuroscience 2004; 127:261-7. [PMID: 15262317 DOI: 10.1016/j.neuroscience.2004.05.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 05/16/2004] [Accepted: 05/24/2004] [Indexed: 11/22/2022]
Abstract
Desensitization of post-synaptic serotonin1A (5-HT1A) receptors may underlie the clinical improvement of neuropsychiatric disorders. In the hypothalamic paraventricular nucleus, Galphaz proteins mediate the 5-HT1A receptor-stimulated increases in hormone release. Regulator of G protein signaling-Z1 (RGSZ1) is a GTPase-activating protein selective for Galphaz proteins. RGSZ1 regulates the duration of interaction between Galphaz proteins and effector systems. The present investigation determined the levels of RGSZ1 in the hypothalamic paraventricular nucleus of rats subjected to four different treatment protocols that produce desensitization of 5-HT1A receptors. These protocols include: daily administration of beta estradiol 3-benzoate (estradiol) for 2 days; daily administration of fluoxetine for 3 and 14 days; daily administration of cocaine for 7 or 14 days; and acute administration of (+/-)-1-(2,5 dimethoxy-4-iodophenyl)-2-amino-propane HCl (DOI; a 5-HT2A/2C receptor agonist). Estradiol treatment was the only protocol that increased the levels of RGSZ1 protein in the hypothalamic paraventricular nucleus in a dose-dependent manner (46%-132% over control). Interestingly, previous experiments indicate that only estradiol produces a decreased Emax of 5-HT1A receptor-stimulation of hormone release, whereas fluoxetine, cocaine and DOI produce a shift to the right (increased ED50). Thus, the desensitization of 5-HT1A receptors by estradiol might be attributable to increased levels of RGSZ1 protein. These findings may provide insight into the adaptation of 5-HT1A receptor signaling during pharmacotherapies of mood disorders in women and the well-established gender differences in the vulnerability to depression.
Collapse
Affiliation(s)
- G A Carrasco
- Center for Serotonin Disorder Research and Department of Pharmacology Loyola University of Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dhingra A, Faurobert E, Dascal N, Sterling P, Vardi N. A retinal-specific regulator of G-protein signaling interacts with Galpha(o) and accelerates an expressed metabotropic glutamate receptor 6 cascade. J Neurosci 2004; 24:5684-93. [PMID: 15215290 PMCID: PMC6729223 DOI: 10.1523/jneurosci.0492-04.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 04/16/2004] [Accepted: 05/07/2004] [Indexed: 11/21/2022] Open
Abstract
G(o) is the most abundant G-protein in the brain, but its regulators are essentially unknown. In retina, Galpha(o1) is obligatory in mediating the metabotropic glutamate receptor 6 (mGluR6)-initiated ON response. To identify the interactors of G(o), we conducted a yeast two-hybrid screen with constituitively active Galpha(o) as a bait. The screen frequently identified a regulator of G-protein signaling (RGS), Ret-RGS1, the interaction of which we confirmed by coimmunoprecipitation with Galpha(o) in transfected cells and in retina. Ret-RGS1 localized to the dendritic tips of ON bipolar neurons, along with mGluR6 and Galpha(o1). When Ret-RGS1 was coexpressed in Xenopus oocytes with mGluR6, Galpha(o1), and a GIRK (G-protein-gated inwardly rectifying K+) channel, it accelerated the deactivation of the channel response to glutamate in a concentration-dependent manner. Because light onset suppresses glutamate release from photoreceptors onto the ON bipolar dendrites, Ret-RGS1 should accelerate the rising phase of the light response of the ON bipolar cell. This would tend to match its kinetics to that of the OFF bipolar that arises directly from ligand-gated channels.
Collapse
Affiliation(s)
- Anuradha Dhingra
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA.
| | | | | | | | | |
Collapse
|