1
|
Wei L, Huang Q, Tu Y, Song S, Zhang X, Yu B, Liu Y, Li Z, Huang Q, Chen L, Liu B, Xu S, Li T, Liu X, Hu X, Liu W, Chi ZL, Wu W. Plasma exosomes from patients with active thyroid-associated orbitopathy induce inflammation and fibrosis in orbital fibroblasts. J Transl Med 2024; 22:546. [PMID: 38849907 PMCID: PMC11157872 DOI: 10.1186/s12967-024-05263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The pathogenesis of thyroid-associated orbitopathy (TAO) remains incompletely understand. The interaction between immunocytes and orbital fibroblasts (OFs) play a critical role in orbital inflammatory and fibrosis. Accumulating reports indicate that a significant portion of plasma exosomes (Pla-Exos) are derived from immune cells; however, their impact upon OFs function is unclear. METHODS OFs were primary cultured from inactive TAO patients. Exosomes isolated from plasma samples of patients with active TAO and healthy controls (HCs) were utilized for functional and RNA cargo analysis. Functional analysis in thymocyte differentiation antigen-1+ (Thy-1+) OFs measured expression of inflammatory and fibrotic markers (mRNAs and proteins) and cell activity in response to Pla-Exos. RNA cargo analysis was performed by RNA sequencing and RT-qPCR. Thy-1+ OFs were transfected with miR-144-3p mimics/inhibitors to evaluate its regulation of inflammation, fibrosis, and proliferation. RESULTS Pla-Exos derived from active TAO patients (Pla-ExosTAO-A) induced stronger production of inflammatory cytokines and hyaluronic acid (HA) in Thy-1+ OFs while inhibiting their proliferation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and single sample gene set enrichment analysis (ssGSEA) suggested that the difference in mRNA expression levels between Pla-ExosTAO-A and Pla-ExosHC was closely related to immune cells. Differential expression analysis revealed that 62 upregulated and 45 downregulated miRNAs in Pla-ExosTAO-A, with the elevation of miR-144-3p in both Pla-Exos and PBMCs in active TAO group. KEGG analysis revealed that the target genes of differentially expressed miRNA and miR-144-3p enriched in immune-related signaling pathways. Overexpression of the miR-144-3p mimic significantly upregulated the secretion of inflammatory cytokines and HA in Thy-1+ OFs while inhibiting their proliferation. CONCLUSION Pla-Exos derived from patients with active TAO were immune-active, which may be a long-term stimulus casual for inflammatory and fibrotic progression of TAO. Our finding suggests that Pla-Exos could be used as biomarkers or treatment targets in TAO patients.
Collapse
Affiliation(s)
- Li Wei
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinying Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunhai Tu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shihan Song
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaobo Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yufen Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziwei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Huang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Lili Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shenglan Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tong Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiyuan Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaozhou Hu
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Weijie Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zai-Long Chi
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wencan Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Vison Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain health), Wenzhou, 32500, China.
| |
Collapse
|
2
|
Shu X, Shao Y, Chen Y, Zeng C, Huang X, Wei R. Immune checkpoints: new insights into the pathogenesis of thyroid eye disease. Front Immunol 2024; 15:1392956. [PMID: 38817600 PMCID: PMC11137266 DOI: 10.3389/fimmu.2024.1392956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Thyroid eye disease (TED) is a disfiguring autoimmune disease characterized by changes in the orbital tissues and is caused by abnormal thyroid function or thyroid-related antibodies. It is the ocular manifestation of Graves' disease. The expression of thyroid-stimulating hormone receptor (TSHR) and the insulin-like growth factor-1 receptor (IGF-1 R) on the cell membrane of orbital fibroblasts (OFs) is responsible for TED pathology. Excessive inflammation is caused when these receptors in the orbit are stimulated by autoantibodies. CD34+ fibrocytes, found in the peripheral blood and orbital tissues of patients with TED, express immune checkpoints (ICs) like MHC II, B7, and PD-L1, indicating their potential role in presenting antigens and regulating the immune response in TED pathogenesis. Immune checkpoint inhibitors (ICIs) have significantly transformed cancer treatment. However, it can also lead to the occurrence of TED in some instances, suggesting the abnormality of ICs in TED. This review will examine the overall pathogenic mechanism linked to the immune cells of TED and then discuss the latest research findings on the immunomodulatory role of ICs in the development and pathogenesis of TED. This will offer fresh perspectives on the study of pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruili Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medicine University, Shanghai, China
| |
Collapse
|
3
|
Wang Y, Liu Y, Cai J, Zong T, Zhang Z, Xie T, Mu T, Wu M, Yang Q, Wang Y, Wang X, Yao Y. Differentially expressed genes in orbital adipose/connective tissue of thyroid-associated orbitopathy. PeerJ 2023; 11:e16569. [PMID: 38130930 PMCID: PMC10734407 DOI: 10.7717/peerj.16569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background Thyroid-associated orbitopathy (TAO) is a disease associated with autoimmune thyroid disorders and it can lead to proptosis, diplopia, and vision-threatening compressive optic neuropathy. To comprehensively understand the molecular mechanisms underlying orbital adipogenesis in TAO, we characterize the intrinsic molecular properties of orbital adipose/connective tissue from patients with TAO and control individuals. Methods RNA sequencing analysis (RNA-seq) was performed to measure the gene expression of orbital adipose/connective tissues of TAO patients. Differentially expressed genes (DEGs) were detected and analyzed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). The protein-protein interaction (PPI) network was constructed using the STRING database, and hub genes were identified by the Cytoscape plug-in, cytoHubba. We validated several top DEGs through quantitative real-time polymerase chain reaction (qRT-PCR). Results We identified 183 DEGs in adipose tissue between TAO patients (n = 3) and control patients (n = 3) through RNA sequencing, including 114 upregulated genes and 69 downregulated genes. The PPI network of these DEGs had 202 nodes and 743 edges. PCR-based validation results of orbital adipose tissue showed multiple top-ranked genes in TAO patients (n = 4) are immune and inflammatory response genes compared with the control individual (n = 4). They include ceruloplasmin isoform x3 (CP), alkaline tissue-nonspecific isozyme isoform x1 (ALPL), and angiotensinogen (AGT), which were overrepresented by 2.27- to 6.40-fold. Meanwhile, protein mab-21-like 1 (MAB21L1), phosphoinositide 3-kinase gamma-subunit (PIK3C2G), and clavesin-2 (CLVS2) decreased by 2.6% to 32.8%. R-spondin 1 (RSPO1), which is related to oogonia differentiation and developmental angiogenesis, was significantly downregulated in the orbital muscle tissues of patients with TAO compared with the control groups (P = 0.024). Conclusions Our results suggest that there are genetic differences in orbital adipose-connective tissues derived from TAO patients. The upregulation of the inflammatory response in orbital fat of TAO may be consistent with the clinical phenotype like eyelid edema, exophthalmos, and excess tearing. Downregulation of MAB21L1, PIK3C2G, and CLVS2 in TAO tissue demonstrates dysregulation of differentiation, oxidative stress, and developmental pathways.
Collapse
Affiliation(s)
- Yan Wang
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Tianyi Zong
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Ziyin Zhang
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Tong Mu
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meili Wu
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qian Yang
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yangningzhi Wang
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
4
|
Smith TJ. Fibrocyte Participation in Thyroid-Associated Ophthalmopathy Suggests New Approaches to Therapy. Ophthalmic Plast Reconstr Surg 2023; 39:S9-S18. [PMID: 38054981 PMCID: PMC10703002 DOI: 10.1097/iop.0000000000002509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Review the historical context of research and changing therapeutic landscape of thyroid-associated ophthalmopathy (TAO) by focusing on the relationship between TAO, CD34+ fibrocytes, thyrotropin receptor (TSHR), and insulin-like growth factor-I receptor (IGF-IR). METHODS A literature review using search terms, including fibrocytes, IGF-IR, TSHR, TAO, and thyroid eye disease. RESULTS The mechanisms involved in TAO have been partially identified. Substantial progress has been made over several decades, including 1) recognizing the interplay between the professional immune system and orbital tissues; 2) TSHR and IGF-IR act interdependently in mediating the pathogenesis of TAO; 3) Multiple cytokines and specific immune cells are involved in activating and remodeling orbital tissue; 4) Recognition of these mechanisms is allowing the development of target therapies such as teprotumumab, a monoclonal antibody IGF-IR inhibitor approved by the US Food and drug administration for treatment of TAO; and 5) It appears that teprotumumab acts on the systemic immune system peripheral to the orbit. CONCLUSION Additional molecules targeting IGF-IR and other plausible disease mechanisms are currently under development. This activity in the TAO therapeutic space portends even greater improvements in patient care.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105
| |
Collapse
|
5
|
Byeon HJ, Chae MK, Ko J, Lee EJ, Kikkawa DO, Jang SY, Yoon JS. The Role of Adipsin, Complement Factor D, in the Pathogenesis of Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37555734 PMCID: PMC10424154 DOI: 10.1167/iovs.64.11.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Purpose Graves' orbitopathy (GO) is an orbital manifestation of autoimmune Graves' disease, and orbital fibroblast is considered a target cell, producing pro-inflammatory cytokines and/or differentiating into adipocytes. Adipose tissue has been focused on as an endocrine and inflammatory organ secreting adipokines. We investigated the pathogenic role of a specific adipokine, adipsin, known as complement factor D in Graves' orbital fibroblasts. Methods The messenger RNA (mRNA) expression of multiple adipokines was investigated in adipose tissues harvested from GO and healthy subjects. Adipsin protein production was analyzed in primary cultured orbital fibroblasts under insulin growth factor (IGF)-1, CD40 ligand (CD40L) stimulation, and adipogenesis. The effect of blocking adipsin with small interfering RNA (siRNA) on pro-inflammatory cytokine production and adipogenesis was evaluated using quantitative real-time PCR, Western blot, and ELISA. Adipogenic differentiation was identified using Oil Red O staining. Results Adipsin gene expression was significantly elevated in GO tissue and increased after the stimulation of IGF-1 and CD40L, as well as adipocyte differentiation in GO cells. Silencing of adipsin suppressed IGF-1-induced IL-6, IL-8, COX2, ICAM-1, CCL2 gene expression, and IL-6 protein secretion. Adipsin suppression also attenuated adipocyte differentiation. Exogenous treatment of recombinant adipsin resulted in the activation of the Akt, ERK, p-38, and JNK signaling pathways. Conclusions Adipsin, secreted by orbital fibroblasts, may play a distinct role in the pathogenesis of GO. Inhibition of adipsin ameliorated the production of pro-inflammatory cytokines and adipogenesis in orbital fibroblasts. Our study provides an in vitro basis suggesting adipsin as a potential therapeutic target for GO treatment.
Collapse
Affiliation(s)
- Hyeong Ju Byeon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Min Kyung Chae
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Korea
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, California, United States
| | - Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Barnes HW, Demirdjian S, Haddock NL, Kaber G, Martinez HA, Nagy N, Karmouty-Quintana H, Bollyky PL. Hyaluronan in the pathogenesis of acute and post-acute COVID-19 infection. Matrix Biol 2023; 116:49-66. [PMID: 36750167 PMCID: PMC9899355 DOI: 10.1016/j.matbio.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) recently emerged as the cause of a global pandemic. Infection with SARS-CoV-2 can result in COVID-19 with both acute and chronic disease manifestations that continue to impact many patients long after the resolution of viral replication. There is therefore great interest in understanding the host factors that contribute to COVID-19 pathogenesis. In this review, we address the role of hyaluronan (HA), an extracellular matrix polymer with roles in inflammation and cellular metabolism, in COVID-19 and critically evaluate the hypothesis that HA promotes COVID-19 pathogenesis. We first provide a brief overview of COVID-19 infection. Then we briefly summarize the known roles of HA in airway inflammation and immunity. We then address what is known about HA and the pathogenesis of COVID-19 acute respiratory distress syndrome (COVID-19 ARDS). Next, we examine potential roles for HA in post-acute SARS-CoV-2 infection (PASC), also known as "long COVID" as well as in COVID-associated fibrosis. Finally, we discuss the potential therapeutics that target HA as a means to treat COVID-19, including the repurposed drug hymecromone (4-methylumbelliferone). We conclude that HA is a promising potential therapeutic target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Henry W Barnes
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Sally Demirdjian
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Naomi L Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Hunter A Martinez
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, Texas, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Zhang P, Zhu H. Cytokines in Thyroid-Associated Ophthalmopathy. J Immunol Res 2022; 2022:2528046. [PMID: 36419958 PMCID: PMC9678454 DOI: 10.1155/2022/2528046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/07/2023] Open
Abstract
Thyroid-associated ophthalmopathy (TAO), also known as thyroid eye disease (TED) or Graves' orbitopathy (GO), is a complex autoimmune condition causing visual impairment, disfigurement, and harm to patients' physical and mental health. The pathogenesis of TAO has not been fully elucidated, and the mainstream view is that coantigens shared by the thyroid and orbit trigger remodeling of extraocular muscles and orbital connective tissues through an inflammatory response. In recent years, cytokines and the immune responses they mediate have been crucial in disease progression, and currently, common evidence has shown that drugs targeting cytokines, such as tocilizumab, infliximab, and adalimumab, may be novel targets for therapy. In this review, we summarize the research development of different cytokines in TAO pathogenesis in the hope of discovering new therapeutic targets.
Collapse
Affiliation(s)
- Pengbo Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Huang Zhu
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
8
|
Proctor ES, Smith TJ. Bone marrow fibrocytes: villain or white knight in thyroid-associated ophthalmopathy? Curr Opin Endocrinol Diabetes Obes 2022; 29:441-448. [PMID: 35950703 DOI: 10.1097/med.0000000000000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW We attempt to provide an historical perspective on progress made in understanding the pathogenesis of thyroid-associated ophthalmopathy (TAO), focusing on the roles of orbital fibroblasts (OF) in the diseased orbit (termed GD-OF) and how these cells differ from those residing in the healthy orbit. GD-OF comprise both residential OF and those apparently derived from CD34 + fibrocytes. RECENT FINDINGS CD34 + fibrocytes of the monocyte lineage putatively traffic to the TAO orbit from bone marrow. We believe that these fibroblastic cell populations dictate the activity and severity of TAO. Their impact on disease may be moderated by Slit2, a neuron axon guidance repellent synthesized by and released from residential CD34 - OF. Approximately 50% of patients with GD develop clinically meaningful TAO. Relatively few require systemic medical and surgical therapies, while milder disease can be managed with conservative, local care. Determining the intrinsic properties of GD-OF and their expression of Slit2 may explain why some patients with GD develop severe, vision-threatening TAO while others virtually escape any of its manifestations. Such insights should allow for improved and better-tolerated therapies. SUMMARY Identifying unique characteristics of fibrocytes and GD-OF subsets reveals their apparent roles in tissue activation, inflammation, and remodeling associated with TAO. Better understanding of these cells, their origins, behavior, and factors modulating their activities remains necessary for the development of more targeted, effective, and safe treatments.
Collapse
Affiliation(s)
- Erin S Proctor
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
9
|
Fernando R, Smith TJ. Teprotumumab Divergently Alters Fibrocyte Gene Expression: Implications for Thyroid-associated Ophthalmopathy. J Clin Endocrinol Metab 2022; 107:e4037-e4047. [PMID: 35809263 PMCID: PMC9516078 DOI: 10.1210/clinem/dgac415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Teprotumumab, an IGF-I receptor (IGF-IR) inhibitor, is effective in thyroid-associated ophthalmopathy (TAO). The drug can modulate induction by TSH of IL-6 and IL-8 in CD34+ fibrocytes and their putative derivatives, CD34+ orbital fibroblasts (CD34+ OF). Fibrocytes express multiple thyroid autoantigens and cytokines implicated in TAO, which are downregulated by Slit2. Inflammation and disordered hyaluronan (HA) accumulation occur in TAO. Whether teprotumumab alters these processes directly in fibrocytes/CD34+ OF remains uncertain. OBJECTIVE Determine teprotumumab effects on expression/synthesis of several TAO-relevant molecules in fibrocytes and GD-OF. DESIGN/SETTING/PARTICIPANTS Patients with TAO and healthy donors were recruited from an academic endocrine and oculoplastic practice. MAIN OUTCOME MEASURES Real-time PCR, specific immunoassays. RESULTS Teprotumumab attenuates basal and TSH-inducible autoimmune regulator protein, thyroglobulin, sodium iodide symporter, thyroperoxidase, IL-10, and B-cell activating factor levels in fibrocytes. It downregulates IL-23p19 expression/induction while enhancing IL-12p35, intracellular and secreted IL-1 receptor antagonists, and Slit2. These effects are mirrored by linsitinib. HA production is marginally enhanced by teprotumumab, the consequence of enhanced HAS2 expression. CONCLUSION Teprotumumab affects specific gene expression in fibrocytes and GD-OF in a target-specific, nonmonolithic manner, whereas IGF-IR control of these cells appears complex. The current results suggest that the drug may act on cytokine expression and HA production systemically and locally, within the TAO orbit. These findings extend our insights into the mechanisms through which IGF-IR inhibition might elicit clinical responses in TAO, including a potential role of Slit2 in attenuating inflammation and tissue remodeling.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, MI 48105, USA
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Terry J Smith
- Correspondence: Terry J. Smith, MD, Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall St, Ann Arbor, MI 48105, USA.
| |
Collapse
|
10
|
Abstract
CONTEXT Thyroid eye disease (TED), a vision-threatening and disfiguring autoimmune process, has thwarted our efforts to understand its pathogenesis and develop effective and safe treatments. Recent scientific advances have facilitated improved treatment options. OBJECTIVE Review historically remote and recent advances in understanding TED. DESIGN/SETTING/PARTICIPANTS PubMed was scanned using search terms including thyroid-associated ophthalmopathy, thyroid eye disease, Graves' orbitopathy, autoimmune thyroid disease, and orbital inflammation. MAIN OUTCOME MEASURES Strength of scientific evidence, size, scope, and controls of clinical trials/observations. RESULTS Glucocorticoid steroids are widely prescribed systemic medical therapy. They can lessen inflammation-related manifestations of TED but fail to reliably reduce proptosis and diplopia, 2 major causes of morbidity. Other current therapies include mycophenolate, rituximab (anti-CD20 B cell-depleting monoclonal antibody), tocilizumab (interleukin-6 receptor antagonist), and teprotumumab (IGF-I receptor inhibitor). Several new therapeutic approaches have been proposed including targeting prostaglandin receptors, vascular endothelial growth factor, mTOR, and cholesterol pathways. Of potentially greater long-term importance are attempts to restore immune tolerance. CONCLUSION Despite their current wide use, steroids may no longer enjoy first-tier status for TED as more effective and better tolerated medical options become available. Multiple current and emerging therapies, the rationales for which are rooted in theoretical and experimental science, promise better options. These include teprotumumab, rituximab, and tocilizumab. Restoration of immune tolerance could ultimately become the most effective and safe medical management for TED.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
11
|
Liu Z, Liu Y, Liu M, Gong Q, Shi A, Li X, Bai X, Guan X, Hao B, Liu F, Zhou X, Yuan H. PD-L1 Inhibits T Cell-Induced Cytokines and Hyaluronan Expression via the CD40-CD40L Pathway in Orbital Fibroblasts From Patients With Thyroid Associated Ophthalmopathy. Front Immunol 2022; 13:849480. [PMID: 35619700 PMCID: PMC9128409 DOI: 10.3389/fimmu.2022.849480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022] Open
Abstract
Thyroid associated ophthalmopathy (TAO), characterized by T cell infiltration and orbital fibroblast activation, is an organ-specific autoimmune disease which is still short of effective and safety therapeutic drugs. The PD-1/PD-L1 pathway has been reported hindering the progression of Graves’ disease to some extent by inhibiting T cell activity, and tumor therapy with a PD-1 inhibitor caused some adverse effects similar to the symptoms of TAO. These findings suggest that the PD-1/PD-L1 pathway may be associated with the pathogenesis of TAO. However, it remains unknown whether the PD-1/PD-L1 pathway is involved in orbital fibroblast activation. Here, we show that orbital fibroblasts from patients with TAO do not express PD-L1. Based on in vitro OF-T cell co-culture system, exogenous PD-L1 weakens T cell-induced orbital fibroblast activation by inhibiting T cell activity, resulting in reduced production of sICAM-1, IL-6, IL-8, and hyaluronan. Additionally, exogenous PD-L1 treatment also inhibits the expression of CD40 and the phosphorylation levels of MAPK and NF-κB pathways in orbital fibroblasts of the OF-T cell co-culture system. Knocking down CD40 with CD40 siRNA or down-regulating the phosphorylation levels of MAPK and NF-κB pathways with SB203580, PD98059, SP600125, and PDTC can both reduce the expression of these cytokines and hyaluronan. Our study demonstrates that the orbital immune tolerance deficiency caused by the lack of PD-L1 in orbital fibroblasts may be one of the causes for the active orbital inflammation in TAO patients, and the utilization of exogenous PD-L1 to reconstruct the orbital immune tolerance microenvironment may be a potential treatment strategy for TAO.
Collapse
Affiliation(s)
- Zhibin Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingming Liu
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qingjia Gong
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Anjie Shi
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiuhong Li
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Bing Hao
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xing Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China.,Department of Pharmacy, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.,Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ortibal Surgery, Chongqing Aier Hospital, Chongqing, China
| |
Collapse
|
12
|
Abstract
PURPOSE Our understanding of thyroid-associated ophthalmopathy (TAO, A.K.A Graves' orbitopathy, thyroid eye disease) has advanced substantially, since one of us (TJS) wrote the 2010 update on TAO, appearing in this journal. METHODS PubMed was searched for relevant articles. RESULTS Recent insights have resulted from important studies conducted by many different laboratory groups around the World. A clearer understanding of autoimmune diseases in general and TAO specifically emerged from the use of improved research methodologies. Several key concepts have matured over the past decade. Among them, those arising from the refinement of mouse models of TAO, early stage investigation into restoring immune tolerance in Graves' disease, and a hard-won acknowledgement that the insulin-like growth factor-I receptor (IGF-IR) might play a critical role in the development of TAO, stand out as important. The therapeutic inhibition of IGF-IR has blossomed into an effective and safe medical treatment. Teprotumumab, a β-arrestin biased agonist monoclonal antibody inhibitor of IGF-IR has been studied in two multicenter, double-masked, placebo-controlled clinical trials demonstrated both effectiveness and a promising safety profile in moderate-to-severe, active TAO. Those studies led to the approval by the US FDA of teprotumumab, currently marketed as Tepezza for TAO. We have also learned far more about the putative role that CD34+ fibrocytes and their derivatives, CD34+ orbital fibroblasts, play in TAO. CONCLUSION The past decade has been filled with substantial scientific advances that should provide the necessary springboard for continually accelerating discovery over the next 10 years and beyond.
Collapse
Affiliation(s)
- E J Neag
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Michigan State University College of Osteopathic Medicine, East Lansing, MI, USA
| | - T J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
13
|
Yoon J, Kikkawa D. Thyroid eye disease: From pathogenesis to targeted therapies. Taiwan J Ophthalmol 2022; 12:3-11. [PMID: 35399971 PMCID: PMC8988977 DOI: 10.4103/tjo.tjo_51_21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/30/2021] [Indexed: 11/18/2022] Open
Abstract
Thyroid eye disease (TED) is the most common extrathyroidal manifestation of autoimmune Graves’ hyperthyroidism. TED is a debilitating and potentially blinding disease with unclear pathogenesis. Autoreactive inflammatory reactions targeting orbital fibroblasts (OFs) lead to the expansion of orbital adipose tissues and extraocular muscle swelling within the fixed bony orbit. There are many recent advances in the understating of molecular pathogenesis of TED. The production of autoantibodies to cross-linked thyroid-stimulating hormone receptor and insulin-like growth factor-1 receptor (IGF-1R) activates OFs to produce significant cytokines and chemokines and hyaluronan production and to induce adipocyte differentiation. In moderately severe active TED patients, multicenter clinical trials showed that inhibition of IGF-1R with teprotumumab was unprecedentedly effective with minimal side effects. The emergence of novel biologics resulted in a paradigm shift in the treatment of TED. We here review the literature on advances of pathogenesis of TED and promising therapeutic targets and drugs.
Collapse
|
14
|
Lou H, Wu LQ, Wang H, Wei RL, Cheng JW. The Potential Role of Osteopontin in the Pathogenesis of Graves' Ophthalmopathy. Invest Ophthalmol Vis Sci 2021; 62:18. [PMID: 34546326 PMCID: PMC8458783 DOI: 10.1167/iovs.62.12.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study is to evaluate the expression of osteopontin (OPN) and its relationship with relative cytokines in patients with Graves’ ophthalmopathy (GO), and to observe the effect of OPN on orbital fibroblasts (OFs) proliferation, migration, and the expression of relative cytokines, as well as the signaling pathways involved in its effect. Methods The orbital adipose connective tissue was obtained from 24 patients with GO (12 cases of active GO, and 12 cases of inactive GO) and 12 healthy controls. OFs were isolated from orbital tissues obtained from patients with active GO who were undergoing orbital decompression surgery. Quantitative PCR and Western blot were performed to detect RNA and protein expression. The proliferation and cell migration rates of OFs were measured by methylthiazol tetrazolium (MTT) and the cell scratch test. Signaling pathway inhibitors, such as OPN monoclonal antibody 1A12, ERK1/2 inhibitor PD98059, and PI3K inhibitor LY294002, were applied to determine the involved pathways. Results The mRNA and protein levels of OPN were increased in orbital adipose connective tissue from patients with active GO than those from patients with inactive GO (2.83-fold increase, P < 0.001; 1.91-fold increase, P < 0.05). The OPN mRNA level was positively correlated with CD40 ligand (CD40L) and hyaluronan synthases 2 (HAS2) mRNA in patients with GO. OPN promoted proliferation and migration rate of OFs and induced vascular endothelial growth factor (VEGF) and collagen I mRNA expression, and the effects were inhibited by 1A12 or LY294002. Conclusions OPN in orbital adipose connective tissues were significantly increase in active GO, and there were significant correlations of OPN with CD40L and HAS2 mRNA levels in patients with GO. OPN promoted proliferation and migration of OFs and induced VEGF and collagen I mRNA expression in OFs through PI3K/Akt signaling pathway. This suggested a role for OPN in the pathogenesis of GO through the activation of OFs.
Collapse
Affiliation(s)
- Heng Lou
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Lian-Qun Wu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| | - Rui-Li Wei
- Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| | - Jin-Wei Cheng
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China.,Department of Ophthalmology, Shanghai Changzheng Hospital, Shanghai, China
| |
Collapse
|
15
|
Cardiovascular Effects Mediated by HMMR and CD44. Mediators Inflamm 2021; 2021:4977209. [PMID: 34335086 PMCID: PMC8286199 DOI: 10.1155/2021/4977209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The most dangerous life-threatening symptoms of CVD are myocardial infarction and stroke. The causes of CVD are not entirely clear, and new therapeutic targets are still being sought. One of the factors involved in CVD development among vascular damage and oxidative stress is chronic inflammation. It is known that hyaluronic acid plays an important role in inflammation and is regulated by numerous stimuli, including proinflammatory cytokines. The main receptors for hyaluronic acid are CD44 and RHAMM. These receptors are membrane proteins that differ in structure, but it seems that they can perform similar or synergistic functions in many diseases. Both RHAMM and CD44 are involved in cell migration and wound healing. However, their close association with CVD is not fully understood. In this review, we describe the role of both receptors in CVD.
Collapse
|
16
|
Chen X, Dong J, Zhang L, Zhao X, Shi R, Pan M, Zheng J. Local immune microenvironment of skin may play an important role in the development of pretibial myxedema. Exp Dermatol 2021; 30:1820-1824. [PMID: 34047397 PMCID: PMC8597019 DOI: 10.1111/exd.14402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 01/26/2023]
Abstract
Pretibial myxedema (PTM), characterized by the accumulation of glycosaminoglycans in dermis is an autoimmune skin disorder, which is almost always associated with Graves’ disease (GD). Although fibroblast stimulated by thyroid‐stimulating hormone receptor (TSHR) antibody, cytokines and growth factors have been postulated as target of the autoimmune process in the dermopathy, the pathogenesis of PTM remains unclear. We hypothesize that the local immune microenvironment of the skin including the antigens and antibodies, T cells, B cells, plasma cells and fibroblasts may play an important role in the development of PTM. Results obtained on PTM patients indicate increased thyroid‐stimulating hormone receptor antibodies (TRAb) in the blood positively correlate with the dermal thickness of the lesions. Further analysis shows that there were more CD3+ T cells and CD20+ B cells in the skin lesions. These T and B cells are in close contact, indicating that inducible skin‐associated lymphoid tissue (iSALT) may be formed in the area. In addition, we found that the infiltrating plasma cells can secrete TRAb, proving that B cells in the skin other than the thyroid are an additional source of TSHR antibodies. Meanwhile, the T and B cells in the skin or skin homogenate of patients can promote the proliferation of pretibial fibroblasts. In conclusion, our results provide evidence that the local immune microenvironment of the skin may play an important role in the development of PTM.
Collapse
Affiliation(s)
- Xiaoying Chen
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyun Dong
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhao
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruofei Shi
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Dermatology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Teprotumumab in Thyroid-Associated Ophthalmopathy: Rationale for Therapeutic Insulin-Like Growth Factor-I Receptor Inhibition. J Neuroophthalmol 2021; 40:74-83. [PMID: 32040069 DOI: 10.1097/wno.0000000000000890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune component of Graves' disease for which no currently available medical therapy provides reliable and safe benefit. Based on insights generated experimentally over the past several decades, the insulin-like growth factor-I receptor (IGF-IR) has been implicated in the pathogenesis of TAO. Furthermore, an IGF-IR inhibitor, teprotumumab, has emerged from 2 clinical trials as a promising treatment for active, moderate to severe TAO. This brief review intends to provide an overview of the rationale underlying the development of teprotumumab for this disease. It is possible that teprotumumab will soon take its place in our therapeutic armamentarium for active TAO.
Collapse
|
18
|
Katko M, Galgoczi E, Erdei A, Gazdag A, Berta E, Bodor M, Seres I, Hircsu I, Badics A, Ujhelyi B, Sira L, Bhattoa HP, Nagy EV. The 4G/5G Polymorphism of Plasminogen Activator Inhibitor Type 1 is a Predictor of Moderate-to-Severe Thyroid Eye Disease. J Inflamm Res 2021; 14:1883-1890. [PMID: 34012286 PMCID: PMC8126970 DOI: 10.2147/jir.s307046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/31/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction Thyroid eye disease (TED) is an autoimmune disease of the orbits. Once developed, complete cure is rare. Plasminogen activator inhibitor type 1 (PAI-1) contributes to remodeling of connective tissue and has a central role in the pathogenesis of TED. We aimed to test if the 4G/5G polymorphism of PAI-1 is a predictor of the development of moderate-to-severe TED. Methods A total of 185 patients with Graves’ disease, 87 of them with TED, 98 without TED, as well as 201 healthy controls, were studied. Genomic DNA was isolated from peripheral blood samples. The 4G/5G polymorphism of the PAI-1 gene was analyzed by allele-specific PCR, and the distribution of genotypes was calculated in each group. Plasma PAI-1 and thyroid hormone levels were measured by ELISA and ECLIA, respectively. Results The 4G/4G genotype was associated with the development of moderate-to-severe TED (OR = 2.54; 95% CI: 1.26–5.14; p < 0.01). The 4G/5G polymorphism of PAI-1 was not a predictor of plasma PAI-1 levels. Conclusion The 4G/4G genotype of PAI-1 is a risk factor for the development of moderate-to-severe TED. Patients with Graves’ disease who harbor this genotype may be candidates for special attention towards the development of TED.
Collapse
Affiliation(s)
- Monika Katko
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erika Galgoczi
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Erdei
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Annamaria Gazdag
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Berta
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Miklos Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildiko Seres
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ildiko Hircsu
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Arpad Badics
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Livia Sira
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Harjit Pal Bhattoa
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hngary
| | - Endre V Nagy
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Ding Y, Yang S, Gao H. Teprotumumab: The Dawn of Therapies in Moderate-to-Severe Thyroid-Associated Ophthalmopathy. Horm Metab Res 2021; 53:211-218. [PMID: 33853117 DOI: 10.1055/a-1386-4512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a potentially sight-threatening ocular disease. About 3-5% of patients with TAO have severe disease with intense pain, inflammation, and sight-threatening corneal ulceration or compressive optic neuropathy. The current treatments of TAO are often suboptimal, mainly because the existing therapies do not target the pathogenesis of the disease. TAO mechanism is unclear. Ocular fibrocytes express relatively high levels of the functional TSH receptor (TSHR), and many indirect evidences support its participation. Over expression of insulin-like growth factor-1 receptor (IGF-IR) in fibroblasts, leading to inappropriate expression of inflammatory factors, production of hyaluronic acid and cell activation in orbital fibroblasts are also possible mechanisms. IGF-1R and TSHR form a physical and functional signaling complex. Inhibition of IGF-IR activity leads to the attenuation of signaling initiated at either receptor. Teprotumumab (TMB) is a human immunoglobulin G1 monoclonal antibody, binding to IGF-IR. Recently two TMB clinical trials had been implemented in TAO patients, indicating dramatic reductions in disease activity and severity, which approved its use for the treatment of TAO in the US. This review summarizes the treatments of TAO, focusing on the pathogenesis of IGF-1R in TAO and its application prospects.
Collapse
Affiliation(s)
- Yizhi Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoqin Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Gao
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Teprotumumab (Tepezza): from the discovery and development of medicines to USFDA approval for active thyroid eye disease (TED) treatment. Int Ophthalmol 2021; 41:1549-1561. [PMID: 33481154 DOI: 10.1007/s10792-021-01706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
Teprotumumab (TPT) is a type I insulin-like growth factor receptor inhibitor, marketed as Tepezza; recently USFDA approved it for the treatment of thyroid eye disease (thyroid-associated ophthalmopathy (TAO), Graves ophthalmopathy/orbitopathy) in the USA. It is a monoclonal antibody although it was initially developed in collaboration with Genmab and Roche for the treatment of the tumour, but later it was investigated by River Vision Development Corporation and Horizon Therapeutics for its ophthalmic use. The drug has been designated as an orphan drug, breakthrough designation and fast-track designation. This review summarizes the milestones in the research and development including ongoing, clinical trial of TPT till now, foremost to this primary approval for thyroid-associated ophthalmopathy (TAO).
Collapse
|
21
|
Fernando R, Smith TJ. Slit2 Regulates Hyaluronan & Cytokine Synthesis in Fibrocytes: Potential Relevance to Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2021; 106:e20-e33. [PMID: 32968816 PMCID: PMC7765649 DOI: 10.1210/clinem/dgaa684] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT CD34+ fibrocytes have been implicated in development of thyroid-associated ophthalmopathy (TAO), a consequential autoimmune manifestation of Graves disease (GD). In TAO, CD34+ fibrocytes appear to masquerade as CD34+ orbital fibroblasts mixed with CD34- OF (collectively, GD-OF). Slit2, an axon guidance glycoprotein, is expressed by CD34- OF and attenuates GD-OF gene expression. Cardinal features of TAO include hyaluronan (HA) accumulation and cytokine-driven inflammation. OBJECTIVE Compare expression of HA synthase isoenzymes (HAS1-3), UDP-glucose dehydrogenase (UGDH), synthesis of HA, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in fibrocytes and GD-OF. Determine whether Slit2 alters gene expression patterns. DESIGN/SETTING/PARTICIPANTS Patients with TAO and healthy donors were recruited from an academic practice. MAIN OUTCOME MEASURES Real-time polymerase chain reaction, HA, IL-6, and TNF-α immunoassays. RESULTS HA synthesis and release from fibrocytes is substantially lower than in GD-OF. HAS1 expression dominates in fibrocytes while HAS2 in GD-OF. In contrast, HAS2 and UGDH expression dominate GD-OF and localize to CD34- OF. Recombinant human Slit2 (rhSlit2) substantially upregulates HA synthesis and HAS2 expression in fibrocytes but attenuates IL-6 and TNF-α production in these cells. In contrast, knocking down Slit2 in GD-OF reduces HA synthesis and HAS2 and UGDH expression while upregulating IL-6 and TNF-α. CONCLUSION The dramatic differences in HA, IL-6, and TNF-α production, and HAS and UGDH expression found in fibrocytes and GD-OF appear, at least in part, to be attributable to Slit2. These findings provide novel insight into the differences in gene expression exhibited by CD34+ fibrocytes and CD34+ OF and therefore reveal important aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Roshini Fernando
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, Michigan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
22
|
Fang S, Lu Y, Huang Y, Zhou H, Fan X. Mechanisms That Underly T Cell Immunity in Graves' Orbitopathy. Front Endocrinol (Lausanne) 2021; 12:648732. [PMID: 33868176 PMCID: PMC8049604 DOI: 10.3389/fendo.2021.648732] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
Graves' orbitopathy (GO), also known as thyroid-associated ophthalmopathy, is the most common ocular abnormality of Graves' disease. It is a disfiguring, invalidating, and potentially blinding orbital disease mediated by an interlocking and complicated immune network. Self-reactive T cells directly against thyroid-stimulating hormone receptor-bearing orbital fibroblasts contribute to autoimmune inflammation and tissue remodeling in GO orbital connective tissues. To date, T helper (Th) 1 (cytotoxic leaning) and Th2 (antibody leaning) cell subsets and an emerging role of Th17 (fibrotic leaning) cells have been implicated in GO pathogenesis. The potential feedback loops between orbital native residential CD34- fibroblasts, CD34+ infiltrating fibrocytes, and effector T cells may affect the T cell subset bias and the skewed pattern of cytokine production in the orbit, thereby determining the outcomes of GO autoimmune reactions. Characterization of the T cell subsets that drive GO and the cytokines they express may significantly advance our understanding of orbital autoimmunity and the development of promising therapeutic strategies against pathological T cells.
Collapse
Affiliation(s)
- Sijie Fang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yazhuo Huang
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- *Correspondence: Xianqun Fan, ; Huifang Zhou,
| |
Collapse
|
23
|
Muñoz-Ortiz J, Sierra-Cote MC, Zapata-Bravo E, Valenzuela-Vallejo L, Marin-Noriega MA, Uribe-Reina P, Terreros-Dorado JP, Gómez-Suarez M, Arteaga-Rivera K, de-la-Torre A. Prevalence of hyperthyroidism, hypothyroidism, and euthyroidism in thyroid eye disease: a systematic review of the literature. Syst Rev 2020; 9:201. [PMID: 32873324 PMCID: PMC7465839 DOI: 10.1186/s13643-020-01459-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Thyroid eye disease is an autoimmune disorder of the orbital retrobulbar tissue commonly associated with dysthyroid status. The most frequent condition is hyperthyroidism, although it is also present in hypothyroid and euthyroid patients. The prevalence of thyroid conditions in patients with thyroid eye disease had been previously evaluated; however, there is no consensus on a global prevalence. The study aims to estimate the prevalence of hyperthyroidism, hypothyroidism, and euthyroidism in patients with TED, through a systematic review of literature. METHODS We conducted a systematic review of the literature following the PRISMA guidelines, in MEDLINE, COCHRANE, EMBASE, Science Direct, and LILACS databases. Inclusion criteria were primary studies of patients with a diagnosis of thyroid eye disease made by an ophthalmologist or with diagnosis criteria, with measurement of thyroid function (TSH, T3, and free T4), and diagnosis of the primary thyroid condition. A quality assessment was made through the Joanna Briggs Institute Quality tools. Finally, we extracted relevant details about the design, the results, and the prevalence of thyroid disorders in thyroid eye disease. RESULTS The initial search revealed 916 studies, of which finally thirteen met inclusion criteria. Six studies were performed in Europe (Germany, Wales, and Spain), five in Asia (Iran, South Korea, Japan, and Singapore), one in North America (USA), and one in Africa (Ghana). The global prevalence, in patients of thyroid eye disease, was 10.36% for hypothyroidism, 7.9% for euthyroidism, and 86.2% for hyperthyroidism. CONCLUSIONS Professionals should be aware that thyroid eye disease can be present in patients with a normal thyroid function. The assessment for these patients is based on orbital images; serum TSH, T3, and free T4; antibody levels as thyrotropin receptor antibodies; and thyroperoxidase levels. Additionally, we want to encourage research in this field in other regions of the world such as Latin America. SYSTEMATIC REVIEW REGISTRATION PROSPERO ID CRD42020107167.
Collapse
Affiliation(s)
- Juliana Muñoz-Ortiz
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología del Instituto Barraquer de América, Avenida Calle 100 No. 18A - 51, Bogotá, Colombia
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Maria Camila Sierra-Cote
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Estefanía Zapata-Bravo
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Laura Valenzuela-Vallejo
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Maria Alejandra Marin-Noriega
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Pilar Uribe-Reina
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología del Instituto Barraquer de América, Avenida Calle 100 No. 18A - 51, Bogotá, Colombia
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Juan Pablo Terreros-Dorado
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia
| | - Marcela Gómez-Suarez
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología del Instituto Barraquer de América, Avenida Calle 100 No. 18A - 51, Bogotá, Colombia
| | - Karla Arteaga-Rivera
- Escuela Barraquer Research Group, Escuela Superior de Oftalmología del Instituto Barraquer de América, Avenida Calle 100 No. 18A - 51, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Research Group in Neurosciences NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 # 63C 69, Bogotá, Colombia.
| |
Collapse
|
24
|
|
25
|
Smith TJ. Teprotumumab as a Novel Therapy for Thyroid-Associated Ophthalmopathy. Front Endocrinol (Lausanne) 2020; 11:610337. [PMID: 33391187 PMCID: PMC7774640 DOI: 10.3389/fendo.2020.610337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) has remained a vexing and poorly managed autoimmune component of Graves' disease where the tissues surrounding the eye and in the upper face become inflamed and undergo remodeling. This leads to substantial facial disfigurement while in its most severe forms, TAO can threaten eye sight. In this brief paper, I review some of the background investigation that has led to development of teprotumumab as the first and only US FDA approved medical therapy for TAO. This novel treatment was predicated on recognition that the insulin-like growth factor I receptor plays an important role in the pathogenesis of TAO. It is possible that a similar involvement of that receptor in other autoimmune disease may lead to additional indications for this and alternative insulin-like growth factor I receptor-inhibiting strategies.
Collapse
Affiliation(s)
- Terry J. Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, MI, United States
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Terry J. Smith,
| |
Collapse
|
26
|
George A, Diana T, Längericht J, Kahaly GJ. Stimulatory Thyrotropin Receptor Antibodies Are a Biomarker for Graves' Orbitopathy. Front Endocrinol (Lausanne) 2020; 11:629925. [PMID: 33603715 PMCID: PMC7885640 DOI: 10.3389/fendo.2020.629925] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022] Open
|
27
|
Wang ZM, Wang ZY, Lu Y. The role of cell mediated immunopathogenesis in thyroid-associated ophthalmopathy. Int J Ophthalmol 2019; 12:1209-1214. [PMID: 31341815 DOI: 10.18240/ijo.2019.07.24] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
Currently, thyroid-associated ophthalmopathy (TAO) lacks effective treatment due to our lack of clarity in its immunopathogenesis. Orbital fibroblasts play a key role in altering inflammation and immune response in TAO, and are considered as the key target and effector cells in its pathogenesis. The orbit infiltrating CD34+ fibrocytes add on to the process by expressing high levels of autoantigens and inflammatory cytokines, while also differentiating into myofibroblasts or adipocytes. This review focuses on the role of orbital fibroblasts and CD34+ fibrocytes in the pathogenesis of TAO, highlighting the basis of emerging treatments.
Collapse
Affiliation(s)
- Zhen-Mao Wang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou 515000, Guangdong Province, China
| | - Zheng-Yan Wang
- The People's Hospital of Xintai, Xintai 271200, Shandong Province, China
| | - Yan Lu
- Department of Ophthalmology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
28
|
Yang IH, Rose GE, Ezra DG, Bailly M. Macrophages promote a profibrotic phenotype in orbital fibroblasts through increased hyaluronic acid production and cell contractility. Sci Rep 2019; 9:9622. [PMID: 31270379 PMCID: PMC6610127 DOI: 10.1038/s41598-019-46075-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022] Open
Abstract
Graves’ orbitopathy (GO) is an autoimmune inflammatory disease affecting the orbit. Orbital fibroblasts are a key component in GO pathogenesis, which includes inflammation, adipogenesis, hyaluronic acid (HA) secretion, and fibrosis. Macrophages are thought to participate in the immunological stage of GO, but whether they can directly affect the fibroblasts phenotype and modulate disease progression is unknown. We previously showed that GO adipogenic and fibrotic phenotypes could be modelled in a pseudo-physiological 3D environment in vitro. Here, we introduced macrophages in this 3D culture model to investigate role for macrophages in modulating adipogenesis, HA production, and contractility in orbital fibroblasts. Macrophages had a minimal effect on lipid droplet formation in fibroblasts, but significantly increased HA production and cell contractility, suggesting that they may promote the fibrotic phenotype. This effect was found to be mediated at least in part through phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) activation and linked to an increase in actin polymerization and protrusive activity in fibroblasts. Overall our work shows for the first time a direct role for macrophages in modulating the fibroblasts’ phenotype in GO, supporting a role for macrophages in the progression of the fibrotic phenotype through induction of HA production and stimulation of the contractile phenotype in orbital fibroblasts.
Collapse
Affiliation(s)
- I-Hui Yang
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Geoffrey E Rose
- Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK
| | - Daniel G Ezra
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.,Department of Adnexal Surgery, Moorfields Eye Hospital, London, EC1V 2PD, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, City Road, London, EC1V 2PD, UK
| | - Maryse Bailly
- UCL Institute of Ophthalmology, London, EC1V 9EL, UK.
| |
Collapse
|
29
|
Plöhn S, Edelmann B, Japtok L, He X, Hose M, Hansen W, Schuchman EH, Eckstein A, Berchner-Pfannschmidt U. CD40 Enhances Sphingolipids in Orbital Fibroblasts: Potential Role of Sphingosine-1-Phosphate in Inflammatory T-Cell Migration in Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2019; 59:5391-5397. [PMID: 30452592 DOI: 10.1167/iovs.18-25466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Graves' orbitopathy (GO) is an autoimmune orbital disorder associated with Graves' disease caused by thyrotropin receptor autoantibodies. Orbital fibroblasts (OFs) and CD40 play a key role in disease pathogenesis. The bioactive lipid sphingosine-1-phosphate (S1P) has been implicated in promoting adipogenesis, fibrosis, and inflammation in OFs. We investigated the role of CD40 signaling in inducing S1P activity in orbital inflammation. Methods OFs and T cells were derived from GO patients and healthy control (Ctl) persons. S1P abundance in orbital tissues was evaluated by immunofluorescence. OFs were stimulated with CD40 ligand and S1P levels were determined by ELISA. Further, activities of acid sphingomyelinase (ASM), acid ceramidase, and sphingosine kinase were measured by ultraperformance liquid chromatography. Sphingosine and ceramide contents were analyzed by mass spectrometry. Finally, the role for S1P in T-cell attraction was investigated by T-cell migration assays. Results GO orbital tissue showed elevated amounts of S1P as compared to control samples. Stimulation of CD40 induced S1P expression in GO-derived OFs, while Ctl-OFs remained unaffected. A significant increase of ASM and sphingosine kinase activities, as well as lipid formation, was observed in GO-derived OFs. Migration assay of T cells in the presence of SphK inhibitor revealed that S1P released by GO-OFs attracted T cells for migration. Conclusions The results demonstrated that CD40 ligand stimulates GO fibroblast to produce S1P, which is a driving force for T-cell migration. The results support the use of S1P receptor signaling modulators in GO management.
Collapse
Affiliation(s)
- Svenja Plöhn
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Bärbel Edelmann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany.,Department for Haematology and Oncology, Otto-von-Guericke University, Magdeburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthias Hose
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University of Duisburg-Essen, Essen, Germany
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
30
|
Smith TJ. Potential Roles of CD34+ Fibrocytes Masquerading as Orbital Fibroblasts in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2019; 104:581-594. [PMID: 30445529 PMCID: PMC6320239 DOI: 10.1210/jc.2018-01493] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
CONTEXT Orbital tissues in thyroid-associated ophthalmopathy exhibit particular reactivity and undergo characteristic remodeling. Mechanisms underlying these changes have remained largely unexplained. Studies have characterized orbital connective tissues and derivative fibroblasts to gain insights into local manifestations of a systemic autoimmune syndrome. EVIDENCE ACQUISITION A systematic search of PubMed was undertaken for studies related to thyroid-associated ophthalmopathy (TAO), orbital fibroblasts, and fibrocytes involved in pathogenesis. EVIDENCE SYNTHESIS Orbital tissues display marked cellular heterogeneity. Fibroblast subsets, putatively derived from multiple precursors, inhabit the orbit in TAO. Among them are cells displaying the CD34+CXC chemokine receptor 4+collagen I+ phenotype, identifying them as fibrocytes, derived from the monocyte lineage. Their unique presence in the TAO orbit helps explain the tissue reactivity and characteristic remodeling that occurs in the disease. Their unanticipated expression of several proteins traditionally thought to be thyroid gland specific, including the TSH receptor and thyroglobulin, may underlie orbital involvement in Graves disease. Although no currently available information unambiguously establishes that CD34+ orbital fibroblasts originate from circulating fibrocytes, inferences from animal models of lung disease suggest that they derive from bone marrow. Further studies are necessary to determine whether fibrocyte abundance and activity in the orbit determine the clinical behavior of TAO. CONCLUSION Evidence supports a role for fibrocytes in the pathogenesis of TAO. Recognition of their presence in the orbit now allows development of therapies specifically targeting these cells that ultimately could allow the restoration of immune tolerance within the orbit and perhaps systemically.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, Ann Arbor, Michigan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence and Reprint Requests: Terry J. Smith, MD, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Brehm Tower, 1000 Wall Street, Ann Arbor, Michigan 48105. E-mail:
| |
Collapse
|
31
|
Smith TJ, Janssen JAMJL. Insulin-like Growth Factor-I Receptor and Thyroid-Associated Ophthalmopathy. Endocr Rev 2019; 40:236-267. [PMID: 30215690 PMCID: PMC6338478 DOI: 10.1210/er.2018-00066] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO) is a complex disease process presumed to emerge from autoimmunity occurring in the thyroid gland, most frequently in Graves disease (GD). It is disfiguring and potentially blinding, culminating in orbital tissue remodeling and disruption of function of structures adjacent to the eye. There are currently no medical therapies proven capable of altering the clinical outcome of TAO in randomized, placebo-controlled multicenter trials. The orbital fibroblast represents the central target for immune reactivity. Recent identification of fibroblasts that putatively originate in the bone marrow as monocyte progenitors provides a plausible explanation for why antigens, the expressions of which were once considered restricted to the thyroid, are detected in the TAO orbit. These cells, known as fibrocytes, express relatively high levels of functional TSH receptor (TSHR) through which they can be activated by TSH and the GD-specific pathogenic antibodies that underpin thyroid overactivity. Fibrocytes also express insulin-like growth factor I receptor (IGF-IR) with which TSHR forms a physical and functional signaling complex. Notably, inhibition of IGF-IR activity results in the attenuation of signaling initiated at either receptor. Some studies suggest that IGF-IR-activating antibodies are generated in GD, whereas others refute this concept. These observations served as the rationale for implementing a recently completed therapeutic trial of teprotumumab, a monoclonal inhibitory antibody targeting IGF-IR in TAO. Results of that trial in active, moderate to severe disease revealed dramatic and rapid reductions in disease activity and severity. The targeting of IGF-IR with specific biologic agents may represent a paradigm shift in the therapy of TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
32
|
Smith TJ. Challenges in Orphan Drug Development: Identification of Effective Therapy for Thyroid-Associated Ophthalmopathy. Annu Rev Pharmacol Toxicol 2018; 59:129-148. [PMID: 30044728 DOI: 10.1146/annurev-pharmtox-010617-052509] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Thyroid-associated ophthalmopathy (TAO), the ocular manifestation of Graves' disease, is a process in which orbital connective tissues and extraocular muscles undergo inflammation and remodeling. The condition seems to result from autoimmune responses to antigens shared by the thyroid and orbit. The thyrotropin receptor (TSHR), expressed at low levels in orbital tissues, is a leading candidate antigen. Recent evidence suggests that another protein, the insulin-like growth factor-I receptor (IGF-IR), is overexpressed in TAO, and antibodies against IGF-IR have been detected in patients with the disease. Furthermore, TSHR and IGF-IR form a physical and functional complex, and signaling initiated at TSHR requires IGF-IR activity. Identification of therapy for this rare disease has proven challenging and currently relies on nonspecific and inadequate agents, thus representing an important unmet need. A recently completed therapeutic trial suggests that inhibiting IGF-IR activity with a monoclonal antibody may be an effective and safe treatment for active TAO.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA;
| |
Collapse
|
33
|
|
34
|
Lee BW, Kumar VB, Biswas P, Ko AC, Alameddine RM, Granet DB, Ayyagari R, Kikkawa DO, Korn BS. Transcriptome Analysis of Orbital Adipose Tissue in Active Thyroid Eye Disease Using Next Generation RNA Sequencing Technology. Open Ophthalmol J 2018; 12:41-52. [PMID: 29760827 PMCID: PMC5906971 DOI: 10.2174/1874364101812010041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/09/2018] [Accepted: 03/03/2018] [Indexed: 11/30/2022] Open
Abstract
Objective: This study utilized Next Generation Sequencing (NGS) to identify differentially expressed transcripts in orbital adipose tissue from patients with active Thyroid Eye Disease (TED) versus healthy controls. Method: This prospective, case-control study enrolled three patients with severe, active thyroid eye disease undergoing orbital decompression, and three healthy controls undergoing routine eyelid surgery with removal of orbital fat. RNA Sequencing (RNA-Seq) was performed on freshly obtained orbital adipose tissue from study patients to analyze the transcriptome. Bioinformatics analysis was performed to determine pathways and processes enriched for the differential expression profile. Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR) was performed to validate the differential expression of selected genes identified by RNA-Seq. Results: RNA-Seq identified 328 differentially expressed genes associated with active thyroid eye disease, many of which were responsible for mediating inflammation, cytokine signaling, adipogenesis, IGF-1 signaling, and glycosaminoglycan binding. The IL-5 and chemokine signaling pathways were highly enriched, and very-low-density-lipoprotein receptor activity and statin medications were implicated as having a potential role in TED. Conclusion: This study is the first to use RNA-Seq technology to elucidate differential gene expression associated with active, severe TED. This study suggests a transcriptional basis for the role of statins in modulating differentially expressed genes that mediate the pathogenesis of thyroid eye disease. Furthermore, the identification of genes with altered levels of expression in active, severe TED may inform the molecular pathways central to this clinical phenotype and guide the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Bradford W Lee
- Department of Ophthalmology, Division of Ophthalmic Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA.,Department of Ophthalmology, University of California, San Diego, La Jolla, CA.,Division of Oculofacial Plastic and Reconstructive Surgery, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL
| | - Virender B Kumar
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - Pooja Biswas
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - Audrey C Ko
- Department of Ophthalmology, Division of Ophthalmic Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA.,Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - Ramzi M Alameddine
- Department of Ophthalmology, Division of Ophthalmic Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA.,Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - David B Granet
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - Radha Ayyagari
- Department of Ophthalmology, University of California, San Diego, La Jolla, CA
| | - Don O Kikkawa
- Department of Ophthalmology, Division of Ophthalmic Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA.,Department of Ophthalmology, University of California, San Diego, La Jolla, CA.,Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA
| | - Bobby S Korn
- Department of Ophthalmology, Division of Ophthalmic Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA.,Department of Ophthalmology, University of California, San Diego, La Jolla, CA.,Division of Plastic Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA
| |
Collapse
|
35
|
Association between CD40 rs1883832 and immune-related diseases susceptibility: A meta-analysis. Oncotarget 2017; 8:102235-102243. [PMID: 29254239 PMCID: PMC5731949 DOI: 10.18632/oncotarget.18704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/17/2017] [Indexed: 12/31/2022] Open
Abstract
Background/objective It has been reported that CD40 rs1883832 might be associated with immune-related diseases susceptibility. Owing to mixed and inconclusive results, we conducted a meta-analysis of case–control studies to summarize and clarify this association. Methods/main results A systematic search of studies on the association between CD40 rs1883832 and immune-related diseases susceptibility was conducted in databases. Odds ratios and 95% confidence intervals were used to pool the effect size. 40 articles were included in our meta-analysis. Conclusions CD40 rs1883832 is associated with decreased risk of Graves’ disease, especially in Asian; CD40 rs1883832 is associated with increased risk of multiple sclerosis; CD40 -1C>T (rs1883832) is not associated with the susceptibility of Hashimoto's thyroiditis, systemic sclerosis or Asthma; there is insufficient data to fully confirm the association between CD40 rs1883832 and systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Behçet's disease (BD), myasthenia gravis (MG), Crohn's disease (CD), ulcerative colitis (UC), Sarcoidosis, Fuch uveitis syndrome (FUS), Vogt-Koyanagi-Harada syndrome (VKH), Kawasaki disease (KD), giant cell arteritis (GCA) or Immune thrombocytopenia (ITP).
Collapse
|
36
|
Fernando R, Placzek E, Reese EA, Placzek AT, Schwartz S, Trierweiler A, Niziol LM, Raychaudhuri N, Atkins S, Scanlan TS, Smith TJ. Elevated Serum Tetrac in Graves Disease: Potential Pathogenic Role in Thyroid-Associated Ophthalmopathy. J Clin Endocrinol Metab 2017; 102:776-785. [PMID: 27768856 PMCID: PMC5460682 DOI: 10.1210/jc.2016-2762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/19/2022]
Abstract
CONTEXT The sources and biological impact of 3,3',5,5' tetraiodothyroacetic acid (TA4) are uncertain. CD34+ fibrocytes express several proteins involved in the production of thyroid hormones. They infiltrate the orbit in Graves disease (GD), an autoimmune process known as thyroid-associated ophthalmopathy. It appears that the thyrotropin receptor plays an important role in the pathogenesis of thyroid-associated ophthalmopathy. OBJECTIVE To quantify levels of TA4 in healthy participants and those with GD, determine whether fibrocytes generate this thyroid hormone analogue, and determine whether TA4 influences the actions of thyroid-stimulating hormone and thyroid-stimulating immunoglobulins in orbital fibroblasts. DESIGN/SETTING/PARTICIPANTS Patients with GD and healthy donors in an academic medical center clinical practice were recruited. MAIN OUTCOME MEASURES Liquid chromatography-tandem mass spectrometry, autoradiography, real-time polymerase chain reaction, hyaluronan immunoassay. RESULTS Serum levels of TA4 are elevated in GD. TA4 levels are positively correlated with those of thyroxine and negatively correlated with serum levels of triiodothyronine. Several cell types in culture generate TA4 from ambient thyroxine, including fibrocytes, HELA cells, human Müller stem cells, and retinal pigmented epithelial cells. Propylthiouracil inhibits TA4 generation. TA4 enhances the induction by thyrotropin and thyroid-stimulating immunoglobulins of several participants in the pathogenesis of thyroid-associated ophthalmopathy, including interleukin 6, hyaluronan synthase 1, prostaglandin endoperoxide H synthase 2, and haluronan production. CONCLUSION TA4 may be ubiquitously generated in many tissues and enhances the biological impact of thyrotropin and thyroid-stimulating immunoglobulins in orbital connective tissue. These findings may identify a physiologically important determinant of extrathyroidal thyroid-stimulating hormone action.
Collapse
Affiliation(s)
| | - Ekaterina Placzek
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Edmund A Reese
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Andrew T Placzek
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | - Thomas S Scanlan
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239
| | - Terry J Smith
- Department of Ophthalmology and Visual Sciences and
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48105; and
| |
Collapse
|
37
|
Affiliation(s)
- Terry J Smith
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and the Department of Internal Medicine, University of Michigan Medical School - both in Ann Arbor (T.J.S.); and the Departments of Endocrinology and Metabolism (L.H.) and Ophthalmology (T.J.S.), Odense University Hospital, University of Southern Denmark, Odense
| | - Laszlo Hegedüs
- From the Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, and the Department of Internal Medicine, University of Michigan Medical School - both in Ann Arbor (T.J.S.); and the Departments of Endocrinology and Metabolism (L.H.) and Ophthalmology (T.J.S.), Odense University Hospital, University of Southern Denmark, Odense
| |
Collapse
|
38
|
Mester T, Raychaudhuri N, Gillespie EF, Chen H, Smith TJ, Douglas RS. CD40 Expression in Fibrocytes Is Induced by TSH: Potential Synergistic Immune Activation. PLoS One 2016; 11:e0162994. [PMID: 27631497 PMCID: PMC5025085 DOI: 10.1371/journal.pone.0162994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/31/2016] [Indexed: 11/23/2022] Open
Abstract
Context Fibrocytes appear to participate in inflammation and tissue remodeling in patients with thyroid-associated ophthalmopathy (TAO). These patients have increased frequencies of circulating TSH receptor (TSHR)- and CD40-positive fibrocytes, suggesting TSHR and CD40 may play roles in proinflammatory cytokine production, which ultimately leads to orbital inflammation and tissue remodeling. Objective To investigate the potential interactions between the TSHR and CD40 signaling pathways and their roles in IL-6 and TNF-α production. Design and Outcome Measures CD40 expression on fibrocytes was assessed using flow cytometry; IL-6 and TNF-α protein release using Luminex technology; increased IL-6 and TNF-α mRNA abundance, using real-time PCR; TSH- and CD40 ligand (CD40L)-stimulated Akt phosphorylation in fibrocytes, by western blot analysis; TSHR-CD40 protein-protein interaction, using co-immunoprecipitation, and CD40-TSHR co-localization, using immunocytochemistry. Results TSH enhances CD40 expression at a pre-translational level in fibrocytes. Production of IL-6 and TNF-α after costimulation with TSH and CD40L was greater than that after TSH or CD40L stimulation alone. TSH and CD40L costimulation also resulted in greater Akt phosphorylation. Akt and nuclear factor (NF)-κB inhibitors significantly reduced cytokine production after TSH and CD40L costimulation. TSHR and CD40L are colocalized on the cell surface and form a complex. Conclusions TSHR and CD40 in fibrocytes appear to be physically and functionally related. TSH stimulates CD40 production on the fibrocyte surface. Cytokine expression upon simultaneous stimulation of TSHR and CD40 is greater than levels achieved with TSH or CD40L alone. Increased expression of CD40 by TSH is a potential mechanism for this process.
Collapse
Affiliation(s)
- Tünde Mester
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
| | - Nupur Raychaudhuri
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
| | - Erin F. Gillespie
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
| | - Hong Chen
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
- Department of Ophthalmology of Union Hospital, Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| | - Terry J. Smith
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
- Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
| | - Raymond S. Douglas
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan, 48105, United States of America
- Ann Arbor Veterans Administration Medical Center, Ann Arbor, Michigan, 48105, United States of America
- * E-mail:
| |
Collapse
|
39
|
Li H, Yuan Y, Zhang Y, He Q, Xu R, Ge F, Wu C. Celastrol inhibits IL-1β-induced inflammation in orbital fibroblasts through the suppression of NF-κB activity. Mol Med Rep 2016; 14:2799-806. [PMID: 27484716 DOI: 10.3892/mmr.2016.5570] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/24/2016] [Indexed: 11/06/2022] Open
Abstract
Graves' disease is an autoimmune disease of the thyroid gland, which is characterized by hyperthyroidism, diffuse goiter and Graves' ophthalmopathy (GO). Although several therapeutic strategies for the treatment of GO have been developed, the effectiveness and the safety profile of these therapies remain to be fully elucidated. Therefore, examination of novel GO therapies remains an urgent requirement. Celastrol, a triterpenoid isolated from traditional Chinese medicine, is a promising drug for the treatment of various inflammatory and autoimmune diseases. CCK‑8 and apoptosis assays were performed to investigate cytotoxicity of celastrol and effect on apoptosis on orbital fibroblasts. Reverse transcription‑polymerase chain reaction, western blotting and ELISAs were performed to examine the effect of celastrol on interleukin (IL)‑1β‑induced inflammation in orbital fibroblasts from patients with GO. The results demonstrated that celastrol significantly attenuated the expression of IL‑6, IL‑8, cyclooxygenase (COX)‑2 and intercellular adhesion molecule‑1 (ICAM‑1), and inhibited IL‑1β‑induced increases in the expression of IL‑6, IL‑8, ICAM‑1 and COX‑2. The levels of prostaglandin E2 in orbital fibroblasts induced by IL‑1β were also suppressed by celastrol. Further investigation revealed that celastrol suppressed the IL‑1β‑induced inflammatory responses in orbital fibroblasts through inhibiting the activation of nuclear factor (NF)‑κB. Taken together, these results suggested that celastrol attenuated the IL‑1β‑induced pro‑inflammatory pathway in orbital fibroblasts from patients with GO, which was associated with the suppression of NF-κB activation.
Collapse
Affiliation(s)
- Hong Li
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Yifei Yuan
- Department of Ophthalmology, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yali Zhang
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Qianwen He
- Longua Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Rongjuan Xu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Fangfang Ge
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Chen Wu
- Department of Endocrinology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
40
|
Liu X, Guo H, Liu J, Shi B. Clinical efficacy of combined rituximab treatment in a woman with severe Graves' ophthalmopathy. Exp Ther Med 2016; 12:1093-1096. [PMID: 27446325 DOI: 10.3892/etm.2016.3367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/11/2016] [Indexed: 11/06/2022] Open
Abstract
The present study reports the case of a female Chinese patient with Graves' disease (GD) and severe Graves' ophthalmopathy (GO) in its active phase, who was treated with propylthiouracil and oral prednisolone for 2 months at a local hospital. However, a lack of improvement in symptoms meant that the patient was transferred to the First Affiliated Hospital of Xi'an Jiaotong University (Xi'an, China), whereupon the patient received high-dose intravenous methylprednisolone pulse therapy, although with limited efficacy. Subsequently, rituximab (RTX; anti-CD20 monoclonal antibody) combined with orbital irradiation treatment was initiated. The patient responded positively to the combined treatment; the clinical symptoms and enlargement of the extraocular muscles were ameliorated, and there were marked decreases in the clinical activity and NOSPECS grading scores. Furthermore, the serum levels of anti-thyrotropin receptor antibodies (TRAb) were markedly decreased at 2 months following RTX therapy. The patient was maintained in a euthyroid state by treatment with methimazole during and following RTX therapy. It was concluded that RTX treatment may attenuate severe GO by depleting lymphocytes, and may promote the recovery of GD by reducing the serum levels of TRAb.
Collapse
Affiliation(s)
- Xiaomei Liu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China; Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hui Guo
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Juan Liu
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
41
|
Dik WA, Virakul S, van Steensel L. Current perspectives on the role of orbital fibroblasts in the pathogenesis of Graves' ophthalmopathy. Exp Eye Res 2016; 142:83-91. [PMID: 26675405 DOI: 10.1016/j.exer.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023]
Abstract
Graves' ophthalmopathy (GO) is an extra-thyroidal complication of Graves' disease (GD; Graves' hyperthyroidism) characterized by orbital tissue inflammation, expansion, remodeling and fibrosis. Although the initiating trigger of GO is still indistinct, excessive orbital fibroblast activity is at the heart of its pathogenesis. Orbital fibroblasts are activated by cellular interactions with immune cells and the soluble factors they secrete. Orbital fibroblasts, especially from GO patients, express the thyrotropin receptor (TSH-receptor; TSHR), and activation of the orbital fibroblast population by stimulatory autoantibodies directed against the TSHR may provide an important link between GD and GO. Furthermore, stimulatory autoantibodies directed against the insulin-like growth factor-1 receptor have been proposed to contribute to orbital fibroblast activation in GO. Activated orbital fibroblasts produce inflammatory mediators thereby contributing to the orbital inflammatory process in GO. Moreover, orbital fibroblasts exhibit robust proliferative activity and extracellular matrix (especially hyaluronan) synthesizing capacity and can differentiate into adipocytes and myofibroblasts with disease progression, thereby contributing to tissue expansion/remodeling and fibrosis in GO. Orbital fibroblasts, especially those from GO patients, exhibit a hyper-responsive phenotype when compared to fibroblasts from other anatomical regions, which may further contribute to GO pathogenesis. Fibrocytes have been identified as additional source of orbital fibroblasts in GO, where they may contribute to orbital tissue inflammation, adipogenesis and remodeling/fibrosis. This review addresses our current view on the role that orbital fibroblasts fulfill in GO pathogenesis and both established as well as less established not fully crystallized concepts that need future studies will be discussed.
Collapse
Affiliation(s)
- Willem A Dik
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Sita Virakul
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Leendert van Steensel
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| |
Collapse
|
42
|
Khong JJ, McNab AA, Ebeling PR, Craig JE, Selva D. Pathogenesis of thyroid eye disease: review and update on molecular mechanisms. Br J Ophthalmol 2015; 100:142-50. [PMID: 26567024 DOI: 10.1136/bjophthalmol-2015-307399] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/25/2015] [Indexed: 01/07/2023]
Abstract
Orbital changes in thyroid orbitopathy (TO) result from de novo adipogenesis, hyaluronan synthesis, interstitial oedema and enlargement of extraocular muscles. Cellular immunity, with predominantly CD4+ T cells expressing Th1 cytokines, and overexpression of macrophage-derived cytokines, perpetuate orbital inflammation. Orbital fibroblasts appear to be the major effector cells. Orbital fibroblasts express both thyrotropin receptor (TSHR) and insulin-like growth factor-1 receptor (IGF-1R) at higher levels than normal fibroblasts. TSHR expression increases in adipogenesis; TSHR agonism enhances hyaluronan production. IGF-1R stimulation leads to adipogenesis, hyaluronan synthesis and production of the chemokines, interleukin (IL)-16 and Regulated on Activation, Normal T Cell Expression and Secreted, which facilitate lymphocyte trafficking into the orbit. Immune activation uses a specific CD40:CD154 molecular bridge to activate orbital fibroblasts, which secrete pro-inflammatory cytokines including IL-1β, IL-1α, IL-6, IL-8, macrophage chemoattractant protein-1 and transforming growth factor-β, to perpetuate orbital inflammation. Molecular pathways including adenylyl cyclase/cyclic adenosine monophosphate, phophoinositide 3 kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase are involved in TO. The emergence of a TO animal model and a new generation of TSHR antibody assays increasingly point towards TSHR as the primary autoantigen for extrathyroidal orbital involvement. Oxidative stress in TO resulting from imbalances of the oxidation-reduction state provides a framework of understanding for smoking prevention, achieving euthyroidism and the use of antioxidants such as selenium. Progress has been made in the understanding of the pathogenesis of TO, which should advance development of novel therapies targeting cellular immunity, specifically the CD40:CD40 ligand interaction, antibody-producing B cells, cytokines, TSHR and IGF-1R and its signalling pathways. Further studies in signalling networks and molecular triggers leading to burnout of TO will further our understanding of TO.
Collapse
Affiliation(s)
- Jwu Jin Khong
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Austin Health, Department of Surgery, University of Melbourne, Heidelberg, Victoria, Australia
| | - Alan A McNab
- Orbital Plastics and Lacrimal Unit, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia Centre of Eye Research Australia, University of Melbourne, East Melbourne, Victoria, Australia
| | - Peter R Ebeling
- North West Academic Centre, The University of Melbourne, Western Hospital, St Albans, Victoria, Australia Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Jamie E Craig
- Department of Ophthalmology, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Dinesh Selva
- South Australian Institute of Ophthalmology, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
43
|
Ríos DL, López C, Álvarez ME, Samudio IJ, Carmona JU. Effects over time of two platelet gel supernatants on growth factor, cytokine and hyaluronan concentrations in normal synovial membrane explants challenged with lipopolysaccharide. BMC Musculoskelet Disord 2015; 16:153. [PMID: 26092588 PMCID: PMC4475292 DOI: 10.1186/s12891-015-0605-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/28/2015] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Platelet-rich plasma (PRP) preparations are a common treatment in osteoarthritis (OA) and inflammatory synovitis. However, there is ambiguity regarding the ideal concentration of leukocytes and platelets in these preparations necessary to induce an adequate anti-inflammatory and anabolic response in joint tissues, such as the synovial membrane. This research aimed to study, in normal synovial membrane explants (SME) challenged with lipopolysaccharide (LPS), the temporal effects (at 48 and 96h) of leukocyte- and platelet-rich gel (L-PRG) and pure platelet-rich gel (P-PRG) supernatants on the production and degradation of platelet associated growth factors (GF) (platelet derived GF isoform BB (PDGF-BB) and transforming growth factor beta-1 (TGF-β1)), pro-inflammatory (tumour necrosis factor alpha (TNF-α)) and anti-inflammatory cytokines (interleukin 4 (IL-4) and IL-1 receptor antagonists (IL-1ra)) and hyaluronan (HA). METHODS Synovial membrane explants (SMEs) from 6 horses were challenged with LPS and cultured for 96h with L-PRG and P-PRG supernatants at concentrations of 25 and 50 %, respectively. The SME culture medium was changed every 48h and used for determination by ELISA of PDGF-BB, TGF-β1, TNF-α, IL-4, IL-1ra and HA. These molecules were also determined in synovial fluid from the horses. RESULTS Both the 25 and 50 % PRG supernatants produced a molecular profile in the culture media unlike that of the SME challenged with LPS only. They presented GF, cytokine and HA concentrations very near to the concentrations of these molecules in normal synovial fluid when compared with the SME control groups (either with LPS or without LPS). However, in comparison with the rest of the SME treated groups, the 25 % L-PRG produced the most IL-1ra, and the 50 % P-PRG induced the sustained production of IL-4 and HA. CONCLUSIONS These in vitro findings suggest that anabolic and anti-inflammatory joint responses depend on the leukocyte and platelet concentration of the PRP preparation and on the volume of this substance injected. Moreover, it is possible, that leukoreduced PRP preparations are more effective for the medical treatment of patients with OA and inflammatory synovitis.
Collapse
Affiliation(s)
- Diana L Ríos
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| | - Catalina López
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| | - María E Álvarez
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| | - Ismael J Samudio
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada.
| | - Jorge U Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Calle 65 No 26-10, Manizales, Colombia.
| |
Collapse
|
44
|
Abstract
Thyroid-associated ophthalmopathy (TAO) is a vexing and undertreated ocular component of Graves disease in which orbital tissues undergo extensive remodelling. My colleagues and I have introduced the concept that fibrocytes expressing the haematopoietic cell antigen CD34 (CD34(+) fibrocytes), which are precursor cells of bone-marrow-derived monocyte lineage, express the TSH receptor (TSHR). These cells also produce several other proteins whose expression was traditionally thought to be restricted to the thyroid gland. TSHR-expressing fibrocytes in which the receptor is activated by its ligand generate extremely high levels of several inflammatory cytokines. Acting in concert with TSHR, the insulin-like growth factor 1 receptor (IGF-1R) expressed by orbital fibroblasts and fibrocytes seems to be necessary for TSHR-dependent cytokine production, as anti-IGF-1R blocking antibodies attenuate these proinflammatory actions of TSH. Furthermore, circulating fibrocytes are highly abundant in patients with TAO and seem to infiltrate orbital connective tissues, where they might transition to CD34(+) fibroblasts. My research group has postulated that the infiltration of fibrocytes into the orbit, their unique biosynthetic repertoire and their proinflammatory and profibrotic phenotype account for the characteristic properties exhibited by orbital connective tissues that underlie susceptibility to TAO. These insights, which have emerged in the past few years, might be of use in therapeutically targeting pathogenic orbit-infiltrating fibrocytes selectively by utilizing novel biologic agents that interfere with TSHR and IGF-1R signalling.
Collapse
Affiliation(s)
- Terry J Smith
- Department of Ophthalmology and Visual Sciences, Room 7112, Brehm Tower, Kellogg Eye Center, University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|
45
|
Wang H, Zhu LS, Cheng JW, Cai JP, Li Y, Ma XY, Wei RL. CD40 ligand induces expression of vascular cell adhesion molecule 1 and E-selectin in orbital fibroblasts from patients with Graves' orbitopathy. Graefes Arch Clin Exp Ophthalmol 2015; 253:573-82. [PMID: 25576172 DOI: 10.1007/s00417-014-2902-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/03/2014] [Accepted: 12/15/2014] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The aim of this study was to detect the effect of the CD40 ligand (CD40L) on the expression of vascular cell adhesion molecule 1 (VCAM-1) and E-Selectin in orbital fibroblasts (OFs) from patients with Graves' orbitopathy (GO), as well as the signaling pathways involved in this effect. METHODS OFs were isolated from orbital tissues obtained from patients with severe GO who were undergoing orbital decompression surgery. VCAM-1 and E-selectin RNA and protein expression levels were quantified in OFs stimulated with soluble CD40L (sCD40L). RNA and protein quantification was performed with real-time polymerase chain reaction (PCR) and western blot analysis. Cytoplasmic and nuclear fractions were isolated in order to detect the nuclear translocation of nuclear factor-κB (NF-κB). Signaling pathway inhibitors were applied to determine the pathways involved. RESULTS Compared to unstimulated OFs, the mRNA and protein levels of VCAM-1 and E-selectin in OFs incubated with sCD40L were significantly increased. This was observed in dose- and time-course experiments, and the inductive effects of sCD40L were much weaker in OFs from healthy donors. At the same time, we observed that CD40L induced nuclear translocation of NF-κB, also in a dose- and time-dependent manner. The up-regulation of VCAM-1 and E-selectin, as well as the NF-κB nuclear translocation induced by CD40L, was significantly attenuated by inhibitors targeting mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase (PI3K), and NF-κB. CONCLUSIONS CD40L demonstrated the ability to up-regulate the expression of VCAM-1 and E-selectin at the pre-translational level in OFs from patients with GO. The MAPK and PI3K pathways and NF-κB may play important roles in CD40L-induced VCAM-1 and E-selectin expression.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ophthalmology, Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, 200003, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The pathophysiology of thyroid eye disease (TED) is complex and incompletely understood. Orbital fibroblasts (OFs) seem to be the key effector cells that are responsible for the characteristic soft tissue enlargement seen in TED. They express potentially pathogenic autoantigens, such as thyrotropin receptor and insulin-like growth factor-1 receptor. An intricate interplay between these autoantigens and the autoantibodies found in Graves disease may lead to the activation of OFs, which then leads to increased hyaluronan production, proinflammatory cytokine synthesis, and enhanced differentiation into either myofibroblasts or adipocytes. Some of the OFs in TED patients seem to be derived from infiltrating fibrocytes. These cells originate from the bone marrow and exhibit both fibroblast and myeloid phenotype. In the TED orbit, they may mediate the orbital expansion and inflammatory infiltration. Last, lymphocytes and cytokines are intimately involved in the initiation, amplification, and maintenance of the autoimmune process in TED.
Collapse
Affiliation(s)
- Shannon J C Shan
- Wilmer Eye Institute (SJCS), The Johns Hopkins University School of Medicine, Baltimore, Maryland; and Kellogg Eye Center (RSD), University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
47
|
Virakul S, van Steensel L, Dalm VA, Paridaens D, van Hagen PM, Dik WA. Platelet-derived growth factor: a key factor in the pathogenesis of graves' ophthalmopathy and potential target for treatment. Eur Thyroid J 2014; 3:217-26. [PMID: 25759797 PMCID: PMC4311307 DOI: 10.1159/000367968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Indexed: 01/13/2023] Open
Abstract
Activation of orbital fibroblasts resulting in excessive proliferation, cytokine and hyaluronan production and differentiation into adipocytes, is a main determinant of orbital tissue inflammation and tissue expansion in Graves' ophthalmopathy (GO). During the last years we have shown that the platelet-derived growth factor (PDGF) isoforms PDGF-AA, PDGF-AB and PDGF-BB are increased in orbital tissue from GO patients with active and inactive disease. These PDGF isoforms exhibit the capacity to stimulate proliferation, hyaluronan and cytokine/chemokine production by orbital fibroblasts. Moreover, PDGF-AB and PDGF-BB increase thyroid stimulating hormone receptor (TSHR) expression by orbital fibroblasts, which enhances the orbital fibroblast activating capacity of the THSR stimulatory autoantibodies present in Graves' disease (GD) patients. Of these PDGF isoforms PDGF-BB exhibits the strongest orbital fibroblast activating effects, which is likely related to its ability to bind both the PDGF-receptor (PDGF-R)α and PDGF-Rβ chains. Thus the PDGF-system fulfills important roles in orbital fibroblast activation in both active and inactive GO, which supports a therapeutic rationale for blocking PDGF signaling in GO. Tyrosine kinase inhibitors (TKIs) may be candidates to target PDGF signaling. Of several TKIs tested dasatinib exhibited the highest potency to block PDGF-R signaling in orbital fibroblasts and may represent a promising compound for the treatment of GO as it was effective at low dosage and is associated with less side effects compared to imatinib mesylate and nilotinib. In this review the contribution of PDGF to the pathophysiology of GO as well as therapeutic approaches to target this PDGF-system will be addressed.
Collapse
Affiliation(s)
- Sita Virakul
- Department of Immunology, University Medical Center Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Virgil A.S.H. Dalm
- Department of Immunology, University Medical Center Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Rotterdam Eye Hospital, Rotterdam, The Netherlands
- Department of Ophthalmology, Geneva University Hospitals, Geneva, Switzerland
| | - P. Martin van Hagen
- Department of Immunology, University Medical Center Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
- Department of Rotterdam Eye Hospital, Rotterdam, The Netherlands
| | - Willem A. Dik
- Department of Immunology, University Medical Center Rotterdam, The Netherlands
- *Willem A. Dik, PhD, Department of Immunology, Erasmus MC, University Medical Center, NL-3000 CA Rotterdam (The Netherlands), E-Mail
| |
Collapse
|
48
|
Li B, Smith TJ. PI3K/AKT pathway mediates induction of IL-1RA by TSH in fibrocytes: modulation by PTEN. J Clin Endocrinol Metab 2014; 99:3363-72. [PMID: 24840811 PMCID: PMC4154109 DOI: 10.1210/jc.2014-1257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT TSH provokes expression of inflammatory genes in CD34(+) fibrocytes. These cells appear to infiltrate the orbit in Graves' disease (GD), where they putatively become the CD34(+) orbital fibroblast subset (GD-OF). This may have importance in solving the pathogenesis of thyroid-associated ophthalmopathy. The IL-1 family is targeted by TSH in fibrocytes and OFs by inducing secreted IL-1 receptor antagonist (IL-1RA) and intracellular IL-1RA in a cell-specific pattern. Phosphoinositide 3-kinase (PI3K) mediates several TSH actions in thyroid. This pathway is modulated by phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Vanishingly little is known currently about TSHR signaling to IL-1RA expression in nonthyroidal cells. Furthermore, factors modulating TSH action in these cells are largely unexplored. OBJECTIVES To characterize intermediate signaling between TSHR and IL-1RA in fibrocytes and GD-OFs and to begin to identify the proximate regulators of TSHR signaling in nonepithelial, extrathyroidal cells as a strategy for developing therapies for thyroid-associated ophthalmopathy. DESIGN/SETTING/PARTICIPANTS Fibrocytes and GD-OFs were collected and analyzed from healthy individuals and those with GD in an academic clinical practice. MAIN OUTCOME MEASURES Real-time PCR, Western blot analysis, cell transfections, and chromatin immunoprecipitation analysis. RESULTS TSH induces IL-1RA in fibrocytes and GD-OFs by activating the PI3K/AKT pathway. Interrupting either PI3K or AKT with small molecule inhibitors or by knocking down their expression with targeting small interfering RNA attenuates the actions of TSH. OFs exhibit greater basal PTEN activity and lower constitutive AKT phosphorylation than do fibrocytes. Patterns of PTEN induction diverge in the two cell types. CONCLUSIONS The current findings identify the PI3K/AKT pathway as critical to the induction by TSH of IL-1RA in fibrocytes and GD-OFs. Furthermore, PTEN modulates the amplitude of the induction. In GD-OFs, relatively high basal PTEN levels prevent secreted IL-1RA expression or release. Knocking down PTEN allows GD-OFs to exhibit a pattern of IL-1RA expression resembling fibrocytes.
Collapse
Affiliation(s)
- Bin Li
- Departments of Ophthalmology and Visual Sciences (B.L., T.J.S.) and Internal Medicine (T.J.S.), Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48105
| | | |
Collapse
|
49
|
Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci 2014; 55:1735-48. [PMID: 24651704 DOI: 10.1167/iovs.14-14002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Graves' disease (GD) is a common autoimmune condition. At its core, stimulatory autoantibodies are directed at the thyroid-stimulating hormone receptor (TSHR), resulting in dysregulated thyroid gland activity and growth. Closely associated with GD is the ocular condition known as thyroid-associated ophthalmopathy (TAO). The pathogenesis of TAO remains enigmatic as do the connections between the thyroid and orbit. This review highlights the putative molecular mechanisms involved in TAO and suggests how these insights provide future directions for identifying therapeutic targets. Genetic, epigenetic, and environmental factors have been suggested as contributory to the development of GD and TAO. Thyroid-stimulating hormone receptor and insulin-like growth factor receptor (IGF-1R) are expressed at higher levels in the orbital connective tissue from individuals with TAO than in healthy tissues. Together, they form a functional complex and appear to promote signaling relevant to GD and TAO. Orbital fibroblasts display an array of cell surface receptors and generate a host of inflammatory molecules that may participate in T and B cell infiltration. Recently, a population of orbital fibroblasts has been putatively traced to bone marrow-derived progenitor cells, known as fibrocytes, as they express CD45, CD34, CXCR4, collagen I, functional TSHR, and thyroglobulin (Tg). Fibrocytes become more numerous in GD and we believe traffic to the orbit in TAO. Numerous attempts at developing complete animal models of GD have been largely unsuccessful, because they lack fidelity with the ocular manifestations seen in TAO. Better understanding of the pathogenesis of TAO and development of improved animal models should greatly accelerate the identification of medical therapy for this vexing medical problem.
Collapse
Affiliation(s)
- Yao Wang
- Department of Ophthalmology and Visual Sciences and Division of Metabolic and Endocrine Disease, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
50
|
Cheng KC, Huang HH, Hung CT, Chen CC, Wu WC, Suen JL, Chen KJ, Wu YJ, Chang CH. Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol 2013; 251:2777-87. [DOI: 10.1007/s00417-013-2446-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022] Open
|