1
|
Hamburg-Shields E, Mesiano S. The hormonal control of parturition. Physiol Rev 2024; 104:1121-1145. [PMID: 38329421 PMCID: PMC11380996 DOI: 10.1152/physrev.00019.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Parturition is a complex physiological process that must occur in a reliable manner and at an appropriate gestation stage to ensure a healthy newborn and mother. To this end, hormones that affect the function of the gravid uterus, especially progesterone (P4), 17β-estradiol (E2), oxytocin (OT), and prostaglandins (PGs), play pivotal roles. P4 via the nuclear P4 receptor (PR) promotes uterine quiescence and for most of pregnancy exerts a dominant block to labor. Loss of the P4 block to parturition in association with a gain in prolabor actions of E2 are key transitions in the hormonal cascade leading to parturition. P4 withdrawal can occur through various mechanisms depending on species and physiological context. Parturition in most species involves inflammation within the uterine tissues and especially at the maternal-fetal interface. Local PGs and other inflammatory mediators may initiate parturition by inducing P4 withdrawal. Withdrawal of the P4 block is coordinated with increased E2 actions to enhance uterotonic signals mediated by OT and PGs to promote uterine contractions, cervix softening, and membrane rupture, i.e., labor. This review examines recent advances in research to understand the hormonal control of parturition, with focus on the roles of P4, E2, PGs, OT, inflammatory cytokines, and placental peptide hormones together with evolutionary biology of and implications for clinical management of human parturition.
Collapse
Affiliation(s)
- Emily Hamburg-Shields
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, Ohio, United States
- Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Thiel KW, Newtson AM, Devor EJ, Zhang Y, Malmrose PK, Bi J, Losh HA, Davies S, Smith LE, Padilla J, Leiva SM, Grueter CE, Breheny P, Hagan CR, Pufall MA, Gertz J, Guo Y, Leslie KK. Global expression analysis of endometrial cancer cells in response to progesterone identifies new therapeutic targets. J Steroid Biochem Mol Biol 2023; 234:106399. [PMID: 37716459 PMCID: PMC11171468 DOI: 10.1016/j.jsbmb.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Progesterone prevents development of endometrial cancers through its receptor (PR) although the molecular mechanisms have yet to be fully characterized. In this study, we performed a global analysis of gene regulation by progesterone using human endometrial cancer cells that expressed PR endogenously or exogenously. We found progesterone strongly inhibits multiple components of the platelet derived growth factor receptor (PDGFR), Janus kinase (JAK), signal transducer and activator of transcription (STAT) pathway through PR. The PDGFR/JAK/STAT pathway signals to control numerous downstream targets including AP-1 transcription factors Fos and Jun. Treatment with inhibitors of the PDGFR/JAK/STAT pathway significantly blocked proliferation in multiple novel patient-derived organoid models of endometrial cancer, and activation of this pathway was found to be a poor prognostic signal for the survival of patients with endometrial cancer from The Cancer Genome Atlas. Our study identifies this pathway as central to the growth-limiting effects of progesterone in endometrial cancer and suggests that inhibitors of PDGFR/JAK/STAT should be considered for future therapeutic interventions.
Collapse
Affiliation(s)
- Kristina W Thiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Andreea M Newtson
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Obstetrics and Gynecology, University of Nebraska, Omaha, NE, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paige K Malmrose
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jianling Bi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Haley A Losh
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Lane E Smith
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Jamie Padilla
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Stephanie M Leiva
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chad E Grueter
- Department of Internal Medicine, Carver College of Medicine, the University of Iowa, Iowa City, IA, USA
| | - Patrick Breheny
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Jason Gertz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Yan Guo
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Castillo-Sanchez R, Cortes-Reynosa P, Lopez-Perez M, Garcia-Hernandez A, Salazar EP. Caveolae Microdomains Mediate STAT5 Signaling Induced by Insulin in MCF-7 Breast Cancer Cells. J Membr Biol 2023; 256:79-90. [PMID: 35751654 DOI: 10.1007/s00232-022-00253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.
Collapse
Affiliation(s)
- Rocio Castillo-Sanchez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mario Lopez-Perez
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico
| | | | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
4
|
Mauvais-Jarvis F, Lange CA, Levin ER. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr Rev 2022; 43:720-742. [PMID: 34791092 PMCID: PMC9277649 DOI: 10.1210/endrev/bnab041] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Rapid effects of steroid hormones were discovered in the early 1950s, but the subject was dominated in the 1970s by discoveries of estradiol and progesterone stimulating protein synthesis. This led to the paradigm that steroid hormones regulate growth, differentiation, and metabolism via binding a receptor in the nucleus. It took 30 years to appreciate not only that some cellular functions arise solely from membrane-localized steroid receptor (SR) actions, but that rapid sex steroid signaling from membrane-localized SRs is a prerequisite for the phosphorylation, nuclear import, and potentiation of the transcriptional activity of nuclear SR counterparts. Here, we provide a review and update on the current state of knowledge of membrane-initiated estrogen (ER), androgen (AR) and progesterone (PR) receptor signaling, the mechanisms of membrane-associated SR potentiation of their nuclear SR homologues, and the importance of this membrane-nuclear SR collaboration in physiology and disease. We also highlight potential clinical implications of pathway-selective modulation of membrane-associated SR.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University School of Medicine, New Orleans, LA, 70112, USA.,Tulane Center of Excellence in Sex-Based Biology & Medicine, New Orleans, LA, 70112, USA.,Southeast Louisiana Veterans Affairs Medical Center, New Orleans, LA, 70119, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis, MN 55455, USA.,Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ellis R Levin
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.,Department of Veterans Affairs Medical Center, Long Beach, Long Beach, CA, 90822, USA
| |
Collapse
|
5
|
Decidual cell FKBP51-progesterone receptor binding mediates maternal stress-induced preterm birth. Proc Natl Acad Sci U S A 2021; 118:2010282118. [PMID: 33836562 PMCID: PMC7980401 DOI: 10.1073/pnas.2010282118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depression and posttraumatic stress disorder increase the risk of idiopathic preterm birth (iPTB); however, the exact molecular mechanism is unknown. Depression and stress-related disorders are linked to increased FK506-binding protein 51 (FKBP51) expression levels in the brain and/or FKBP5 gene polymorphisms. Fkbp5-deficient (Fkbp5 -/-) mice resist stress-induced depressive and anxiety-like behaviors. FKBP51 binding to progesterone (P4) receptors (PRs) inhibits PR function. Moreover, reduced PR activity and/or expression stimulates human labor. We report enhanced in situ FKBP51 expression and increased nuclear FKBP51-PR binding in decidual cells of women with iPTB versus gestational age-matched controls. In Fkbp5 +/+ mice, maternal restraint stress did not accelerate systemic P4 withdrawal but increased Fkbp5, decreased PR, and elevated AKR1C18 expression in uteri at E17.25 followed by reduced P4 levels and increased oxytocin receptor (Oxtr) expression at 18.25 in uteri resulting in PTB. These changes correlate with inhibition of uterine PR function by maternal stress-induced FKBP51. In contrast, Fkbp5 -/- mice exhibit prolonged gestation and are completely resistant to maternal stress-induced PTB and labor-inducing uterine changes detected in stressed Fkbp5 +/+ mice. Collectively, these results uncover a functional P4 withdrawal mechanism mediated by maternal stress-induced enhanced uterine FKBP51 expression and FKPB51-PR binding, resulting in iPTB.
Collapse
|
6
|
Altamirano GA, Gomez AL, Schierano-Marotti G, Muñoz-de-Toro M, Rodriguez HA, Kass L. Bisphenol A and benzophenone-3 exposure alters milk protein expression and its transcriptional regulation during functional differentiation of the mammary gland in vitro. ENVIRONMENTAL RESEARCH 2020; 191:110185. [PMID: 32946892 DOI: 10.1016/j.envres.2020.110185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The plastic monomer and plasticizer bisphenol A (BPA), and the UV-filter benzophenone-3 (BP3) have been shown to have estrogenic activities that could alter mammary gland development. Our aim was to analyze whether BPA or BP3 direct exposure affects the functional differentiation of the mammary gland using an in vitro model. Mammary organoids were obtained and isolated from 8 week-old virgin female C57BL/6 mice and were differentiated on Matrigel with medium containing lactogenic hormones and exposed to: a) vehicle (0.01% ethanol); b) 1 × 10-9 M or 1 × 10-6 M BPA; or c) 1 × 10-12 M, 1 × 10-9 M or 1 × 10-6 M BP3 for 72 h. The mRNA and protein expression of estrogen receptor alpha (ESR1) and progesterone receptor (PR) were assessed. In addition, mRNA levels of PR-B isoform, glucocorticoid receptor (GR), prolactin receptor (PRLR) and Stat5a, and protein expression of pStat5a/b were evaluated at 72 h. The mRNA and protein expression of milk proteins and their DNA methylation status were also analyzed. Although mRNA level of PRLR and GR was similar between treatments, mRNA expression of ESR1, total PR, PR-B and Stat5a was increased in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. Total PR expression was also increased with 1 × 10-6 M BPA. Nuclear ESR1 and PR expression was observed in all treated organoids; whereas nuclear pStat5a/b alveolar cells was observed only in organoids exposed to 1 × 10-9 M BPA and 1 × 10-12 M BP3. The beta-casein mRNA level was increased in both BPA concentrations and 1 × 10-12 M BP3, which was associated with hypomethylation of its promoter. The beta-casein protein expression was only increased with 1 × 10-9 M BPA or 1 × 10-12 M BP3. In contrast, BPA exposure decreased alpha-lactalbumin mRNA expression and increased DNA methylation level in different methylation-sensitive sites of the gene. Also, 1 × 10-9 M BPA decreased alpha-lactalbumin protein expression. Our results demonstrate that BPA or BP3 exposure alters milk protein synthesis and its transcriptional regulation during mammary gland differentiation in vitro.
Collapse
Affiliation(s)
- Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Horacio A Rodriguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
7
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
Affiliation(s)
- Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada.
| | - Lubna Nadeem
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Jianhong Zhang
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Departments of Physiology and University of Toronto, Ontario, Canada; Obstetrics & Gynecology, University of Toronto, Ontario, Canada
| |
Collapse
|
9
|
Myometrial activation: Novel concepts underlying labor. Placenta 2020; 92:28-36. [PMID: 32056784 DOI: 10.1016/j.placenta.2020.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
Term labour is a state of physiological inflammation orchestrated by multiple uterine tissues (both fetal and maternal). This physiological inflammation preceding and accompanying labour onset is characterized by an increase in cytokine and chemokine secretion by the fetal membranes, as well as uterine tissues (i.e., decidua and myometrium). Pro-inflammatory cytokines and chemokines activate circulating maternal peripheral leukocytes as well as the uterine vascular endothelium to permit leukocyte infiltration into the uterus. This inflammatory milieu, in the absence of infection, is required for the initiation of labour as the uterine-infiltrated leukocytes secrete matrix metalloproteinases to induce fetal membrane rupture and cervical ripening as well as various labour mediators, which promote contractions of the myometrium. Myometrial activation at term and the onset of labour contractions are directly related to the changes in the ovarian/placental hormone progesterone and its downstream mediators (i.e., the progesterone receptors, PRA/B), which are also critical for maintenance of pregnancy. Our recent data provides direct evidence in support of local and functional P4 withdrawal in the uterine muscle (myometrium) via the activator protein-1 (AP-1) mediated pathway. This review outlines known mechanisms regulating activation of human labour, including progesterone and cytokine signaling. Understanding of the molecular mechanism of myometrial activation and labour onset could facilitate the development of new therapeutics for high-risk pregnant women to prevent premature uterine activation and preterm birth.
Collapse
|
10
|
Cenciarini ME, Proietti CJ. Molecular mechanisms underlying progesterone receptor action in breast cancer: Insights into cell proliferation and stem cell regulation. Steroids 2019; 152:108503. [PMID: 31562879 DOI: 10.1016/j.steroids.2019.108503] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
The ovarian steroid hormone progesterone and its nuclear receptor, the Progesterone Receptor (PR), play an essential role in the regulation of cell proliferation and differentiation in the mammary gland. In addition, experimental and clinical evidence demonstrate their critical role in controlling mammary gland tumorigenesis and breast cancer development. When bound to its ligand, the main action of PR is as a transcription factor, which regulates the expression of target genes networks. PR also activates signal transduction pathways through a rapid or non-genomic mechanism in breast cancer cells, an event that is fully integrated with its genomic effects. This review summarizes the molecular mechanisms of the ligand-activated PR actions that drive epithelial cell proliferation and the regulation of the stem cell population in the normal breast and in breast cancer.
Collapse
Affiliation(s)
- Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| |
Collapse
|
11
|
Mendelson CR, Gao L, Montalbano AP. Multifactorial Regulation of Myometrial Contractility During Pregnancy and Parturition. Front Endocrinol (Lausanne) 2019; 10:714. [PMID: 31708868 PMCID: PMC6823183 DOI: 10.3389/fendo.2019.00714] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/30/2022] Open
Abstract
The steroid hormones progesterone (P4) and estradiol-17β (E2), produced by the placenta in humans and the ovaries in rodents, serve crucial roles in the maintenance of pregnancy, and the initiation of parturition. Because of their critical importance for species survival, the mechanisms whereby P4 and its nuclear receptor (PR) maintain myometrial quiescence during pregnancy, and for the decline in P4/PR and increase in E2/estrogen receptor (ER) function leading to parturition, are multifaceted, cooperative, and redundant. These actions of P4/PR include: (1) PR interaction with proinflammatory transcription factors, nuclear factor κB (NF-κB), and activating protein 1 (AP-1) bound to promoters of proinflammatory and contractile/contraction-associated protein (CAP) genes and recruitment of corepressors to inhibit NF-κB and AP-1 activation of gene expression; (2) upregulation of inhibitors of proinflammatory transcription factor activation (IκBα, MKP-1); (3) induction of transcriptional repressors of CAP genes (e.g., ZEB1). In rodents and most other mammals, circulating maternal P4 levels remain elevated throughout most of pregnancy and decline precipitously near term. By contrast, in humans, circulating P4 levels and myometrial PR levels remain elevated throughout pregnancy and into labor. However, even in rodents, wherein P4 levels decline near term, P4 levels remain higher than the Kd for PR binding. Thus, parturition is initiated in all species by a series of molecular events that antagonize the P4/PR maintenance of uterine quiescence. These events include: direct interaction of inflammatory transcription factors (e.g., NF-κB, AP-1) with PR; increased expression of P4 metabolizing enzymes; increased expression of truncated/inhibitory PR isoforms; altered expression of PR coactivators and corepressors. This article will review various mechanisms whereby P4 acting through PR isoforms maintains myometrial quiescence during pregnancy as well as those that underlie the decline in PR function leading to labor. The roles of P4- and E2-regulated miRNAs in the regulation and integration of these mechanisms will also be considered.
Collapse
|
12
|
Leehy KA, Truong TH, Mauro LJ, Lange CA. Progesterone receptors (PR) mediate STAT actions: PR and prolactin receptor signaling crosstalk in breast cancer models. J Steroid Biochem Mol Biol 2018; 176:88-93. [PMID: 28442393 PMCID: PMC5653461 DOI: 10.1016/j.jsbmb.2017.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
Estrogen is the major mitogenic stimulus of mammary gland development during puberty wherein ER signaling acts to induce abundant PR expression. PR signaling, in contrast, is the primary driver of mammary epithelial cell proliferation in adulthood. The high circulating levels of progesterone during pregnancy signal through PR, inducing expression of the prolactin receptor (PRLR). Cooperation between PR and prolactin (PRL) signaling, via regulation of downstream components in the PRL signaling pathway including JAKs and STATs, facilitates the alveolar morphogenesis observed during pregnancy. Indeed, these pathways are fully integrated via activation of shared signaling pathways (i.e. JAKs, MAPKs) as well as by the convergence of PRs and STATs at target genes relevant to both mammary gland biology and breast cancer progression (i.e. proliferation, stem cell outgrowth, tissue cell type heterogeneity). Thus, rather than a single mediator such as ER, transcription factor cascades (ER>PR>STATs) are responsible for rapid proliferative and developmental programming in the normal mammary gland. It is not surprising that these same mediators typify uncontrolled proliferation in a majority of breast cancers, where ER and PR are most often co-expressed and may cooperate to drive malignant tumor progression. This review will primarily focus on the integration of PR and PRL signaling in breast cancer models and the importance of this cross-talk in cancer progression in the context of mammographic density. Components of these PR/PRL signaling pathways could offer alternative drug targets and logical complements to anti-ER or anti-estrogen-based endocrine therapies.
Collapse
Affiliation(s)
- Katherine A Leehy
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Thu H Truong
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Laura J Mauro
- Department of Animal Sciences, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States
| | - Carol A Lange
- Departments of Medicine and Pharmacology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, 55455, United States.
| |
Collapse
|
13
|
Abstract
There is an abundance of accumulating data strongly suggesting there is a key role for the progesterone receptor in the molecular events effecting the growth or containment of a variety of cancers. This knowledge should lead to novel new strategies to combat various cancers, including drugs classified as progesterone receptor modulators or monoclonal antibodies against some of the key proteins needed for cancer proliferation by suppressing immune surveillance. Areas covered: The role of the classic nuclear receptor and molecular events needed for proliferation are reviewed including cancers of the breast, endometrium, prostate, thyroid, and leiomyomas and leiomyosarcoma. The potential role of non-genomic membrane progesterone receptors is reviewed. The prognostic role of the presence of progesterone receptors is also discussed. Over 1000 research publications were read after conducting a PubMed search. Expert commentary: Discussion is made about a unique immunomodulatory protein called the progesterone induced blocking factor (PIBF). The role of this protein, that is unique to rapidly growing cells, may hold a key to how the cancer cells escape immune surveillance. Thus, techniques to suppress the intracytoplasmic isoforms of PIBF may play a significant role in the fight against all cancers, not just the ones with the classic nuclear progesterone receptors.
Collapse
Affiliation(s)
- Jerome H Check
- a Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility , Cooper Medical School of Rowan University , Camden , New Jersey , United States
| |
Collapse
|
14
|
Able AA, Burrell JA, Stephens JM. STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity. BIOLOGY 2017; 6:biology6010020. [PMID: 28287479 PMCID: PMC5372013 DOI: 10.3390/biology6010020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/17/2023]
Abstract
Signal Transducers and Activators of Transcription (STATs) are key components of the JAK/STAT pathway. Of the seven STATs, STAT5A and STAT5B are of particular interest for their critical roles in cellular differentiation, adipogenesis, oncogenesis, and immune function. The interactions of STAT5A and STAT5B with cytokine/hormone receptors, nuclear receptors, transcriptional regulators, proto-oncogenes, kinases, and phosphatases all contribute to modulating STAT5 activity. Among these STAT5 interacting proteins, some serve as coactivators or corepressors to regulate STAT5 transcriptional activity and some proteins can interact with STAT5 to enhance or repress STAT5 signaling. In addition, a few STAT5 interacting proteins have been identified as positive regulators of STAT5 that alter serine and tyrosine phosphorylation of STAT5 while other proteins have been identified as negative regulators of STAT5 via dephosphorylation. This review article will discuss how STAT5 activity is modulated by proteins that physically interact with STAT5.
Collapse
Affiliation(s)
- Ashley A Able
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jasmine A Burrell
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
15
|
Conneely OM, Lydon JP, De Mayo F, O'Malley BW. Reproductive Functions of the Progesterone Receptor. ACTA ACUST UNITED AC 2017. [DOI: 10.1177/1071557600007001s09] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Orla M. Conneely
- Department of Cell Biology, Baylor College of Medicine, Debakey Bldg., M-513A, Houston, TX 77030
| | | | | | - Bert W. O'Malley
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Proietti CJ, Izzo F, Díaz Flaqué MC, Cordo Russo R, Venturutti L, Mercogliano MF, De Martino M, Pineda V, Muñoz S, Guzmán P, Roa JC, Schillaci R, Elizalde PV. Heregulin Co-opts PR Transcriptional Action Via Stat3 Role As a Coregulator to Drive Cancer Growth. Mol Endocrinol 2015; 29:1468-85. [PMID: 26340407 DOI: 10.1210/me.2015-1170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Accumulated findings have demonstrated the presence of bidirectional interactions between progesterone receptor (PR) and the ErbB family of receptor tyrosine kinases signaling pathways in breast cancer. We previously revealed signal transducer and activator of transcription 3 (Stat3) as a nodal convergence point between said signaling pathways proving that Stat3 is activated by one of the ErbBs' ligands, heregulin (HRG)β1 via ErbB2 and through the co-option of PR as a signaling molecule. Here, we found that HRGβ1 induced Stat3 recruitment to the promoters of the progestin-regulated cell cycle modulators Bcl-XL and p21(CIP1) and also stimulated Stat3 binding to the mouse mammary tumor virus promoter, which carries consensus progesterone response elements. Interestingly, HRGβ1-activated Stat3 displayed differential functions on PR activity depending on the promoter bound. Indeed, Stat3 was required for PR binding in bcl-X, p21(CIP1), and c-myc promoters while exerting a PR coactivator function on the mouse mammary tumor virus promoter. Stat3 also proved to be necessary for HRGβ1-induced in vivo tumor growth. Our results endow Stat3 a novel function as a coregulator of HRGβ1-activated PR to promote breast cancer growth. These findings underscore the importance of understanding the complex interactions between PR and other regulatory factors, such as Stat3, that contribute to determine the context-dependent transcriptional actions of PR.
Collapse
Affiliation(s)
- Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Franco Izzo
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - María Celeste Díaz Flaqué
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Rosalía Cordo Russo
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Leandro Venturutti
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - María Florencia Mercogliano
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Mara De Martino
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Viviana Pineda
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Sergio Muñoz
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Pablo Guzmán
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Juan C Roa
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (C.J.P., F.I., M.C.D.F., R.C.R., L.V., M.F.M., M.D.M., R.S., P.V.E.), National Council of Scientific Research, Buenos Aires, 1428 ADN Argentina; Departamento de Anatomía Patológica (Scientific and Technological Bioresource Nucleus) (V.P., S.M., P.G., J.C.R.), Universidad de La Frontera, Temuco, 8330024 Chile; Departamento de Anatomía Patológica (J.C.R.), Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile; and Advanced Center for Chronic Diseases (J.C.R.), Pontificia Universidad Católica de Chile, Santiago de Chile, 8330024 Chile
| |
Collapse
|
17
|
Renthal NE, Williams KC, Montalbano AP, Chen CC, Gao L, Mendelson CR. Molecular Regulation of Parturition: A Myometrial Perspective. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023069. [PMID: 26337112 DOI: 10.1101/cshperspect.a023069] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular mechanisms that maintain quiescence of the myometrium throughout most of pregnancy and promote its transformation to a highly coordinated contractile unit culminating in labor are complex and intertwined. During pregnancy, progesterone (P4) produced by the placenta and/or ovary serves a dominant role in maintaining myometrial quiescence by blocking proinflammatory response pathways and expression of so-called "contractile" genes. In the majority of placental mammals, increased uterine contractility near term is heralded by an increase in circulating estradiol-17β (E2) and/or increased estrogen receptor α (ERα) activity and a sharp decline in circulating P4 levels. However, in women, circulating levels of P4 and progesterone receptors (PR) in myometrium remain elevated throughout pregnancy and into labor. This has led to the concept that increased uterine contractility leading to term and preterm labor is mediated, in part, by a decline in PR function. The biochemical mechanisms for this decrease in PR function are also multifaceted and interwoven. In this paper, we focus on the molecular mechanisms that mediate myometrial quiescence and contractility and their regulation by the two central hormones of pregnancy, P4 and estradiol-17β. The integrative roles of microRNAs also are considered.
Collapse
Affiliation(s)
- Nora E Renthal
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Koriand'r C Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Alina P Montalbano
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Chien-Cheng Chen
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Lu Gao
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| | - Carole R Mendelson
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038 Department of Obstetrics-Gynecology, North Texas March of Dimes Birth Defects Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038
| |
Collapse
|
18
|
Chen JQ, Mori H, Cardiff RD, Trott JF, Hovey RC, Hubbard NE, Engelberg JA, Tepper CG, Willis BJ, Khan IH, Ravindran RK, Chan SR, Schreiber RD, Borowsky AD. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent. PLoS One 2015; 10:e0129895. [PMID: 26075897 PMCID: PMC4468083 DOI: 10.1371/journal.pone.0129895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Female 129:Stat1-null mice (129S6/SvEvTac-Stat1tm1Rds homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.
Collapse
Affiliation(s)
- Jane Q. Chen
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Hidetoshi Mori
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Robert D. Cardiff
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Josephine F. Trott
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Russell C. Hovey
- Department of Animal Science, University of California, Davis, California, United States of America
| | - Neil E. Hubbard
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Jesse A. Engelberg
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Clifford G. Tepper
- Division of Basic Sciences, Cancer Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California, United States of America
| | - Brandon J. Willis
- Mouse Biology Program, University of California, Davis, California, United States of America
| | - Imran H. Khan
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Resmi K. Ravindran
- Center for Comparative Medicine, University of California, Davis, California, United States of America
| | - Szeman R. Chan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert D. Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alexander D. Borowsky
- Center for Comparative Medicine, University of California, Davis, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California, Davis, School of Medicine, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Progesterone and progesterone receptors (PRs) are essential for the development and cyclical regulation of hormone-responsive tissues including the breast and reproductive tract. Altered functions of PR isoforms contribute to the pathogenesis of tumors that arise in these tissues. In the breast, progesterone acts in concert with estrogen to promote proliferative and pro-survival gene programs. In sharp contrast, progesterone inhibits estrogen-driven growth in the uterus and protects the ovary from neoplastic transformation. Progesterone-dependent actions and associated biology in diverse tissues and tumors are mediated by two PR isoforms, PR-A and PR-B. These isoforms are subject to altered transcriptional activity or expression levels, differential crosstalk with growth factor signaling pathways, and distinct post-translational modifications and cofactor-binding partners. Herein, we summarize and discuss the recent literature focused on progesterone and PR isoform-specific actions in breast, uterine, and ovarian cancers. Understanding the complexity of context-dependent PR actions in these tissues is critical to developing new models that will allow us to advance our knowledge base with the goal of revealing novel and efficacious therapeutic regimens for these hormone-responsive diseases.
Collapse
Affiliation(s)
- Caroline H Diep
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Andrea R Daniel
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Laura J Mauro
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Todd P Knutson
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | - Carol A Lange
- HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA HematologyOncology, and Transplantation DivisionDepartments of MedicinePharmacologyMasonic Cancer Center, University of Minnesota, Delivery Code 2812, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, Minnesota 55455, USADivision of Physiology and GrowthDepartment of Animal Science, University of Minnesota, Minneapolis, Minnesota 55108, USA
| |
Collapse
|
20
|
Bravo ML, Pinto MP, Gonzalez I, Oliva B, Kato S, Cuello MA, Lange CA, Owen GI. Progesterone regulation of tissue factor depends on MEK1/2 activation and requires the proline-rich site on progesterone receptor. Endocrine 2015; 48:309-20. [PMID: 24853881 DOI: 10.1007/s12020-014-0288-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
To characterize the molecular mechanism and map the response element used by progesterone (P) to upregulate tissue factor (TF) in breast cancer cells. TF expression and mRNA levels were analyzed in breast cancer ZR-75 and T47D cells, using Western blot and real-time PCR, respectively. Mapping of the TF promoter was performed using luciferase vectors. Progesterone receptor (PR) and specificity protein 1 (Sp1) binding to the TF promoter were analyzed by chromatin immuno precipitation assay. Specific or selective inhibitors were used for the MEK1/2 and the c-Src pathways (UO126 and PP2, respectively). TF mRNA increase peaks at 18 h following P treatment in ZR-75 and T47D cells. P upregulation occurs via a transcriptional mechanism that depends on PR and MEK1/2 activation, PR and Sp1 transcription factors bind to a region in the TF promoter that contains three Sp1 sites. TF mRNA upregulation requires an intact PR proline-rich site (mPRO), but it is independent from c-Src. TF upregulation by P is mediated by Sp1 sites in the TF promoter region. Transcriptional upregulation in breast cancer cells occurs via a new mechanism that requires MEK1/2 activation and the mPRO site but independent of c-Src activity. PR Phosphorylation at serine 294 and 345 is not essential.
Collapse
Affiliation(s)
- Maria Loreto Bravo
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, Cerchietti L, Elizalde PV, Proietti CJ. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res 2014; 16:491. [PMID: 25479686 PMCID: PMC4303201 DOI: 10.1186/s13058-014-0491-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/28/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction The transcription factor GATA3 is involved in mammary gland development and is crucial for the maintenance of the differentiated status of luminal epithelial cells. The role of GATA3 in breast cancer as a tumor suppressor has been established, although insights into the mechanism of GATA3 expression loss are still required. Methods Chromatin immunoprecipitation assays were conducted to study progestin modulation of recruitment of transcription factors to GATA3 promoter. We performed western blot and reverse RT-qPCR experiments to explore progestin regulation of GATA3 protein and mRNA expression respectively. Confocal microscopy and in vitro phosphorylation studies were conducted to examine progestin capacity to induce GATA3 serine phosphorylation in its 308 residue. GATA3 participation in progestin-induced breast cancer growth was addressed in in vitro proliferation and in vivo tumor growth experiments. Results In this study, we demonstrate that progestin-activated progesterone receptor (PR) reduces GATA3 expression through regulation at the transcriptional and post-translational levels in breast cancer cells. In the former mechanism, the histone methyltransferase enhancer of zeste homolog 2 is co-recruited with activated PR to a putative progesterone response element in the GATA3 proximal promoter, increasing H3K27me3 levels and inducing chromatin compaction, resulting in decreased GATA3 mRNA levels. This transcriptional regulation is coupled with increased GATA3 protein turnover through progestin-induced GATA3 phosphorylation at serine 308 followed by 26S proteasome-mediated degradation. Both molecular mechanisms converge to accomplish decreased GATA3 expression levels in breast cancer cells upon PR activation. In addition, we demonstrated that decreased GATA3 levels are required for progestin-induced upregulation of cyclin A2, which mediates the G1 to S phase transition of the cell cycle and was reported to be associated with poor prognosis in breast cancer. Finally, we showed that downregulation of GATA3 is required for progestin stimulation of both in vitro cell proliferation and in vivo tumor growth. Conclusions In the present study, we reveal that progestin-induced PR activation leads to loss of GATA3 expression in breast cancer cells through transcriptional and post-translational regulation. Importantly, we demonstrate that GATA3 downregulation is required for progestin-induced upregulation of cyclin A2 and for progestin-induced in vitro and in vivo breast cancer cell growth. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0491-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Franco Izzo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | - Florencia Mercogliano
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | - Leandro Venturutti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | | | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | | | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires, 1428 ADN, Argentina.
| |
Collapse
|
22
|
Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene 2014; 34:3676-87. [PMID: 25241899 PMCID: PMC4369481 DOI: 10.1038/onc.2014.298] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 07/28/2014] [Accepted: 08/04/2014] [Indexed: 12/11/2022]
Abstract
Progesterone (P4) has emerged as an important hormone regulating mammary stem cell populations. In breast cancer, P4 and synthetic analogs increase the number of stem-like cells within luminal estrogen receptor (ER) and progesterone receptor (PR) positive breast cancers. These cells gain expression of de-differentiated cell markers CD44 and cytokeratin 5 (CK5), lose luminal markers ER and PR, and are more therapy resistant. We previously described that P4-downregulation of microRNA (miR)-29a contributes to the expansion of CD44high and CK5+ cells. Here we investigated P4-downregulation of miR-141, a member of the miR-200 family of tumor suppressors, in facilitating an increase in stem-like breast cancer cells. miR-141 was the sole member of the miR-200 family P4-downregulated at the mature miRNA level in luminal breast cancer cell lines. Stable inhibition of miR-141 alone increased the CD44high population, and potentiated P4-mediated increases in both CD44high and CK5+ cells. Loss of miR-141 enhanced both mammosphere formation and tumor initiation. miR-141 directly targeted both PR and Stat5a, transcription factors important for mammary stem cell expansion. miR-141 depletion increased PR protein levels, even in cells lines where PR expression is estrogen-dependent. Stat5a suppression via siRNA or a small molecule inhibitor reduced the P4-dependent increase in CK5+ and CD44high cells. These data support a mechanism by which P4-triggered loss of miR-141 facilitates breast cancer cell de-differentiation through deregulation of PR and Stat5a, two transcription factors important for controlling mammary cell fate.
Collapse
|
23
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
24
|
Obr AE, Grimm SL, Bishop KA, Pike JW, Lydon JP, Edwards DP. Progesterone receptor and Stat5 signaling cross talk through RANKL in mammary epithelial cells. Mol Endocrinol 2013; 27:1808-24. [PMID: 24014651 PMCID: PMC3805851 DOI: 10.1210/me.2013-1077] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/21/2013] [Indexed: 02/08/2023] Open
Abstract
Progesterone (P4) stimulates proliferation of the mammary epithelium by a mechanism that involves paracrine signaling mediated from progesterone receptor (PR)-positive to neighboring PR-negative cells. Here we used a primary mouse mammary epithelial cell (MEC) culture system to define the molecular mechanism by which P4 regulates the expression of target gene effectors of proliferation including the paracrine factor receptor and activator of nuclear factor κB ligand (RANKL). MECs from adult virgin mice grown and embedded in three-dimensional basement-membrane medium resemble mammary ducts in vivo structurally and with respect to other properties including a heterogeneous pattern of PR expression, P4 induction of RANKL and other target genes in a PR-dependent manner, and a proliferative response to progestin. RANKL was demonstrated to have multiple functional P4-responsive enhancers that bind PR in a hormone-dependent manner as detected by chromatin immunoprecipitation assay. P4 also stimulated recruitment of signal transducer and activator of transcription (Stat)5a to RANKL enhancers through an apparent tethering with PR. Analysis of primary MECs from Stat5a knockout mice revealed that P4 induction of RANKL and a broad range of other PR target genes required Stat5a, as did P4-stimulated cell proliferation. In the absence of Stat5a, PR binding was lost at selective RANKL enhancers but was retained with others, suggesting that Stat5a acts to facilitate PR DNA binding at selective sites and to function as a coactivator with DNA-bound PR at others. These results show that RANKL is a direct PR target gene and that Stat5a has a novel role as a cofactor in PR-mediated transcriptional signaling in the mammary gland.
Collapse
Affiliation(s)
- Alison E Obr
- PhD, Department of Molecular & Cellular Biology, Baylor College of Medicine, BCM Box 130, One Baylor Plaza, Houston, Texas 77030.
| | | | | | | | | | | |
Collapse
|
25
|
Hagan CR, Knutson TP, Lange CA. A Common Docking Domain in Progesterone Receptor-B links DUSP6 and CK2 signaling to proliferative transcriptional programs in breast cancer cells. Nucleic Acids Res 2013; 41:8926-42. [PMID: 23921636 PMCID: PMC3799453 DOI: 10.1093/nar/gkt706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptors (PR) are transcription factors relevant to breast cancer biology. Herein, we describe an N-terminal common docking (CD) domain in PR-B, a motif first described in mitogen-activated protein kinases. Binding studies revealed PR-B interacts with dual-specificity phosphatase 6 (DUSP6) via the CD domain. Mutation of the PR-B CD domain (mCD) attenuated cell cycle progression and expression of PR-B target genes (including STAT5A and Wnt1); mCD PR-B failed to undergo phosphorylation on Ser81, a ck2-dependent site required for expression of these genes. PR-B Ser81 phosphorylation was dependent on binding with DUSP6 and required for recruitment of a transcriptional complex consisting of PR-B, DUSP6 and ck2 to an enhancer region upstream of the Wnt1 promoter. STAT5 was present at this site in the absence or presence of progestin. Furthermore, phospho-Ser81 PR-B was recruited to the STAT5A gene upon progestin treatment, suggestive of a feed-forward mechanism. Inhibition of JAK/STAT-signaling blocked progestin-induced STAT5A and Wnt1 expression. Our studies show that DUSP6 serves as a scaffold for ck2-dependent PR-B Ser81 phosphorylation and subsequent PR-B-specific gene selection in coordination with STAT5. Coregulation of select target genes by PR-B and STAT5 is likely a global mechanism required for growth promoting programs relevant to mammary stem cell biology and cancer.
Collapse
Affiliation(s)
- Christy R Hagan
- Departments of Medicine and Pharmacology, Cell Signaling Program; Masonic Cancer Center, University of Minnesota, Cancer Cardiology Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Renthal NE, Williams KC, Mendelson CR. MicroRNAs--mediators of myometrial contractility during pregnancy and labour. Nat Rev Endocrinol 2013; 9:391-401. [PMID: 23669656 DOI: 10.1038/nrendo.2013.96] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The maintenance of myometrial quiescence and initiation of contractility, which lead to parturition at term and preterm, involve a shifting equilibrium between anti-inflammatory and proinflammatory signalling pathways. Progesterone (P4), acting through the progesterone receptor (PR), has an essential and multifaceted role in the maintenance of myometrial quiescence. This effect of P4-PR signalling is mediated, in part, by its anti-inflammatory actions and capacity to repress the expression of genes that encode proinflammatory cytokines, such as IL-1 and IL-6, and contraction-associated proteins, such as OXTR, GJA1 and PTGS2. By contrast, increased expression of genes that ultimately lead to parturition is mediated by enhanced inflammatory and estradiol-17β (E2) and estrogen receptor α signalling, which reduce PR function, thus further intensifying the inflammatory response. To obtain a more complete understanding of the molecular events that underlie the transition of the pregnant myometrium from a refractory to a contractile state, the roles of microRNAs, their targets, and their transcriptional and hormonal regulation have been investigated. This article reviews the actions of the miR-200 family and their P4-regulated targets-the transcription factors ZEB1, ZEB2 and STAT5B-in the pregnant myometrium, as well as the role of miR-199a-3p and miR-214 and their mutual target PTGS2. The central role of ZEB1 as the mediator of the opposing actions of P4 and E2 on myometrial contractility will be highlighted.
Collapse
Affiliation(s)
- Nora E Renthal
- Department of Pediatrics, Children's Medical Center Dallas, 1935 Medical District Drive, Dallas, TX 75235, USA
| | | | | |
Collapse
|
27
|
Diep CH, Charles NJ, Gilks CB, Kalloger SE, Argenta PA, Lange CA. Progesterone receptors induce FOXO1-dependent senescence in ovarian cancer cells. Cell Cycle 2013; 12:1433-49. [PMID: 23574718 DOI: 10.4161/cc.24550] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loss of nuclear progesterone receptors (PR) and low circulating progesterone levels are associated with increased ovarian cancer (OC) risk. However, PR are abundantly expressed in a significant percentage of serous and endometrioid ovarian tumors; patients with PR+ tumors typically experience longer progression-free survival relative to those with PR-null tumors. The molecular mechanisms of these protective effects are poorly understood. To study PR action in OC in the absence of added estrogen (i.e., needed to induce robust PR expression), we created ES-2 OC cells stably expressing vector control or GFP-tagged PR-B (GFP-PR). Progestin (R5020) stimulation of ES-2 cells stably expressing GFP-PR induced cellular senescence characterized by altered cellular morphology, prolonged survival, senescence-associated β-galactosidase activity, G1 cell cycle arrest and upregulation of the cell cycle inhibitor, p21, as well as the Forkhead-box transcription factor, FOXO1; these results repeated in unmodified ER+/PR+ PEO4 OC cells. PR-B and FOXO1 were detected within the same PRE-containing regions of the p21 upstream promoter. Knockdown of p21 resulted in molecular compensation via FOXO1-dependent upregulation of numerous FOXO1 target genes (p15, p16, p27) and an increased rate of senescence. Inhibition of FOXO1 (with AS1842856) or stable FOXO1 knockdown inhibited progestin-induced p21 expression and blocked progestin-induced senescence. Overall, these findings support a role for PR as a tumor suppressor in OC cells, which exhibits inhibitory effects by inducing FOXO1-dependent cellular senescence. Clinical "priming" of the PR-FOXO1-p21 signaling pathway using PR agonists may provide a useful strategy to induce irreversible cell cycle arrest and thereby sensitize OC cells to existing chemotherapies as part of combination "two-step" therapies.
Collapse
Affiliation(s)
- Caroline H Diep
- Department of Medicine, Hematology, Oncology, and Transplantation Division, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tkach M, Rosemblit C, Rivas MA, Proietti CJ, Díaz Flaqué MC, Mercogliano MF, Beguelin W, Maronna E, Guzmán P, Gercovich FG, Deza EG, Elizalde PV, Schillaci R. p42/p44 MAPK-mediated Stat3Ser727 phosphorylation is required for progestin-induced full activation of Stat3 and breast cancer growth. Endocr Relat Cancer 2013; 20:197-212. [PMID: 23329648 DOI: 10.1530/erc-12-0194] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stat3 is a signaling node for multiple oncogenic pathways and is therefore frequently active in breast cancer. As experimental and clinical evidence reveals that progestins are key players in controlling mammary gland tumorigenesis, we studied Stat3 participation in this event. We have previously shown that progestins induce Stat3Tyr705 phosphorylation and its transcriptional activation in breast cancer cells. In this study, we demonstrate that progestins also induce Stat3 phosphorylation at Ser727 residue, which occurs via activation of c-Src/p42/p44 MAPK pathways in murine progestin-dependent C4HD cells and in T-47D cells. Expression of a Stat3S727A vector, which carries a serine-to-alanine substitution at codon 727, shows that Stat3Ser727 phosphorylation is required for full transcriptional activation of cyclin D1 gene expression by progestins and for in vivo Stat3 recruitment on cyclin D1 promoter. Transfection of Stat3S727A in murine and human breast cancer cells abolished progestin-induced in vitro and in vivo growth. Moreover, we found a positive correlation between progesterone receptor expression and nuclear localization of Stat3Ser727 phosphorylation in breast cancer biopsies. These data highlight Stat3 phosphorylation in Ser727 residue as a nongenomic action by progestins, necessary to promote breast cancer growth.
Collapse
Affiliation(s)
- Mercedes Tkach
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cruz GI, Martínez ME, Natarajan L, Wertheim BC, Gago-Dominguez M, Bondy M, Daneri-Navarro A, Meza-Montenegro MM, Gutierrez-Millan LE, Brewster A, Schedin P, Komenaka IK, Castelao JE, Carracedo A, Redondo CM, Thompson PA. Hypothesized role of pregnancy hormones on HER2+ breast tumor development. Breast Cancer Res Treat 2013; 137:237-46. [PMID: 23135573 PMCID: PMC4054812 DOI: 10.1007/s10549-012-2313-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 12/25/2022]
Abstract
Breast cancer incidence rates have declined among older but not younger women; the latter are more likely to be diagnosed with breast cancers carrying a poor prognosis. Epidemiological evidence supports an increase in breast cancer incidence following pregnancy with risk elevated as much as 10 years post-partum. We investigated the association between years since last full-term pregnancy at the time of diagnosis (≤10 or >10 years) and breast tumor subtype in a case series of premenopausal Hispanic women (n = 627). Participants were recruited in the United States, Mexico, and Spain. Cases with known estrogen receptor (ER), progesterone receptor (PR), and HER2 status, with one or more full-term pregnancies ≥1 year prior to diagnosis were eligible for this analysis. Cases were classified into three tumor subtypes according to hormone receptor (HR+ = ER+ and/or PR+; HR- = ER- and PR-) expression and HER2 status: HR+/HER2-, HER2+ (regardless of HR), and triple negative breast cancer. Case-only odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated for HER2+ tumors in reference to HR+/HER2- tumors. Participants were pooled in a mixed-effects logistic regression model with years since pregnancy as a fixed effect and study site as a random effect. When compared to HR+/HER2- cases, women with HER2+ tumors were more likely be diagnosed in the post-partum period of ≤10 years (OR = 1.68; 95 % CI, 1.12-2.52). The effect was present across all source populations and independent of the HR status of the HER2+ tumor. Adjusting for age at diagnosis (≤45 or >45 years) did not materially alter our results (OR = 1.78; 95 % CI, 1.08-2.93). These findings support the novel hypothesis that factors associated with the post-partum breast, possibly hormonal, are involved in the development of HER2+ tumors.
Collapse
Affiliation(s)
- Giovanna I. Cruz
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - María Elena Martínez
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Loki Natarajan
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, SERGAS, IDIS, Santiago de Compostela, Spain
| | - Melissa Bondy
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | - Abenaa Brewster
- Department of Clinical Cancer Prevention, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Ian K. Komenaka
- Maricopa Medical Center, Department of Surgery, Phoenix, AZ, USA
| | - J. Esteban Castelao
- Oncology and Genetics Unit, Complejo Hospitalario Universitario de Vigo, Genomic Medicine Group, SERGAS, Vigo, Spain
| | - Angel Carracedo
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, SERGAS, IDIS, Santiago de Compostela, Spain
| | - Carmen M. Redondo
- Oncology and Genetics Unit, Complejo Hospitalario Universitario de Vigo, Genomic Medicine Group, SERGAS, Vigo, Spain
| | - Patricia A. Thompson
- Department of Cellular and Molecular Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Lee HJ, Ormandy CJ. Interplay between progesterone and prolactin in mammary development and implications for breast cancer. Mol Cell Endocrinol 2012; 357:101-7. [PMID: 21945475 DOI: 10.1016/j.mce.2011.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 08/08/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
Abstract
Progesterone and prolactin remodel mammary morphology during pregnancy by acting on the mammary epithelial cell hierarchy. The roles of each hormone in mammary development have been well studied, but evidence of signalling cross-talk between progesterone and prolactin is still emerging. Factors such as receptor activator of NFkB ligand (RANKL) may integrate signals from both hormones to orchestrate their joint actions on the epithelial cell hierarchy. Common targets of progesterone and prolactin signalling are also likely to integrate their pro-proliferative actions in breast cancer. Therefore, a thorough understanding of the interplay between progesterone and prolactin in mammary development may reveal therapeutic targets for breast cancer. This review summarises our understanding of Pg and PRL action in mammary gland development before focusing on molecular mechanisms of signalling cross-talk and the implications for breast cancer.
Collapse
Affiliation(s)
- Heather J Lee
- Cancer Research Program, Garvan Institute, Sydney, NSW, Australia.
| | | |
Collapse
|
31
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
32
|
Jacobsen BM, Horwitz KB. Progesterone receptors, their isoforms and progesterone regulated transcription. Mol Cell Endocrinol 2012; 357:18-29. [PMID: 21952082 PMCID: PMC3272316 DOI: 10.1016/j.mce.2011.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/11/2011] [Accepted: 09/11/2011] [Indexed: 01/16/2023]
Abstract
This review discusses mechanisms by which progesterone receptors (PR) regulate transcription. We examine available data in different species and tissues regarding: (1) regulation of PR levels; and (2) expression profiling of progestin-regulated genes by total PRs, or their PRA and PRB isoforms. (3) We address current views about the composition of progesterone response elements, and postulate that PR monomers acting through "half-site" elements are common, entailing cooperativity with neighboring DNA-bound transcription factors. (4) We summarize transcription data for multiple progestin-regulated promoters as directed by total PR, or PRA vs. PRB. We conclude that current models and methods used to study PR function are problematical, and recommend that future work employ cells and receptors appropriate to the species, focusing on analyses of the effects of endogenous receptors targeting endogenous genes in native chromatin.
Collapse
Affiliation(s)
- Britta M Jacobsen
- Department of Medicine/Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States.
| | | |
Collapse
|
33
|
Hagan CR, Daniel AR, Dressing GE, Lange CA. Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol 2012; 357:43-9. [PMID: 21945472 PMCID: PMC3265648 DOI: 10.1016/j.mce.2011.09.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 08/08/2011] [Accepted: 09/11/2011] [Indexed: 10/17/2022]
Abstract
Progesterone receptors (PR), in concert with peptide growth factor-initiated signaling pathways, initiate massive expansion of the epithelial cell compartment associated with the process of alveologenesis in the developing mammary gland. PR-dependent signaling events also contribute to inappropriate proliferation observed in breast cancer. Notably, PR-B isoform-specific cross talk with growth factor-driven pathways is required for the proliferative actions of progesterone. Indeed, PRs act as heavily phosphorylated transcription factor "sensors" for mitogenic protein kinases that are often elevated and/or constitutively activated in invasive breast cancers. In addition, phospho-PR-target genes frequently include the components of mitogenic signaling pathways, revealing a mechanism for feed-forward signaling that confers increased responsiveness of, PR +mammary epithelial cells to these same mitogenic stimuli. Understanding the mechanisms and isoform selectivity of PR/kinase interactions may yield further insight into targeting altered signaling networks in breast and other hormonally responsive cancers (i.e. lung, uterine and ovarian) in the clinic. This review focuses on PR phosphorylation by mitogenic protein kinases and mechanisms of PR-target gene selection that lead to increased cell proliferation.
Collapse
Affiliation(s)
- Christy R Hagan
- University of Minnesota, Departments of Medicine and Pharmacology, Division of Hematology, Oncology, and Transplantation, Women's Cancer Program, Masonic Cancer Center, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
34
|
Li F, Jang H, Puttabyatappa M, Jo M, Curry TE. Ovarian FAM110C (family with sequence similarity 110C): induction during the periovulatory period and regulation of granulosa cell cycle kinetics in rats. Biol Reprod 2012; 86:185. [PMID: 22460667 DOI: 10.1095/biolreprod.112.099259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
FAM110C belongs to a family of proteins that regulates cell proliferation. In the present study, the spatiotemporal expression pattern of FAM110C and its potential role were examined during the periovulatory period. Immature female rats were injected with equine chorionic gonadotropin (eCG) followed by human chorionic gonadotropin (hCG) and ovaries or granulosa cells were collected at various times after hCG administration (n = 3/time point). Expression levels of Fam110c mRNA and protein were highly induced both in intact ovaries and granulosa cells at 8 to 12 h after hCG treatment. In situ hybridization analysis demonstrated Fam110c mRNA expression was induced in theca and granulosa cells at 4 h after hCG, primarily localized to granulosa cells at 8 h and 12 h, and decreased at 24 h after hCG. There was negligible Fam110c mRNA detected in newly forming corpora lutea. In rat granulosa cell cultures, hCG induced expression of Fam110c mRNA was inhibited by RU486, whereas NS398 and AG1478 had no effect, suggesting that Fam110c expression is regulated in part by the progesterone receptor pathway. Promoter activity analysis revealed that an Sp1 site was important for the induction of Fam110c expression by hCG. Overexpression of FAM110C promoted granulosa cells to arrest at the G(1) phase of the cell cycle but did not change progesterone levels. In summary, hCG induces Fam110c mRNA expression in granulosa cells by activation of an Sp1-binding site and the actions of progesterone. Our findings suggest that FAM110C may control granulosa cell differentiation into luteal cells by arresting cell cycle progression.
Collapse
Affiliation(s)
- Feixue Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
35
|
Prolactin and epidermal growth factor stimulate adipophilin synthesis in HC11 mouse mammary epithelial cells via the PI3-kinase/Akt/mTOR pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:987-96. [DOI: 10.1016/j.bbamcr.2012.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
|
36
|
MicroRNA-200a serves a key role in the decline of progesterone receptor function leading to term and preterm labor. Proc Natl Acad Sci U S A 2012; 109:7529-34. [PMID: 22529366 DOI: 10.1073/pnas.1200650109] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During pregnancy, uterine quiescence is maintained by increased progesterone receptor (PR) activity, but labor is facilitated by a series of events that impair PR function. Previously, we discovered that miR-200 family members serve as progesterone (P(4))-modulated activators of contraction-associated genes in the pregnant uterus. In this study, we identified a unique role for miR-200a to enhance the local metabolism of P(4) in myometrium and, thus, decrease PR function during the progression toward labor. miR-200a exerts this action by direct repression of STAT5b, a transcriptional repressor of the P(4)-metabolizing enzyme 20α-hydroxysteroid dehydrogenase (20α-HSD). We observed that miR-200a expression increased and STAT5b expression coordinately decreased in myometrium of mice as they progressed to labor and in laboring myometrium from pregnant women. These changes were associated with a dramatic increase in expression and activity of 20α-HSD in laboring myometrium from mouse and human. Notably, overexpression of miR-200a in cultured human myometrial cells (hTERT-HM) suppressed STAT5b and increased 20α-HSD mRNA levels. In uterine tissues of ovariectomized mice injected with P(4), miR-200 expression was significantly decreased, STAT5b expression was up-regulated, and 20α-HSD mRNA was decreased, but in 15 d postcoitum pregnant mice injected with the PR antagonist RU486, preterm labor was associated with increased miR-200a, decreased STAT5b, and enhanced 20α-HSD expression. Taken together, these findings implicate miR-200a as an important regulator of increased local P(4) metabolism in the pregnant uterus near term and provide insight into the importance of miR-200s in the decline in PR function leading to labor.
Collapse
|
37
|
Abstract
Steroid hormones, such as progesterone, are typically considered to be primarily secreted by the gonads (albeit adrenals can also be a source) and to exert their actions through cognate intracellular progestin receptors (PRs). Through its actions in the midbrain ventral tegmental Area (VTA), progesterone mediates appetitive (exploratory, anxiety, social approach) and consummatory (social, sexual) aspects of rodents' mating behaviour. However, progesterone and its natural metabolites ('progestogens') are produced in the midbrain VTA independent of peripheral sources and midbrain VTA of adult rodents is devoid of intracellular PRs. One approach that we have used to understand the effects of progesterone and mechanisms in the VTA for mating is to manipulate the actions of progesterone in the VTA and to examine effects on lordosis (the posture female rodents assume for mating to occur). This review focuses on the effects and mechanisms of progestogens to influence reproduction and related processes. The actions of progesterone and its 5α-reduced metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP; allopregnanolone) in the midbrain VTA to facilitate mating are described. The findings that 3α,5α-THP biosynthesis in the midbrain occurs with mating are discussed. Evidence for the actions of 3α,5α-THP in the midbrain VTA via nontraditional steroid targets is summarised. The broader relevance of these actions of 3α,5α-THP for aspects of reproduction, beyond lordosis, is summarised. Finally, the potential role of the pregnane xenobiotic receptor in mediating 3α,5α-THP biosynthesis in the midbrain is introduced.
Collapse
Affiliation(s)
- Cheryl Anne Frye
- Department of Psychology, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
38
|
Chen CC, Hardy DB, Mendelson CR. Progesterone receptor inhibits proliferation of human breast cancer cells via induction of MAPK phosphatase 1 (MKP-1/DUSP1). J Biol Chem 2011; 286:43091-102. [PMID: 22020934 DOI: 10.1074/jbc.m111.295865] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of progesterone (P(4)) and of progesterone receptor (PR) in development and pathogenesis of breast cancer remain unclear. In this study, we observed that treatment of T47D breast cancer cells with progestin antagonized effects of fetal bovine serum (FBS) to stimulate cell proliferation, whereas siRNA-mediated knockdown of endogenous PR abrogated progestin-mediated anti-proliferative effects. To begin to define mechanisms for the anti-proliferative action of P(4)/PR, we considered the role of MAPK phosphatase 1 (MKP-1/DUSP1), which catalyzes dephosphorylation and inactivation of MAPKs. Progestin treatment of T47D cells rapidly induced MKP-1 expression in a PR-dependent manner. Importantly, P(4) induction of MKP-1 was associated with reduced levels of phosphorylated ERK1/2, whereas siRNA knockdown of MKP-1 blocked progestin-mediated ERK1/2 dephosphorylation and repression of FBS-induced cell proliferation. The importance of PR in MKP-1 expression was supported by findings that MKP-1 and PR mRNA levels were significantly correlated in 30 human breast cancer cell lines. By contrast, no correlation was observed with the glucocorticoid receptor, a known regulator of MKP-1 in other cell types. ChIP and luciferase reporter assay findings suggest that PR acts in a ligand-dependent manner through binding to two progesterone response elements downstream of the MKP-1 transcription start site to up-regulate MKP-1 promoter activity. PR also interacts with two Sp1 sites just downstream of the transcription start site to increase MKP-1 expression. Collectively, these findings suggest that MKP-1 is a critical mediator of anti-proliferative and anti-inflammatory actions of PR in the breast.
Collapse
Affiliation(s)
- Chien-Cheng Chen
- Departments of Biochemistry and Obstetrics & Gynecology, North Texas March of Dimes Birth Defects Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
39
|
Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1778-87. [PMID: 21768398 DOI: 10.4049/jimmunol.1003919] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progesterone, a key female sex hormone with pleiotropic functions in maintenance of pregnancy, has profound effects on regulation of immune responses. We report in this work a novel function of progesterone in regulation of naive cord blood (CB) fetal T cell differentiation into key T regulatory cell (Treg) subsets. Progesterone drives allogeneic activation-induced differentiation of CB naive, but not adult peripheral blood, T cells into immune-suppressive Tregs, many of which express FoxP3. Compared with those induced in the absence of progesterone, the FoxP3(+) T cells induced in the presence of progesterone highly expressed memory T cell markers. In this regard, the Treg compartment in progesterone-rich CB is enriched with memory-type FoxP3(+) T cells. Moreover, CB APCs were more efficient than their peripheral blood counterparts in inducing FoxP3(+) T cells. Another related function of progesterone that we discovered was to suppress the differentiation of CB CD4(+) T cells into inflammation-associated Th17 cells. Progesterone enhanced activation of STAT5 in response to IL-2, whereas it decreased STAT3 activation in response to IL-6, which is in line with the selective activity of progesterone in generation of Tregs versus Th17 cells. Additionally, progesterone has a suppressive function on the expression of the IL-6 receptor by T cells. The results identified a novel role of progesterone in regulation of fetal T cell differentiation for promotion of immune tolerance.
Collapse
Affiliation(s)
- Jee H Lee
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
40
|
Daniel AR, Hagan CR, Lange CA. Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab 2011; 6:359-369. [PMID: 21857868 PMCID: PMC3156468 DOI: 10.1586/eem.11.25] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ovarian steroid hormones, estradiol and progesterone, and their nuclear receptors (estrogen receptor [ER] and progesterone receptor [PR]), are involved in breast cancer development. As ER-positive/PR-positive tumors progress, they are likely to become steroid hormone-resistant/independent, yet often retain expression of their steroid receptors. Notably, up to 40% of women with steroid receptor-positive tumors exhibit de novo resistance or eventually fail on estrogen- or ERα-blocking therapies (acquired resistance). Indeed, most of the research on this topic has centered on mechanisms of ER 'escape' from endocrine therapy and the design of better ER-blocking strategies; signaling pathways that mediate endocrine (i.e., anti-estrogen) resistance are also excellent therapeutic targets. However, serious consideration of PR isoforms as important drivers of early breast cancer progression and ER modulators is timely and significant. Indeed, progress has been hindered by ER-centric experimental approaches. This article will focus on defining a role for PR in breast cancer with hopes of providing a refreshing PR-focused perspective.
Collapse
Affiliation(s)
- Andrea R Daniel
- Departments of Medicine (Division of Hematology, Oncology and Transplantation) and Pharmacology, and The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christy R Hagan
- Departments of Medicine (Division of Hematology, Oncology and Transplantation) and Pharmacology, and The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Departments of Medicine (Division of Hematology, Oncology and Transplantation) and Pharmacology, and The Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
41
|
Cerliani JP, Guillardoy T, Giulianelli S, Vaque JP, Gutkind JS, Vanzulli SI, Martins R, Zeitlin E, Lamb CA, Lanari C. Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer. Cancer Res 2011; 71:3720-31. [PMID: 21464042 DOI: 10.1158/0008-5472.can-10-3074] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) receptor 2 (FGFR-2) polymorphisms have been associated with an increase in estrogen receptor and progesterone receptor (PR)-positive breast cancer risk; however, a clear mechanistic association between FGFR-2 and steroid hormone receptors remains elusive. In previous works, we have shown a cross talk between FGF2 and progestins in mouse mammary carcinomas. To investigate the mechanisms underlying these interactions and to validate our findings in a human setting, we have used T47D human breast cancer cells and human cancer tissue samples. We showed that medroxyprogesterone acetate (MPA) and FGF2 induced cell proliferation and activation of ERK, AKT, and STAT5 in T47D and in murine C4-HI cells. Nuclear interaction between PR, FGFR-2, and STAT5 after MPA and FGF2 treatment was also showed by confocal microscopy and immunoprecipitation. This effect was associated with increased transcription of PRE and/or GAS reporter genes, and of PR/STAT5-regulated genes and proteins. Two antiprogestins and the FGFR inhibitor PD173074, specifically blocked the effects induced by FGF2 or MPA respectively. The presence of PR/FGFR-2/STAT5 complexes bound to the PRE probe was corroborated by using NoShift transcription and chromatin immunoprecipitation of the MYC promoter. Additionally, we showed that T47D cells stably transfected with constitutively active FGFR-2 gave rise to invasive carcinomas when transplanted into NOD/SCID mice. Nuclear colocalization between PR and FGFR-2/STAT5 was also observed in human breast cancer tissues. This study represents the first demonstration of a nuclear interaction between FGFR-2 and STAT5, as PR coactivators at the DNA progesterone responsive elements, suggesting that FGFRs are valid therapeutic targets for human breast cancer treatment.
Collapse
Affiliation(s)
- Juan P Cerliani
- Institute of Experimental Biology and Medicine (IBYME), National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Intlekofer KA, Petersen SL. 17β-estradiol and progesterone regulate multiple progestin signaling molecules in the anteroventral periventricular nucleus, ventromedial nucleus and sexually dimorphic nucleus of the preoptic area in female rats. Neuroscience 2010; 176:86-92. [PMID: 21185909 DOI: 10.1016/j.neuroscience.2010.12.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/30/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
Abstract
Recent work identified novel progestin signaling molecules, including progesterone receptor membrane component 1 (Pgrmc1), Pgrmc2, serpine mRNA binding protein 1 (Serbp1), progestin and adiponectin receptors 7 (Paqr7) and Paqr8. These molecules mediate rapid progesterone (P(4)) effects in non-neural tissue and we recently mapped their expression in the brain. Many rapid effects of P(4) require 17β-estradiol (E(2)) and P(4) priming; therefore, we examined the effects of ovarian hormones on the expression of these non-classical progestin signaling molecules. We focused specifically on the anteroventral periventricular nucleus (AVPV), the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the ventrolateral portion of the ventromedial nucleus (VMNvl). These brain nuclei are important for female reproduction. Ovariectomized adult female rats were implanted with capsules containing sesame oil or E(2), and injected 48 h later with sesame oil or P(4). Brains were collected 8 h later and RNA was isolated from the AVPV, SDN-POA and VMNvl. We assessed the effects of ovarian hormones on mRNA levels using quantitative polymerase chain reaction (QPCR). In the AVPV, Serbp1 mRNA levels were increased by P(4) in the presence of E(2), and Paqr8 was downregulated by P(4) alone. In the SDN-POA, combined E(2) and P(4) increased Pgrmc1 and Serbp1 mRNA levels, and E(2) alone increased Paqr8 mRNA levels. Finally, in the VMNvl, P(4) increased mRNA levels encoding Pgrmc1, Pgrmc2 and Serbp1, and the combination of E(2) and P(4) increased Pgrmc1 and Serbp1 mRNA levels. Paqr7 was not regulated by E(2) or P(4) in any brain region examined. In summary, we showed that ovarian hormones regulate novel progestin signaling molecules in brain regions important for the neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- K A Intlekofer
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
43
|
Vafaizadeh V, Klemmt P, Brendel C, Weber K, Doebele C, Britt K, Grez M, Fehse B, Desriviéres S, Groner B. Mammary epithelial reconstitution with gene-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation. Stem Cells 2010; 28:928-38. [PMID: 20235097 DOI: 10.1002/stem.407] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mammary gland represents a unique model system to study gene functions in adult stem cells. Mammary stem cells (MaSCs) can regenerate a functional epithelium on transplantation into cleared fat pads. We studied the consequences of distinct genetic modifications of MaSCs on their repopulation and differentiation ability. The reconstitution of ductal trees was used as a stem cell selection procedure and the nearly quantitative lentiviral infection efficiency of the primary mammary epithelial cells (MECs) rendered the enrichment of MaSCs before their transplantation unnecessary. The repopulation frequency of transduced MaSCs was nearly 100% in immunodeficient recipients and the resulting transgenic ducts homogeneously expressed the virally encoded fluorescent marker proteins. Transplantation of a mixture of MECs, expressing different fluorescent proteins, resulted in a distinct pattern of ductal outgrowths originating from a small number of individually transduced MaSCs. We used genetically modified MECs to define multiple functions of Stat5 during mammary gland development and differentiation. Stat5-downregulation in MaSCs did not affect primary ductal outgrowth, but impaired side branching and the emergence of mature alveolar cells from luminal progenitors during pregnancy. Conversely, the expression of a constitutively active variant of Stat5 (cS5-F) caused epithelial hyperproliferation, thickening of the ducts and precocious, functional alveoli formation in virgin mice. Expression of cS5-F also prevented involution and caused the formation of estrogen and progesterone receptor positive (ER(+)PR(+)) adenocarcinomas. The tumors expressed activated Stat5 and Stat3 and contained a small fraction of CD44(+) cells, possibly indicative of cancer stem cells.
Collapse
Affiliation(s)
- Vida Vafaizadeh
- Georg Speyer Haus, Institute for Biomedical Research, 60596 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vicent GP, Nacht AS, Zaurín R, Ballaré C, Clausell J, Beato M. Minireview: role of kinases and chromatin remodeling in progesterone signaling to chromatin. Mol Endocrinol 2010; 24:2088-98. [PMID: 20484412 PMCID: PMC5417384 DOI: 10.1210/me.2010-0027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/21/2010] [Indexed: 11/19/2022] Open
Abstract
Steroid hormones regulate gene expression by interaction of their receptors with hormone-responsive elements on DNA or with other transcription factors, but they can also activate cytoplasmic signaling cascades. Rapid activation of Erk by progestins via an interaction of the progesterone receptor (PR) with the estrogen receptor is critical for transcriptional activation of the mouse mammary tumor virus (MMTV) promoter and other progesterone target genes. Erk activation leads to the phosphorylation of PR, activation of mitogen- and stress-activated protein kinase 1, and the recruitment of a complex of the three activated proteins and of P300/CBP-associated factor (PCAF) to a single nucleosome, resulting in the phosphoacetylation of histone H3 and the displacement of heterochromatin protein 1γ. Hormone-dependent gene expression requires ATP-dependent chromatin remodeling complexes. Two switch/sucrose nonfermentable-like complexes, Brahma-related gene 1-associated factor (BAF) and polybromo-BAF are present in breast cancer cells, but only BAF is recruited to the MMTV promoter and cooperates with PCAF during activation of hormone-responsive promoters. PCAF acetylates histone H3 at K14, an epigenetic mark recognized by BAF subunits, thus anchoring the complex to chromatin. BAF catalyzes localized displacement of histones H2A and H2B, facilitating access of nuclear factor 1 and additional PR complexes to the hidden hormone-responsive elements on the MMTV promoter. The linker histone H1 is a structural component of chromatin generally regarded as a general repressor of transcription. However, it contributes to a better regulation of the MMTV promoter by favoring a more homogeneous nucleosome positioning, thus reducing basal transcription and actually enhancing hormone induced transcription. During transcriptional activation, H1 is phosphorylated and displaced from the promoter. The kinase cyclin-dependent kinase 2 is activated after progesterone treatment and could catalyze progesterone-induced phosphorylation of histone H1 by chromatin remodeling complexes. The initial steps of gene induction by progestins involve changes in the chromatin organization of target promoters that require the activation of several kinase signaling pathways initiated by membrane anchored PR. Because these pathways also respond to other external signals, they serve to integrate the hormonal response in the global context of the cellular environment.
Collapse
Affiliation(s)
- Guillermo P Vicent
- Centre de Regulació Genòmica, Universitat Pompeu Fabra, Parc de Recerca Biomèdica, Aiguader 88, E-08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Dharmaraj N, Wang P, Carson DD. Cytokine and progesterone receptor interplay in the regulation of MUC1 gene expression. Mol Endocrinol 2010; 24:2253-66. [PMID: 20962044 DOI: 10.1210/me.2009-0448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mucin 1 (MUC1), a transmembrane mucin expressed at the apical surface of uterine epithelia, is a barrier to microbial infection and enzymatic attack. MUC1 loss at implantation sites appears to be required to permit embryo attachment and implantation in most species. MUC1 expression is regulated by progesterone (P) and proinflammatory cytokines, including TNFα and interferon γ (IFNγ). TNFα and IFNγ are highly expressed in uterine tissues under conditions where MUC1 expression is also high and activate MUC1 expression via their downstream transcription factors, nuclear factor (NF) κB and signal transducers and activators of transcription. P receptor (PR) regulates MUC1 gene expression in a PR isoform-specific fashion. Here we demonstrate that interactions among PR isoforms and cytokine-activated transcription factors cooperatively regulate MUC1 expression in a human uterine epithelial cell line, HES. Low doses of IFNγ and TNFα synergistically stimulate MUC1 promoter activity, enhance PRB stimulation of MUC1 promoter activity and cooperate with PRA to stimulate MUC1 promoter activity. Cooperative stimulation of MUC1 promoter activity requires the DNA-binding domain of the PR isoforms. MUC1 mRNA and protein expression is increased by cytokine and P treatment in HES cells stably expressing PRB. Using chromatin immunoprecipitation assays, we demonstrate efficient recruitment of NFκB, p300, SRC3 (steroid receptor coactivator 3), and PR to the MUC1 promoter. Collectively, our studies indicate a dynamic interplay among cytokine-activated transcription factors, PR isoforms and transcriptional coregulators in modulating MUC1 expression. This interplay may have important consequences in both normal and pathological contexts, e.g. implantation failure and recurrent miscarriages.
Collapse
Affiliation(s)
- Neeraja Dharmaraj
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
46
|
Hilton HN, Kalyuga M, Cowley MJ, Alles MC, Lee HJ, Caldon CE, Blazek K, Kaplan W, Musgrove EA, Daly RJ, Naylor MJ, Graham JD, Clarke CL, Ormandy CJ. The antiproliferative effects of progestins in T47D breast cancer cells are tempered by progestin induction of the ETS transcription factor Elf5. Mol Endocrinol 2010; 24:1380-92. [PMID: 20519331 DOI: 10.1210/me.2009-0516] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prolactin and progesterone act together to regulate mammary alveolar development, and both hormones have been implicated in breast cancer initiation and progression. Here we show that Elf5, a prolactin-induced ETS transcription factor that specifies the mammary secretory cell lineage, is also induced by progestins in breast cancer cells via a direct mechanism. To define the transcriptional response to progestin elicited via Elf5, we made an inducible Elf5 short hairpin-RNA knock-down model in T47D breast cancer cells and used it to prevent the progestin-induction of Elf5. Functional analysis of Affymetrix gene expression data using Gene Ontologies and Gene Set Enrichment Analysis showed enhancement of the progestin effects on cell cycle gene expression. Cell proliferation assays showed a more efficacious progestin-induced growth arrest when Elf5 was kept at baseline levels. These results showed that progestin induction of Elf5 expression tempered the antiproliferative effects of progestins in T47D cells, providing a further mechanistic link between prolactin and progestin in the regulation of mammary cell phenotype.
Collapse
Affiliation(s)
- H N Hilton
- Cancer Research Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cortes-Reynosa P, Robledo T, Salazar EP. Epidermal Growth Factor Promotes Epidermal Growth Factor Receptor Nuclear Accumulation by a Pathway Dependent on Cytoskeleton Integrity in Human Breast Cancer Cells. Arch Med Res 2009; 40:331-8. [DOI: 10.1016/j.arcmed.2009.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/21/2009] [Indexed: 11/26/2022]
|
48
|
Queiroga FL, Pérez-Alenza D, Silvan G, Peña L, Illera JC. Positive correlation of steroid hormones and EGF in canine mammary cancer. J Steroid Biochem Mol Biol 2009; 115:9-13. [PMID: 19429455 DOI: 10.1016/j.jsbmb.2009.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/24/2009] [Accepted: 01/28/2009] [Indexed: 01/10/2023]
Abstract
There are no published studies focused on the potential crosstalk between steroid hormones and EGF in canine mammary tumourigenesis. The objective was to investigate the role of EGF in canine mammary tumours (CMT) and the relationship with steroid hormones. Sixty-three CMT (39 malignant including 10 inflammatory mammary carcinomas (IMC); 19 benign and 5 dysplasias), and 13 normal mammary glands from dogs without history of neoplastic disease were analysed. Levels of EGF and steroid hormones [progesterone (P4); 17beta-estradiol (E2); androstenedione (A4) and dehydroepiandrosterone (DHEA)], were analysed by EIA in CMT homogenates. Levels of EGF were significantly higher in malignant compared with benign tumours, dysplasias and normal mammary glands (p<0.001). IMC presented the highest EGF levels, with statistical significant difference between IMC and non-IMC cases (p<0.05). Steroid hormone levels were also significantly higher in malignant tumours compared with benign tumours, dysplasias and normal mammary glands (p<0.001). In malignant tumours (non-IMC and IMC), a strong correlation was observed between EGF and: P4 (r=0.452; p=0.003); E2 (r=0.624; p=0.023); A4 (r=0.496; p=0.038); DHEA (r=0.431; p=0.005). These results suggest that EGF is implicated in canine mammary tumourigenesis. The positive correlation observed, opens an interesting perspective of interaction that should be further investigated.
Collapse
Affiliation(s)
- Felisbina L Queiroga
- CECAV, Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro, UTAD, Vila Real, Portugal.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Progesterone is an ovarian steroid hormone that is essential for normal breast development during puberty and in preparation for lactation and breastfeeding. The actions of progesterone are primarily mediated by its high-affinity receptors, which include the classical progesterone receptor (PR)-A and -B isoforms, located in diverse tissues, including the brain, where progesterone controls reproductive behavior, and the breast and reproductive organs. Progestins are frequently prescribed for contraception or during postmenopausal hormone replacement therapy, in which progestins are combined with estrogen as a means to block estrogen-induced endometrial growth. The role of estrogen as a potent breast mitogen is undisputed, and inhibitors of the estrogen receptor and estrogen-producing enzymes (aromatases) are effective first-line cancer therapies. However, PR action in breast cancer is grossly understudied and remains controversial. Herein, we review existing evidence and discuss the challenges to defining a role for progesterone in breast cancer.
Collapse
Affiliation(s)
- Carol A Lange
- University of Minnesota, Cancer Center, Department of Medicine (Hematology, Oncology & Transplantation), 420 Delaware Street SE, MMC 806, MN 55455, USA.
| | | |
Collapse
|
50
|
Gogoi R, Kudla M, Gil O, Fishman D. The activity of medroxyprogesterone acetate, an androgenic ligand, in ovarian cancer cell invasion. Reprod Sci 2009; 15:846-52. [PMID: 19017820 DOI: 10.1177/1933719108323446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES An epithelial ovarian cancer cell line constitutively expressing the androgen receptor was created to evaluate the mechanism and effects of androgen receptor activation on epithelial ovarian cancer cell invasion. METHODS Immunocytochemistry and Western blot analyses confirmed androgen receptor expression. Boyden chamber invasion assays were performed using cells treated with the androgen receptor ligands medroxyprogesterone acetate or dihydrotestosterone. The matrix metalloproteinases associated with invasion were investigated using zymographic assays. RESULTS Androgen receptor-mediated invasion is ligand dependent. While both medroxyprogesterone acetate and dihydrotestosterone signal through androgen receptor, medroxyprogesterone acetate is more effective at stimulating invasion of epithelial ovarian cancer cells. Unlike the wild-type epithelial ovarian cancer cells, this increase in invasion in androgen receptor + epithelial ovarian cancer cells does not seem to be dependent on matrix metalloproteinase 2 or 9 activation. CONCLUSION Although classified as a progestin, medroxyprogesterone acetate has significant androgenic activity unique from the pure androgen dihydrotestosterone. Our studies suggest that pharmacologic doses of medroxyprogesterone acetate may actually increase the invasive potential of epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Radhika Gogoi
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, New York University, New York, NY, USA
| | | | | | | |
Collapse
|