1
|
Mangini M, D’Angelo R, Vinciguerra C, Payré C, Lambeau G, Balestrieri B, Charles JF, Mariggiò S. Multimodal regulation of the osteoclastogenesis process by secreted group IIA phospholipase A 2. Front Cell Dev Biol 2022; 10:966950. [PMID: 36105351 PMCID: PMC9467450 DOI: 10.3389/fcell.2022.966950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 01/21/2023] Open
Abstract
Increasing evidence points to the involvement of group IIA secreted phospholipase A2 (sPLA2-IIA) in pathologies characterized by abnormal osteoclast bone-resorption activity. Here, the role of this moonlighting protein has been deepened in the osteoclastogenesis process driven by the RANKL cytokine in RAW264.7 macrophages and bone-marrow derived precursor cells from BALB/cJ mice. Inhibitors with distinct selectivity toward sPLA2-IIA activities and recombinant sPLA2-IIA (wild-type or catalytically inactive forms, full-length or partial protein sequences) were instrumental to dissect out sPLA2-IIA function, in conjunction with reduction of sPLA2-IIA expression using small-interfering-RNAs and precursor cells from Pla2g2a knock-out mice. The reported data indicate sPLA2-IIA participation in murine osteoclast maturation, control of syncytium formation and resorbing activity, by mechanisms that may be both catalytically dependent and independent. Of note, these studies provide a more complete understanding of the still enigmatic osteoclast multinucleation process, a crucial step for bone-resorbing activity, uncovering the role of sPLA2-IIA interaction with a still unidentified receptor to regulate osteoclast fusion through p38 SAPK activation. This could pave the way for the design of specific inhibitors of sPLA2-IIA binding to interacting partners implicated in osteoclast syncytium formation.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Rosa D’Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Caterina Vinciguerra
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Christine Payré
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne Sophia Antipolis, France
| | - Barbara Balestrieri
- Jeff and Penny Vinik Center for Translational Immunology Research, Department of Medicine, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopaedic Surgery and Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy,*Correspondence: Stefania Mariggiò,
| |
Collapse
|
2
|
Kim RR, Chen Z, J. Mann T, Bastard K, F. Scott K, Church WB. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A 2. Molecules 2020; 25:molecules25194459. [PMID: 32998383 PMCID: PMC7583969 DOI: 10.3390/molecules25194459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Human group IIA secretory phospholipase A2 (hGIIA) promotes the proliferation of cancer cells, making it a compelling therapeutic target, but it is also significant in other inflammatory conditions. Consequently, suitable inhibitors of hGIIA have always been sought. The activation of phospholipases A2 and the catalysis of glycerophospholipid substrates generally leads to the release of fatty acids such as arachidonic acid (AA) and lysophospholipid, which are then converted to mediator compounds, including prostaglandins, leukotrienes, and the platelet-activating factor. However, this ability of hGIIA to provide AA is not a complete explanation of its biological role in inflammation, as it has now been shown that it also exerts proinflammatory effects by a catalysis-independent mechanism. This mechanism is likely to be highly dependent on key specific molecular interactions, and the full mechanistic descriptions of this remain elusive. The current candidates for the protein partners that may mediate this catalysis-independent mechanism are also introduced in this review. A key discovery has been that selective inhibition of the catalysis-independent activity of hGIIA is achieved with cyclised derivatives of a pentapeptide, FLSYK, derived from the primary sequence of hGIIA. The effects of hGIIA on cell function appear to vary depending on the pathology studied, and so its mechanism of action is complex and context-dependent. This review is comprehensive and covers the most recent developments in the understanding of the many facets of hGIIA function and inhibition and the insight they provide into their clinical application for disease treatment. A cyclic analogue of FLSYK, c2, the most potent analogue known, has now been taken into clinical trials targeting advanced prostate cancer.
Collapse
Affiliation(s)
- Ryung Rae Kim
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Zheng Chen
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Timothy J. Mann
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
| | - Karine Bastard
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
| | - Kieran F. Scott
- School of Medicine, Western Sydney University, Centre for Oncology, Education and Research Translation and The Ingham Institute, Liverpool, NSW 2170, Australia;
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| | - W. Bret Church
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia; (R.R.K.); (Z.C.); (K.B.)
- Correspondence: (K.F.S.); (W.B.C.); Tel.: +61-2-8738-9026 (K.F.S.); +61-2-9036-6569 (W.B.C.)
| |
Collapse
|
3
|
Rodríguez JP, Leiguez E, Guijas C, Lomonte B, Gutiérrez JM, Teixeira C, Balboa MA, Balsinde J. A Lipidomic Perspective of the Action of Group IIA Secreted Phospholipase A 2 on Human Monocytes: Lipid Droplet Biogenesis and Activation of Cytosolic Phospholipase A 2α. Biomolecules 2020; 10:biom10060891. [PMID: 32532115 PMCID: PMC7355433 DOI: 10.3390/biom10060891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
Phospholipase A2s constitute a wide group of lipid-modifying enzymes which display a variety of functions in innate immune responses. In this work, we utilized mass spectrometry-based lipidomic approaches to investigate the action of Asp-49 Ca2+-dependent secreted phospholipase A2 (sPLA2) (MT-III) and Lys-49 sPLA2 (MT-II), two group IIA phospholipase A2s isolated from the venom of the snake Bothrops asper, on human peripheral blood monocytes. MT-III is catalytically active, whereas MT-II lacks enzyme activity. A large decrease in the fatty acid content of membrane phospholipids was detected in MT III-treated monocytes. The significant diminution of the cellular content of phospholipid-bound arachidonic acid seemed to be mediated, in part, by the activation of the endogenous group IVA cytosolic phospholipase A2α. MT-III triggered the formation of triacylglycerol and cholesterol enriched in palmitic, stearic, and oleic acids, but not arachidonic acid, along with an increase in lipid droplet synthesis. Additionally, it was shown that the increased availability of arachidonic acid arising from phospholipid hydrolysis promoted abundant eicosanoid synthesis. The inactive form, MT-II, failed to produce any of the effects described above. These studies provide a complete lipidomic characterization of the monocyte response to snake venom group IIA phospholipase A2, and reveal significant connections among lipid droplet biogenesis, cell signaling and biochemical pathways that contribute to initiating the inflammatory response.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes 3400, Argentina
| | - Elbio Leiguez
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - Carlos Guijas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - José M. Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501–2060, Costa Rica; (B.L.); (J.M.G.)
| | - Catarina Teixeira
- Laboratorio de Farmacologia, Instituto Butantan, Sao Paulo 01000, Brazil;
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (J.P.R.); (E.L.); (C.G.); (M.A.B.)
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-423-062
| |
Collapse
|
4
|
Tan G, Zhang GY, Xu J, Kang CW, Yan ZK, Lei M, Pu XB, Dong CC. PLA2G10 facilitates the cell-cycle progression of soft tissue leiomyosarcoma cells at least by elevating cyclin E1/CDK2 expression. Biochem Biophys Res Commun 2020; 527:525-531. [PMID: 32423798 DOI: 10.1016/j.bbrc.2020.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/05/2023]
Abstract
Soft tissue leiomyosarcoma (STLMS) is a major histological subtype of adult sarcoma. Although the molecular mechanisms ofLMS have been gradually revealed, no valid therapeutic targets have been identified. In this study, we performed a systematic screening to explore relapse-associated genes in STLMS, using data from The Cancer Genome Atlas-Sarcoma (TCGA-SARC). Then, we investigated the functional role of the gene with the best relapse-prediction value in STLMS by both in-vitro and in-vivo studies. Results showed that AMH and PLA2G10 were two genes with area under curve (AUC) values higher than 0.80 in ROC analysis when detecting relapse. Patients in the high AMH or PLA2G10 expression group had significantly worse relapse-free survival (RFS) compared to the respective low expression group. PLA2G10 was highly expressed in STLMS, but not in other sarcoma subtypes. PLA2G10 overexpression promoted SK-LMS-1 cell growth and G1/S transition, while PLA2G10 knockdown slowed the growth and resulted in G1 phase arrest. PLA2G10 overexpression markedly increased the expression of CDK2 and cyclin E1, but did not influence CDK4, CDK6, cyclin D1, CDK1 or cyclin A expression. PLA2G10 overexpression enhanced SK-LMS-1 cell-derived xenograft tumor growth in nude mice, while PLA2G10 inhibition slowed the growth. Mutation of two critical catalyzing amino acid residues (p.H88A and p.D89A) abrogated the capability of PLA2G10 to catalyze the production of arachidonic acid (AA), and also canceled the regulatory effects on cyclin E1 and CDK2 expression, as well as G1/S transition. In conclusion, PLA2G10 was a specific relapse-associated gene in STLMS. It facilitated the cell-cycle progression of STLMS cells at least by elevating the expression of cyclin E1 and CDK2. The hydrolytic activity was crucial for its oncogenic properties.
Collapse
Affiliation(s)
- Gang Tan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guang-Yan Zhang
- Department of Respiratory Medicine, The 7th Hospital of Chengdu, Chengdu, Sichuan, 610041, China
| | - Jing Xu
- Anesthesia Operation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Cheng-Wei Kang
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhao-Kui Yan
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mei Lei
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiao-Bing Pu
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chang-Chao Dong
- Department of Orthopedics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
In silico investigation of the molecular effects caused by R123H variant in secretory phospholipase A2-IIA associated with ARDS. J Mol Graph Model 2018. [PMID: 29529495 DOI: 10.1016/j.jmgm.2018.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Phospholipase A2-IIA catalyzes the hydrolysis of the sn-2 ester of glycerophospholipids. A rare c.428G > A (p.Arg143His) variant in PLA2G2A gene was found in two infants affected by acute respiratory distress syndrome (ARDS) by whole coding region and exon/intron boundaries sequencing. To obtain insights into the possible molecular effects of the rare R123H mutation in secretory PLA2-IIA (sPLA2-IIA), molecular modelling, molecular dynamics (MD) using principal component analysis (PCA) and continuum electrostatic calculations were conducted on the crystal structure of the wild type protein and on a generated model structure of the R123H mutant. Analysis of MD trajectories indicate that the overall stability of the protein is not affected by this mutation but nevertheless the catalytically crucial H-bond between Tyr51 and Asp91 as well as main electrostatic interactions in the region close to the mutation site are altered. PCA results indicate that the R123H replacement alter the internal molecular motions of the enzyme and that collective motions are increased. Electrostatic surface potential studies suggest that after mutation the interfacial binding to anionic phospholipid membranes and anionic proteins may be changed. The strengthening of electrostatic interactions may be propagated into the active site region thus potentially affecting the substrate recognition and enzymatic activity. Our findings provide the basis for further investigation and advances our understanding of the effects of mutations on sPLA2 structure and function.
Collapse
|
6
|
Zhan C, Li S, Zhong Q, Zhou D. Structure-Based Grafting, Mutation, and Optimization of Peptide Inhibitors to Fit in the Active Pocket of Human Secreted Phospholipase A2: Find New Use of Old Peptide Agents with Anti-Inflammatory Activity. Chem Biol Drug Des 2014; 85:418-26. [PMID: 25187416 DOI: 10.1111/cbdd.12424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/02/2014] [Accepted: 08/26/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chengye Zhan
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Shusheng Li
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Qiang Zhong
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| | - Daixing Zhou
- Department of ICU; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan 430030 China
| |
Collapse
|
7
|
Lee LK, Bryant KJ, Bouveret R, Lei PW, Duff AP, Harrop SJ, Huang EP, Harvey RP, Gelb MH, Gray PP, Curmi PM, Cunningham AM, Church WB, Scott KF. Selective inhibition of human group IIA-secreted phospholipase A2 (hGIIA) signaling reveals arachidonic acid metabolism is associated with colocalization of hGIIA to vimentin in rheumatoid synoviocytes. J Biol Chem 2013; 288:15269-79. [PMID: 23482564 PMCID: PMC3663547 DOI: 10.1074/jbc.m112.397893] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/06/2013] [Indexed: 11/06/2022] Open
Abstract
Human group IIA secreted phospholipase A2 (hGIIA) promotes tumor growth and inflammation and can act independently of its well described catalytic lipase activity via an alternative poorly understood signaling pathway. With six chemically diverse inhibitors we show that it is possible to selectively inhibit hGIIA signaling over catalysis, and x-ray crystal structures illustrate that signaling involves a pharmacologically distinct surface to the catalytic site. We demonstrate in rheumatoid fibroblast-like synoviocytes that non-catalytic signaling is associated with rapid internalization of the enzyme and colocalization with vimentin. Trafficking of exogenous hGIIA was monitored with immunofluorescence studies, which revealed that vimentin localization is disrupted by inhibitors of signaling that belong to a rare class of small molecule inhibitors that modulate protein-protein interactions. This study provides structural and pharmacological evidence for an association between vimentin, hGIIA, and arachidonic acid metabolism in synovial inflammation, avenues for selective interrogation of hGIIA signaling, and new strategies for therapeutic hGIIA inhibitor design.
Collapse
Affiliation(s)
- Lawrence K. Lee
- From the Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Medical Sciences
| | | | - Romaric Bouveret
- St. Vincent's Hospital Clinical School, and
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | | | - Anthony P. Duff
- The Australian Nuclear Science and Technology Organisation, Sydney, New South Wales 2234, Australia
| | - Stephen J. Harrop
- School of Physics, Faculty of Science, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | - Richard P. Harvey
- St. Vincent's Hospital Clinical School, and
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia
| | - Michael H. Gelb
- the Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195
| | | | - Paul M. Curmi
- School of Physics, Faculty of Science, The University of New South Wales, Sydney, New South Wales 2052, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia, and
| | | | - W. Bret Church
- From the Faculty of Pharmacy, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Medical Sciences
| | | |
Collapse
|
8
|
Gibbons E, Nelson J, Anderson L, Brewer K, Melchor S, Judd AM, Bell JD. Role of membrane oxidation in controlling the activity of human group IIa secretory phospholipase A2 toward apoptotic lymphoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:670-6. [DOI: 10.1016/j.bbamem.2012.09.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/31/2012] [Accepted: 09/08/2012] [Indexed: 01/05/2023]
|
9
|
Oslund RC, Gelb MH. Biochemical characterization of selective inhibitors of human group IIA secreted phospholipase A(2) and hyaluronic acid-linked inhibitor conjugates. Biochemistry 2012; 51:8617-26. [PMID: 23020658 DOI: 10.1021/bi301140b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We explored the inhibition mode of group IIA secreted phospholipase A(2) (GIIA sPLA(2)) selective inhibitors and tested their ability to inhibit GIIA sPLA(2) activity as chemical conjugates with hyaluronic acid (HA). Analogues of a benzo-fused indole sPLA(2) inhibitor were developed in which the carboxylate group on the inhibitor scaffold, which has been shown to coordinate to a Ca(2+) ligand in the enzyme active site, was replaced with other functionality. Replacing the carboxylate group with amine, amide, or hydroxyl groups had no effect on human GIIA (hGIIA) sPLA(2) inhibition potency but dramatically lowered inhibition potency against hGV and hGX sPLA(2)s. An alkylation protection assay was used to probe active site binding of carboxylate and noncarboxylate inhibitors in the presence and absence of Ca(2+) and/or lipid vesicles. We observed that carboxylate-containing inhibitors bind the hGIIA sPLA(2) active site with low nanomolar affinity, but only when Ca(2+) is present. Noncarboxylate, GIIA sPLA(2) selective inhibitors also bind the hGIIA sPLA(2) active site in the nanomolar range. However, binding for GIIA sPLA(2) selective inhibitors was dependent on the presence of a lipid membrane and not Ca(2+). These results indicate that GIIA sPLA(2) selective inhibitors exert their inhibitory effects by binding to the hGIIA sPLA(2) active site. An HA-linked GIIA inhibitor conjugate was developed using peptide coupling conditions and found to be less potent and selective against hGIIA sPLA(2) than the unconjugated inhibitor. Compounds reported in this study are some of the most potent and selective GIIA sPLA(2) active site binding inhibitors reported to date.
Collapse
Affiliation(s)
- Rob C Oslund
- Departments of Chemistry and Biomolecular Structure and Design, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
10
|
Murakami M, Taketomi Y, Miki Y, Sato H, Hirabayashi T, Yamamoto K. Recent progress in phospholipase A₂ research: from cells to animals to humans. Prog Lipid Res 2010; 50:152-92. [PMID: 21185866 DOI: 10.1016/j.plipres.2010.12.001] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian genomes encode genes for more than 30 phospholipase A₂s (PLA₂s) or related enzymes, which are subdivided into several classes including low-molecular-weight secreted PLA₂s (sPLA₂s), Ca²+-dependent cytosolic PLA₂s (cPLA₂s), Ca²+-independent PLA₂s (iPLA₂s), platelet-activating factor acetylhydrolases (PAF-AHs), lysosomal PLA₂s, and a recently identified adipose-specific PLA. Of these, the intracellular cPLA₂ and iPLA₂ families and the extracellular sPLA₂ family are recognized as the "big three". From a general viewpoint, cPLA₂α (the prototypic cPLA₂ plays a major role in the initiation of arachidonic acid metabolism, the iPLA₂ family contributes to membrane homeostasis and energy metabolism, and the sPLA₂ family affects various biological events by modulating the extracellular phospholipid milieus. The cPLA₂ family evolved along with eicosanoid receptors when vertebrates first appeared, whereas the diverse branching of the iPLA₂ and sPLA₂ families during earlier eukaryote development suggests that they play fundamental roles in life-related processes. During the past decade, data concerning the unexplored roles of various PLA₂ enzymes in pathophysiology have emerged on the basis of studies using knockout and transgenic mice, the use of specific inhibitors, and information obtained from analysis of human diseases caused by mutations in PLA₂ genes. This review focuses on current understanding of the emerging biological functions of PLA₂s and related enzymes.
Collapse
Affiliation(s)
- Makoto Murakami
- Lipid Metabolism Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Winter JN, Fox TE, Kester M, Jefferson LS, Kimball SR. Phosphatidic acid mediates activation of mTORC1 through the ERK signaling pathway. Am J Physiol Cell Physiol 2010; 299:C335-44. [PMID: 20427710 DOI: 10.1152/ajpcell.00039.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian target of rapamycin (mTOR) assembles into two distinct multiprotein complexes known as mTORC1 and mTORC2. Of the two complexes, mTORC1 acts to integrate a variety of positive and negative signals to downstream targets that regulate cell growth. The lipid second messenger, phosphatidic acid (PA), represents one positive input to mTORC1, and it is thought to act by binding directly to mTOR, thereby enhancing the protein kinase activity of mTORC1. Support for this model includes findings that PA binds directly to mTOR and addition of PA to the medium of cells in culture results in activation of mTORC1. In contrast, the results of the present study do not support a model in which PA activates mTORC1 through direct interaction with the protein kinase but, instead, show that the lipid promotes mTORC1 signaling through activation of the ERK pathway. Moreover, rather than acting directly on mTORC1, the results suggest that exogenous PA must be metabolized to lysophosphatidic acid (LPA), which subsequently activates the LPA receptor endothelial differentiation gene (EDG-2). Finally, in contrast to previous studies, the results of the present study demonstrate that leucine does not act through phospholipase D and PA to activate mTORC1 and, instead, show that the two mediators act through parallel upstream signaling pathways to activate mTORC1. Overall, the results demonstrate that leucine and PA signal through parallel pathways to activate mTORC1 and that PA mediates its effect through the ERK pathway, rather than through direct binding to mTOR.
Collapse
Affiliation(s)
- Jeremiah N Winter
- Department of Cellular and Molecular Physiology, The Pennsylvania State University Collegeof Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
12
|
Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G. Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic and knockout mice. Biochimie 2010; 92:561-82. [PMID: 20347923 DOI: 10.1016/j.biochi.2010.03.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/18/2010] [Indexed: 11/15/2022]
Abstract
Among the emerging phospholipase A(2) (PLA(2)) superfamily, the secreted PLA(2) (sPLA(2)) family consists of low-molecular-mass, Ca(2+)-requiring extracellular enzymes with a His-Asp catalytic dyad. To date, more than 10 sPLA(2) enzymes have been identified in mammals. Individual sPLA(2)s exhibit unique tissue and cellular localizations and enzymatic properties, suggesting their distinct pathophysiological roles. Despite numerous enzymatic and cell biological studies on this enzyme family in the past two decades, their precise in vivo functions still remain largely obscure. Recent studies using transgenic and knockout mice for several sPLA(2) enzymes, in combination with lipidomics approaches, have opened new insights into their distinct contributions to various biological events such as food digestion, host defense, inflammation, asthma and atherosclerosis. In this article, we overview the latest understanding of the pathophysiological functions of individual sPLA(2) isoforms fueled by studies employing transgenic and knockout mice for several sPLA(2)s.
Collapse
Affiliation(s)
- Makoto Murakami
- Biomembrane Signaling Project, The Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
13
|
Olson ED, Nelson J, Griffith K, Nguyen T, Streeter M, Wilson-Ashworth HA, Gelb MH, Judd AM, Bell JD. Kinetic evaluation of cell membrane hydrolysis during apoptosis by human isoforms of secretory phospholipase A2. J Biol Chem 2010; 285:10993-1002. [PMID: 20139082 DOI: 10.1074/jbc.m109.070797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some isoforms of secretory phospholipase A(2) (sPLA(2)) distinguish between healthy and damaged or apoptotic cells. This distinction reflects differences in membrane physical properties. Because various sPLA(2) isoforms respond differently to properties of artificial membranes such as surface charge, they should also behave differently as these properties evolve during a dynamic physiological process such as apoptosis. To test this idea, S49 lymphoma cell death was induced by glucocorticoid (6-48 h) or calcium ionophore. Rates of membrane hydrolysis catalyzed by various concentrations of snake venom and human groups IIa, V, and X sPLA(2) were compared after each treatment condition. The data were analyzed using a model that evaluates the adsorption of enzyme to the membrane surface and subsequent binding of substrate to the active site. Results were compared temporally to changes in membrane biophysics and composition. Under control conditions, membrane hydrolysis was confined to the few unhealthy cells present in each sample. Increased hydrolysis during apoptosis and necrosis appeared to reflect substrate access to adsorbed enzyme for the snake venom and group X isoforms corresponding to weakened lipid-lipid interactions in the membrane. In contrast, apoptosis promoted initial adsorption of human groups V and IIa concurrent with phosphatidylserine exposure on the membrane surface. However, this observation was inadequate to explain the behavior of the groups V and IIa enzymes toward necrotic cells where hydrolysis was reduced or absent. Thus, a combination of changes in cell membrane properties during apoptosis and necrosis capacitates the cell for hydrolysis differently by each isoform.
Collapse
Affiliation(s)
- Erin D Olson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Titsworth WL, Cheng X, Ke Y, Deng L, Burckardt KA, Pendleton C, Liu NK, Shao H, Cao QL, Xu XM. Differential expression of sPLA2 following spinal cord injury and a functional role for sPLA2-IIA in mediating oligodendrocyte death. Glia 2009; 57:1521-37. [PMID: 19306380 DOI: 10.1002/glia.20867] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the initial mechanical insult of spinal cord injury (SCI), secondary mediators propagate a massive loss of oligodendrocytes. We previously showed that following SCI both the total phospholipase activity and cytosolic PLA(2)-IV alpha protein expression increased. However, the expression of secreted isoforms of PLA(2) (sPLA(2)) and their possible roles in oligodendrocyte death following SCI remained unclear. Here we report that mRNAs extracted 15 min, 4 h, 1 day, or 1 month after cervical SCI show marked upregulation of sPLA(2)-IIA and IIE at 4 h after injury. In contrast, SCI induced down regulation of sPLA(2)-X, and no change in sPLA(2)-IB, IIC, V, and XIIA expression. At the lesion site, sPLA(2)-IIA and IIE expression were localized to oligodendrocytes. Recombinant human sPLA(2)-IIA (0.01, 0.1, or 2 microM) induced a dose-dependent cytotoxicity in differentiated adult oligodendrocyte precursor cells but not primary astrocytes or Schwann cells in vitro. Most importantly, pretreatment with S3319, a sPLA(2)-IIA inhibitor, before a 30 min H(2)O(2) injury (1 or 10 mM) significantly reduced oligodendrocyte cell death at 48 h. Similarly, pretreatment with S3319 before injury with IL-1 beta and TNFalpha prevented cell death and loss of oligodendrocyte processes at 72 h. Collectively, these findings suggest that sPLA(2)-IIA and IIE are increased following SCI, that increased sPLA(2)-IIA can be cytotoxic to oligodendrocytes, and that in vitro blockade of sPLA(2) can create sparing of oligodendrocytes in two distinct injury models. Therefore, sPLA(2)-IIA may be an important mediator of oligodendrocyte death and a novel target for therapeutic intervention following SCI.
Collapse
Affiliation(s)
- W Lee Titsworth
- Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Catalytic and non-catalytic functions of human IIA phospholipase A2. Trends Biochem Sci 2009; 35:28-35. [PMID: 19818633 DOI: 10.1016/j.tibs.2009.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 11/30/2022]
Abstract
Group IIA phospholipase A2 (PLA2) is a low-molecular-mass secreted PLA2 enzyme that has been identified as an acute phase protein with a role in the inflammatory response to infection and trauma. The protein is possibly unique in being highly cationic and having a global distribution of surface arginine and lysine residues. This structure supports two functions of the protein. (1) An anti-bacterial role where the enzyme is targeted to the anionic cell membrane of Gram-positive bacteria and phospholipid hydrolysis assists in bacterial killing. (2) A proposed non-catalytic role in which the protein forms supramolecular aggregates with anionic phospholipid vesicles or debris. These aggregates are then internalized via interactions with cell surface heparin sulphate proteoglycans and macropinocytosis for disposal by macrophages.
Collapse
|
16
|
Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A(2) and human beta-defensin 3. Infect Immun 2008; 76:2169-76. [PMID: 18347049 DOI: 10.1128/iai.01705-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wall teichoic acids (WTAs) and membrane lipoteichoic acids (LTAs) are the major polyanionic polymers in the envelope of Staphylococcus aureus. WTAs in S. aureus play an important role in bacteriophage attachment and bacterial adherence to certain host cells, suggesting that WTAs are exposed on the cell surface and could also provide necessary binding sites for cationic antimicrobial peptides and proteins (CAMPs). Highly cationic mammalian group IIA phospholipase A(2) (gIIA PLA(2)) kills S. aureus at nanomolar concentrations by an action(s) that depends on initial electrostatic interactions, cell wall penetration, membrane phospholipid (PL) degradation, and activation of autolysins. A tagO mutant of S. aureus that lacks WTA is up to 100-fold more resistant to PL degradation and killing by gIIA PLA(2) and CAMP human beta-defensin 3 (HBD-3) but has the sensitivity of the wild type (wt) to other CAMPs, such as Magainin II amide, hNP1-3, LL-37, and lactoferrin. In contrast, there is little or no difference in either gIIA PLA(2) activity toward cell wall-depleted protoplasts of the wt and tagO strains of S. aureus or in binding of gIIA PLA(2) to wt and tagO strains. Scanning and transmission electron microscopy reveal increased surface protrusions in the S. aureus tagO mutant that might account for reduced activity of bound gIIA PLA(2) and HBD-3 toward the tagO mutant. In summary, the absence of WTA in S. aureus causes a selective increase in bacterial resistance to gIIA PLA(2) and HBD-3, the former apparently by reducing access and/or activity of bound antibacterial enzyme to the bacterial membrane.
Collapse
|
17
|
Birts CN, Barton CH, Wilton DC. A Catalytically Independent Physiological Function for Human Acute Phase Protein Group IIA Phospholipase A2. J Biol Chem 2008; 283:5034-45. [DOI: 10.1074/jbc.m708844200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Abstract
Neutrophils constitute the dominant cell in the circulation that mediates the earliest innate immune human responses to infection. The morbidity and mortality from infection rise dramatically in patients with quantitative or qualitative neutrophil defects, providing clinical confirmation of the important role of normal neutrophils for human health. Neutrophil-dependent anti-microbial activity against ingested microbes represents the collaboration of multiple agents, including those prefabricated during granulocyte development in the bone marrow and those generated de novo following neutrophil activation. Furthermore, neutrophils cooperate with extracellular agents as well as other immune cells to optimally kill and degrade invading microbes. This brief review focuses attention on two examples of the integrated nature of neutrophil-mediated anti-microbial action within the phagosome. The importance and complexity of myeloperoxidase-mediated events illustrate a collaboration of anti-microbial responses that are endogenous to the neutrophil, whereas the synergy between the phagocyte NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and plasma-derived group IIA phospholipase A(2) exemplifies the collective effects of the neutrophil with an exogenous factor to achieve degradation of ingested staphylococci.
Collapse
Affiliation(s)
- William M Nauseef
- Inflammation Program, Department of Medicine, University of Iowa, Iowa City, IA 52241, USA.
| |
Collapse
|
19
|
Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics. BMC STRUCTURAL BIOLOGY 2007; 7:82. [PMID: 18062812 PMCID: PMC2248580 DOI: 10.1186/1472-6807-7-82] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 12/06/2007] [Indexed: 11/20/2022]
Abstract
Background The snake venom group IIA secreted phospholipases A2 (SVPLA2), present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL) at the membrane/water interface and by highly specific direct binding to: (i) presynaptic membrane-bound or intracellular receptors; (ii) natural PLA2-inhibitors from snake serum; and (iii) coagulation factors present in human blood. Results Using surface plasmon resonance (SPR) protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa) via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS). The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.
Collapse
|
20
|
Bailey RW, Olson ED, Vu MP, Brueseke TJ, Robertson L, Christensen RE, Parker KH, Judd AM, Bell JD. Relationship between membrane physical properties and secretory phospholipase A2 hydrolysis kinetics in S49 cells during ionophore-induced apoptosis. Biophys J 2007; 93:2350-62. [PMID: 17545239 PMCID: PMC1965435 DOI: 10.1529/biophysj.107.104679] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During apoptosis, changes occur in lymphocyte membranes that render them susceptible to hydrolysis by secretory phospholipase A(2) (sPLA(2)). To study the relevant mechanisms, a simplified model of apoptosis using a calcium ionophore was applied. Kinetic and flow cytometry experiments provided key observations regarding ionophore treatment: the initial rate of hydrolysis was elevated at all enzyme concentrations, the total amount of reaction product was increased fourfold, and adsorption of the enzyme to the membrane surface was unaltered. Analysis of these results suggested that susceptibility during calcium-induced apoptosis is limited by availability of substrate rather than adsorption of enzyme. Fluorescence experiments identified three membrane alterations during apoptosis that might affect substrate access to the sPLA(2) active site. First, intercalation of merocyanine 540 into the membrane was improved, suggesting an increase in lipid spacing. Second, laurdan detected increased solvation of the lower headgroup region of the membrane. Third, the rate at which fluorescent lipids could be removed from the membrane by albumin was enhanced, implying greater vertical mobility of phospholipids. Thus, it is proposed that the membranes of apoptotic cells become susceptible to sPLA(2) through a reduction in lipid-neighbor interactions that facilitates migration of phospholipids into the enzyme active site.
Collapse
Affiliation(s)
- Rachel W Bailey
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Winget JM, Pan YH, Bahnson BJ. The interfacial binding surface of phospholipase A2s. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1260-9. [PMID: 16962825 DOI: 10.1016/j.bbalip.2006.08.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/19/2006] [Accepted: 08/01/2006] [Indexed: 11/17/2022]
Abstract
For membrane-associated enzymes, which access substrate from either a monolayer or bilayer of the aggregate substrate, the partitioning from the aqueous phase to this phospholipid interface is critical for catalysis. Despite a large and expanding body of knowledge regarding interfacial enzymes, the biophysical steps involved in interfacial recognition and adsorption remain relatively poorly understood. The surface of the enzyme that contacts the phospholipid surface is referred to as its interfacial binding surface, or more simply, its i-face. The interaction of a protein's i-face with the aggregate substrate may simply control access to substrate. However, it can be more complex, and this interaction often serves to allosterically activate the enzyme on this surface. First we briefly review what is currently known about i-face structure and function for a prototypical interfacial enzyme, the secreted Phospholipase A2 (PLA2). Then we develop, characterize, compare, and discuss models of the PLA2 i-face across a subset of five homologous PLA2 family members, groups IA, IB, IIA, V, and X. A homology model of human group-V is included in this comparison, suggesting that a similar approach could be used to explore interfacial function of any of the PLA2 family members. Despite moderate sequence identity, structural homology and sequence similarity are well conserved. We find that the residues predicted to be interfacial, while conserved structurally, are not highly conserved in sequence. Implications for this divergence on interfacial selectivity are discussed.
Collapse
Affiliation(s)
- Jason M Winget
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
22
|
Muñoz NM, Meliton AY, Lambertino A, Boetticher E, Learoyd J, Sultan F, Zhu X, Cho W, Leff AR. Transcellular Secretion of Group V Phospholipase A2 from Epithelium Induces β2-Integrin-Mediated Adhesion and Synthesis of Leukotriene C4 in Eosinophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:574-82. [PMID: 16785555 DOI: 10.4049/jimmunol.177.1.574] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We examined the mechanism by which secretory group V phospholipase A(2) (gVPLA(2)) secreted from stimulated epithelial cells activates eosinophil adhesion to ICAM-1 surrogate protein and secretion of leukotriene (LT)C(4). Exogenous human group V PLA(2) (hVPLA(2)) caused an increase in surface CD11b expression and focal clustering of this integrin, which corresponded to increased beta(2) integrin-mediated adhesion. Human IIaPLA(2), a close homolog of hVPLA(2), or W31A, an inactive mutant of hVPLA(2), did not affect these responses. Exogenous lysophosphatidylcholine but not arachidonic acid mimicked the beta(2) integrin-mediated adhesion caused by hVPLA(2) activation. Inhibition of hVPLA(2) with MCL-3G1, a mAb against gVPLA(2), or with LY311727, a global secretory phospholipase A(2) (PLA(2)) inhibitor, attenuated the activity of hVPLA(2); trifluoromethylketone, an inhibitor of cytosolic group IVA PLA(2) (gIVA-PLA(2)), had no inhibitory effect on hVPLA(2)-mediated adhesion. Activation of beta(2) integrin-dependent adhesion by hVPLA(2) did not cause ERK1/2 activation and was independent of gIVA-PLA(2) phosphorylation. In other studies, eosinophils cocultured with epithelial cells were stimulated with FMLP/cytochalasin B (FMLP/B) and/or endothelin-1 (ET-1) before LTC(4) assay. FMLP/B alone caused release of LTC(4) from eosinophils, which was augmented by coculture with epithelial cells activated with ET-1. Addition of MCL-3G1 to cocultured cells caused approximately 50% inhibition of LTC(4) secretion elicited by ET-1, which was blocked further by trifluoromethylketone. Our data indicate that hVPLA(2) causes focal clustering of CD11b and beta(2) integrin adhesion by a novel mechanism that is independent of arachidonic acid synthesis and gIVA-PLA(2) activation. We also demonstrate that gVPLA(2), endogenously secreted from activated epithelial cells, promotes secretion of LTC(4) in cocultured eosinophils.
Collapse
Affiliation(s)
- Nilda M Muñoz
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Menschikowski M, Hagelgans A, Siegert G. Secretory phospholipase A2 of group IIA: Is it an offensive or a defensive player during atherosclerosis and other inflammatory diseases? Prostaglandins Other Lipid Mediat 2006; 79:1-33. [PMID: 16516807 DOI: 10.1016/j.prostaglandins.2005.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 10/29/2005] [Accepted: 10/31/2005] [Indexed: 02/07/2023]
Abstract
Since its discovery in the serum of patients with severe inflammation and in rheumatoid arthritic fluids, the secretory phospholipase A2 of group IIA (sPLA2-IIA) has been chiefly considered as a proinflammatory enzyme, the result of which has been very intense interest in selective inhibitors of sPLA2-IIA in the hope of developing new and efficient therapies for inflammatory diseases. The recent discovery of the antibacterial properties of sPLA2-IIA, however, has raised the question of whether the upregulation of sPLA2-IIA during inflammation is to be considered uniformly negative and the hindrance of sPLA2-IIA in every instance beneficial. The aim of this review is for this reason, along with the results of various investigations which argue for the proinflammatory and proatherogenic effects of an upregulation of sPLA2-IIA, also to array data alongside which point to a protective function of sPLA2-IIA during inflammation. Thus, it could be shown that sPLA2-IIA, apart from the bactericidal effects, possesses also antithrombotic properties and indeed plays a possible role in the resolution of inflammation and the accelerated clearance of oxidatively modified lipoproteins during inflammation via the liver and adrenals. Based on these multipotent properties the knowledge of the function of sPLA2-IIA during inflammation is a fundamental prerequisite for the development and establishment of new therapeutic strategies to prevent and treat severe inflammatory diseases up to and including sepsis.
Collapse
Affiliation(s)
- Mario Menschikowski
- Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Institut für Klinische Chemie and Laboratoriumsmedizin, Fetscherstrasse 74, D-01307 Dresden, Germany.
| | | | | |
Collapse
|
24
|
Jensen LB, Burgess NK, Gonda DD, Spencer E, Wilson-Ashworth HA, Driscoll E, Vu MP, Fairbourn JL, Judd AM, Bell JD. Mechanisms governing the level of susceptibility of erythrocyte membranes to secretory phospholipase A2. Biophys J 2005; 88:2692-705. [PMID: 15681653 PMCID: PMC1305365 DOI: 10.1529/biophysj.104.056457] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 01/21/2005] [Indexed: 11/18/2022] Open
Abstract
Although cell membranes normally resist the hydrolytic action of secretory phospholipase A(2) (sPLA(2)), they become susceptible during apoptosis or after cellular trauma. Experimentally, susceptibility to the enzyme can be induced by loading cells with calcium. In human erythrocytes, the ability of the calcium ionophore to cause susceptibility depends on temperature, occurring best above approximately 35 degrees C. Considerable evidence from experiments with artificial bilayers suggests that hydrolysis of membrane lipids requires two steps. First, the enzyme adsorbs to the membrane surface, and second, a phospholipid diffuses from the membrane into the active site of the adsorbed enzyme. Analysis of kinetic experiments suggested that this mechanism can explain the action of sPLA(2) on erythrocyte membranes and that temperature and calcium loading promote the second step. This conclusion was further supported by binding experiments and assessment of membrane lipid packing. The adsorption of fluorescent-labeled sPLA(2) was insensitive to either temperature or ionophore treatment. In contrast, the fluorescence of merocyanine 540, a probe sensitive to lipid packing, was affected by both. Lipid packing decreased modestly as temperature was raised from 20 to 60 degrees C. Calcium loading enhanced packing at temperatures in the low end of this range, but greatly reduced packing at higher temperatures. This result was corroborated by measurements of the rate of extraction of a fluorescent phosphatidylcholine analog from erythrocyte membranes. Furthermore, drugs known to inhibit susceptibility in erythrocytes also prevented the increase in phospholipid extraction rate. These results argue that the two-step model applies to biological as well as artificial membranes and that a limiting step in the hydrolysis of erythrocyte membranes is the ability of phospholipids to migrate into the active site of adsorbed enzyme.
Collapse
Affiliation(s)
- Lauren B Jensen
- Department of Physiology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Villarrubia VG, Costa LA, Díez RA. [Secreted phospholipases A2 (sPLA2): friends or foes? Are they actors in antibacterial and anti-HIV resistance?]. Med Clin (Barc) 2005; 123:749-57. [PMID: 15574291 DOI: 10.1016/s0025-7753(04)74656-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper the authors update on the deletereous or beneficial roles of human and animal secretory phospholipases A2 (sPLA2). Although human sPLA2-IIA (inflammatory) was initially thought as a foe because its pathogenic implication in sepsis, multiorganic failure or other related syndromes, recent data indicates its role in in the antiinfectious host resistance. Thus, sPLA2-IIA exhibits potent bactericidal activities against gram-negative and gram-positive (in this case, together with other endogenous inflammatory factors) bacteria. Surprisingly, human sPLA-IIA does not show in vitro anti-human immunodeficiency virus (HIV) activity, whilst several sPLA2-IA isolated from bee and serpent venons do it: this is the case for crotoxin, a sPLA2-IA isolated from the venon of Crotalus durissus terrificus (sPLA2-Cdt). The mechanism for the in vitro anti-HIV activity of sPLA2-Cdt (inhibition of Gag p24) appears to be related to the ability of the drug to desestabilize ancorage (heparans) and fusion (cholesterol) receptors on HIV target cells.
Collapse
|
26
|
|
27
|
Masuda S, Murakami M, Matsumoto S, Eguchi N, Urade Y, Lambeau G, Gelb MH, Ishikawa Y, Ishii T, Kudo I. Localization of various secretory phospholipase A2 enzymes in male reproductive organs. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1686:61-76. [PMID: 15522823 DOI: 10.1016/j.bbalip.2004.08.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 08/12/2004] [Accepted: 08/25/2004] [Indexed: 11/15/2022]
Abstract
Current evidence suggests the presence of transcripts for several secretory phospholipase A(2) (sPLA(2)) enzymes in male genital organs. In this study, we examined by immunohistochemistry the localization of group IIA, IIC, IID, IIE, IIF, V and X sPLA(2)s in male genital organs. In sPLA(2)-IIA-deficient C57BL/6 mouse testis, sPLA(2)-IIC, -IID, -IIE, -IIF, -V and -X were diversely expressed in spermatogenic cells within the seminiferous tubules. Immunoblotting revealed the presence of these sPLA(2)s in mouse spermatozoa. In addition, sPLA(2)-IIF, -V and -X were localized in the interstitial Leydig cells. The same set of sPLA(2)s was detected in a mouse cultured Leydig cell line, and adenovirus-mediated transfer of these sPLA(2)s into Leydig cells resulted in increased prostaglandin production. sPLA(2)-IIC, -IID, -IIE, -IIF, -V and -X were also detected diversely in the epithelium of the epididymis, vas deferens, seminal vesicles, and prostate. In a sPLA(2)-IIA-positive FVB strain, weak expression of sPLA(2)-IIA was detected in Leydig cells. Notable differences in the sPLA(2) expression profiles were found in the seminal vesicles and prostate between mice and humans. Taken together, individual sPLA(2)s exhibit distinct or partially overlapping localizations in male reproductive organs, suggesting both specific and redundant functions.
Collapse
Affiliation(s)
- Seiko Masuda
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Berg OG, Yu BZ, Chang C, Koehler KA, Jain MK. Cooperative Binding of Monodisperse Anionic Amphiphiles to the i-Face: Phospholipase A2-Paradigm for Interfacial Binding. Biochemistry 2004; 43:7999-8013. [PMID: 15209495 DOI: 10.1021/bi0497650] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Equilibrium parameters for the binding of monodisperse alkyl sulfate along the i-face (the interface binding surface) of pig pancreatic IB phospholipase A(2) (PLA2) to form the premicellar complexes (E(i)(#)) are characterized to discern the short-range specific interactions. Typically, E(i)(#) complexes are reversible on dilution. The triphasic binding isotherm, monitored as the fluorescence emission from the single tryptophan of PLA2, is interpreted as a cooperative equilibrium for the sequential formation of three premicellar complexes (E(i)(#), i = 1, 2, 3). In the presence of calcium, the dissociation constant K(1) for the E(1)(#) complex of PLA2 with decyl sulfate (CMC = 4500 microM) is 70 microM with a Hill coefficient n(1) = 2.1 +/- 0.2; K(2) for E(2)(#) is 750 microM with n(2) = 8 +/- 1, and K(3) for E(3)(#) is 4000 microM with an n(3) value of about 12. Controls show that (a) self-aggregation of decyl sulfate alone is not significant below the CMC; (b) occupancy of the active site is not necessary for the formation of E(i)(#); (c) K(i) and n(i) do not change significantly due to the absence of calcium, possibly because alkyl sulfate does not bind to the active site of PLA2; (d) the E(i)(#) complexes show a significant propensity for aggregation; and (e) PLA2 is not denatured in E(i)(#). The results are interpreted to elaborate the model for atomic level interactions along the i-face: The chain length dependence of the fit parameters suggests that short-range specific anion binding of the headgroup is accompanied by desolvation of the i-face of E(i)(#). We suggest that allosteric activation of PLA2 results from such specific interactions of the amphiplies and the desolvation of the i-face. The significance of these primary interfacial binding events and the coexistence of the E and E(i)(#) aggregates is discussed.
Collapse
Affiliation(s)
- Otto G Berg
- Department of Molecular Evolution, Uppsala University Evolutionary Biology Center, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
29
|
Mounier CM, Ghomashchi F, Lindsay MR, James S, Singer AG, Parton RG, Gelb MH. Arachidonic acid release from mammalian cells transfected with human groups IIA and X secreted phospholipase A(2) occurs predominantly during the secretory process and with the involvement of cytosolic phospholipase A(2)-alpha. J Biol Chem 2004; 279:25024-38. [PMID: 15007070 DOI: 10.1074/jbc.m313019200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.
Collapse
Affiliation(s)
- Carine M Mounier
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Miyabara EH, Tostes RC, Selistre-de-Araújo HS, Aoki MS, Moriscot AS. Role of nitric oxide in myotoxic activity induced by crotoxin in vivo. Toxicon 2004; 43:425-32. [PMID: 15051406 DOI: 10.1016/j.toxicon.2004.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 01/30/2004] [Accepted: 02/11/2004] [Indexed: 11/23/2022]
Abstract
This study was aimed to determine the role of nitric oxide on the skeletal myotoxic activity induced by crotoxin, the major component of the venom of Crotalus durissus terrificus. Rats were treated with N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of nitric oxide synthase or vehicle for 4 days, and on the 5th day received an intramuscular injection of crotoxin into the tibialis anterior muscle. Rats were also treated with aminoguanidine bicarbonate salt or 7-nitroindazole, inhibitors of the inducible and neuronal isoforms of nitric oxide synthase, respectively, for 4 days and on the 5th day injected with crotoxin. All treated groups were sacrificed 24 h after injection of crotoxin. Tibialis anterior and soleus muscles were removed, frozen and stored in liquid nitrogen. Histological sections were stained with toluidine blue and assayed for acid phosphatase. The results show that L-NAME significantly minimizes myonecrosis induced by crotoxin and both aminoguanidine and 7-nitroindazole partially prevented myonecrosis induced by crotoxin. Based on the present results we conclude that nitric oxide is a very important intracellular signaling molecule that mediates crotoxin myotoxic activity.
Collapse
Affiliation(s)
- E H Miyabara
- Department of Histology/Embriology, Institute of Biomedical Sciences, University of São Paulo, Av Lineu Prestes 1524, ICB I, 05508-900 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
31
|
Abstract
Mammalian cells have developed specific pathways for the incorporation, remodeling, and release of arachidonic acid. Acyltransferase and transacylase pathways function to regulate the levels of esterified arachidonic acid in specific phospholipid pools. There are several distinct, differentially regulated phospholipases A2in cells that mediate agonist-induced release of arachidonic acid. These pathways are important in controlling cellular levels of free arachidonic acid. Both arachidonic acid and its oxygenated metabolites are potent bioactive mediators that regulate a myriad of physiological and pathophysiological processes.Key words: phospholipase A2, arachidonic acid, eicosanoid, phospholipid.
Collapse
Affiliation(s)
- Christina C Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA.
| |
Collapse
|
32
|
Abstract
Secretory phospholipase A2 (sPLA2) is a growing family of structurally related, disulfide-rich, low molecular weight, lipolytic enzymes with a His-Asp catalytic dyad. sPLA2s are distributed in a wide variety of vertebrate and invertebrate animals, plants, bacteria, and viruses, and there are 10 catalytically active sPLA2 isozymes in mammals. Although the structural bases for mammalian sPLA2s have been well documented, their physiological functions are still subject to debate. Individual mammalian sPLA2s have distinct enzymatic properties and display distinct tissue expression patterns, suggesting that each enzyme acts on distinct phospholipid membrane moieties in vivo. In this article, we briefly review our latest understanding of the possible physiological functions of sPLA2s, in keeping with their diverse actions on mammalian and nonmammalian cell membranes.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
33
|
Miyabara EH, Tostes RC, Selistre de Araújo HS, Aoki MS, Salvini TF, Moriscot AS. Cyclosporin A attenuates skeletal muscle damage induced by crotoxin in rats. Toxicon 2004; 43:35-42. [PMID: 15037027 DOI: 10.1016/j.toxicon.2003.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 09/01/2003] [Accepted: 10/10/2003] [Indexed: 11/27/2022]
Abstract
This work was undertaken to determine the role of the calcineurin pathway on the necrosis of skeletal muscle induced by crotoxin, the major component of the venom of Crotalus durissus terrificus. Rats were treated with cyclosporin A (CsA), a calcineurin inhibitor, for 5 days and, in the 6th day, received an intramuscular injection of crotoxin into the tibialis anterior muscle. Rats were also treated with diclofenac, a non-steroidal anti-inflammatory drug, for 5 days and, on the 6th day, injected with crotoxin. All treated groups were sacrificed 24 h after injection of crotoxin. Tibialis anterior and soleus muscles were removed, frozen and stored in liquid nitrogen. Histological sections were stained with Toluidine Blue and assayed for acid phosphatase. The results show that CsA, but not diclofenac, is able to significantly minimize myonecrosis promoted by crotoxin. In conclusion, CsA attenuates skeletal muscle necrosis induced by crotoxin, indicating that the calcineurin pathway is essential for crotoxin myotoxic activity. The myoprotective effect of CsA is not related to its anti-inflammatory effect since diclofenac, a cyclo-oxygenase inhibitor, was not able to produce myoprotection.
Collapse
Affiliation(s)
- E H Miyabara
- Departments of Histology/Embriology, Biomedical Sciences Institute, Av Lineu Prestes 1524, ICBI, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Boilard E, Bourgoin SG, Bernatchez C, Surette ME. Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood 2003; 102:2901-9. [PMID: 12829607 DOI: 10.1182/blood-2002-12-3702] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the most studied secreted phospholipases A2 (sPLA2), the group IIA sPLA2, is found at high levels in inflammatory fluids of patients with autoimmune diseases. A characteristic of group IIA sPLA2 is its preference for negatively charged phospholipids, which become exposed on the extracellular leaflet of apoptotic cell membranes. We recently showed that low molecular weight heparan sulfate proteoglycans (HSPGs) and uncharacterized detergent-insoluble binding site(s) contribute to the enhanced binding of human group IIA PLA2 (hGIIA) to apoptotic human T cells. Using matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry we now identify vimentin as the major HSPG-independent binding protein of hGIIA on apoptotic primary T lymphocytes. Vimentin is partially exposed on the surface of apoptotic T cells and binds hGIIA via its rod domain in a calcium-independent manner. Studies with hGIIA mutants showed that specific motifs in the interfacial binding surface are involved in the interaction with vimentin. The sPLA2 inhibitor LY311727, but not heparin, inhibited this interaction. In contrast, heparin but not LY311727 abrogated the binding of hGIIA to cellular HSPGs. Importantly, vimentin does not inhibit the catalytic activity of hGIIA. Altogether, the results show that vimentin, in conjunction with HSPGs, contributes to the enhanced binding of hGIIA to apoptotic T cells.
Collapse
Affiliation(s)
- Eric Boilard
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, QC G1V 4G2, Canada
| | | | | | | |
Collapse
|
35
|
Beers SA, Buckland AG, Giles N, Gelb MH, Wilton DC. Effect of tryptophan insertions on the properties of the human group IIA phospholipase A2: mutagenesis produces an enzyme with characteristics similar to those of the human group V phospholipase A2. Biochemistry 2003; 42:7326-38. [PMID: 12809488 DOI: 10.1021/bi0343222] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An important characteristic of the human group IIA secreted phospholipase A(2) (IIA PLA(2)) is the extremely low activity of this enzyme with phosphatidylcholine (PC) vesicles, mammalian cell membranes, and serum lipoproteins. This characteristic is reflected in the lack of ability of this enzyme to bind productively to zwitterionic interfaces. Part of the molecular basis for this lack of activity is an absence of tryptophan, a residue with a known preference for residing in the interfacial region of zwitterionic phospholipid bilayers. In this paper we have replaced the eight residues that make up the hydrophobic collar on the interfacial binding surface of the enzyme with tryptophan. The catalytic and interfacial binding properties of these mutants have been investigated, particularly those properties associated with binding to and hydrolysis of zwitterionic interfaces. Only the insertion of a tryptophan at position 3 or 31 produces mutants that significantly enhance the activity of the human IIA enzyme against zwitterionic interfaces and intact cell membranes. Importantly, the ability of the enzyme mutants to hydrolyze PC-rich interfaces such as the outer plasma membrane of mammalian cells was paralleled by enhanced interfacial binding to zwitterionic interfaces. The corresponding double tryptophan mutant (V3,31W) displays a specific activity on PC vesicles comparable to that of the human group V sPLA2. This enhanced activity includes the ability to interact with human embryonic kidney HEK293 cells, previously reported for the group V enzyme [Kim, Y. J., Kim, K. P., Rhee, H. J., Das, S., Rafter, J. D., Oh, Y. S., and Cho, W. (2002) J. Biol. Chem. 277, 9358-9365].
Collapse
Affiliation(s)
- Stephen A Beers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, UK
| | | | | | | | | |
Collapse
|
36
|
Boilard E, Bourgoin SG, Bernatchez C, Poubelle PE, Surette ME. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J 2003; 17:1068-80. [PMID: 12773489 DOI: 10.1096/fj.02-0938com] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.
Collapse
Affiliation(s)
- Eric Boilard
- Pilot Therapeutics Inc., 2000 Daniel Island Dr., Suite 440, Charleston, SC 29492, USA.
| | | | | | | | | |
Collapse
|
37
|
Yagami T, Ueda K, Asakura K, Nakazato H, Hata S, Kuroda T, Sakaeda T, Sakaguchi G, Itoh N, Hashimoto Y, Hori Y. Human group IIA secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels in cultured rat cortical neurons. J Neurochem 2003; 85:749-58. [PMID: 12694401 DOI: 10.1046/j.1471-4159.2003.01712.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co. Ltd, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Murakami M, Masuda S, Shimbara S, Bezzine S, Lazdunski M, Lambeau G, Gelb MH, Matsukura S, Kokubu F, Adachi M, Kudo I. Cellular arachidonate-releasing function of novel classes of secretory phospholipase A2s (groups III and XII). J Biol Chem 2003; 278:10657-67. [PMID: 12522102 DOI: 10.1074/jbc.m211325200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report cellular arachidonate (AA) release and prostaglandin (PG) production by novel classes of secretory phospholipase A(2)s (sPLA(2)s), groups III and XII. Human group III sPLA(2) promoted spontaneous AA release, which was augmented by interleukin-1, in HEK293 transfectants. The central sPLA(2) domain alone was sufficient for its in vitro enzymatic activity and for cellular AA release at the plasma membrane, whereas either the unique N- or C-terminal domain was required for heparanoid-dependent action on cells to augment AA release, cyclooxygenase-2 induction, and PG production. Group III sPLA(2) was constitutively expressed in two human cell lines, in which other sPLA(2)s exhibited different stimulus inducibility. Human group XII sPLA(2) had a weak enzymatic activity in vitro and minimally affects cellular AA release and PG production. Cells transfected with group XII sPLA(2) exhibited abnormal morphology, suggesting a unique functional aspect of this enzyme. Based on the present results as well as our current analyses on the group I/II/V/X sPLA(2)s, general properties of cellular actions of a full set of mammalian sPLA(2)s in regulating AA metabolism are discussed.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kwak WJ, Moon TC, Lin CX, Rhyn HG, Jung H, Lee E, Kwon DY, Son KH, Kim HP, Kang SS, Murakami M, Kudo I, Chang HW. Papyriflavonol A from Broussonetia papyrifera inhibits the passive cutaneous anaphylaxis reaction and has a secretory phospholipase A2-inhibitory activity. Biol Pharm Bull 2003; 26:299-302. [PMID: 12612436 DOI: 10.1248/bpb.26.299] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Papyriflavonol A, a new prenylated flavonol isolated from Broussonetia papyrifera, selectively inhibits recombinant human secretory phospholipase A(2)s (sPLA(2)s). Papyriflavonol A was found to inhibit human group IIA and V sPLA(2)s potently and irreversibly in a dose-dependent manner, with respective IC(50) values of 3.9 and 4.5 microM. The inhibitory effects of papyriflavonol A against bovine group IB (IC(50) of 76.9 microM) and the human group X (IC(50) of 225 microM) sPLA(2)s were weaker than those against human group IIA and V sPLA(2)s, and human group IIF sPLA(2) was not inhibited. In addition, papyriflavonol A potently inhibited the stimulus-induced production of leukotriene C(4) with an IC(50) value of approximately 0.64 microM in mouse bone marrow-derived mast cells. In addition, papyriflavonol A significantly reduced IgE-dependent passive cutaneous anaphylaxis in rats. These results indicate that papyriflavonol A provides a basis for novel types of antiinflammatory drugs.
Collapse
|
40
|
Koprivnjak T, Peschel A, Gelb MH, Liang NS, Weiss JP. Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J Biol Chem 2002; 277:47636-44. [PMID: 12359734 DOI: 10.1074/jbc.m205104200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian Group IIA phospholipases A(2) (PLA(2)) potently kill Staphylococcus aureus. Highly cationic properties of these PLA(2) are important for Ca(2+)-independent binding and cell wall penetration, prerequisites for Ca(2+)-dependent degradation of membrane phospholipids and bacterial killing. To further delineate charge properties of the bacterial envelope important in Group IIA PLA(2) action against S. aureus, we examined the effects of mutations that prevent specific modifications of cell wall (dltA) and cell membrane (mprF) polyanions. In comparison to the parent strain, isogenic dltA(-) bacteria are approximately 30-100x more sensitive to PLA(2), whereas mprF(-) bacteria are <3-fold more sensitive. Differences in PLA(2) sensitivity of intact bacteria reflect differences in cell wall, not cell membrane, properties since protoplasts from all three strains are equally sensitive to PLA(2). A diminished positive charge in PLA(2) reduces PLA(2) binding and antibacterial activity. In contrast, diminished cell wall negative charge by substitution of (lipo)teichoic acids with d-alanine reduces antibacterial activity of bound PLA(2), but not initial PLA(2) binding. Therefore, the potent antistaphylococcal activity of Group IIA PLA(2) depends on cationic properties of the enzyme that promote binding to the cell wall, and polyanionic properties of cell wall (lipo)teichoic acids that promote attack of membrane phospholipids by bound PLA(2).
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Microbiology, University of Iowa, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
| | | | | | | | | |
Collapse
|
41
|
Bezzine S, Bollinger JG, Singer AG, Veatch SL, Keller SL, Gelb MH. On the Binding Preference of Human Groups IIA and X Phospholipases A2 for Membranes with Anionic Phospholipids. J Biol Chem 2002; 277:48523-34. [PMID: 12244093 DOI: 10.1074/jbc.m203137200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammals contain 9-10 secreted phospholipases A(2) (sPLA(2)s) that display widely different affinities for membranes, depending on the phospholipid composition. The much higher enzymatic activity of human group X sPLA(2) (hGX) compared with human group IIA sPLA(2) (hGIIA) on phosphatidylcholine (PC)-rich vesicles is due in large part to the higher affinity of the former enzyme for such vesicles; this result also holds when vesicles contain cholesterol and sphingomyelin. The inclusion of anionic phosphatidylserine in PC vesicles dramatically enhances interfacial binding and catalysis of hGIIA but not of hGX. This is the result of the large number of lysine and arginine residues scattered over the entire surface of hGIIA, which cause the enzyme to form a supramolecular aggregate with multiple vesicles. Thus, high affinity binding of hGIIA to anionic vesicles is a complex process and cannot be attributed to a few basic residues on its interfacial binding surface, as is also evident from mutagenesis studies. The main reason hGIIA binds poorly to PC-rich vesicles is that it lacks a tryptophan residue on its interfacial binding surface, a residue that contributes to the high affinity binding of hGX to PC-rich vesicles. Results show that the lag in the onset of hydrolysis of PC vesicles by hGIIA is due in part to the poor affinity of this enzyme for these vesicles. Binding affinity of hGIIA, hGX, and their mutants to PC-rich vesicles is well correlated to the ability of these enzymes to act on the PC-rich outer plasma membrane of mammalian cells.
Collapse
Affiliation(s)
- Sofiane Bezzine
- Department of Chemistry, University of Washington, Seattle 98195, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Fuentes L, Hernández M, Nieto ML, Sánchez Crespo M. Biological effects of group IIA secreted phosholipase A(2). FEBS Lett 2002; 531:7-11. [PMID: 12401194 DOI: 10.1016/s0014-5793(02)03401-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IIA secreted phospholipase A(2) (sPLA(2)-IIA) is the most abundant element in human tissues of a large family of low molecular weight phospholipases A(2), which shows properties different from those displayed by the cytosolic phospholipase A(2) involved in the release of arachidonic acid. sPLA(2)-IIA behaves as a ligand for a group of receptors inside the C-type multilectin mannose receptor family and also interacts with heparan sulfate proteoglycans such as glypican, the dermatan/chondroitin sulfate-rich decorin, and the chondroitin sulfate-rich versican, thus being able to internalize to specific compartments within the cell and producing biological responses. This review provides a short summary of the biological actions of sPLA(2)-IIA on intracellular signaling pathways.
Collapse
Affiliation(s)
- Lucía Fuentes
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Facultad de Medicina, 47005, Valladolid, Spain
| | | | | | | |
Collapse
|
43
|
Canaan S, Nielsen R, Ghomashchi F, Robinson BH, Gelb MH. Unusual mode of binding of human group IIA secreted phospholipase A2 to anionic interfaces as studied by continuous wave and time domain electron paramagnetic resonance spectroscopy. J Biol Chem 2002; 277:30984-90. [PMID: 12039961 DOI: 10.1074/jbc.m203649200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human group IIA phospholipase A(2) (hGIIA) is secreted from a number of cells during inflammation and is known to interact strongly with anionic membranes and to exhibit potent Gram-positive bactericidal activity. This protein contains 23 cationic residues, which are scattered over its entire surface, resulting in a high pI of 9.39. To understand the molecular basis for the selective binding of hGIIA to anionic membranes, 14 single-site, spin-labeled hGIIA proteins were analyzed in the presence and absence of vesicles of anionic phospholipid by time domain and continuous wave electron paramagnetic resonance (EPR) spin relaxant techniques. Surprisingly, for hGIIA bound to anionic vesicles, all of the spin labels were highly protected from water-soluble spin relaxants. Together with light scattering studies, these EPR results suggest the formation of a supramolecular aggregate involving clusters of hGIIA molecules bridging together multiple vesicles. This anomalous mode of binding of hGIIA to anionic phospholipid explains previous data in which charge reversal mutation of a few cationic residues on multiple faces of hGIIA leads to a comparable and modest reduction in affinity of the protein for anionic vesicles. In the presence of mixed micelles composed of 10% anionic phospholipids in Triton X-100 a monodisperse protein-lipid complex is formed. Under these conditions, the EPR methods were used to map the surface of hGIIA that constitutes the interfacial binding site (IBS). The IBS of hGIIA consists of the highly hydrophobic surface that surrounds the opening to the active site slot.
Collapse
Affiliation(s)
- Stéphane Canaan
- Departments of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
Phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 position of membrane glycerophospholipids to liberate arachidonic acid (AA), a precursor of eicosanoids including prostaglandins and leukotrienes. The same reaction also produces lysophosholipids, which represent another class of lipid mediators. So far, at least 19 enzymes that possess PLA2 activity have been identified and cloned in mammals. The secretory PLA2 (sPLA2) family, in which 10 isozymes have been identified, consists of low-molecular weight, Ca2+-requiring secretory enzymes that have been implicated in a number of biological processes, such as modification of eicosanoid generation, inflammation, and host defense. The cytosolic PLA2 (cPLA2) family consists of three enzymes, among which cPLA2alpha has been paid much attention by researchers as an essential component of the initiation of AA metabolism. The activation of cPLA2alpha is tightly regulated by Ca2+ and phosphorylation. The Ca2+-independent PLA2 (iPLA2) family contains two enzymes and may play a major role in phospholipid remodeling. The platelet-activating factor (PAF) acetylhydrolase (PAF-AH) family contains four enzymes that exhibit unique substrate specificity toward PAF and/or oxidized phospholipids. Degradation of these bioactive phospholipids by PAF-AHs may lead to the termination of inflammatory reaction and atherosclerosis.
Collapse
Affiliation(s)
- Ichiro Kudo
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | |
Collapse
|
45
|
Murakami M, Yoshihara K, Shimbara S, Sawada M, Inagaki N, Nagai H, Naito M, Tsuruo T, Moon TC, Chang HW, Kudo I. Group IID heparin-binding secretory phospholipase A(2) is expressed in human colon carcinoma cells and human mast cells and up-regulated in mouse inflammatory tissues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2698-707. [PMID: 12047378 DOI: 10.1046/j.1432-1033.2002.02938.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Group IID secretory phospholipase A(2) (sPLA(2)-IID), a heparin-binding sPLA(2) that is closely related to sPLA(2)-IIA, augments stimulus-induced cellular arachidonate release in a manner similar to sPLA(2)-IIA. Here we identified the residues of sPLA(2)-IID that are responsible for heparanoid binding, are and therefore essential for cellular function. Mutating four cationic residues in the C-terminal portion of sPLA(2)-IID resulted in abolition of its ability to associate with cell surface heparan sulfate and to enhance stimulus-induced delayed arachidonate release, cyclooxygenase-2 induction, and prostaglandin generation in 293 cell transfectants. As compared with several other group II subfamily sPLA(2)s, which were equally active on A23187- and IL-1-primed cellular membranes, sPLA(2)-IID showed apparent preference for A23187-primed membranes. Several human colon carcinoma cell lines expressed sPLA(2)-IID and sPLA(2)-X constitutively, the former of which was negatively regulated by IL-1. sPLA(2)-IID, but not other sPLA(2) isozymes, was expressed in human cord blood-derived mast cells. The expression of sPLA(2)-IID was significantly altered in several tissues of mice with experimental inflammation. These results indicate that sPLA(2)-IID may be involved in inflammation in cell- and tissue-specific manners under particular conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Murakami M, Yoshihara K, Shimbara S, Lambeau G, Gelb MH, Singer AG, Sawada M, Inagaki N, Nagai H, Ishihara M, Ishikawa Y, Ishii T, Kudo I. Cellular arachidonate-releasing function and inflammation-associated expression of group IIF secretory phospholipase A2. J Biol Chem 2002; 277:19145-55. [PMID: 11877435 DOI: 10.1074/jbc.m112385200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Here we report the cellular arachidonate (AA)-releasing function of group IIF secretory phospholipase A(2) (sPLA(2)-IIF), a sPLA(2) enzyme uniquely containing a longer C-terminal extension. sPLA(2)-IIF increased spontaneous and stimulus-dependent release of AA, which was supplied to downstream cyclooxygenases and 5-lipoxygenase for eicosanoid production. sPLA(2)-IIF also enhanced interleukin 1-stimulated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase. AA release by sPLA(2)-IIF was facilitated by oxidative modification of cellular membranes. Cellular actions of sPLA(2)-IIF occurred independently of the heparan sulfate proteoglycan glypican, which acts as a functional adaptor for other group II subfamily sPLA(2)s. Confocal microscopy revealed the location of sPLA(2)-IIF on the plasma membrane. The unique C-terminal extension was crucial for its plasma membrane localization and optimal cellular functions. sPLA(2)-IIF expression was increased in various tissues from lipopolysaccharide-treated mice and in ears of mice with experimental atopic dermatitis. In human rheumatoid arthritic joints, sPLA(2)-IIF was detected in synovial lining cells, capillary endothelial cells, and plasma cells. These results suggest that sPLA(2)-IIF is a potent regulator of AA metabolism and participates in the inflammatory process under certain conditions.
Collapse
Affiliation(s)
- Makoto Murakami
- Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Koduri RS, Grönroos JO, Laine VJO, Le Calvez C, Lambeau G, Nevalainen TJ, Gelb MH. Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2). J Biol Chem 2002; 277:5849-57. [PMID: 11694541 DOI: 10.1074/jbc.m109699200] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacteria is group IIA > X > V > XII > IIE > IB, IIF (for murine sPLA2s: IIA > IID > V > IIE > IIC, X > IB, IIF), and only human group XII displays detectable bactericidal activity against the Gram-negative bacterium E. coli. These studies show that highly basic sPLA2s display potent bactericidal activity with the exception of the ability of the acidic human group X sPLA2 to kill Gram-positive bacteria. By studying the Bacillus subtilis and S. aureus bactericidal potencies of a large panel of human group IIA mutants in which basic residues were mutated to acidic residues, it was found that: 1) the overall positive charge of the sPLA2 is the dominant factor in dictating bactericidal potency; 2) basic residues on the putative membrane binding surface of the sPLA2 are modestly more important for bactericidal activity than are other basic residues; 3) relative bactericidal potency tracks well with the ability of these mutants to degrade phospholipids in the bacterial membrane; and 4) exposure of the bacterial membrane of Gram-positive bacteria by disruption of the cell wall dramatically reduces the negative effect of charge reversal mutagenesis on bactericidal potency.
Collapse
Affiliation(s)
- Rao S Koduri
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Degousee N, Ghomashchi F, Stefanski E, Singer A, Smart BP, Borregaard N, Reithmeier R, Lindsay TF, Lichtenberger C, Reinisch W, Lambeau G, Arm J, Tischfield J, Gelb MH, Rubin BB. Groups IV, V, and X phospholipases A2s in human neutrophils: role in eicosanoid production and gram-negative bacterial phospholipid hydrolysis. J Biol Chem 2002; 277:5061-73. [PMID: 11741884 DOI: 10.1074/jbc.m109083200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial tripeptide formyl-Met-Leu-Phe (fMLP) induces the secretion of enzyme(s) with phospholipase A(2) (PLA(2)) activity from human neutrophils. We show that circulating human neutrophils express groups V and X sPLA(2) (GV and GX sPLA(2)) mRNA and contain GV and GX sPLA(2) proteins, whereas GIB, GIIA, GIID, GIIE, GIIF, GIII, and GXII sPLA(2)s are undetectable. GV sPLA(2) is a component of both azurophilic and specific granules, whereas GX sPLA(2) is confined to azurophilic granules. Exposure to fMLP or opsonized zymosan results in the release of GV but not GX sPLA(2) and most, if not all, of the PLA(2) activity in the extracellular fluid of fMLP-stimulated neutrophils is due to GV sPLA(2). GV sPLA(2) does not contribute to fMLP-stimulated leukotriene B(4) production but may support the anti-bacterial properties of the neutrophil, because 10-100 ng per ml concentrations of this enzyme lead to Gram-negative bacterial membrane phospholipid hydrolysis in the presence of human serum. By use of a recently described and specific inhibitor of cytosolic PLA(2)-alpha (group IV PLA(2)alpha), we show that this enzyme produces virtually all of the arachidonic acid used for the biosynthesis of leukotriene B(4) in fMLP- and opsonized zymosan-stimulated neutrophils, the major eicosanoid produced by these pro-inflammatory cells.
Collapse
Affiliation(s)
- Norbert Degousee
- Division of Vascular Surgery, Max Bell Research Center, Toronto General Hospital, University Health Network, Toronto M5G 2C4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Beers SA, Buckland AG, Koduri RS, Cho W, Gelb MH, Wilton DC. The antibacterial properties of secreted phospholipases A2: a major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall. J Biol Chem 2002; 277:1788-93. [PMID: 11706041 DOI: 10.1074/jbc.m109777200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antibacterial properties of human group IIA secreted phospholipase A(2) against Gram-positive bacteria as a result of membrane hydrolysis have been reported. Using Micrococcus luteus as a model system, we demonstrate the very high specificity of this human enzyme for such hydrolysis compared with the group IB, IIE, IIF, V, and X human secreted phospholipase A(2)s. A unique feature of the group IIA enzyme is its very high pI due to a large excess of cationic residues on the enzyme surface. The importance of this global positive charge in bacterial cell membrane hydrolysis and bacterial killing has been examined using charge reversal mutagenesis. The global positive charge on the enzyme surface allows penetration through the bacterial cell wall, thus allowing access of this enzyme to the cell membrane. Reduced bacterial killing was associated with the loss of positive charge and reduced cell membrane hydrolysis. All mutants were highly effective in hydrolyzing the bacterial membrane of cells in which the cell wall was permeabilized with lysozyme. These same overall characteristics were also seen with suspensions of Staphylococcus aureus and Listeria innocua, where cell membrane hydrolysis and antibacterial activity of human group IIA enzyme was also lost as a result of charge reversal mutagenesis.
Collapse
Affiliation(s)
- Stephen A Beers
- Division of Biochemistry and Molecular Biology, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y. Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 2002; 61:114-26. [PMID: 11752212 DOI: 10.1124/mol.61.1.114] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of group IIA secretory phospholipase A2 (sPLA2-IIA) is documented in the cerebral cortex (CTX) after ischemia, suggesting that sPLA2-IIA is associated with neurodegeneration. However, how sPLA2-IIA is involved in the neurodegeneration remains obscure. To clarify the pathologic role of sPLA2-IIA, we examined its neurotoxicity in rats that had the middle cerebral artery occluded and in primary cultures of cortical neurons. After occlusion, sPLA2 activity was increased in the CTX. An sPLA2 inhibitor, indoxam, significantly ameliorated not only the elevated activity of the sPLA2 but also the neurodegeneration in the CTX. The neuroprotective effect of indoxam was observed even when it was administered after occlusion. In primary cultures, sPLA2-IIA caused marked neuronal cell death. Morphologic and ultrastructural characteristics of neuronal cell death by sPLA2-IIA were apoptotic, as evidenced by condensed chromatin and fragmented DNA. Before apoptosis, sPLA2-IIA liberated arachidonic acid (AA) and generated prostaglandin D2 (PGD2), an AA metabolite, from neurons. Indoxam significantly suppressed not only AA release, but also PGD2 generation. Indoxam prevented neurons from sPLA2-IIA-induced neuronal cell death. The neuroprotective effect of indoxam was observed even when it was administered after sPLA2-IIA treatment. Furthermore, a cyclooxygenase-2 inhibitor significantly prevented neurons from sPLA2-IIA-induced PGD2 generation and neuronal cell death. In conclusion, sPLA2-IIA induces neuronal cell death via apoptosis, which might be associated with AA metabolites, especially PGD2. Furthermore, sPLA2 contributes to neurodegeneration in the ischemic brain, highlighting the therapeutic potential of sPLA2-IIA inhibitors for stroke.
Collapse
Affiliation(s)
- Tatsurou Yagami
- Discovery Research Laboratories, Shionogi and Co., Ltd., Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|