1
|
Deschênes M, Durand M, Olivier M, Pellerin‐Viger A, Rodier F, Chabot B. A defective splicing machinery promotes senescence through MDM4 alternative splicing. Aging Cell 2024; 23:e14301. [PMID: 39118304 PMCID: PMC11561654 DOI: 10.1111/acel.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Defects in the splicing machinery are implicated in various diseases, including cancer. We observed a general reduction in the expression of spliceosome components and splicing regulators in human cell lines undergoing replicative, stress-induced, and telomere uncapping-induced senescence. Supporting the view that defective splicing contributes to senescence, splicing inhibitors herboxidiene, and pladienolide B induced senescence in normal and cancer cell lines. Furthermore, depleting individual spliceosome components also promoted senescence. All senescence types were associated with an alternative splicing transition from the MDM4-FL variant to MDM4-S. The MDM4 splicing shift was reproduced when splicing was inhibited, and spliceosome components were depleted. While decreasing the level of endogenous MDM4 promoted senescence and cell survival independently of the MDM4-S expression status, cell survival was also improved by increasing MDM4-S. Overall, our work establishes that splicing defects modulate the alternative splicing of MDM4 to promote senescence and cell survival.
Collapse
Affiliation(s)
- Mathieu Deschênes
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Mathieu Durand
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| | - Marc‐Alexandre Olivier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Alicia Pellerin‐Viger
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
| | - Francis Rodier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuebecCanada
- Institut du Cancer de MontréalMontréalQuebecCanada
- Department of Radiology, Radio‐Oncology and Nuclear MedicineUniversité de MontréalMontréalQuebecCanada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuebecCanada
| |
Collapse
|
2
|
Patrick N, Markey M. Long-Read MDM4 Sequencing Reveals Aberrant Isoform Landscape in Metastatic Melanomas. Int J Mol Sci 2024; 25:9415. [PMID: 39273363 PMCID: PMC11395681 DOI: 10.3390/ijms25179415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
MDM4 is upregulated in the majority of melanoma cases and has been described as a "key therapeutic target in cutaneous melanoma". Numerous isoforms of MDM4 exist, with few studies examining their specific expression in human tissues. The changes in splicing of MDM4 during human melanomagenesis are critical to p53 activity and represent potential therapeutic targets. Compounding this, studies relying on short reads lose "connectivity" data, so full transcripts are frequently only inferred from the presence of splice junction reads. To address this problem, long-read nanopore sequencing was utilized to read the entire length of transcripts. Here, MDM4 transcripts, both alternative and canonical, are characterized in a pilot cohort of human melanoma specimens. RT-PCR was first used to identify the presence of novel splice junctions in these specimens. RT-qPCR then quantified the expression of major MDM4 isoforms observed during sequencing. The current study both identifies and quantifies MDM4 isoforms present in melanoma tumor samples. In the current study, we observed high expression levels of MDM4-S, MDM4-FL, MDM4-A, and the previously undescribed Ensembl transcript MDM4-209. A novel transcript lacking both exons 6 and 9 is observed and named MDM4-A/S for its resemblance to both MDM4-A and MDM4-S isoforms.
Collapse
Affiliation(s)
| | - Michael Markey
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
3
|
Weinstein HNW, Hu K, Fish L, Chen YA, Allegakoen P, Pham JH, Hui KSF, Chang CH, Tutar M, Benitez-Rivera L, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4. Cell Rep 2024; 43:114622. [PMID: 39146182 DOI: 10.1016/j.celrep.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N W Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Julia H Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Keliana S F Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chih-Hao Chang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Meltem Tutar
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lorena Benitez-Rivera
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Baco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O Giacomelli
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
4
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik S, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. eLife 2024; 12:RP90683. [PMID: 38682900 PMCID: PMC11057873 DOI: 10.7554/elife.90683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the 'WIN' site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory Caleb Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - Kristie L Rose
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Andrea C Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Shelly L Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Brian C Grieb
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Brianna N Smith
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Macey J Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Elizabeth M Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| | - Stephen Fesik
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Pharmacology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical CenterNashvilleUnited States
- Center for Quantitative Sciences, Vanderbilt University Medical CenterNashvilleUnited States
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biochemistry, Vanderbilt University School of MedicineNashvilleUnited States
| |
Collapse
|
5
|
Ueda K, Ikeda K. Cellular carcinogenesis in preleukemic conditions:drivers and defenses. Fukushima J Med Sci 2024; 70:11-24. [PMID: 37952978 PMCID: PMC10867434 DOI: 10.5387/fms.2023-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from preleukemic conditions. We have investigated the pathogenesis of typical preleukemia, myeloproliferative neoplasms, and clonal hematopoiesis. Hematopoietic stem cells in both preleukemic conditions harbor recurrent driver mutations; additional mutation provokes further malignant transformation, leading to AML onset. Although genetic alterations are defined as the main cause of malignant transformation, non-genetic factors are also involved in disease progression. In this review, we focus on a non-histone chromatin protein, high mobility group AT-hook2 (HMGA2), and a physiological p53 inhibitor, murine double minute X (MDMX). HMGA2 is mainly overexpressed by dysregulation of microRNAs or mutations in polycomb components, and provokes expansion of preleukemic clones through stem cell signature disruption. MDMX is overexpressed by altered splicing balance in myeloid malignancies. MDMX induces leukemic transformation from preleukemia via suppression of p53 and p53-independent activation of WNT/β-catenin signaling. We also discuss how these non-genetic factors can be targeted for leukemia prevention therapy.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| |
Collapse
|
6
|
Luo X, Zhang Z, Li S, Wang Y, Sun M, Hu D, Jiang J, Wang Y, Ji X, Chen X, Zhang B, Liang H, Li Y, Liu B, Xu X, Wang S, Xu S, Nie Y, Wu K, Fan D, Liu D, Huang W, Xia L. SRSF10 facilitates HCC growth and metastasis by suppressing CD8 +T cell infiltration and targeting SRSF10 enhances anti-PD-L1 therapy. Int Immunopharmacol 2024; 127:111376. [PMID: 38113691 DOI: 10.1016/j.intimp.2023.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND AND AIMS RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.
Collapse
Affiliation(s)
- Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Xiaoping Chen
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Bixiang Zhang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Huifang Liang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Shengjun Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China; State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi' an 710032, China.
| |
Collapse
|
7
|
Howard GC, Wang J, Rose KL, Jones C, Patel P, Tsui T, Florian AC, Vlach L, Lorey SL, Grieb BC, Smith BN, Slota MJ, Reynolds EM, Goswami S, Savona MR, Mason FM, Lee T, Fesik SW, Liu Q, Tansey WP. Ribosome subunit attrition and activation of the p53-MDM4 axis dominate the response of MLL-rearranged cancer cells to WDR5 WIN site inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550648. [PMID: 37546802 PMCID: PMC10402127 DOI: 10.1101/2023.07.26.550648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the "WIN" site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small molecule WIN site inhibitors, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anti-cancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anti-cancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.
Collapse
Affiliation(s)
- Gregory C. Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Kristie Lindsey Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Camden Jones
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tina Tsui
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea C. Florian
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Biology, Belmont University, Nashville, TN 37212, USA
| | - Logan Vlach
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shelly L. Lorey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Brian C. Grieb
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brianna N. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Macey J. Slota
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Current address: Department of Urology, University of California San Francisco, San Francisco CA 94143, USA
| | - Elizabeth M. Reynolds
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Soumita Goswami
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michael R. Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Frank M. Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taekyu Lee
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen W. Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William P. Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
8
|
Weinstein HN, Hu K, Fish L, Chen YA, Allegakoen P, Hui KSF, Pham JH, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a key splicing regulator of MDM4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570873. [PMID: 38106152 PMCID: PMC10723389 DOI: 10.1101/2023.12.10.570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microsatellite instability high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion, cell proliferation, and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N.W. Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Keliana S. F. Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Julia H. Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| |
Collapse
|
9
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
10
|
MDM4: What do we know about the association between its polymorphisms and cancer? MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:61. [PMID: 36566308 DOI: 10.1007/s12032-022-01929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
MDM4 is an important p53-negative regulator, consequently, it is involved in cell proliferation, DNA repair, and apoptosis regulation. MDM4 overexpression and amplification are described to lead to cancer formation, metastasis, and poor disease prognosis. Several MDM4 SNPs are in non-coding regions, and some affect the MDM4 regulation by disrupting the micro RNA binding site in 3'UTR (untranslated region). Here, we gathered several association studies with different MDM4 SNPs and populations to understand the relationship between its SNPs and solid tumor risk. Many studies failed to replicate their results regarding different populations, cancer types, and risk genotypes, leading to conflicting conclusions. We suggested that distinct haplotype patterns in different populations might affect the association between MDM4 SNPs and cancer risk. Thus, we propose to investigate some linkage SNPs in specific haplotypes to provide informative MDM4 markers for association studies with cancer.
Collapse
|
11
|
Alatawi A, Kho S, Markey MP. MDM4 Isoform Expression in Melanoma Supports an Oncogenic Role for MDM4-A. J Skin Cancer 2021; 2021:3087579. [PMID: 34697572 PMCID: PMC8541850 DOI: 10.1155/2021/3087579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The p53 tumor suppressor integrates upstream signals such as DNA damage and active oncogenes to initiate cell cycle arrest or apoptosis. This response is critical to halting inappropriate growth signals. As such, p53 activity is lost in cancer. In melanoma, however, the p53 gene is intact in a reported 94% of human cases. Rather than direct mutation, p53 is held inactive through interaction with inhibitory proteins. Here, we examine the expression of the two primary inhibitors of p53, MDM2 and MDM4, in genomic databases and biopsy specimens. We find that MDM4 is frequently overexpressed. Moreover, changes in splicing of MDM4 occur frequently and early in melanomagenesis. These changes in splicing must be considered in the design of therapeutic inhibitors of the MDM2/4 proteins for melanoma.
Collapse
Affiliation(s)
- Abdullah Alatawi
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | - SoonJye Kho
- Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USA
| | - Michael P. Markey
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
12
|
The spliceosome factor sart3 regulates hematopoietic stem/progenitor cell development in zebrafish through the p53 pathway. Cell Death Dis 2021; 12:906. [PMID: 34611130 PMCID: PMC8492694 DOI: 10.1038/s41419-021-04215-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Hematopoietic stem cells (HSCs) possess the potential for self-renew and the capacity, throughout life, to differentiate into all blood cell lineages. Yet, the mechanistic basis for HSC development remains largely unknown. In this study, we characterized a zebrafish smu471 mutant with hematopoietic stem/progenitor cell (HSPC) defects and found that sart3 was the causative gene. RNA expression profiling of the sart3smu471 mutant revealed spliceosome and p53 signaling pathway to be the most significantly enriched pathways in the sart3smu471 mutant. Knock down of p53 rescued HSPC development in the sart3smu471 mutant. Interestingly, the p53 inhibitor, mdm4, had undergone an alternative splicing event in the mutant. Restoration of mdm4 partially rescued HSPC deficiency. Thus, our data suggest that HSPC proliferation and maintenance require sart3 to ensure the correct splicing and expression of mdm4, so that the p53 pathway is properly inhibited to prevent definitive hematopoiesis failure. This study expands our knowledge of the regulatory mechanisms that impact HSPC development and sheds light on the mechanistic basis and potential therapeutic use of sart3 in spliceosome-mdm4-p53 related disorders.
Collapse
|
13
|
Li J, Tong H, Li D, Jiang Q, Zhang Y, Tang W, Jin D, Chen S, Qin X, Zhang S, Xue R. The long non-coding RNA DKFZp434J0226 regulates the alternative splicing process through phosphorylation of SF3B6 in PDAC. Mol Med 2021; 27:95. [PMID: 34470609 PMCID: PMC8411526 DOI: 10.1186/s10020-021-00347-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs), a type of pervasive genes that regulates various biological processes, are differentially expressed in different types of malignant tumors. The role of lncRNAs in the carcinogenesis of pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, we investigated the role of the lncRNA DKFZp434J0226 in PDAC. METHODS Aberrantly expressed mRNAs and lncRNAs among six PDAC and paired non-tumorous tissues were profiled using microarray analysis. Quantitative real-time polymerase chain reaction was used to evaluate DKFZp434J0226 expression in PDAC tissues. CCK-8 assay, wound-healing assay, soft agar colony formation assay, and transwell assay were performed to assess the invasiveness and proliferation of PDAC cells. Furthermore, RNA pull-down, immunofluorescence, RNA immunoprecipitation, and western blotting assays were performed to investigate the association between DKFZp434J0226 and SF3B6. Tumor xenografts in mice were used to test for tumor formation in vivo. RESULTS In our study, 222 mRNAs and 128 lncRNAs were aberrantly expressed (≥ twofold change). Of these, 66 mRNAs and 53 lncRNAs were upregulated, while 75 lncRNAs and 156 mRNAs were downregulated. KEGG pathway analysis and the Gene ontology category indicated that these genes were associated with the regulation of mRNA alternative splicing and metabolic balance. Clinical analyses revealed that overexpression of DKFZp434J0226 was associated with worse tumor grading, frequent perineural invasion, advanced tumor-node-metastasis stage, and decreased overall survival and time to progression. Functional assays demonstrated that DKFZp434J0226 promoted PDAC cell migration, invasion, and growth in vitro and accelerated tumor proliferation in vivo. Mechanistically, DKFZp434J0226 interacted with the splicing factor SF3B6 and promoted its phosphorylation, which further regulated the alternative splicing of pre-mRNA. CONCLUSIONS This study indicates that DKFZp434J0226 regulates alternative splicing through phosphorylation of SF3B6 in PDAC and leads to an oncogenic phenotype in PDAC.
Collapse
Affiliation(s)
- Jinglei Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Dongping Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Qiuyu Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - Dayong Jin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 130 DongAn Road, Shanghai, 200032, China
| | - Xinyu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 FengLin Road, Shanghai, 200032, China.
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, 130 DongAn Road, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, 180 FengLin Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Deletion of RBMX RGG/RG motif in Shashi-XLID syndrome leads to aberrant p53 activation and neuronal differentiation defects. Cell Rep 2021; 36:109337. [PMID: 34260915 DOI: 10.1016/j.celrep.2021.109337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023] Open
Abstract
RNA-binding proteins play important roles in X-linked intellectual disability (XLID). In this study, we investigate the contribution of the XLID-associated RBMX in neuronal differentiation. We show that RBMX-depleted cells exhibit aberrant activation of the p53 pathway. Moreover, we identify that the RBMX RGG/RG motif is methylated by protein arginine methyltransferase 5 (PRMT5), and this regulates assembly with the SRSF1 splicing factor into higher-order complexes. Depletion of RBMX or disruption of the RBMX/SRSF1 complex in PRMT5-depleted cells reduces SRSF1 binding to the MDM4 precursor (pre-)mRNA, leading to exon 6 exclusion and lower MDM4 protein levels. Transcriptomic analysis of isogenic Shashi-XLID human-induced pluripotent stem cells (hiPSCs) generated using CRISPR-Cas9 reveals a dysregulation of MDM4 splicing and aberrant p53 upregulation. Shashi-XLID neural progenitor cells (NPCs) display differentiation and morphological abnormalities accompanied with excessive apoptosis. Our findings identify RBMX as a regulator of SRSF1 and the p53 pathway, suggesting that the loss of function of the RBMX RGG/RG motif is the cause of Shashi-XLID syndrome.
Collapse
|
15
|
Lee K, Zheng Q, Lu Q, Xu F, Qin G, Zhai Q, Hong R, Chen M, Deng W, Wang S. CPSF4 promotes triple negative breast cancer metastasis by upregulating MDM4. Signal Transduct Target Ther 2021; 6:184. [PMID: 34006850 PMCID: PMC8131696 DOI: 10.1038/s41392-021-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/26/2021] [Accepted: 02/27/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kaping Lee
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiufan Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianyi Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Fei Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ge Qin
- The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qinglian Zhai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ruoxi Hong
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
16
|
Zhou Z, Gong Q, Lin Z, Wang Y, Li M, Wang L, Ding H, Li P. Emerging Roles of SRSF3 as a Therapeutic Target for Cancer. Front Oncol 2020; 10:577636. [PMID: 33072610 PMCID: PMC7544984 DOI: 10.3389/fonc.2020.577636] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Qi Gong
- Departments of Pediatrics, Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Zhijuan Lin
- Key Laboratory for Immunology in Universities of Shandong Province, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Mengkun Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hongfei Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Front Oncol 2020; 10:1389. [PMID: 32850448 PMCID: PMC7419686 DOI: 10.3389/fonc.2020.01389] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
The oncogene MDMX, also known as MDM4 is a critical negative regulator of the tumor suppressor p53 and has been implicated in the initiation and progression of human cancers. Increasing evidence indicates that MDMX is often amplified and highly expressed in human cancers, promotes cancer cell growth, and inhibits apoptosis by dampening p53-mediated transcription of its target genes. Inhibiting MDMX-p53 interaction has been found to be effective for restoring the tumor suppressor activity of p53. Therefore, MDMX is becoming one of the most promising molecular targets for developing anticancer therapeutics. In the present review, we mainly focus on the current MDMX-targeting strategies and known MDMX inhibitors, as well as their mechanisms of action and in vitro and in vivo anticancer activities. We also propose other potential targeting strategies for developing more specific and effective MDMX inhibitors for cancer therapy.
Collapse
Affiliation(s)
- De-Hua Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Yuan Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shaowei Mo
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Yuan
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
18
|
Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569:503-508. [PMID: 31068700 DOI: 10.1038/s41586-019-1186-3] [Citation(s) in RCA: 1938] [Impact Index Per Article: 323.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.
Collapse
|
19
|
Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. The long and the short of it: the MDM4 tail so far. J Mol Cell Biol 2019; 11:231-244. [PMID: 30689920 PMCID: PMC6478121 DOI: 10.1093/jmcb/mjz007] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
The mouse double minute 4 (MDM4) is emerging from the shadow of its more famous relative MDM2 and is starting to steal the limelight, largely due to its therapeutic possibilities. MDM4 is a vital regulator of the tumor suppressor p53. It restricts p53 transcriptional activity and also, at least in development, facilitates MDM2's E3 ligase activity toward p53. These functions of MDM4 are critical for normal cell function and a proper response to stress. Their importance for proper cell maintenance and proliferation identifies them as a risk for deregulation associated with the uncontrolled growth of cancer. MDM4 tails are vital for its function, where its N-terminus transactivation domain engages p53 and its C-terminus RING domain binds to MDM2. In this review, we highlight recently identified cellular functions of MDM4 and survey emerging therapies directed to correcting its dysregulation in disease.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Reshma Vijayakumaran
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
BCAS2 is essential for hematopoietic stem and progenitor cell maintenance during zebrafish embryogenesis. Blood 2018; 133:805-815. [PMID: 30482793 DOI: 10.1182/blood-2018-09-876599] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) originate from the hemogenic endothelium via the endothelial-to-hematopoietic transition, are self-renewing, and replenish all lineages of blood cells throughout life. BCAS2 (breast carcinoma amplified sequence 2) is a component of the spliceosome and is involved in multiple biological processes. However, its role in hematopoiesis remains unknown. We established a bcas2 knockout zebrafish model by using transcription activator-like effector nucleases. The bcas2 -/- zebrafish showed severe impairment of HSPCs and their derivatives during definitive hematopoiesis. We also observed significant signs of HSPC apoptosis in the caudal hematopoietic tissue of bcas2 -/- zebrafish, which may be rescued by suppression of p53. Furthermore, we show that the bcas2 deletion induces an abnormal alternative splicing of Mdm4 that predisposes cells to undergo p53-mediated apoptosis, which provides a mechanistic explanation of the deficiency observed in HSPCs. Our findings revealed a novel and vital role for BCAS2 during HSPC maintenance in zebrafish.
Collapse
|
21
|
Pant V, Larsson CA, Aryal N, Xiong S, You MJ, Quintas-Cardama A, Lozano G. Tumorigenesis promotes Mdm4-S overexpression. Oncotarget 2018; 8:25837-25847. [PMID: 28460439 PMCID: PMC5432220 DOI: 10.18632/oncotarget.15552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022] Open
Abstract
Disruption of the p53 tumor suppressor pathway is a primary cause of tumorigenesis. In addition to mutation of the p53 gene itself, overexpression of major negative regulators of p53, MDM2 and MDM4, also act as drivers for tumor development. Recent studies suggest that expression of splice variants of Mdm2 and Mdm4 may be similarly involved in tumor development. In particular, multiple studies show that expression of a splice variant of MDM4, MDM4-S correlates with tumor aggressiveness and can be used as a prognostic marker in different tumor types. However, in the absence of prospective studies, it is not clear whether expression of MDM4-S in itself is oncogenic or is simply an outcome of tumorigenesis. Here we have examined the role of Mdm4-S in tumor development in a transgenic mouse model. Our results suggest that splicing of Mdm4 does not promote tumor development and does not cooperate with other oncogenic insults to alter tumor latency or aggressiveness. We conclude that Mdm4-S overexpression is a consequence of splicing defects in tumor cells rather than a cause of tumor evolution.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Connie A Larsson
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Neeraj Aryal
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Shunbin Xiong
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - M James You
- Department of Hematopathology, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | | | - Guillermina Lozano
- Department of Genetics, M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
22
|
Tackmann NR, Zhang Y. Mouse modelling of the MDM2/MDMX-p53 signalling axis. J Mol Cell Biol 2017; 9:34-44. [PMID: 28096294 PMCID: PMC5907827 DOI: 10.1093/jmcb/mjx006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 01/10/2023] Open
Abstract
It is evident that p53 activity is critical for tumour prevention and stress response through its transcriptional activation of genes affecting cellular senescence, apoptosis, cellular metabolism, and DNA repair. The regulation of p53 is highly complex, and MDM2 and MDMX are thought to be critical for deciding the fate of p53, both through inhibitory binding and post-translational modification. Many mouse models have been generated to study the regulation of p53 in vivo, and they have altered our interpretations of how p53 is regulated by MDM2 and MDMX. Although MDM2 is absolutely required for p53 regulation, certain functions are dispensable under unstressed conditions, including the ability of MDM2 to degrade p53. MDMX, on the other hand, may only be required in select situations, like embryogenesis. These models have also clarified how cellular stress signals modify the p53-inhibiting activities of MDM2 and MDMX in vivo. It is clear that more work will need to be performed to further understand the contexts for each of these signals and the requirements of various MDM2 and MDMX functions. Here, we will discuss what we have learned from mouse modelling of MDM2 and MDMX and underscore the ways in which these models could inform future therapies.
Collapse
Affiliation(s)
- Nicole R Tackmann
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Yanping Zhang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou 221002, China
| |
Collapse
|
23
|
Abstract
MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed.
Collapse
|
24
|
Han X, Medeiros LJ, Zhang YH, You MJ, Andreeff M, Konopleva M, Bueso-Ramos CE. High Expression of Human Homologue of Murine Double Minute 4 and the Short Splicing Variant, HDM4-S, in Bone Marrow in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2016; 16 Suppl:S30-8. [PMID: 27155969 DOI: 10.1016/j.clml.2016.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
The human homologue of murine double minute 2 (HDM2) and HDM4 negatively regulate p53. HDM4 has not been assessed in acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). We examined the expression of HDM4 and the short splicing variant, HDM4-S, in bone marrow samples obtained from 85 and 23 patients with AML and MDS, respectively, and 18 negative tumor staging bone marrow samples (used as the control). Immunohistochemical staining showed that HDM4 was overexpressed in 78 AML cases (92%) and 12 MDS cases (52%) compared with 1 stressed bone marrow sample (6%). Quantitative reverse transcriptase-polymerase chain reaction analysis of 8 AML and 11 low-grade (LG)-MDS cases confirmed that HDM4 and HDM4-S mRNA expression were also elevated in all AML cases. HDM4 and HDM4-S mRNA expression was elevated in 3 (27%) and 10 (91%) LG-MDS cases, respectively. HDM4 and HDM4-S mRNA levels were higher in those with AML than in those with LG-MDS. In leukemia cell lines, HEL and U937 predominantly expressed HDM4-S. In contrast, NALM6 expressed HDM4 and HDM4-S. Downregulation of HDM4 expression by treatment with small interfering RNA in NALM6 and HEL cells induced p21 expression but not increased apoptotic activity. Our results indicate that HDM4 is a potential therapeutic target in patients with AML or MDS.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Alternative Splicing
- Bone Marrow/pathology
- Bone Marrow Cells/metabolism
- Cell Cycle Proteins
- Cell Line, Tumor
- Child
- Child, Preschool
- Chromosome Aberrations
- Female
- Gene Expression
- Gene Expression Regulation, Leukemic
- Genes, ras
- Humans
- Immunohistochemistry
- Infant
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- Young Adult
- fms-Like Tyrosine Kinase 3/genetics
Collapse
Affiliation(s)
- Xin Han
- Department of Laboratory Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Yu Helen Zhang
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - M James You
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Michael Andreeff
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX.
| |
Collapse
|
25
|
Marine JC, Jochemsen AG. MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harb Perspect Med 2016; 6:6/7/a026237. [PMID: 27371671 DOI: 10.1101/cshperspect.a026237] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The MDMX protein was identified as a p53-interacting protein with a strong similarity to MDM2. Like Mdm2, Mdmx expression is essential for curbing p53 activity during embryonic development, indicating nonredundant functions of Mdmx and Mdm2. There is now a large body of evidence indicating that cancers frequently up-regulate MDMX expression as a means to dampen p53 tumor-suppressor function. Importantly, MDMX also shows p53-independent oncogenic functions. These data make MDMX an attractive therapeutic target for cancer therapy. Here, we summarize the mechanisms used by cancer cells to increase MDMX expression and promising pharmacological strategies to target MDMX in cancer-in particular, the recent findings that antisense oligonucleotides (ASOs) can be used to efficiently modulate MDMX messenger RNA (mRNA) splicing.
Collapse
Affiliation(s)
- Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium Laboratory for Molecular Cancer Biology, Center of Human Genetics, KULeuven, 3000 Leuven, Belgium
| | - Aart G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| |
Collapse
|
26
|
Karni-Schmidt O, Lokshin M, Prives C. The Roles of MDM2 and MDMX in Cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:617-44. [PMID: 27022975 DOI: 10.1146/annurev-pathol-012414-040349] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
For more than 25 years, MDM2 and its homolog MDMX (also known as MDM4) have been shown to exert oncogenic activity. These two proteins are best understood as negative regulators of the p53 tumor suppressor, although they may have additional p53-independent roles. Understanding the dysregulation of MDM2 and MDMX in human cancers and how they function either together or separately in tumorigenesis may improve methods of diagnosis and for assessing prognosis. Targeting the proteins themselves, or their regulators, may be a promising therapeutic approach to treating some forms of cancer.
Collapse
Affiliation(s)
- Orit Karni-Schmidt
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Maria Lokshin
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| |
Collapse
|
27
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2016. [PMID: 26595814 DOI: 10.1172/jci82534.mdm4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
28
|
Tournillon AS, López I, Malbert-Colas L, Naski N, Olivares-Illana V, Fåhraeus R. The alternative translated MDMX(p60) isoform regulates MDM2 activity. Cell Cycle 2015; 14:449-58. [PMID: 25659040 PMCID: PMC4615104 DOI: 10.4161/15384101.2014.977081] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Isoforms derived from alternative splicing, mRNA translation initiation or promoter usage extend the functional repertoire of the p53, p63 and p73 genes family and of their regulators MDM2 and MDMX. Here we show cap-independent translation of an N-terminal truncated isoform of hMDMX, hMDMXp60, which is initiated at the 7th AUG codon downstream of the initiation site for full length hMDMXFL at position +384. hMDMXp60 lacks the p53 binding motif but retains the RING domain and interacts with hMDM2 and hMDMXFL. hMDMXp60 shows higher affinity for hMDM2, as compared to hMDMXFL. In vitro data reveal a positive cooperative interaction between hMDMXp60 and hMDM2 and in cellulo data show that low levels of hMDMXp60 promote degradation of hMDM2 whereas higher levels stabilize hMDM2 and prevent hMDM2-mediated degradation of hMDMXFL. These results describe a novel alternatively translated hMDMX isoform that exhibits unique regulatory activity toward hMDM2 autoubiquitination. The data illustrate how the N-terminus of hMDMX regulates its C-terminal RING domain and the hMDM2 activity.
Collapse
Affiliation(s)
- Anne-Sophie Tournillon
- a Cibles Thérapeutiques, Equipe Labellisée la Ligue Contre le Cancer, Institut National de la Santé et de la Recherche Médicale UMR1162; Institut de Génétique Moléculaire , Université Paris 7 ; Hôpital St. Louis; Paris , France
| | | | | | | | | | | |
Collapse
|
29
|
Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DHP, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E. Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 2015; 126:68-84. [PMID: 26595814 DOI: 10.1172/jci82534] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient-derived xenograft (PDX) mouse models, antisense oligonucleotide-mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target.
Collapse
|
30
|
Sand LGL, Jochemsen AG, Beletkaia E, Schmidt T, Hogendoorn PCW, Szuhai K. Novel splice variants of CXCR4 identified by transcriptome sequencing. Biochem Biophys Res Commun 2015; 466:89-94. [PMID: 26321665 DOI: 10.1016/j.bbrc.2015.08.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Chemokine receptor CXCR4 is involved in tumor growth, angiogenesis and metastasis. Its function is regulated in many ways and one of them is alternative splicing. We identified two novel coding splice variants (CXCR4-3 and CXCR4-4) of CXCR4 in Ewing sarcoma (EWS) cell lines by whole transcriptome sequencing and validated these with reverse transcriptase- PCR and Sanger sequencing. The novel splice variants were expressed at RNA level in Ewing sarcoma samples and in other tumor cell lines and placenta, but not in lung. Due to inclusion of an additional exon the new isoforms have a 70 and 33 amino acid elongation of the N-terminal end of CXCR4. For validation at protein and functional level, the identified isoforms and normal CXCR4 were cloned into an EYFP tagged vector and ectopically expressed in HEK293T cell line and EWS cell line A673. Of the novel isoforms CXCR4-3 showed cell membrane localization and a functional response after addition of CXCR4 ligand CXCL12a. CXCR4-4 showed strong cytoplasmic accumulation and no response to ligand treatment. The role of the newly discovered isoforms in CXCR4 signaling is likely to be limited. Our data stresses the importance of functional validation of newly identified isoforms.
Collapse
Affiliation(s)
- L G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - A G Jochemsen
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Beletkaia
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - T Schmidt
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - P C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - K Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
31
|
Li L, Tan Y, Chen X, Xu Z, Yang S, Ren F, Guo H, Wang X, Chen Y, Li G, Wang H. MDM4 overexpressed in acute myeloid leukemia patients with complex karyotype and wild-type TP53. PLoS One 2014; 9:e113088. [PMID: 25405759 PMCID: PMC4236138 DOI: 10.1371/journal.pone.0113088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia patients with complex karyotype (CK-AML) account for approximately 10–15% of adult AML cases, and are often associated with a poor prognosis. Except for about 70% of CK-AML patients with biallelic inactivation of TP53, the leukemogenic mechanism in the nearly 30% of CK-AML patients with wild-type TP53 has remained elusive. In this study, 15 cases with complex karyotype and wild-type TP53 were screened out of 140 de novo AML patients and the expression levels of MDM4, a main negative regulator of p53-signaling pathway, were detected. We ruled out mutations in genes associated with a poor prognosis of CK-AML, including RUNX1 or FLT3-ITD. The mRNA expression levels of the full-length of MDM4 (MDM4FL) and short isoform MDM4 (MDM4S) were elevated in CK-AML relative to normal karyotype AML (NK-AML) patients. We also explored the impact of MDM4 overexpression on the cell cycle, cell proliferation and the spindle checkpoint of HepG2 cells, which is a human cancer cell line with normal MDM4 and TP53 expression. The mitotic index and the expression of p21, BubR1 and Securin were all reduced following Nocodazole treatment. Moreover, karyotype analysis showed that MDM4 overexpression might lead to aneuploidy or polyploidy. These results suggest that MDM4 overexpression is related to CK-AML with wild-type TP53 and might play a pathogenic role by inhibiting p53-signal pathway.
Collapse
Affiliation(s)
- Li Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiuhua Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Zhifang Xu
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Siyao Yang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Fanggang Ren
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Haixiu Guo
- Department of biology, School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Xiaojuan Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yi Chen
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Guoxia Li
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Jacob AG, Singh RK, Comiskey DF, Rouhier MF, Mohammad F, Bebee TW, Chandler DS. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS One 2014; 9:e104444. [PMID: 25105592 PMCID: PMC4126728 DOI: 10.1371/journal.pone.0104444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023] Open
Abstract
MDM2 and MDMX are the chief negative regulators of the tumor-suppressor protein p53 and are essential for maintaining homeostasis within the cell. In response to genotoxic stress and also in several cancer types, MDM2 and MDMX are alternatively spliced. The splice variants MDM2-ALT1 and MDMX-ALT2 lack the p53-binding domain and are incapable of negatively regulating p53. However, they retain the RING domain that facilitates dimerization of the full-length MDM proteins. Concordantly, MDM2-ALT1 has been shown to lead to the stabilization of p53 through its interaction with and inactivation of full-length MDM2. The impact of MDM2-ALT1 expression on the p53 pathway and the nature of its interaction with MDMX remain unclear. Also, the role of the architecturally similar MDMX-ALT2 and its influence of the MDM2-MDMX-p53 axis are yet to be elucidated. We show here that MDM2-ALT1 is capable of binding full-length MDMX as well as full-length MDM2. Additionally, we demonstrate that MDMX-ALT2 is able to dimerize with both full-length MDMX and MDM2 and that the expression of MDM2-ALT1 and MDMX-ALT2 leads to the upregulation of p53 protein, and also of its downstream target p21. Moreover, MDM2-ALT1 expression causes cell cycle arrest in the G1 phase in a p53 and p21 dependent manner, which is consistent with the increased levels of p21. Finally we present evidence that MDM2-ALT1 and MDMX-ALT2 expression can activate subtly distinct subsets of p53-transcriptional targets implying that these splice variants can modulate the p53 tumor suppressor pathway in unique ways. In summary, our study shows that the stress-inducible alternative splice forms MDM2-ALT1 and MDMX-ALT2 are important modifiers of the p53 pathway and present a potential mechanism to tailor the p53-mediated cellular stress response.
Collapse
Affiliation(s)
- Aishwarya G. Jacob
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Ravi K. Singh
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel F. Comiskey
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew F. Rouhier
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Fuad Mohammad
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas W. Bebee
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
| | - Dawn S. Chandler
- From the Center for Childhood Cancer at the Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America
- The Department of Pediatrics, and Molecular, Cellular and Developmental Biology (MCDB) program, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bardot B, Bouarich-Bourimi R, Leemput J, Lejour V, Hamon A, Plancke L, Jochemsen AG, Simeonova I, Fang M, Toledo F. Mice engineered for an obligatory Mdm4 exon skipping express higher levels of the Mdm4-S isoform but exhibit increased p53 activity. Oncogene 2014; 34:2943-8. [PMID: 25088193 DOI: 10.1038/onc.2014.230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/15/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022]
Abstract
Mdm4, a protein related to the ubiquitin-ligase Mdm2, is an essential inhibitor of tumor suppressor protein p53. In both human and mouse cells, the Mdm4 gene encodes two major transcripts: one encodes the full-length oncoprotein (designated below as Mdm4-FL), whereas the other, resulting from a variant splicing that skips exon 6, encodes the shorter isoform Mdm4-S. Importantly, increased Mdm4-S mRNA levels were observed in several human cancers, and correlated with poor survival. However, the role of Mdm4-S in cancer progression remains controversial, because the Mdm4-S protein appeared to be a potent p53 inhibitor when overexpressed, but the splice variant also leads to a decrease in Mdm4-FL expression. To unambiguously determine the physiological impact of the Mdm4-S splice variant, we generated a mouse model with a targeted deletion of the Mdm4 exon 6, thereby creating an obligatory exon skipping. The mutant allele (Mdm4(ΔE6)) prevented the expression of Mdm4-FL, but also led to increased Mdm4-S mRNA levels. Mice homozygous for this allele died during embryonic development, but were rescued by a concomitant p53 deficiency. Furthermore in a hypomorphic p53(ΔP/ΔP) context, the Mdm4(ΔE6) allele led to p53 activation and delayed the growth of oncogene-induced tumors. We next determined the effect of Mdm4(+/ΔE6) heterozygosity in a hypermorphic p53(+/Δ31) genetic background, recently shown to be extremely sensitive to Mdm4 activity. Mdm4(+/ΔE6) p53(+/Δ31) pups were born, but suffered from aplastic anemia and died before weaning, again indicating an increased p53 activity. Our results demonstrate that the main effect of a skipping of Mdm4 exon 6 is not the synthesis of the Mdm4-S protein, but rather a decrease in Mdm4-FL expression. These and other data suggest that increased Mdm4-S mRNA levels might correlate with more aggressive cancers without encoding significant amounts of a potential oncoprotein. Hypotheses that may account for this apparent paradox are discussed.
Collapse
Affiliation(s)
- B Bardot
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - R Bouarich-Bourimi
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - J Leemput
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - V Lejour
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A Hamon
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - L Plancke
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - A G Jochemsen
- Leiden University Medical Center, Leiden, The Netherlands
| | - I Simeonova
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - M Fang
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| | - F Toledo
- 1] Institut Curie, Centre de recherche, Genetics of Tumor Suppression (Equipe Labellisée Ligue 2014), Paris, France [2] UPMC Univ Paris 06, Paris, France [3] CNRS UMR 3244, Paris, France
| |
Collapse
|
34
|
Stress-induced isoforms of MDM2 and MDM4 correlate with high-grade disease and an altered splicing network in pediatric rhabdomyosarcoma. Neoplasia 2014; 15:1049-63. [PMID: 24027430 DOI: 10.1593/neo.13286] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 07/05/2013] [Accepted: 07/15/2013] [Indexed: 01/13/2023] Open
Abstract
Pediatric rhabdomyosarcoma (RMS) is a morphologically and genetically heterogeneous malignancy commonly classified into three histologic subtypes, namely, alveolar, embryonal, and anaplastic. An issue that continues to challenge effective RMS patient prognosis is the dearth of molecular markers predictive of disease stage irrespective of tumor subtype. Our study involving a panel of 70 RMS tumors has identified specific alternative splice variants of the oncogenes Murine Double Minute 2 (MDM2) and MDM4 as potential biomarkers for RMS. Our results have demonstrated the strong association of genotoxic-stress inducible splice forms MDM2-ALT1 (91.6% Intergroup Rhabdomyosarcoma Study Group stage 4 tumors) and MDM4-ALT2 (90.9% MDM4-ALT2-positive T2 stage tumors) with high-risk metastatic RMS. Moreover, MDM2-ALT1-positive metastatic tumors belonged to both the alveolar (50%) and embryonal (41.6%) subtypes, making this the first known molecular marker for high-grade metastatic disease across the most common RMS subtypes. Furthermore, our results show that MDM2-ALT1 expression can function by directly contribute to metastatic behavior and promote the invasion of RMS cells through a matrigel-coated membrane. Additionally, expression of both MDM2-ALT1 and MDM4-ALT2 increased anchorage-independent cell-growth in soft agar assays. Intriguingly, we observed a unique coordination in the splicing of MDM2-ALT1 and MDM4-ALT2 in approximately 24% of tumor samples in a manner similar to genotoxic stress response in cell lines. To further explore splicing network alterations with possible relevance to RMS disease, we used an exon microarray approach to examine stress-inducible splicing in an RMS cell line (Rh30) and observed striking parallels between stress-responsive alternative splicing and constitutive splicing in RMS tumors.
Collapse
|
35
|
Colacurcio DJ, Yeager A, Kolson DL, Jordan-Sciutto KL, Akay C. Calpain-mediated degradation of MDMx/MDM4 contributes to HIV-induced neuronal damage. Mol Cell Neurosci 2013; 57:54-62. [PMID: 24128662 PMCID: PMC3868345 DOI: 10.1016/j.mcn.2013.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/10/2013] [Accepted: 10/05/2013] [Indexed: 10/26/2022] Open
Abstract
Neuronal damage in HIV-associated Neurocognitive Disorders (HAND) has been linked to inflammation induced by soluble factors released by HIV-infected, and non-infected, activated macrophages/microglia (HIV M/M) in the brain. It has been suggested that aberrant neuronal cell cycle activation determines cell fate in response to these toxic factors. We have previously shown increased expression of cell cycle proteins such as E2F1 and phosphorylated pRb in HAND midfrontal cortex in vivo and in primary neurons exposed to HIV M/M supernatants in vitro. In addition, we have previously shown that MDMx (also referred to as MDM4), a negative regulator of E2F1, was decreased in the brain in a primate model of HIV-induced CNS neurodegeneration. Thus, we hypothesized that MDMx provides indirect neuroprotection from HIV-induced neurodegeneration in our in vitro model. In this report, we found significant reductions in MDMx protein levels in the mid-frontal cortex of patients with HAND. In addition, treatment of primary rat neuroglial cultures with HIV M/M led to NMDA receptor- and calpain-dependent degradation of MDMx and decreased neuronal survival, while overexpression of MDMx conferred partial protection from HIV M/M toxicity in vitro. Further, our results demonstrate that MDMx is a novel and direct calpain substrate. Finally, blocking MDMx activity led to neuronal death in vitro in the absence of toxic stimulus, which was reversed by calpain inhibition. Overall, our results indicate that MDMx plays a pro-survival role in neurons, and that strategies to stabilize and/or induce MDMx can provide neuroprotection in HAND and in other neurodegenerative diseases where calpain activation contributes to neuropathogenesis.
Collapse
Affiliation(s)
- Daniel J. Colacurcio
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| | - Alyssa Yeager
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104
| | - Dennis L. Kolson
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, 280C Clinical Research Building, 415 Curie Boulevard, Philadelphia, PA 19104
| | - Kelly L. Jordan-Sciutto
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| | - Cagla Akay
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, 312 Levy Building, 240 South 40 Street, Philadelphia, PA, 19104
| |
Collapse
|
36
|
Abstract
MDM2 and MDMX are homologous proteins that bind to p53 and regulate its activity. Both contain three folded domains and ~70% intrinsically disordered regions. Previous detailed structural and biophysical studies have concentrated on the isolated folded domains. The N-terminal domains of both exhibit high affinity for the disordered N-terminal of p53 (p53TAD) and inhibit its transactivation function. Here, we have studied full-length MDMX and found a ~100-fold weaker affinity for p53TAD than does its isolated N-terminal domain. We found from NMR spectroscopy and binding studies that MDMX (but not MDM2) contains a conserved, disordered self-inhibitory element that competes intramolecularly for binding with p53TAD. This motif, which we call the WWW element, is centered around residues Trp200 and Trp201. Deletion or mutation of the element increased binding affinity of MDMX to that of the isolated N-terminal domain level. The self-inhibition of MDMX implies a regulatory, allosteric mechanism of its activity. MDMX rests in a latent state in which its binding activity with p53TAD is masked by autoinhibition. Activation of MDMX would require binding to a regulatory protein. The inhibitory function of the WWW element may explain the oncogenic effects of an alternative splicing variant of MDMX that does not contain the WWW element and is found in some aggressive cancers.
Collapse
|
37
|
Gottschalk B, Klein A. Restoration of wild-type p53 in drug-resistant mouse breast cancer cells leads to differential gene expression, but is not sufficient to overcome the malignant phenotype. Mol Cell Biochem 2013; 379:213-27. [DOI: 10.1007/s11010-013-1643-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 03/28/2013] [Indexed: 11/29/2022]
|
38
|
Liu L, Fan L, Fang C, Zou ZJ, Yang S, Zhang LN, Li JY, Xu W. S-MDM4 mRNA overexpression indicates a poor prognosis and marks a potential therapeutic target in chronic lymphocytic leukemia. Cancer Sci 2012; 103:2056-63. [PMID: 22937789 DOI: 10.1111/cas.12008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/14/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to investigate the prognostic significance of murine double minute 4 (MDM4) in chronic lymphocytic leukemia (CLL) and to characterize the role of MDM4 in the p53 pathway. Full-length MDM4 (FL-MDM4), a splicing variant of MDM4 (S-MDM4) and murine double minute 2 (MDM2) mRNA expressions were detected by quantitative PCR in 140 Chinese patients with CLL, and primary CLL cells were treated in vitro with either fludarabine or Nutlin-3 to explore the interaction between p53 status and MDM4 or MDM2 expression. A marked increase of FL-MDM4 and S-MDM4 expressions were observed in the CLL patients with p53 aberrations (deletion and/or mutation) (P = 0.024, P < 0.001). A high level of S-MDM4 mRNA expression was associated with short treatment free survival (TFS) (P = 0.004). FL-MDM4 expression was significantly decreased after fludarabine treatment (P = 0.001) but increased after Nutlin-3 treatment (P = 0.008) of primary CLL cells without p53 aberrations. Both S-MDM4 and MDM2 expressions were significantly increased after fludarabine treatment of CLL cells without p53 aberrations (P = 0.013 and P = 0.030). MDM2 overexpression also occurred in CLL cells with p53 wild type after Nutlin-3 treatment (P = 0.018). FL-MDM4 and S-MDM4 overexpression are indicators of p53 aberrations in CLL patients, suggesting that those patients have a poor prognosis. FL-MDM4 inhibitory effects on p53 can be removed by MDM2-p53 and saved by Nutlin-3.
Collapse
Affiliation(s)
- Ling Liu
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, Dyer MA. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One 2012; 7:e42739. [PMID: 22916154 PMCID: PMC3423419 DOI: 10.1371/journal.pone.0042739] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/11/2012] [Indexed: 11/23/2022] Open
Abstract
Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX) and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191) was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.
Collapse
Affiliation(s)
- Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Anatoly Ulyanov
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Rachel Brennan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Stanley Pounds
- Department of Statistics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Michael A. Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
40
|
Leventaki V, Rodic V, Tripp SR, Bayerl MG, Perkins SL, Barnette P, Schiffman JD, Miles RR. TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol 2012; 158:763-71. [PMID: 22845047 DOI: 10.1111/j.1365-2141.2012.09243.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
Abstract
The TP53 (p53) pathway can be inhibited by TP53 mutation or deletion or by MDM2 overexpression. Both occur in Burkitt lymphoma (BL), but many cases lack either abnormality. Expression patterns of the TP53 inhibitor MDM4 have not been reported in BL, and increased MDM4 could deregulate the TP53 pathway in cases without TP53 or MDM2 abnormalities. We investigated TP53 pathway disruption in paediatric BL patient samples (n = 30) by studying MDM4, MDM2, and CDKN1A (p21) protein and mRNA expression; TP53 mutations; TP53 protein expression; and gene copy number abnormalities. MDM4 protein was expressed in 30/30 tumours, and MDM2 protein was weakly expressed in 7/30 (23%). All cases were negative for CDKN1A protein, and CDKN1A mRNA levels were decreased. TP53 mutations were detected in 5/28 (18%) cases and confirmed by sequencing. TP53 protein was expressed in 15/30 (50%) cases, including 7/8 with TP53 genetic alterations. MDM2 protein and mRNA expression levels did not correlate with lack of TP53 genetic changes or TP53 protein expression; however, there was an inverse relationship between detectable TP53 protein expression and MDM4 copy number gains and mRNA expression. The TP53 pathway is deregulated in paediatric BL cases, and increased MDM4 expression may be the primary mechanism in some cases.
Collapse
Affiliation(s)
- Vasiliki Leventaki
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, UT 84112-0565, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 2011; 33:442-51. [PMID: 22114072 DOI: 10.1093/carcin/bgr270] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The role of dominant transforming p53 in carcinogenesis is poorly understood. Our previous data suggested that aberrant p53 proteins can enhance tumorigenesis and metastasis. Here, we examined potential mechanisms through which gain-of-function (GOF) p53 proteins can induce motility. Cells expressing GOF p53 -R175H, -R273H and -D281G showed enhanced migration, which was reversed by RNA interference (RNAi) or transactivation-deficient mutants. In cells with engineered or endogenous p53 mutants, enhanced migration was reduced by downregulation of nuclear factor-kappaB2, a GOF p53 target. We found that GOF p53 proteins upregulate CXC-chemokine expression, the inflammatory mediators that contribute to multiple aspects of tumorigenesis. Elevated expression of CXCL5, CXCL8 and CXCL12 was found in cells expressing oncogenic p53. Transcription was elevated as CXCL5 and CXCL8 promoter activity was higher in cells expressing GOF p53, whereas wild-type p53 repressed promoter activity. Chromatin immunoprecipitation assays revealed enhanced presence of acetylated histone H3 on the CXCL5 promoter in H1299/R273H cells, in agreement with increased transcriptional activity of the promoter, whereas RNAi-mediated repression of CXCL5 inhibited cell migration. Consistent with this, knockdown of the endogenous mutant p53 in lung cancer or melanoma cells reduced CXCL5 expression and cell migration. Furthermore, short hairpin RNA knockdown of mutant p53 in MDA-MB-231 cells reduced expression of a number of key targets, including several chemokines and other inflammatory mediators. Finally, CXCL5 expression was also elevated in lung tumor samples containing GOF p53, indicating relevance to human cancer. The data suggest a mechanistic link between GOF p53 proteins and chemokines in enhanced cell motility.
Collapse
Affiliation(s)
- W Andrew Yeudall
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE Mouse double minute 4 (MDM4), a homolog of MDM2, is one of the key negative regulators of p53, and its amplification or overexpression contributes to carcinogenesis by inhibiting the p53 tumor suppressor activity. We investigated the association between MDM4 polymorphisms and the risk of squamous cell carcinoma of the head and neck (SCCHN). METHODS We genotyped three MDM4 tagging polymorphisms, two in the 3' untranslated region (rs11801299G>A and rs10900598G>T) and one in intron 1 (rs1380576C>G), in a case-control study of 1075 non-Hispanic white SCCHN patients and 1079 cancer-free controls, and evaluated their associations with SCCHN risk. RESULTS Although none of these three polymorphisms individually had a statistically significant effect on the risk of SCCHN, nor did their combined number of putative risk genotypes (i.e. rs11801299GG, rs1380576CG+GG, and rs10900598GG) [odds ratio (OR)=1.16; 95% confidence interval (95% CI) =0.93-1.45], we found that individuals with 1-3 risk genotypes had statistically significant increased risk of oropharyngeal cancer (OR=1.32; 95% CI=1.00-1.73), particularly for those with T1-2 stage (OR=1.40; 95% CI=1.02-1.94), those with regional lymph node metastases (N1-3) (OR=1.44; 95% CI=1.07-1.95), and those with late stages (III and IV) (OR=1.34; 95% CI=1.01-1.77). CONCLUSION These results suggest that the joint effect of MDM4 variants may contribute to the risk of oropharyngeal cancer in non-Hispanic whites. Additional studies are warranted to unravel whether the particular stage distribution of oropharyngeal cancer with the strongest association (T1-2, N1-3, and III-IV) is a possible link with human papillomavirus-related oropharyngeal cancers.
Collapse
|
43
|
Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc Natl Acad Sci U S A 2011; 108:11995-2000. [PMID: 21730132 PMCID: PMC3141986 DOI: 10.1073/pnas.1102241108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mdm2 and Mdm4 are homologous RING domain-containing proteins that negatively regulate the tumor suppressor p53 under physiological and stress conditions. The RING domain of Mdm2 encodes an E3-ubiquitin ligase that promotes p53 degradation. In addition, Mdm2 and Mdm4 interact through their respective RING domains. The in vivo significance of Mdm2-Mdm4 heterodimerization in regulation of p53 function is unknown. In this study, we generated an Mdm4 conditional allele lacking the RING domain to investigate its role in Mdm2 and p53 regulation. Our results demonstrate that homozygous deletion of the Mdm4 RING domain results in prenatal lethality. Mechanistically, Mdm2-Mdm4 heterodimerization is critical for inhibiting lethal p53 activation during early embryogenesis. However, Mdm2-Mdm4 interaction is dispensable for regulating p53 activity as well as the stability of Mdm2 and p53 at later stages of development. We propose that Mdm4 is a key cofactor of Mdm2 that inhibits p53 activity primarily during early embryogenesis but is dispensable for regulating p53 and Mdm2 stability in the adult mouse.
Collapse
|
44
|
Mancini F, Di Conza G, Moretti F. MDM4 (MDMX) and its Transcript Variants. Curr Genomics 2011; 10:42-50. [PMID: 19721810 PMCID: PMC2699833 DOI: 10.2174/138920209787581280] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/08/2008] [Accepted: 12/15/2008] [Indexed: 12/17/2022] Open
Abstract
MDM family proteins are crucial regulators of the oncosuppressor p53. Alterations of their gene status, mainly amplification events, have been frequently observed in human tumors.MDM4 is one of the two members of the MDM family. The human gene is located on chromosome 1 at q32-33 and codes for a protein of 490aa. In analogy to MDM2, besides the full-length mRNA several transcript variants of MDM4 have been identified. Almost all variants thus far described derive from a splicing process, both through canonical and aberrant splicing events. Some of these variants are expressed in normal tissues, others have been observed only in tumor samples. The presence of these variants may be considered a fine tuning of the function of the full-length protein, especially in normal cells. In tumor cells, some variants show oncogenic properties.This review summarizes all the different MDM4 splicing forms thus far described and their role in the regulation of the wild type protein function in normal and tumor cells. In addition, a description of the full-length protein structure with all known interacting proteins thus far identified and a comparison of the MDM4 variant structure with that of full-length protein are presented. Finally, a parallel between MDM4 and MDM2 variants is discussed.
Collapse
Affiliation(s)
- F Mancini
- National Council of Research, Institute of Neurobiology and Molecular Medicine, Roma
| | | | | |
Collapse
|
45
|
Functions of MDMX in the modulation of the p53-response. J Biomed Biotechnol 2011; 2011:876173. [PMID: 21541195 PMCID: PMC3085504 DOI: 10.1155/2011/876173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 01/21/2011] [Indexed: 12/21/2022] Open
Abstract
The MDM family proteins MDM2 and MDMX are two critical regulators of the p53 tumor suppressor protein. Expression of both proteins is necessary for allowing the embryonal development by keeping the activity of p53 in check. Upon stresses that need to activate p53 to perform its function as guardian of the genome, p53 has to be liberated from these two inhibitors. In this review, we will discuss the various mechanisms by which MDMX protein levels are downregulated upon various types of stress, including posttranslational modifications of the MDMX protein and the regulation of mdmx mRNA expression, including alternative splicing. In addition, the putative function(s) of the described MDMX splice variants, particularly in tumor development, will be discussed. Lastly, in contrast to common belief, we have recently shown the existence of a p53-MDMX feedback loop, which is important for dampening the p53-response at later phases after genotoxic stress.
Collapse
|
46
|
|
47
|
Phillips A, Teunisse A, Lam S, Lodder K, Darley M, Emaduddin M, Wolf A, Richter J, de Lange J, Verlaan-de Vries M, Lenos K, Böhnke A, Bartel F, Blaydes JP, Jochemsen AG. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J Biol Chem 2010; 285:29111-27. [PMID: 20659896 DOI: 10.1074/jbc.m110.129726] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The p53 regulatory network is critically involved in preventing the initiation of cancer. In unstressed cells, p53 is maintained at low levels and is largely inactive, mainly through the action of its two essential negative regulators, HDM2 and HDMX. p53 abundance and activity are up-regulated in response to various stresses, including DNA damage and oncogene activation. Active p53 initiates transcriptional and transcription-independent programs that result in cell cycle arrest, cellular senescence, or apoptosis. p53 also activates transcription of HDM2, which initially leads to the degradation of HDMX, creating a positive feedback loop to obtain maximal activation of p53. Subsequently, when stress-induced post-translational modifications start to decline, HDM2 becomes effective in targeting p53 for degradation, thus attenuating the p53 response. To date, no clear function for HDMX in this critical attenuation phase has been demonstrated experimentally. Like HDM2, the HDMX gene contains a promoter (P2) in its first intron that is potentially inducible by p53. We show that p53 activation in response to a plethora of p53-activating agents induces the transcription of a novel HDMX mRNA transcript from the HDMX-P2 promoter. This mRNA is more efficiently translated than that expressed from the constitutive HDMX-P1 promoter, and it encodes a long form of HDMX protein, HDMX-L. Importantly, we demonstrate that HDMX-L cooperates with HDM2 to promote the ubiquitination of p53 and that p53-induced HDMX transcription from the P2 promoter can play a key role in the attenuation phase of the p53 response, to effectively diminish p53 abundance as cells recover from stress.
Collapse
Affiliation(s)
- Anna Phillips
- Southampton Cancer Research UK Centre, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
MDM4 binds ligands via a mechanism in which disordered regions become structured. FEBS Lett 2010; 584:3035-41. [PMID: 20515689 DOI: 10.1016/j.febslet.2010.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/23/2022]
Abstract
MDM2 and MDM4 are proteins involved in regulating the tumour suppressor p53. MDM2/4 and p53 interact through their N-terminal domains and disrupting this interaction is a potential anticancer strategy. The MDM2-p53 interaction is structurally and biophysically well characterised, whereas equivalent studies on MDM4 are hampered by aggregation of the protein. Here we present the NMR characterization of MDM4 (14-111) both free and in complexes with peptide and small-molecule ligands. MDM4 is more dynamic in its apo state than is MDM2, with parts of the protein being unstructured. These regions become structured upon binding of a ligand. MDM4 appears to bind its ligand through conformational selection and/or an induced fit mechanism; this might influence rational design of MDM4 inhibitors.
Collapse
|
49
|
Liang M, Han X, Vadhan-Raj S, Nguyen M, Zhang YH, Fernandez M, Drakos E, Konoplev SN, Yin CC, Miranda RN, McDonnell TJ, Medeiros LJ, Bueso-Ramos CE. HDM4 is overexpressed in mantle cell lymphoma and its inhibition induces p21 expression and apoptosis. Mod Pathol 2010; 23:381-91. [PMID: 20062013 DOI: 10.1038/modpathol.2009.170] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mouse models and cell lines, murine double minute 2 (MDM2) and MDM4 have been shown to synergistically promote proteasome-mediated degradation of p21 and p53. MDM4 also inhibits p53-mediated transcriptional activation of p21. p53 expression results in increased p21 expression, a negative cell-cycle regulatory protein and an inhibitor of cyclin D1. As mantle cell lymphoma is characterized by cyclin D1 overexpression, we assessed for human homolog of MDM4 (HDM4) expression and its effect on p21 in mantle cell lymphoma. Using immunohistochemical methods, in reactive lymph nodes (n=19) germinal center cells strongly expressed HDM4 in the nucleus and the cytoplasm, but mantle zone B-cells were only dimly positive. In mantle cell lymphoma tumors, aberrant HDM4 nuclear expression was observed in 18 of 19 (95%) cases. In contrast, HDM4 in other B-cell non-Hodgkin lymphoma types retained its normal pattern of expression. To further characterize the differential upregulation of HDM4 in mantle cell lymphoma, HDM4 was assessed by quantitative real-time polymerase chain reaction in four mantle cell lymphoma cell lines (Granta 519, Z-138, SP-53, and Mino) and six mantle cell lymphoma tumors. Both the splicing variant HDM4-S, containing only the p53-binding domain, and full length HDM4 were increased compared with normal CD19+ B-cells (P<0.05). Using small interfering RNA to inhibit HDM4 in the SP53 and Mino cell lines showed increased p21 and active caspase-3, the latter indicating increased apoptosis. Our results show that HDM4 is overexpressed in mantle cell lymphoma and, at least in part, exerts its effect by suppressing p21 expression, thereby enhancing cell-cycle progression. Inhibition of HDM4 may serve as a potential approach in the design of therapy for patients with mantle cell lymphoma.
Collapse
Affiliation(s)
- Mei Liang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on recent advances in the understanding of thyroid cancer tumorigensis and implications in clinical practice. RECENT FINDINGS Recent novel and promising findings include additional abnormalities in key pathways associated with thyroid tumorigenesis (RET-Ras-BRAF-MEK; RET-beta-cateinin; TRK-PI3K-AKT; and MDM-p53-PTEN), single-nucleotide polymorphisms associated with thyroid cancer susceptibility, epigenetic silencing, alternative splicing, and gene expression abnormalities. Complex regulatory mechanisms and insights into ways in which molecular aberrancies occur are becoming better understood through this research. SUMMARY With ongoing research, clinical problems such as the suspicious thyroid fine needle aspiration, better treatment algorithms for well differentiated thyroid cancer, and more effective treatment for anaplastic cancer will likely be found.
Collapse
|