1
|
Itell HL, Guenthoer J, Humes D, Baumgarten NE, Overbaugh J. Host cell glycosylation selects for infection with CCR5- versus CXCR4-tropic HIV-1. Nat Microbiol 2024; 9:2985-2996. [PMID: 39363105 DOI: 10.1038/s41564-024-01806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 08/06/2024] [Indexed: 10/05/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection involves a selection bottleneck that leads to transmission of one or a few variants. C-C motif chemokine receptor 5 (CCR5) or C-X-C motif chemokine receptor 4 (CXCR4) can act as coreceptors for HIV-1 viral entry. However, initial infection mostly occurs via CCR5, despite abundant expression of CXCR4 on target cells. The host factors that influence HIV-1 susceptibility and selection during transmission are unclear. Here we conduct CRISPR-Cas9 screens and identify SLC35A2 (a transporter of UDP-galactose expressed in target cells in blood and mucosa) as a potent and specific CXCR4-tropic restriction factor in primary target CD4+ T cells. SLC35A2 inactivation, which resulted in truncated glycans, not only increased CXCR4-tropic infection levels but also decreased those of CCR5-tropic strains consistently. Single-cycle infections demonstrated that the effect is cell-intrinsic. These data support a role for a host protein that influences glycan structure in regulating HIV-1 infection. Host cell glycosylation may, therefore, affect HIV-1 selection during transmission in vivo.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jamie Guenthoer
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Tr1X Inc, La Jolla, CA, USA
| | - Nell E Baumgarten
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Tufail A, Akkad S, Noble AR, Fascione MA, Signoret N. New insight into a simple high-yielding method for the production of fully folded and functional recombinant human CCL5. Sci Rep 2024; 14:24188. [PMID: 39406925 PMCID: PMC11480376 DOI: 10.1038/s41598-024-75327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Chemokines are proteins important for a range of biological processes from cell-directed migration (chemotaxis) to cell activation and differentiation. Chemokine C-C ligand 5 (CCL5) is an important pro-inflammatory chemokine attracting immune cells towards inflammatory sites through interaction with its receptors CCR1/3/5. Recombinant production of large quantities of CCL5 in Escherichia coli is challenging due to formation of inclusion bodies which necessitates refolding, often leading to low recovery of biologically active protein. To combat this, we have developed a method for CCL5 production that utilises the purification of SUMO tagged CCL5 from E. coli SHuffle cells avoiding the need to reform disulfide bonds through inclusion body purification and yields high quantities of CCL5 (~ 25 mg/L). We demonstrated that the CCL5 produced was fully functional by assessing well-established cellular changes triggered by CCL5 binding to CCR5, including receptor phosphorylation and internalisation, intracellular signalling leading to calcium flux, as well as cell migration. Overall, we demonstrate that the use of solubility tags, SHuffle cells and low pH dialysis constitutes an approach that increases purification yields of active CCL5 with low endotoxin contamination for biological studies.
Collapse
Affiliation(s)
- Afzaal Tufail
- Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Saeed Akkad
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Amanda R Noble
- Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | |
Collapse
|
3
|
Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology 2024; 21:2. [PMID: 38263120 PMCID: PMC10807162 DOI: 10.1186/s12977-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/13/2024] [Indexed: 01/25/2024] Open
Abstract
Chemokines are cytokines whose primary role is cellular activation and stimulation of leukocyte migration. They perform their various functions by interacting with G protein-coupled cell surface receptors (GPCRs) and are involved in the regulation of many biological processes such as apoptosis, proliferation, angiogenesis, hematopoiesis or organogenesis. They contribute to the maintenance of the homeostasis of lymphocytes and coordinate the function of the immune system. However, chemokines and their receptors are sometimes hijacked by some pathogens to infect the host organism. For a given chemokine receptor, there is a wide structural, organizational and conformational diversity. In this review, we describe the evidence for structural variety reported for the chemokine receptor CCR5, how this variability can be exploited by HIV-1 to infect its target cells and what therapeutic solutions are currently being developed to overcome this problem.
Collapse
Affiliation(s)
- Natacha Faivre
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Christel Verollet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Toulouse, France
- International Research Laboratory (IRP) CNRS "IM-TB/HIV", Buenos Aires, Argentina
| | - Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.
| |
Collapse
|
4
|
Pinheiro I, Calo N, Paolini-Bertrand M, Hartley O. Arylsulfatases and neuraminidases modulate engagement of CCR5 by chemokines by removing key electrostatic interactions. Sci Rep 2024; 14:292. [PMID: 38167636 PMCID: PMC10762049 DOI: 10.1038/s41598-023-50944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The chemokine receptor CCR5 is known to exist in cell surface subpopulations that differ in their capacity to engage ligands. One proposed explanation for this phenomenon is the presence of CCR5 species with different levels of post-translational modifications (PTMs). Tyrosine sulfation and O-glycan sialylation are PTMs that add negative charges to the extracellular domain of CCR5 and make strong contributions to chemokine binding but it is not known whether cellular mechanisms to control their levels exist. In this study we used a combination of sulfation-sensitive and sulfation-insensitive CCR5 ligands to show that the rate of turnover of CCR5 tyrosine sulfation is more rapid than the rate of turnover of the receptor itself. This suggests that the steady state level of CCR5 sulfation is maintained through the combination of tyrosine protein sulfotransferase (TPST), the trans-Golgi network (TGN)-resident 'source enzyme, and a 'sink' activity that removes tyrosine sulfation from CCR5. By measuring the effects on ligand binding of knockdown and overexpression experiments, we provided evidence that non-lysosomal cellular arylsulfatases, particularly ARSG, ARSI and ARSJ, are CCR5 sulfation 'sink' enzymes. We also used targeted knockdown and sialylation-sensitive and insensitive chemokines to identify the sialidase NEU3 as a candidate 'sink' enzyme for CCR5 O-glycan sialylation. This study provides the first experimental evidence of activity of sulfatase and sialidase 'sink' enzymes on CCR5, providing a potential mechanism for cells to control steady-state levels of these PTMs and thereby exert dynamic control over receptor-ligand interactions at the cell surface and during receptor desensitization.
Collapse
Affiliation(s)
- Inês Pinheiro
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Calo
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Orion Biotechnology, Campus Biotech Innovation Park, Geneva, Switzerland
| | - Marianne Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Orion Biotechnology, Campus Biotech Innovation Park, Geneva, Switzerland.
| |
Collapse
|
5
|
Itell HL, Humes D, Baumgarten NE, Overbaugh J. Host cell glycosylation selects for infection with CCR5- versus CXCR4-tropic HIV-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556399. [PMID: 37732222 PMCID: PMC10508750 DOI: 10.1101/2023.09.05.556399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
HIV-1 infection involves a selection bottleneck that leads to transmission of one or a few HIV variants, which nearly always use CCR5 as the coreceptor (R5 viruses) for viral entry as opposed to CXCR4 (X4 viruses). The host properties that drive this selection are not well understood and may hold keys to factors that govern HIV susceptibility. In this report, we identified SLC35A2, a transporter of UDP-galactose, as a candidate X4-specific restriction factor in CRISPR-knockout screens in primary target CD4+ T cells. SLC35A2 inactivation in CD4+ T cells, which resulted in truncation of glycans due to the absence of galactose, not only increased X4 infection levels, but also consistently decreased infection levels of R5 HIV strains. Single cycle infections demonstrated that the effect is host cell dependent. SLC35A2 is expressed in CD4+ T cells at different tissue sites, with high levels in the genital tract - the site of most HIV infections. These data support a role for a host cell protein that regulates glycan structure on HIV infection, with enhanced R5 infection but reduced X4 infection associated with SLC35A2-mediated glycosylation. Host cell glycosylation may therefore contribute to R5 selection and host susceptibility during HIV transmission.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Nell E. Baumgarten
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
6
|
Hillman T. A Predictive Model for Identifying the Most Effective Anti-CCR5 Monoclonal Antibody. ARCHIVES OF PHARMACY PRACTICE 2023. [DOI: 10.51847/d9m2zufqr4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
7
|
Zhao L, Lai Y. Monoclonal CCR5 Antibody: A Promising Therapy for HIV. Curr HIV Res 2023; 21:91-98. [PMID: 36927434 DOI: 10.2174/1570162x21666230316110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 03/18/2023]
Abstract
HIV is one of the world's most devastating viral infections and has claimed tens of millions of lives worldwide since it was first identified in the 1980s. There is no cure for HIV infection. However, with tremendous progress in HIV diagnosis, prevention, and treatment, HIV has become a manageable chronic health disease. CCR5 is an important coreceptor used by HIV to infect target cells, and genetic deficiency of the chemokine receptor CCR5 confers a significant degree of protection against HIV infection. In addition, since CCR5 deficiency does not appear to cause any adverse health effects, targeting this coreceptor is a promising strategy for the treatment and prevention of HIV. Monoclonal antibodies are frequently used as therapeutics for many diseases and therefore are being used as a potential therapy for HIV-1 infection. This review reports on CCR5 antibody research in detail and describes the role and advantages of CCR5 antibodies in HIV prevention or treatment, introduces several main CCR5 antibodies, and discusses the future strategy of antibody-conjugated nanoparticles including the potential challenges. CCR5 antibodies may be a novel therapy for treating HIV infection effectively and could overcome the limitations of the currently available options.
Collapse
Affiliation(s)
- Li Zhao
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Speck D, Kleinau G, Szczepek M, Kwiatkowski D, Catar R, Philippe A, Scheerer P. Angiotensin and Endothelin Receptor Structures With Implications for Signaling Regulation and Pharmacological Targeting. Front Endocrinol (Lausanne) 2022; 13:880002. [PMID: 35518926 PMCID: PMC9063481 DOI: 10.3389/fendo.2022.880002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 12/28/2022] Open
Abstract
In conjunction with the endothelin (ET) type A (ETAR) and type B (ETBR) receptors, angiotensin (AT) type 1 (AT1R) and type 2 (AT2R) receptors, are peptide-binding class A G-protein-coupled receptors (GPCRs) acting in a physiologically overlapping context. Angiotensin receptors (ATRs) are involved in regulating cell proliferation, as well as cardiovascular, renal, neurological, and endothelial functions. They are important therapeutic targets for several diseases or pathological conditions, such as hypertrophy, vascular inflammation, atherosclerosis, angiogenesis, and cancer. Endothelin receptors (ETRs) are expressed primarily in blood vessels, but also in the central nervous system or epithelial cells. They regulate blood pressure and cardiovascular homeostasis. Pathogenic conditions associated with ETR dysfunctions include cancer and pulmonary hypertension. While both receptor groups are activated by their respective peptide agonists, pathogenic autoantibodies (auto-Abs) can also activate the AT1R and ETAR accompanied by respective clinical conditions. To date, the exact mechanisms and differences in binding and receptor-activation mediated by auto-Abs as opposed to endogenous ligands are not well understood. Further, several questions regarding signaling regulation in these receptors remain open. In the last decade, several receptor structures in the apo- and ligand-bound states were determined with protein X-ray crystallography using conventional synchrotrons or X-ray Free-Electron Lasers (XFEL). These inactive and active complexes provide detailed information on ligand binding, signal induction or inhibition, as well as signal transduction, which is fundamental for understanding properties of different activity states. They are also supportive in the development of pharmacological strategies against dysfunctions at the receptors or in the associated signaling axis. Here, we summarize current structural information for the AT1R, AT2R, and ETBR to provide an improved molecular understanding.
Collapse
Affiliation(s)
- David Speck
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Gunnar Kleinau
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Michal Szczepek
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Dennis Kwiatkowski
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
| | - Rusan Catar
- Department of Nephrology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Aurélie Philippe
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Cardiovascular Research, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
9
|
Larsen O, van der Velden WJC, Mavri M, Schuermans S, Rummel PC, Karlshøj S, Gustavsson M, Proost P, Våbenø J, Rosenkilde MM. Identification of a conserved chemokine receptor motif that enables ligand discrimination. Sci Signal 2022; 15:eabg7042. [PMID: 35258997 DOI: 10.1126/scisignal.abg7042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and β-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.
Collapse
Affiliation(s)
- Olav Larsen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Wijnand J C van der Velden
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maša Mavri
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Sara Schuermans
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.,Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Pia C Rummel
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefanie Karlshøj
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jon Våbenø
- Helgeland Hospital Trust, Prestmarkveien 1, 8800 Sandnessjøen, Norway
| | - Mette M Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
10
|
Weichseldorfer M, Tagaya Y, Reitz M, DeVico AL, Latinovic OS. Identifying CCR5 coreceptor populations permissive for HIV-1 entry and productive infection: implications for in vivo studies. J Transl Med 2022; 20:39. [PMID: 35073923 PMCID: PMC8785515 DOI: 10.1186/s12967-022-03243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Background The chemokine receptor CCR5 is the major coreceptor for HIV-1 cell entry. We previously observed that not all CCR5 mAbs reduce HIV-1 infection, suggesting that only some CCR5 populations are permissive for HIV-1 entry. This study aims to better understand the relevant conformational states of the cellular coreceptor, CCR5, involved in HIV entry. We hypothesized that CCR5 assumes multiple configurations during normal cycling on the plasma membrane, but only particular forms facilitate HIV-1 infection. Methods To this end, we quantified different CCR5 populations using six CCR5 monoclonal antibodies (mAbs) with different epitope specificities and visualized them with super-resolution microscopy. We quantified each surface CCR5 population before and after HIV-1 infection. Results Based on CCR5 conformational changes, down-modulation, and trafficking rates (internalization and recycling kinetics), we were able to distinguish among heterogeneous CCR5 populations and thus which populations might best be targeted to inhibit HIV-1 entry. We assume that a decreased surface presence of a particular CCR5 subpopulation following infection means that it has been internalized due to HIV-1 entry, and that it therefore represents a highly relevant target for future antiviral therapy strategies. Strikingly, this was most true for antibody CTC8, which targets the N-terminal region of CCR5 and blocks viral entry more efficiently than it blocks chemokine binding. Conclusions Defining the virus-host interactions responsible for HIV-1 transmission, including specific coreceptor populations capable of establishing de novo infections, is essential for the development of an HIV-1 vaccine. This study hopefully will facilitate further development of inhibitors to block CCR5 usage by HIV-1, as well as inform future HIV-1 vaccine design. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03243-8.
Collapse
Affiliation(s)
- Matthew Weichseldorfer
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA
| | - Yutaka Tagaya
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Marvin Reitz
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Anthony L DeVico
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA.,Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Olga S Latinovic
- Institute of Human Virology, School of Medicine, University of Maryland, 725 W. Lombard St., Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
A cell-based multiplex immunoassay platform using fluorescent protein-barcoded reporter cell lines. Commun Biol 2021; 4:1338. [PMID: 34824350 PMCID: PMC8617053 DOI: 10.1038/s42003-021-02881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Multiplex immunoassays with acellular antigens are well-established based on solid-phase platforms such as the Luminex® technology. Cell barcoding by amine-reactive fluorescent dyes enables analogous cell-based multiplex assays, but requires multiple labeling reactions and quality checks prior to every assay. Here we describe generation of stable, fluorescent protein-barcoded reporter cell lines suitable for multiplex screening of antibody to membrane proteins. The utility of this cell-based system, with the potential of a 256-plex cell panel, is demonstrated by flow cytometry deconvolution of barcoded cell panels expressing influenza A hemagglutinin trimers, or native human CCR2 or CCR5 multi-span proteins and their epitope-defining mutants. This platform will prove useful for characterizing immunity and discovering antibodies to membrane-associated proteins.
Collapse
|
12
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
13
|
Modeling of CCR5 Recognition by HIV-1 gp120: How the Viral Protein Exploits the Conformational Plasticity of the Coreceptor. Viruses 2021; 13:v13071395. [PMID: 34372601 PMCID: PMC8310383 DOI: 10.3390/v13071395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses.
Collapse
|
14
|
Matt SM, Nickoloff-Bybel EA, Rong Y, Runner K, Johnson H, O'Connor MH, Haddad EK, Gaskill PJ. Dopamine Levels Induced by Substance Abuse Alter Efficacy of Maraviroc and Expression of CCR5 Conformations on Myeloid Cells: Implications for NeuroHIV. Front Immunol 2021; 12:663061. [PMID: 34093554 PMCID: PMC8170305 DOI: 10.3389/fimmu.2021.663061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Despite widespread use of antiretroviral therapy (ART), HIV remains a major public health issue. Even with effective ART many infected individuals still suffer from the constellation of neurological symptoms now known as neuroHIV. These symptoms can be exacerbated by substance abuse, a common comorbidity among HIV-infected individuals. The mechanism(s) by which different types of drugs impact neuroHIV remains unclear, but all drugs of abuse increase central nervous system (CNS) dopamine and elevated dopamine increases HIV infection and inflammation in human myeloid cells including macrophages and microglia, the primary targets for HIV in the brain. Thus, drug-induced increases in CNS dopamine may be a common mechanism by which distinct addictive substances alter neuroHIV. Myeloid cells are generally infected by HIV strains that use the chemokine receptor CCR5 as a co-receptor, and our data indicate that in a subset of individuals, drug-induced levels of dopamine could interfere with the effectiveness of the CCR5 inhibitor Maraviroc. CCR5 can adopt distinct conformations that differentially regulate the efficiency of HIV entry and subsequent replication and using qPCR, flow cytometry, Western blotting and high content fluorescent imaging, we show that dopamine alters the expression of specific CCR5 conformations of CCR5 on the surface of human macrophages. These changes are not affected by association with lipid rafts, but do correlate with dopamine receptor gene expression levels, specifically higher levels of D1-like dopamine receptors. These data also demonstrate that dopamine increases HIV replication and alters CCR5 conformations in human microglia similarly to macrophages. These data support the importance of dopamine in the development of neuroHIV and indicate that dopamine signaling pathways should be examined as a target in antiretroviral therapies specifically tailored to HIV-infected drug abusers. Further, these studies show the potential immunomodulatory role of dopamine, suggesting changes in this neurotransmitter may also affect the progression of other diseases.
Collapse
Affiliation(s)
- Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yi Rong
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kaitlyn Runner
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Hannah Johnson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Margaret H O'Connor
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Elias K Haddad
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA, United States.,Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
15
|
Early Colorectal Responses to HIV-1 and Modulation by Antiretroviral Drugs. Vaccines (Basel) 2021; 9:vaccines9030231. [PMID: 33800213 PMCID: PMC8000905 DOI: 10.3390/vaccines9030231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Innate responses during acute HIV infection correlate with disease progression and pathogenesis. However, limited information is available about the events occurring during the first hours of infection in the mucosal sites of transmission. With an ex vivo HIV-1 challenge model of human colorectal tissue we assessed the mucosal responses induced by R5- and X4-tropic HIV-1 isolates in the first 24 h of exposure. Microscopy studies demonstrated virus penetration of up to 39 μm into the lamina propia within 6 h of inoculation. A rapid, 6 h post-challenge, increase in the level of secretion of inflammatory cytokines, chemokines, interferon- γ (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) was observed following exposure to R5- or X4-tropic isolates. This profile persisted at the later time point measured of 24 h. However, exposure to the X4-tropic isolate tested induced greater changes at the proteomic and transcriptomic levels than the R5-tropic. The X4-isolate induced greater levels of CCR5 ligands (RANTES, MIP-1α and MIP-1β) secretion than R5-HIV-1. Potential drugs candidates for colorectal microbicides, including entry, fusion or reverse transcriptase inhibitors demonstrated differential capacity to modulate these responses. Our findings indicate that in colorectal tissue, inflammatory responses and a Th1 cytokine profile are induced in the first 24 h following viral exposure.
Collapse
|
16
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Scurci I, Akondi KB, Pinheiro I, Paolini-Bertrand M, Borgeat A, Cerini F, Hartley O. CCR5 tyrosine sulfation heterogeneity generates cell surface receptor subpopulations with different ligand binding properties. Biochim Biophys Acta Gen Subj 2020; 1865:129753. [PMID: 32991968 DOI: 10.1016/j.bbagen.2020.129753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemokine receptor tyrosine sulfation plays a key role in the binding of chemokines. It has been suggested that receptor sulfation is heterogeneous, but no experimental evidence has been provided so far. The potent anti-HIV chemokine analog 5P12-RANTES has been proposed to owe its inhibitory activity to a capacity to bind a larger pool of cell surface CCR5 receptors than native chemokines such as CCL5, but the molecular details underlying this phenomenon have not been elucidated. METHODS We investigated the CCR5 sulfation heterogeneity and the sensitivity of CCR5 ligands to receptor sulfation by performing ELISA assays on synthetic N-terminal sulfopeptides and by performing binding assays on CCR5-expressing cells under conditions that modulate CCR5 sulfation levels. RESULTS Two commonly used anti-CCR5 monoclonal antibodies with epitopes in the sulfated N-terminal domain of CCR5 show contrasting binding profiles on CCR5 sulfopeptides, incomplete competition with each other for cell surface CCR5, and opposing sensitivities to cellular treatments that affect CCR5 sulfation levels. 5P12-RANTES is less sensitive than native CCL5 to conditions that affect cellular CCR5 sulfation. CONCLUSIONS CCR5 sulfation is heterogeneous and this affects the binding properties of both native chemokines and antibodies. Enhanced capacity to bind to CCR5 is a component of the inhibitory mechanism of 5P12-RANTES. GENERAL SIGNIFICANCE We provide the first experimental evidence for sulfation heterogeneity of chemokine receptors and its impact on ligand binding, a phenomenon that is important both for the understanding of chemokine cell biology and for the development of drugs that target chemokine receptors.
Collapse
Affiliation(s)
- I Scurci
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - K B Akondi
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - I Pinheiro
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - M Paolini-Bertrand
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - A Borgeat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - F Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - O Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland; Orion Biotechnology, Avenue de Sécheron 15, 1202 Genève, Switzerland.
| |
Collapse
|
18
|
Antagonistic Peptides That Specifically Bind to the First and Second Extracellular Loops of CCR5 and Anti-IL-23p19 Antibody Reduce Airway Inflammation by Suppressing the IL-23/Th17 Signaling Pathway. Mediators Inflamm 2020; 2020:1719467. [PMID: 32410846 PMCID: PMC7204182 DOI: 10.1155/2020/1719467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Asthma is a heterogeneous chronic inflammatory disorder of the airways with a complex etiology, which involves a variety of cells and cellular components. Therefore, the aim of the study was to investigate the effects and mechanisms of antagonistic peptides that specifically bind to the first and second extracellular loops of CCR5 (GH and HY peptides, respectively) and anti-interleukin-23 subunit p19 (anti-IL-23p19) in the airway and thereby mediate inflammation and the IL-23/T helper 17 (Th17) cell pathway in asthmatic mice. An experimental asthma model using BALB/c mice was induced by ovalbumin (OVA) and treated with peptides that are antagonistic to CCR5 or with anti-IL-23p19. The extents of the asthmatic inflammation and mucus production were assessed. In addition, bronchoalveolar lavage fluid (BALF) was collected, the cells were counted, and the IL-4 level was detected by ELISA. The IL-23/Th17 pathway-related protein and mRNA levels in the lung tissues were measured, and the positive production rates of Th17 cells in the thymus, spleen, and peripheral blood were detected. The groups treated with one of the two peptides and/or anti-IL-23p19 showed significant reductions in allergic inflammation and mucus secretion; decreased expression levels of IL-23p19, IL-23R, IL-17A and lactoferrin (LTF); and reduced proportions of Th17 cells in the thymus, spleen, and peripheral blood. Specifically, among the four treatment groups, the anti-IL-23p19 with HY peptide group exhibited the lowest positive production rate of Th17 cells. Our data also showed a significant and positive correlation between CCR5 and IL-23p19 protein expression. These findings suggest that the administration of peptides antagonistic to CCR5 and/or anti-IL-23p19 can reduce airway inflammation in asthmatic mice, most likely through inhibition of the IL-23/Th17 signaling pathway, and the HY peptide can alleviate inflammation not only through the IL-23/Th17 pathway but also through other mechanisms that result in the regulation of inflammation.
Collapse
|
19
|
CCR5: Established paradigms and new frontiers for a 'celebrity' chemokine receptor. Cytokine 2019; 109:81-93. [PMID: 29903576 DOI: 10.1016/j.cyto.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 01/04/2023]
Abstract
Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.
Collapse
|
20
|
Arendt V, Amand M, Iserentant G, Lemaire M, Masquelier C, Ndayisaba GF, Verhofstede C, Karita E, Allen S, Chevigné A, Schmit J, Bercoff DP, Seguin‐Devaux C. Predominance of the heterozygous CCR5 delta-24 deletion in African individuals resistant to HIV infection might be related to a defect in CCR5 addressing at the cell surface. J Int AIDS Soc 2019; 22:e25384. [PMID: 31486251 PMCID: PMC6727025 DOI: 10.1002/jia2.25384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The chemokine receptor CCR5 is the main co-receptor for R5-tropic HIV-1 variants. We have previously described a novel 24-base pair deletion in the coding region of CCR5 among individuals from Rwanda. Here, we investigated the prevalence of hCCR5Δ24 in different cohorts and its impact on CCR5 expression and HIV-1 infection in vitro. METHODS We screened hCCR5Δ24 in a total of 3232 individuals which were either HIV-1 uninfected, high-risk HIV-1 seronegative and seropositive partners from serodiscordant couples, Long-Term Survivors, or HIV-1 infected volunteers from Africa (Rwanda, Kenya, Guinea-Conakry) and Luxembourg, using a real-time PCR assay. The role of the 24-base pair deletion on CCR5 expression and HIV infection was assessed in cell lines and PBMC using mRNA quantification, confocal analysis, flow and imaging cytometry. RESULTS AND DISCUSSION Among the 1661 patients from Rwanda, 12 individuals were heterozygous for hCCR5Δ24 but none were homozygous. Although heterozygosity for this allele may not confer complete resistance to HIV-1 infection, the prevalence of the mutation was 2.41% (95%CI: 0.43; 8.37) in 83 Long-Term Survivors (LTS) and 0.99% (95%CI: 0.45; 2.14) in 613 HIV-1 exposed seronegative members as compared with 0.35% (95% Cl: 0.06; 1.25) in 579 HIV-1 seropositive members. The prevalence of hCCR5Δ24 was 0.55% (95%CI: 0.15; 1.69) in 547 infants from Kenya but the mutation was not detected in 224 infants from Guinea-Conakry nor in 800 Caucasian individuals from Luxembourg. Expression of hCCR5Δ24 in cell lines and PBMC showed that the hCCR5Δ24 protein is stably expressed but is not transported to the plasma membrane due to a conformational change. Instead, the mutant receptor was retained intracellularly, colocalized with an endoplasmic reticulum marker and did not mediate HIV-1 infection. Co-transfection of hCCR5Δ24 and wtCCR5 did not indicate a transdominant negative effect of CCR5Δ24 on wtCCR5. CONCLUSIONS Our findings indicate that hCCR5Δ24 is not expressed at the cell surface. This could explain the higher prevalence of the heterozygous hCCR5Δ24 in LTS and HIV-1 exposed seronegative members from serodiscordant couples. Our data suggest an East-African localization of this deletion, which needs to be confirmed in larger cohorts from African and non-African countries.
Collapse
Affiliation(s)
- Vic Arendt
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
- Centre Hospitalier de LuxembourgNational Service of Infectious DiseasesLuxembourgLuxembourg
| | - Mathieu Amand
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Gilles Iserentant
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Morgane Lemaire
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Cécile Masquelier
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | | | - Chris Verhofstede
- Department of Clinical Chemistry, Microbiology and ImmunologyAIDS Reference LaboratoryGhent UniversityGhentBelgium
| | - Etienne Karita
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGAUSA
| | - Susan Allen
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGAUSA
| | - Andy Chevigné
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Jean‐Claude Schmit
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Danielle Perez Bercoff
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| | - Carole Seguin‐Devaux
- Department of Infection and ImmunityLuxembourg Institute of HealthEsch‐sur‐AlzetteLuxembourg
| |
Collapse
|
21
|
Denard B, Han S, Kim J, Ross EM, Ye J. Regulating G protein-coupled receptors by topological inversion. eLife 2019; 8:40234. [PMID: 30835201 PMCID: PMC6400500 DOI: 10.7554/elife.40234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 02/01/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a family of proteins containing seven transmembrane helices, with the N- and C-terminus of the protein located at the extracellular space and cytosol, respectively. Here, we report that ceramide or related sphingolipids might invert the topology of many GPCRs that contain a GXXXN motif in their first transmembrane helix. The functional significance of this topological regulation is illustrated by the CCR5 chemokine receptor. In the absence of lipopolysaccharide (LPS), CCR5 adopts a topology consistent with that of GPCR, allowing mouse peritoneal macrophages to migrate toward its ligand CCL5. LPS stimulation results in increased production of dihydroceramide, which inverts the topology of CCR5, preventing macrophages from migrating toward CCL5. These results suggest that GPCRs may not always adopt the same topology and can be regulated through topological inversion. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that major issues remain unresolved (see decision letter).
Collapse
Affiliation(s)
- Bray Denard
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sungwon Han
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - JungYeon Kim
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Elliott M Ross
- Department of Pharmacology, Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
22
|
Colin P, Zhou Z, Staropoli I, Garcia-Perez J, Gasser R, Armani-Tourret M, Benureau Y, Gonzalez N, Jin J, Connell BJ, Raymond S, Delobel P, Izopet J, Lortat-Jacob H, Alcami J, Arenzana-Seisdedos F, Brelot A, Lagane B. CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS Pathog 2018; 14:e1007432. [PMID: 30521629 PMCID: PMC6283471 DOI: 10.1371/journal.ppat.1007432] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/24/2018] [Indexed: 01/20/2023] Open
Abstract
CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.
Collapse
Affiliation(s)
- Philippe Colin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Paris Diderot University, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, Paris, France
| | - Zhicheng Zhou
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Isabelle Staropoli
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | | | - Romain Gasser
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Marie Armani-Tourret
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
| | - Yann Benureau
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Nuria Gonzalez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Jin
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bridgette J. Connell
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Stéphanie Raymond
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Pierre Delobel
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse, France
| | - Jacques Izopet
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- CHU de Toulouse, Laboratoire de Virologie, Toulouse, France
| | - Hugues Lortat-Jacob
- Grenoble Alpes University, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Arenzana-Seisdedos
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Anne Brelot
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
| | - Bernard Lagane
- Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
- INSERM Unit U1108, Institut Pasteur, Paris, France
- Centre de Physiopathologie Toulouse-Purpan (CPTP), Université de Toulouse, CNRS, Inserm, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
23
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
24
|
Heredia JD, Park J, Brubaker RJ, Szymanski SK, Gill KS, Procko E. Mapping Interaction Sites on Human Chemokine Receptors by Deep Mutational Scanning. THE JOURNAL OF IMMUNOLOGY 2018; 200:3825-3839. [PMID: 29678950 DOI: 10.4049/jimmunol.1800343] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 02/02/2023]
Abstract
Chemokine receptors CXCR4 and CCR5 regulate WBC trafficking and are engaged by the HIV-1 envelope glycoprotein gp120 during infection. We combine a selection of human CXCR4 and CCR5 libraries comprising nearly all of ∼7000 single amino acid substitutions with deep sequencing to define sequence-activity landscapes for surface expression and ligand interactions. After consideration of sequence constraints for surface expression, known interaction sites with HIV-1-blocking Abs were appropriately identified as conserved residues following library sorting for Ab binding, validating the use of deep mutational scanning to map functional interaction sites in G protein-coupled receptors. Chemokine CXCL12 was found to interact with residues extending asymmetrically into the CXCR4 ligand-binding cavity, similar to the binding surface of CXCR4 recognized by an antagonistic viral chemokine previously observed crystallographically. CXCR4 mutations distal from the chemokine binding site were identified that enhance chemokine recognition. This included disruptive mutations in the G protein-coupling site that diminished calcium mobilization, as well as conservative mutations to a membrane-exposed site (CXCR4 residues H792.45 and W1614.50) that increased ligand binding without loss of signaling. Compared with CXCR4-CXCL12 interactions, CCR5 residues conserved for gp120 (HIV-1 BaL strain) interactions map to a more expansive surface, mimicking how the cognate chemokine CCL5 makes contacts across the entire CCR5 binding cavity. Acidic substitutions in the CCR5 N terminus and extracellular loops enhanced gp120 binding. This study demonstrates how comprehensive mutational scanning can define functional interaction sites on receptors, and novel mutations that enhance receptor activities can be found simultaneously.
Collapse
Affiliation(s)
- Jeremiah D Heredia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jihye Park
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Riley J Brubaker
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven K Szymanski
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Kevin S Gill
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Erik Procko
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
25
|
Guryanov I, Cipriani S, Fiorucci S, Zashikhina N, Marchianò S, Scarpelli P, Korzhikov-Vlakh V, Popova E, Korzhikova-Vlakh E, Biondi B, Formaggio F, Tennikova T. Nanotraps with biomimetic surface as decoys for chemokines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2575-2585. [DOI: 10.1016/j.nano.2017.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/28/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022]
|
26
|
Venuti A, Pastori C, Lopalco L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front Immunol 2017; 8:1358. [PMID: 29163468 PMCID: PMC5670346 DOI: 10.3389/fimmu.2017.01358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies (Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN) or HIV-infected individuals who control disease progression (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.
Collapse
Affiliation(s)
- Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Tan Y, Tong P, Wang J, Zhao L, Li J, Yu Y, Chen YH, Wang J. The Membrane-Proximal Region of C-C Chemokine Receptor Type 5 Participates in the Infection of HIV-1. Front Immunol 2017; 8:478. [PMID: 28484468 PMCID: PMC5402540 DOI: 10.3389/fimmu.2017.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023] Open
Abstract
The initial infection and transmission of HIV-1 requires C-C chemokine receptor type 5 (CCR5). Here, we report that the membrane-proximal region (MPR, aa 22-38) of CCR5 participates in the infection of HIV-1. First, MPR-specific antibodies elicited in mice dose-dependently inhibited the infection of CCR5-tropic HIV-1. Second, substituting MPR with the same region from other co-receptors significantly impaired HIV-1 infection, while the key residues identified by alanine scanning mutagenesis formed an exposed leucine zipper-like structure. Moreover, a peptide derived from MPR could block the infection of a number of HIV-1 strains only before the formation of gp41 six-helix bundle, coincide with the early interaction between CCR5 and the gp120 protein during HIV-1 infection. These promising results ensured the potential of this previously uncharacterized domain as a starting point for the development of antiviral drugs, blocking antibodies, and HIV vaccines.
Collapse
Affiliation(s)
- Yue Tan
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Pei Tong
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Junyi Wang
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Lei Zhao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jing Li
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Yang Yu
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Ying-Hua Chen
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China
| | - Ji Wang
- Laboratory of Immunology, School of Life Sciences, Beijing Key Laboratory for Protein Therapeutics, Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing, China.,Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Malik T, Chauhan G, Rath G, Murthy RSR, Goyal AK. "Fusion and binding inhibition" key target for HIV-1 treatment and pre-exposure prophylaxis: targets, drug delivery and nanotechnology approaches. Drug Deliv 2017; 24:608-621. [PMID: 28240046 PMCID: PMC8241151 DOI: 10.1080/10717544.2016.1228717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
More than 35 million people are living with HIV worldwide with approximately 2.3 million new infections per year. Cascade of events (cell entry, virus replication, assembly and release of newly formed virions) is involved in the HIV-1 transmission process. Every single step offers a potential therapeutic strategy to halt this progression and HIV fusion into the human host cell is one such stage. Controlling the initial event of HIV-1 transmission is the best way to control its dissemination especially when prophylaxis is concerned. Action is required either on the HIV’s or host’s cell surface which is logically more rational when compared with other intracellular acting moieties. Aim of this manuscript is to detail the significance and current strategies to halt this initial step, thus blocking the entry of HIV-1 for further infection. Both HIV-1 and the possible host cell’s receptors/co-receptors are under focus while specifying the targets available for inhibiting this fusion. Current and under investigation moieties are categorized based on their versatile mechanisms. Advanced drug delivery and nanotechnology approaches present a key tool to exploit the therapeutic potential in a boosted way. Current drug delivery and the impact of nanotechnology in potentiating this strategy are detailed.
Collapse
Affiliation(s)
- Tanushree Malik
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - Gaurav Chauhan
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and.,b Centre for Nanosciences, Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur , India
| | - Goutam Rath
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - R S R Murthy
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| | - Amit K Goyal
- a DBT Lab, Indo Soviet Friendship College of Pharmacy , Moga , India and
| |
Collapse
|
29
|
Gasser R, Hamoudi M, Pellicciotta M, Zhou Z, Visdeloup C, Colin P, Braibant M, Lagane B, Negroni M. Buffering deleterious polymorphisms in highly constrained parts of HIV-1 envelope by flexible regions. Retrovirology 2016; 13:50. [PMID: 27473399 PMCID: PMC4967302 DOI: 10.1186/s12977-016-0285-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Background Covariation is an essential process that leads to coevolution of parts of proteins and genomes. In organisms subject to strong selective pressure, coevolution is central to keep the balance between the opposite requirements of antigenic variation and retention of functionality. Being the viral component most exposed to the external environment, the HIV-1 glycoprotein gp120 constitutes the main target of the immune response. Accordingly its more external portions are characterised by extensive sequence heterogeneity fostering constant antigenic variation. Results We report that a single polymorphism, present at the level of the viral population in the conserved internal region C2, was sufficient to totally abolish Env functionality when introduced in an exogenous genetic context. The prominent defect of the non-functional protein is a block occurring after recognition of the co-receptor CCR5, likely due to an interference with the subsequent conformational changes that lead to membrane fusion. We also report that the presence of compensatory polymorphisms at the level of the external and hypervariable region V3 fully restored the functionality of the protein. The functional revertant presents different antigenic profiles and sensitivity to the entry inhibitor TAK 779. Conclusions Our data suggest that variable regions, besides harbouring intrinsic extensive antigenic diversity, can also contribute to sequence diversification in more structurally constrained parts of the gp120 by buffering the deleterious effect of polymorphisms, further increasing the genetic flexibility of the protein and the antigenic repertoire of the viral population.
Collapse
Affiliation(s)
- Romain Gasser
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Meriem Hamoudi
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.,U1016, UMR 8104, INSERM-CNRS, Institut Cochin, Université Paris Descartes, Paris, France
| | - Martina Pellicciotta
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France
| | - Zhicheng Zhou
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Philippe Colin
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | | | - Bernard Lagane
- INSERM U1108, Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Matteo Negroni
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084, Strasbourg, France.
| |
Collapse
|
30
|
Kuzmina A, Vaknin K, Gdalevsky G, Vyazmensky M, Marks RS, Taube R, Engel S. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes. PLoS One 2015; 10:e0144043. [PMID: 26629902 PMCID: PMC4667905 DOI: 10.1371/journal.pone.0144043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022] Open
Abstract
Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.
Collapse
Affiliation(s)
- Alona Kuzmina
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Karin Vaknin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Garik Gdalevsky
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maria Vyazmensky
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
| | - Robert S. Marks
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- The Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (SE); (RT)
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- National Institute for Biotechnology in the Negev, Beer-Sheva, Israel
- The Department of Biotechnology Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
31
|
Platt EJ, Durnin JP, Kabat D. Short Communication: HIV-1 Variants That Use Mouse CCR5 Reveal Critical Interactions of gp120's V3 Crown with CCR5 Extracellular Loop 1. AIDS Res Hum Retroviruses 2015; 31:992-8. [PMID: 26114311 PMCID: PMC4576943 DOI: 10.1089/aid.2015.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The CCR5 coreceptor amino terminus and extracellular (ECL) loops 1 and 2 have been implicated in HIV-1 infections, with species differences in these regions inhibiting zoonoses. Interactions of gp120 with CD4 and CCR5 reduce constraints on metastable envelope subunit gp41, enabling gp41 conformational changes needed for infection. We previously selected HIV-1JRCSF variants that efficiently use CCR5(Δ18) with a deleted amino terminus or CCR5(HHMH) with ECL2 from an NIH/Swiss mouse. Unexpectedly, the adaptive gp120 mutations were nearly identical, suggesting that they function by weakening gp120's grip on gp41 and/or by increasing interactions with ECL1. To analyze this and further wean HIV-1 from human CCR5, we selected variants using CCR5(HMMH) with murine ECL1 and 2 sequences. HIV-1JRCSF mutations adaptive for CCR5(Δ18) and CCR5(HHMH) were generally maladaptive for CCR5(HMMH), whereas the converse was true for CCR5(HMMH) adaptations. The HIV-1JRCSF variant adapted to CCR5(HMMH) also weakly used intact NIH/Swiss mouse CCR5. Our results strongly suggest that HIV-1JRCSF makes functionally critical contacts with human ECL1 and that adaptation to murine ECL1 requires multiple mutations in the crown of gp120's V3 loop.
Collapse
Affiliation(s)
- Emily J. Platt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - James P. Durnin
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| | - David Kabat
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
32
|
Salmas RE, Yurtsever M, Durdagi S. Investigation of Inhibition Mechanism of Chemokine Receptor CCR5 by Micro-second Molecular Dynamics Simulations. Sci Rep 2015; 5:13180. [PMID: 26299310 PMCID: PMC4547396 DOI: 10.1038/srep13180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022] Open
Abstract
Chemokine receptor 5 (CCR5) belongs to G protein coupled receptors (GPCRs) and plays an important role in treatment of human immunodeficiency virus (HIV) infection since HIV uses CCR5 protein as a co-receptor. Recently, the crystal structure of CCR5-bound complex with an approved anti-retroviral drug (maroviroc) was resolved. During the crystallization procedure, amino acid residues (i.e., Cys224, Arg225, Asn226 and Glu227) at the third intra-cellular loop were replaced by the rubredoxin for stability reasons. In the current study, we aimed to understand the impact of the incorporated rubredoxin on the conformations of TM domains of the target protein. For this reason, rubredoxin was deleted from the crystal structure and the missing amino acids were engineered. The resultant structure was subjected to long (μs) molecular dynamics (MD) simulations to shed light into the inhibitory mechanism. The derived model structure displayed a significant deviation in the cytoplasmic domain of TM5 and IC3 in the absence of rubredoxin. The principal component analyses (PCA) and MD trajectory analyses revealed important structural and dynamical differences at apo and holo forms of the CCR5.
Collapse
Affiliation(s)
| | - Mine Yurtsever
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Serdar Durdagi
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
33
|
P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions. J Virol 2015; 89:9368-82. [PMID: 26136569 DOI: 10.1128/jvi.01178-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1 receptor antagonist, NF279, is due to the blocking of virus interactions with both the CXCR4 and CCR5 coreceptors. The ability of NF279 to abrogate cellular calcium signaling induced by the respective chemokines showed that this compound acts as a dual-coreceptor antagonist. P2X1 receptor antagonists could thus represent a new class of dual-coreceptor inhibitors with a structure and a mechanism of action that are distinct from those of known HIV-1 coreceptor antagonists.
Collapse
|
34
|
Garcia-Perez J, Staropoli I, Azoulay S, Heinrich JT, Cascajero A, Colin P, Lortat-Jacob H, Arenzana-Seisdedos F, Alcami J, Kellenberger E, Lagane B. A single-residue change in the HIV-1 V3 loop associated with maraviroc resistance impairs CCR5 binding affinity while increasing replicative capacity. Retrovirology 2015; 12:50. [PMID: 26081316 PMCID: PMC4470041 DOI: 10.1186/s12977-015-0177-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Background Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. Results Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. Conclusion These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Garcia-Perez
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Isabelle Staropoli
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | | | | | - Almudena Cascajero
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | - Philippe Colin
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France. .,Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Rue du Docteur Roux, 75015, Paris, France.
| | - Hugues Lortat-Jacob
- Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS), 38027, Grenoble, France. .,CNRS, IBS, 38027, Grenoble, France. .,CEA, DSV, IBS, 38027, Grenoble, France.
| | - Fernando Arenzana-Seisdedos
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| | - Jose Alcami
- AIDS Immunopathogenesis Unit, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| | | | - Bernard Lagane
- INSERM U1108, Institut Pasteur, 75015, Paris, France. .,Viral Pathogenesis Unit, Department of Virology, Institut Pasteur, 75015, Paris, France.
| |
Collapse
|
35
|
Chain B, Arnold J, Akthar S, Brandt M, Davis D, Noursadeghi M, Lapp T, Ji C, Sankuratri S, Zhang Y, Govada L, Saridakis E, Chayen N. A Linear Epitope in the N-Terminal Domain of CCR5 and Its Interaction with Antibody. PLoS One 2015; 10:e0128381. [PMID: 26030924 PMCID: PMC4451072 DOI: 10.1371/journal.pone.0128381] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 12/29/2022] Open
Abstract
The CCR5 receptor plays a role in several key physiological and pathological processes and is an important therapeutic target. Inhibition of the CCR5 axis by passive or active immunisation offers one very selective strategy for intervention. In this study we define a new linear epitope within the extracellular domain of CCR5 recognised by two independently produced monoclonal antibodies. A short peptide encoding the linear epitope can induce antibodies which recognise the intact receptor when administered colinear with a tetanus toxoid helper T cell epitope. The monoclonal antibody RoAb 13 is shown to bind to both cells and peptide with moderate to high affinity (6x10^8 and 1.2x107 M-1 respectively), and binding to the peptide is enhanced by sulfation of tyrosines at positions 10 and 14. RoAb13, which has previously been shown to block HIV infection, also blocks migration of monocytes in response to CCR5 binding chemokines and to inflammatory macrophage conditioned medium. A Fab fragment of RoAb13 has been crystallised and a structure of the antibody is reported to 2.1 angstrom resolution.
Collapse
Affiliation(s)
- Benny Chain
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
- * E-mail:
| | - Jack Arnold
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
| | - Samia Akthar
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
| | - Michael Brandt
- Virology Discovery and Translational Area, Roche Nutley, 340 Kingsland Street Nutley, NJ 07110, United States of America
| | - David Davis
- Department of Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
| | - Thabo Lapp
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
| | - Changhua Ji
- Virology Discovery and Translational Area, Roche Nutley, 340 Kingsland Street Nutley, NJ 07110, United States of America
| | - Surya Sankuratri
- Virology Discovery and Translational Area, Roche Nutley, 340 Kingsland Street Nutley, NJ 07110, United States of America
| | - Yanjing Zhang
- Division of Infection and Immunity, UCL, Gower St., London, United Kingdom
| | - Lata Govada
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Emmanuel Saridakis
- Laboratory of Structural and Supramolecular Chemistry, Department of Physical Chemistry, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Naomi Chayen
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Fox JM, Kasprowicz R, Hartley O, Signoret N. CCR5 susceptibility to ligand-mediated down-modulation differs between human T lymphocytes and myeloid cells. J Leukoc Biol 2015; 98:59-71. [PMID: 25957306 PMCID: PMC4560160 DOI: 10.1189/jlb.2a0414-193rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 04/03/2015] [Indexed: 01/04/2023] Open
Abstract
CCR5 is a chemokine receptor expressed on leukocytes and a coreceptor used by HIV-1 to enter CD4(+) T lymphocytes and macrophages. Stimulation of CCR5 by chemokines triggers internalization of chemokine-bound CCR5 molecules in a process called down-modulation, which contributes to the anti-HIV activity of chemokines. Recent studies have shown that CCR5 conformational heterogeneity influences chemokine-CCR5 interactions and HIV-1 entry in transfected cells or activated CD4(+) T lymphocytes. However, the effect of CCR5 conformations on other cell types and on the process of down-modulation remains unclear. We used mAbs, some already shown to detect distinct CCR5 conformations, to compare the behavior of CCR5 on in vitro generated human T cell blasts, monocytes and MDMs and CHO-CCR5 transfectants. All human cells express distinct antigenic forms of CCR5 not detected on CHO-CCR5 cells. The recognizable populations of CCR5 receptors exhibit different patterns of down-modulation on T lymphocytes compared with myeloid cells. On T cell blasts, CCR5 is recognized by all antibodies and undergoes rapid chemokine-mediated internalization, whereas on monocytes and MDMs, a pool of CCR5 molecules is recognized by a subset of antibodies and is not removed from the cell surface. We demonstrate that this cell surface-retained form of CCR5 responds to prolonged treatment with more-potent chemokine analogs and acts as an HIV-1 coreceptor. Our findings indicate that the regulation of CCR5 is highly specific to cell type and provide a potential explanation for the observation that native chemokines are less-effective HIV-entry inhibitors on macrophages compared with T lymphocytes.
Collapse
Affiliation(s)
- James M Fox
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Richard Kasprowicz
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Nathalie Signoret
- *Department of Biology and Hull York Medical School, Center for Immunology and Infection, University of York, York, United Kingdom; and Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
37
|
Naganathan S, Ray-Saha S, Park M, Tian H, Sakmar TP, Huber T. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids. Biochemistry 2015; 54:776-86. [PMID: 25524496 PMCID: PMC4310623 DOI: 10.1021/bi501267x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
We developed a strategy for identifying
positions in G protein-coupled
receptors that are amenable to bioorthogonal modification with a peptide
epitope tag under cell culturing conditions. We introduced the unnatural
amino acid p-azido-l-phenylalanine (azF)
into human CC chemokine receptor 5 (CCR5) at site-specific amber codon
mutations. We then used strain-promoted azide–alkyne [3+2]
cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated
aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich
fluorophore-linked immunosorbent assay was used to probe simultaneously
the FLAG epitope and the receptor using infrared dye-conjugated antibodies
so that the extent of DBCO incorporation, corresponding nominally
to labeling efficiency, could be quantified ratiometrically. The extent
of incorporation of DBCO at the various sites was evaluated in the
context of a recent crystal structure of maraviroc-bound CCR5. We
observed that labeling efficiency varied dramatically depending on
the topological location of the azF in CCR5. Interestingly, position
109 in transmembrane helix 3, located in a hydrophobic cavity on the
extracellular side of the receptor, was labeled most efficiently.
Because the bioorthogonal labeling and detection strategy described
might be used to introduce a variety of different peptide epitopes
or fluorophores into engineered expressed receptors, it might prove
to be useful for a wide range of applications, including single-molecule
detection studies of receptor trafficking and signaling mechanism.
Collapse
Affiliation(s)
- Saranga Naganathan
- Laboratory of Chemical Biology & Signal Transduction, The Rockefeller University , New York, New York 10065, United States
| | | | | | | | | | | |
Collapse
|
38
|
Latinovic O, Schneider K, Szmacinski H, Lakowicz JR, Heredia A, Redfield RR. Binding of fusion protein FLSC IgG1 to CCR5 is enhanced by CCR5 antagonist Maraviroc. Antiviral Res 2014; 112:80-90. [PMID: 25453341 DOI: 10.1016/j.antiviral.2014.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/03/2014] [Accepted: 10/10/2014] [Indexed: 11/30/2022]
Abstract
The CCR5 chemokine receptor is crucial for human immunodeficiency virus type 1 (HIV-1) infection, acting as the principal coreceptor for HIV-1 entry and transmission and is thus an attractive target for antiviral therapy. Studies have suggested that CCR5 surface density and its conformational changes subsequent to virion engagement are rate limiting for entry, and consequently, infection. Not all CCR5 antibodies inhibit HIV-1 infection, suggesting a need for more potent reagents. Here we evaluated full length single chain (FLSC) IgG1, a novel IgG-CD4-gp120(BAL) fusion protein with several characteristics that make it an attractive candidate for treatment of HIV-1 infections, including bivalency and a potentially increased serum half-life over FLSC, the parental molecule. FLSC IgG1 binds two domains on CCR5, the N-terminus and the second extracellular loop, lowering the levels of available CCR5 viral attachment sites. Furthermore, FLSC IgG1 synergizes with Maraviroc (MVC), the only licensed CCR5 antagonist. In this study, we used both microscopy and functional assays to address the mechanistic aspects of the interactions of FLSC IgG1 and MVC in the context of CCR5 conformational changes and viral infection. We used a novel stochastic optical reconstruction microscopy (STORM), based on high resolution localization of photoswitchable dyes to visualize direct contacts between FLSC IgG1 and CCR5. We compared viral entry inhibition by FLSC IgG1 with that of other CCR5 blockers and showed FLSC IgG1 to be the most potent. We also showed that lower CCR5 surface densities in HIV-1 infected primary cells result in lower FLSC IgG1 EC50 values. In addition, CCR5 binding by FLSC IgG1, but not CCR5 Ab 2D7, was significantly increased when cells were treated with MVC, suggesting MVC allosterically increases exposure of the FLSC IgG1 binding site. These data have implications for future antiviral therapy development.
Collapse
Affiliation(s)
- Olga Latinovic
- Institute of Human Virology, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kate Schneider
- Institute of Human Virology, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Henryk Szmacinski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joseph R Lakowicz
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert R Redfield
- Institute of Human Virology, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Chikere K, Webb NE, Chou T, Borm K, Sterjovski J, Gorry PR, Lee B. Distinct HIV-1 entry phenotypes are associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies. Retrovirology 2014; 11:48. [PMID: 24957778 PMCID: PMC4230403 DOI: 10.1186/1742-4690-11-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The efficiency of CD4/CCR5 mediated HIV-1 entry has important implications for pathogenesis and transmission. The HIV-1 receptor affinity profiling (Affinofile) system analyzes and quantifies the infectivity of HIV-1 envelopes (Envs) across a spectrum of CD4/CCR5 expression levels and distills these data into a set of Affinofile metrics. The Affinofile system has shed light on how differential CD4/CCR5 usage efficiencies contributes to an array of Env phenotypes associated with cellular tropism, viral pathogenesis, and CCR5 inhibitor resistance. To facilitate more rapid, convenient, and robust analysis of HIV-1 entry phenotypes, we engineered a reporter Affinofile system containing a Tat- and Rev-dependent Gaussia luciferase-eGFP-Reporter (GGR) that is compatible with the use of pseudotyped or replication competent viruses with or without a virally encoded reporter gene. This GGR Affinofile system enabled a higher throughput characterization of CD4/CCR5 usage efficiencies associated with differential Env phenotypes. RESULTS We first validated our GGR Affinofile system on isogenic JR-CSF Env mutants that differ in their affinity for CD4 and/or CCR5. We established that their GGR Affinofile metrics reflected their differential entry phenotypes on primary PBMCs and CD4+ T-cell subsets. We then applied GGR Affinofile profiling to reveal distinct entry phenotypes associated with transmission, subtype specificity, and resistance to broadly neutralizing antibodies (BNAbs). First, we profiled a panel of reference subtype B transmitted/founder (T/F) and chronic Envs (n = 12) by analyzing the infectivity of each Env across 25 distinct combinations of CD4/CCR5 expression levels. Affinofile metrics revealed that at low CCR5 levels, our panel of subtype B T/F Envs was more dependent on high levels of CD4 for HIV-1 entry compared to chronic Envs. Next, we analyzed a reference panel of 28 acute/early subtype A-D Envs, and noted that subtype C Envs could be distinguished from the other subtypes based on their infectivity profiles and relevant Affinofile metrics. Lastly, mutations known to confer resistance to VRC01 or PG6/PG19 BNAbs, when engineered into subtypes A-D Envs, resulted in significantly decreased CD4/CCR5 usage efficiency. CONCLUSIONS GGR Affinofile profiling reveals pathophysiological phenotypes associated with varying HIV-1 entry efficiencies, and highlight the fitness costs associated with resistance to some broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Kelechi Chikere
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Nicholas E Webb
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
| | - Tom Chou
- Department of Biomathematics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Katharina Borm
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
| | - Jasminka Sterjovski
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Paul R Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Benhur Lee
- Department of Microbiology, Immunology, and Molecular Genetics, Los Angeles, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, #1124, New York, NY 10029, USA
| |
Collapse
|
40
|
Shimoni M, Herschhorn A, Britan-Rosich Y, Kotler M, Benhar I, Hizi A. The isolation of novel phage display-derived human recombinant antibodies against CCR5, the major co-receptor of HIV. Viral Immunol 2014; 26:277-90. [PMID: 23941674 DOI: 10.1089/vim.2012.0029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Selecting for antibodies against specific cell-surface proteins is a difficult task due to many unrelated proteins that are expressed on the cell surface. Here, we describe a method to screen antibody-presenting phage libraries against native cell-surface proteins. We applied this method to isolate antibodies that selectively recognize CCR5, which is the major co-receptor for HIV entry (consequently, playing a pivotal role in HIV transmission and pathogenesis). We employed a phage screening strategy by using cells that co-express GFP and CCR5, along with an excess of control cells that do not express these proteins (and are otherwise identical to the CCR5-expressing cells). These control cells are intended to remove most of the phages that bind the cells nonspecifically; thus leading to an enrichment of the phages presenting anti-CCR5-specific antibodies. Subsequently, the CCR5-presenting cells were quantitatively sorted by flow cytometry, and the bound phages were eluted, amplified, and used for further successive selection rounds. Several different clones of human single-chain Fv antibodies that interact with CCR5-expressing cells were identified. The most specific monoclonal antibody was converted to a full-length IgG and bound the second extracellular loop of CCR5. The experimental approach presented herein for screening for CCR5-specific antibodies can be applicable to screen antibody-presenting phage libraries against any cell-surface expressed protein of interest.
Collapse
Affiliation(s)
- Moria Shimoni
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Nakano Y, Monde K, Terasawa H, Yuan Y, Yusa K, Harada S, Maeda Y. Preferential recognition of monomeric CCR5 expressed in cultured cells by the HIV-1 envelope glycoprotein gp120 for the entry of R5 HIV-1. Virology 2014; 452-453:117-24. [DOI: 10.1016/j.virol.2013.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
|
42
|
Flegler AJ, Cianci GC, Hope TJ. CCR5 conformations are dynamic and modulated by localization, trafficking and G protein association. PLoS One 2014; 9:e89056. [PMID: 24586501 PMCID: PMC3938464 DOI: 10.1371/journal.pone.0089056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
CCR5 acts as the principal coreceptor during HIV-1 transmission and early stages of infection. Efficient HIV-1 entry requires a series of processes, many dependent on the conformational state of both viral envelope protein and cellular receptor. Monoclonal antibodies (MAbs) are able to identify different CCR5 conformations, allowing for their use as probes to distinguish CCR5 populations. Not all CCR5 MAbs are able to reduce HIV-1 infection, suggesting the use of select CCR5 populations for entry. In the U87.CD4.CCR5-GFP cell line, we used such HIV-1-restricting MAbs to probe the relation between localization, trafficking and G protein association for individual CCR5 conformations. We find that CCR5 conformations not only exhibit different localization and abundance patterns throughout the cell, but that they also display distinct sensitivities to endocytosis inhibition. Using chemokine analogs that vary in their HIV-1 inhibitory mechanisms, we also illustrate that responses to ligand engagement are conformation-specific. Additionally, we provide supporting evidence for the select sensitivity of conformations to G protein association. Characterizing the link between the function and dynamics of CCR5 populations has implications for understanding their selective targeting by HIV-1 and for the development of inhibitors that will block CCR5 utilization by the virus.
Collapse
Affiliation(s)
- Ayanna J. Flegler
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gianguido C. Cianci
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
43
|
Ray-Saha S, Huber T, Sakmar TP. Antibody epitopes on g protein-coupled receptors mapped with genetically encoded photoactivatable cross-linkers. Biochemistry 2014; 53:1302-10. [PMID: 24490954 PMCID: PMC3985944 DOI: 10.1021/bi401289p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
We
developed a strategy for creating epitope maps of monoclonal
antibodies (mAbs) that bind to G protein-coupled receptors (GPCRs)
containing photo-cross-linkers. Using human CXC chemokine receptor
4 (CXCR4) as a model system, we genetically incorporated the photolabile
unnatural amino acid p-azido-l-phenylalanine
(azF) at various positions within extracellular loop 2 (EC2). We then
mapped the interactions of the azF-CXCR4 variants with mAb 12G5 using
targeted loss-of-function studies and photo-cross-linking in whole
cells in a microplate-based format. We used a novel variation of a
whole cell enzyme-linked immunosorbent assay to quantitate cross-linking
efficiency. 12G5 cross-linked primarily to residues 184, 178, and
189 in EC2 of CXCR4. Mapping of the data to the crystal structure
of CXCR4 showed a distinct mAb epitope footprint with the photo-cross-linked
residues clustered around the loss-of-function sites. We also used
the targeted photo-cross-linking approach to study the interaction
of human CC chemokine receptor 5 (CCR5) with PRO 140, a humanized
mAb that inhibits human immunodeficiency virus-1 cellular entry, and
2D7. The mAbs produced distinct cross-linking patterns on EC2 of CCR5.
PRO 140 cross-linked primarily to residues 174 and 175 at the amino-terminal
end of EC2, and 2D7 cross-linked mainly to residues 170, 176, and
184. These results were mapped to the recent crystal structure of
CCR5 in complex with maraviroc, showing cross-linked residues at the
tip of the maraviroc binding crevice formed by EC2. As a strategy
for mapping mAb epitopes on GPCRs, our targeted photo-cross-linking
method is complementary to loss-of-function mutagenesis results and
should be especially useful for studying mAbs with discontinuous epitopes.
Collapse
Affiliation(s)
- Sarmistha Ray-Saha
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University , 1230 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
44
|
Induction of HIV-blocking anti-CCR5 IgA in Peyers's patches without histopathological alterations. J Virol 2014; 88:3623-35. [PMID: 24403594 DOI: 10.1128/jvi.03663-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED The chemokine receptor CCR5 is essential for HIV infection and is thus a potential target for vaccine development. However, because CCR5 is a host protein, generation of anti-CCR5 antibodies requires the breaking of immune tolerance and thus carries the risk of autoimmune responses. In this study, performed in mice, we compared 3 different immunogens representing surface domains of murine CCR5, 4 different adjuvants, and 13 different immunization protocols, with the goal of eliciting HIV-blocking activity without inducing autoimmune dysfunction. In all cases the CCR5 sequences were presented as fusions to the Flock House virus (FHV) capsid precursor protein. We found that systemic immunization and mucosal boosting elicited CCR5-specific antibodies and achieved consistent priming in Peyer's patches, where most cells showed a phenotype corresponding to activated B cells and secreted high levels of IgA, representing up to one-third of the total HIV-blocking activity. Histopathological analysis revealed mild to moderate chronic inflammation in some tissues but failed in reporting signs of autoimmune dysfunction associated with immunizations. Antisera against immunogens representing the N terminus and extracellular loops 1 and 2 (Nter1 and ECL1 and ECL2) of CCR5 were generated. All showed specific anti-HIV activity, which was stronger in the anti-ECL1 and -ECL2 sera than in the anti-Nter sera. ECL1 and ECL2 antisera induced nearly complete long-lasting CCR5 downregulation of the receptor, and especially, their IgG-depleted fractions prevented HIV infection in neutralization and transcytosis assays. In conclusion, the ECL1 and ECL2 domains could offer a promising path to achieve significant anti-HIV activity in vivo. IMPORTANCE The study was the first to adopt a systematic strategy to compare the immunogenicities of all extracellular domains of the CCR5 molecule and to set optimal conditions leading to generation of specific antibodies in the mouse model. There were several relevant findings, which could be translated into human trials. (i) Prime (systemic) and boost (mucosal) immunization is the best protocol to induce anti-self antibodies with the expected properties. (ii) Aluminum is the best adjuvant in mice and thus can be easily used in nonhuman primates (NHP) and humans. (iii) The Flock House virus (FHV) system represents a valid delivery system, as the structure is well known and is not pathogenic for humans, and it is possible to introduce constrained regions able to elicit antibodies that recognize conformational epitopes. (iv) The best CCR5 vaccine candidate should include either extracellular loop 1 or 2 (ECL1 or ECL2), but not N terminus domains.
Collapse
|
45
|
Flanagan CA. Receptor Conformation and Constitutive Activity in CCR5 Chemokine Receptor Function and HIV Infection. ADVANCES IN PHARMACOLOGY 2014; 70:215-63. [DOI: 10.1016/b978-0-12-417197-8.00008-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Hauser KF, Knapp PE. Interactions of HIV and drugs of abuse: the importance of glia, neural progenitors, and host genetic factors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:231-313. [PMID: 25175867 PMCID: PMC4304845 DOI: 10.1016/b978-0-12-801284-0.00009-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Considerable insight has been gained into the comorbid, interactive effects of HIV and drug abuse in the brain using experimental models. This review, which considers opiates, methamphetamine, and cocaine, emphasizes the importance of host genetics and glial plasticity in driving the pathogenic neuron remodeling underlying neuro-acquired immunodeficiency syndrome and drug abuse comorbidity. Clinical findings are less concordant than experimental work, and the response of individuals to HIV and to drug abuse can vary tremendously. Host-genetic variability is important in determining viral tropism, neuropathogenesis, drug responses, and addictive behavior. However, genetic differences alone cannot account for individual variability in the brain "connectome." Environment and experience are critical determinants in the evolution of synaptic circuitry throughout life. Neurons and glia both exercise control over determinants of synaptic plasticity that are disrupted by HIV and drug abuse. Perivascular macrophages, microglia, and to a lesser extent astroglia can harbor the infection. Uninfected bystanders, especially astroglia, propagate and amplify inflammatory signals. Drug abuse by itself derails neuronal and glial function, and the outcome of chronic exposure is maladaptive plasticity. The negative consequences of coexposure to HIV and drug abuse are determined by numerous factors including genetics, sex, age, and multidrug exposure. Glia and some neurons are generated throughout life, and their progenitors appear to be targets of HIV and opiates/psychostimulants. The chronic nature of HIV and drug abuse appears to result in sustained alterations in the maturation and fate of neural progenitors, which may affect the balance of glial populations within multiple brain regions.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Pamela E Knapp
- Department of Pharmacology & Toxicology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Anatomy & Neurobiology, Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
47
|
Francella N, Elliott STC, Yi Y, Gwyn SE, Ortiz AM, Li B, Silvestri G, Paiardini M, Derdeyn CA, Collman RG. Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 2013; 10:133. [PMID: 24219995 PMCID: PMC3833851 DOI: 10.1186/1742-4690-10-133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/31/2013] [Indexed: 12/02/2022] Open
Abstract
Background HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these Envs that may affect cell targeting is not known. Results Here we report that CD4-independent SIV variants that emerged in vivo in a CD4+ T cell-depleted rhesus macaque model display markedly decreased plasticity of co-receptor use. While CD4-dependent Envs can use low levels of macaque CCR5 for efficient entry, CD4-independent variants required high levels of CCR5 even in the presence of CD4. CD4-independent Envs were also more sensitive to the CCR5 antagonist Maraviroc. CD4-dependent variants mediated efficient entry using human CCR5, whereas CD4-independent variants had impaired use of human CCR5. Similarly, CD4-independent Envs used the alternative coreceptors GPR15 and CXCR6 less efficiently than CD4-dependent variants. Env amino acids D470N and E84K that confer the CD4-independent phenotype also regulated entry through low CCR5 levels and GPR15, indicating a common structural basis. Treatment of CD4-dependent Envs with soluble CD4 enhanced entry through CCR5 but reduced entry through GPR15, suggesting that induction of CD4-induced conformational changes by non-cell surface-associated CD4 impairs use of this alternative co-receptor. Conclusions CD4 independence is associated with more restricted coreceptor interactions. While the ability to enter target cells through CCR5 independently of CD4 may enable infection of CD4 low-to-negative cells such as macrophages, this phenotype may conversely reduce the potential range of targets such as cells expressing low levels of CCR5, conformational variants of CCR5, or possibly even alternative coreceptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Rummel PC, Thiele S, Hansen LS, Petersen TP, Sparre-Ulrich AH, Ulven T, Rosenkilde MM. Extracellular disulfide bridges serve different purposes in two homologous chemokine receptors, CCR1 and CCR5. Mol Pharmacol 2013; 84:335-45. [PMID: 23765404 DOI: 10.1124/mol.113.086702] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
In addition to the 7 transmembrane receptor (7TM)-conserved disulfide bridge between transmembrane (TM) helix 3 and extracellular loop (ECL)-2, chemokine receptors (CCR) contain a disulfide bridge between the N terminus and what previously was believed to be ECL-3. Recent crystal and NMR structures of the CXC chemokine receptors (CXCR) CXCR4 and CXCR1, combined with structural analysis of all endogenous chemokine receptors indicate that this chemokine receptor-conserved bridge in fact connects the N terminus to the top of TM-7. By employing chemokine ligands that mainly target extracellular receptor regions and small-molecule ligands that predominantly interact with residues in the main binding crevice, we show that the 7TM-conserved bridge is essential for all types of ligand-mediated activation, whereas the chemokine-conserved bridge is dispensable for small-molecule activation in CCR1. However, in striking contrast to previous studies in other chemokine receptors, high-affinity CCL3 chemokine binding was maintained in the absence of either bridge. In the highly related CCR5, a completely different dependency was observed as neither activation nor binding of the same chemokines was retained in the absence of either bridge. In contrast, both bridges were dispensable for activation by the same small molecules. This indicates that CCR5 activity is independent of extracellular regions, whereas in CCR1 the preserved folding of ECL-2 is necessary for activation. These results indicate that conserved structural features in a receptor subgroup do not necessarily provide specific traits for the whole subgroup but rather provide unique traits to the single receptors.
Collapse
Affiliation(s)
- Pia C Rummel
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
49
|
Ping LH, Joseph SB, Anderson JA, Abrahams MR, Salazar-Gonzalez JF, Kincer LP, Treurnicht FK, Arney L, Ojeda S, Zhang M, Keys J, Potter EL, Chu H, Moore P, Salazar MG, Iyer S, Jabara C, Kirchherr J, Mapanje C, Ngandu N, Seoighe C, Hoffman I, Gao F, Tang Y, Labranche C, Lee B, Saville A, Vermeulen M, Fiscus S, Morris L, Karim SA, Haynes BF, Shaw GM, Korber BT, Hahn BH, Cohen MS, Montefiori D, Williamson C, Swanstrom R. Comparison of viral Env proteins from acute and chronic infections with subtype C human immunodeficiency virus type 1 identifies differences in glycosylation and CCR5 utilization and suggests a new strategy for immunogen design. J Virol 2013; 87:7218-33. [PMID: 23616655 PMCID: PMC3700278 DOI: 10.1128/jvi.03577-12] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/15/2013] [Indexed: 12/18/2022] Open
Abstract
Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.
Collapse
Affiliation(s)
- Li-Hua Ping
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah B. Joseph
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey A. Anderson
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Melissa-Rose Abrahams
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Laura P. Kincer
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Florette K. Treurnicht
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Leslie Arney
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Suany Ojeda
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ming Zhang
- Theoretical Biology, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | - Jessica Keys
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - E. Lake Potter
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Haitao Chu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Penny Moore
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria G. Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shilpa Iyer
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cassandra Jabara
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Nobubelo Ngandu
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | | | - Irving Hoffman
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Feng Gao
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yuyang Tang
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Celia Labranche
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, California, USA
| | - Andrew Saville
- South African National Blood Service, Weltevreden Park, South Africa
| | - Marion Vermeulen
- South African National Blood Service, Weltevreden Park, South Africa
| | - Susan Fiscus
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Salim Abdool Karim
- Center for AIDS Program Research in South Africa, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - George M. Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bette T. Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Myron S. Cohen
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Montefiori
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Carolyn Williamson
- Institute of Infectious Diseases and Molecular Medicine, Division of Medical Virology, University of Cape Town and National Health Laboratory Services, Cape Town, South Africa
| | - Ronald Swanstrom
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets. Virology 2013; 442:51-8. [PMID: 23602007 DOI: 10.1016/j.virol.2013.03.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/31/2013] [Accepted: 03/26/2013] [Indexed: 11/24/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) resistance to CCR5 antagonists, including maraviroc (MVC), results from alterations in the HIV-1 envelope glycoproteins (Env) enabling recognition of antagonist-bound CCR5. Here, we characterized tropism alterations for CD4+ T-cell subsets and macrophages by Envs from two subjects who developed MVC resistance in vivo, which displayed either relatively efficient or inefficient recognition of MVC-bound CCR5. We show that MVC-resistant Env with efficient recognition of drug-bound CCR5 displays a tropism shift for CD4+ T-cell subsets associated with increased infection of central memory T-cells and reduced infection of effector memory and transitional memory T-cells, and no change in macrophage infectivity. In contrast, MVC-resistant Env with inefficient recognition of drug-bound CCR5 displays no change in tropism for CD4+ T-cell subsets, but exhibits a significant reduction in macrophage infectivity. The pattern of HIV-1 tropism alterations for susceptible cells may therefore be variable in subjects with MVC resistance.
Collapse
|