1
|
Maekawa S, Yuzu K, Chatani E, Morigaki K. Oligomerization and aggregation of NAP-22 with several metal ions. Neurosci Lett 2024; 821:137623. [PMID: 38184017 DOI: 10.1016/j.neulet.2023.137623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Metal ions participate in various biochemical processes such as electron transport chain, gene transcription, and enzymatic reactions. Furthermore, the aggregation promoting effect of several metal ions on neuronal proteins such as prion, tau, Aβ peptide, and α-synuclein, has been reported. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the detergent-resistant membrane microdomain fraction of the neuronal cell membrane. Previously, we showed oligomer formation of NAP-22 in the presence of several phospholipids and fatty acids. In this study, we found the aggregation of NAP-22 by FeCl2, FeCl3, and AlCl3 using native-PAGE. Oligomer or aggregate formation of NAP-22 by ZnCl2 or CuSO4 was shown with SDS-PAGE after cross-linking with glutaraldehyde. Morphological analysis with electron microscopy revealed the formation of large aggregates composed of small annular oligomers in the presence of FeCl3, AlCl3, or CuSO4. In case of FeCl2 or ZnCl2, instead of large aggregates, scattered annular and globular oligomers were observed. Interestingly, metal ion induced aggregation of NAP-22 was inhibited by several coenzymes such as NADP+, NADPH, or thiamine pyrophosphate. Since NAP-22 is highly expressed in the presynaptic region of the synapse, this result suggests the participation of metal ions not only on the protein and membrane dynamics at the presynaptic region, but also on the metabolic regulation though the interaction with coenzymes.
Collapse
Affiliation(s)
- Shohei Maekawa
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
| | - Keisuke Yuzu
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Eri Chatani
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan; Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Anuj A, Reuven N, Roberts SGE, Elson A. BASP1 down-regulates RANKL-induced osteoclastogenesis. Exp Cell Res 2023; 431:113758. [PMID: 37619639 DOI: 10.1016/j.yexcr.2023.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The cytokine RANKL (Receptor Activator of NFκB Ligand) is the key driver of differentiation of monocytes/macrophages to form multi-nucleated, bone-resorbing osteoclasts, a process that is accompanied by significant changes in gene expression. We show that exposure to RANKL rapidly down-regulates expression of Brain Acid Soluble Protein 1 (BASP1) in cultured primary mouse bone marrow macrophages (BMMs), and that this reduced expression is causally linked to the osteoclastogenic process in vitro. Knocking down BASP1 expression in BMMs or eliminating its expression in these cells or in RAW 264.7 cells enhanced RANKL-induced osteoclastogenesis, promoted cell-cell fusion, and generated cultures containing larger osteoclasts with increased mineral degrading abilities relative to controls. Expression of exogenous BASP1 in BMMs undergoing osteoclastogenic differentiation produced the opposite effects. Upon exposure to RANKL, primary mouse BMMs in which BASP1 had been knocked down exhibited increased expression of the key osteoclastogenic transcription factor Nfatc1and of its downstream target genes Dc-stamp, Ctsk, Itgb3, and Mmp9 relative to controls. The knock-down cells also exhibited increased sensitivity to the pro-osteoclastogenic effects of RANKL. We conclude that BASP1 is a negative regulator of RANKL-induced osteoclastogenesis, which down-regulates the pro-osteoclastogenic gene expression pattern induced by this cytokine. Decreased expression of BASP1 upon exposure of BMMs to RANKL removes a negative regulator of osteoclastogenesis and promotes this process.
Collapse
Affiliation(s)
- Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stefan G E Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
3
|
Harraz MM, Malla AP, Semenza ER, Shishikura M, Singh M, Hwang Y, Kang IG, Song YJ, Snowman AM, Cortés P, Karuppagounder SS, Dawson TM, Dawson VL, Snyder SH. A high-affinity cocaine binding site associated with the brain acid soluble protein 1. Proc Natl Acad Sci U S A 2022; 119:e2200545119. [PMID: 35412917 PMCID: PMC9169839 DOI: 10.1073/pnas.2200545119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cocaine exerts its stimulant effect by inhibiting dopamine (DA) reuptake, leading to increased dopamine signaling. This action is thought to reflect the binding of cocaine to the dopamine transporter (DAT) to inhibit its function. However, cocaine is a relatively weak inhibitor of DAT, and many DAT inhibitors do not share cocaine’s behavioral actions. Further, recent reports show more potent actions of the drug, implying the existence of a high-affinity receptor for cocaine. We now report high-affinity binding of cocaine associated with the brain acid soluble protein 1 (BASP1) with a dissociation constant (Kd) of 7 nM. Knocking down BASP1 in the striatum inhibits [3H]cocaine binding to striatal synaptosomes. Depleting BASP1 in the nucleus accumbens but not the dorsal striatum diminishes locomotor stimulation in mice. Our findings imply that BASP1 is a pharmacologically relevant receptor for cocaine.
Collapse
Affiliation(s)
- Maged M. Harraz
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adarsha P. Malla
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Maria Shishikura
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Manisha Singh
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yun Hwang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - In Guk Kang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Young Jun Song
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Pedro Cortés
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Senthilkumar S. Karuppagounder
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Ted M. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Valina L. Dawson
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
4
|
Mac Donald K, Iulianella A. The actin-cytoskeleton associating protein BASP1 regulates neural progenitor localization in the neural tube. Genesis 2021; 60:e23464. [PMID: 34897971 DOI: 10.1002/dvg.23464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022]
Abstract
Brain acid soluble protein 1 (BASP1; previously NAP22 or CAP23) is an actin-associating protein that is highly expressed in the nervous system throughout development. While its roles at the neuromuscular junction and in certain non-neuronal tissues have been previously characterized, its function in the early neural tube is unclear. Using in ovo electroporation in the chicken (Gallus gallus) embryonic neural tube, we show that BASP1 overexpression resulted in the appearance of ectopic neural progenitor cells within the marginal zone of the neural tube. BASP1 knockdown did not affect the position of neural progenitors but did alter the complexity of axons developing from differentiated neurons. This suggests a role for BASP1 in regulating the apical polarity of progenitor cells and axon trajectories from developing neurons.
Collapse
Affiliation(s)
- Kaitlin Mac Donald
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| | - Angelo Iulianella
- Department of Medical Neuroscience, and Brain Repair Centre, Faculty of Medicine, Dalhousie University, Life Science Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Khajavi M, Zhou Y, Schiffer AJ, Bazinet L, Birsner AE, Zon L, D'Amato RJ. Identification of Basp1 as a novel angiogenesis-regulating gene by multi-model system studies. FASEB J 2021; 35:e21404. [PMID: 33899275 DOI: 10.1096/fj.202001936rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 01/23/2023]
Abstract
We have previously used the genetic diversity available in common inbred mouse strains to identify quantitative trait loci (QTLs) responsible for the differences in angiogenic response using the corneal micropocket neovascularization (CoNV) assay. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. Here, we developed a unique strategy to determine and verify the role of BASP1 in angiogenic pathways. Basp1 expression in cornea had a strong correlation with a haplotype shared by mouse strains with varied angiogenic phenotypes. In addition, inhibition of BASP1 demonstrated a dosage-dependent effect in both primary mouse brain endothelial and human microvascular endothelial cell (HMVEC) migration. To investigate its role in vivo, we knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. These embryos had severely disrupted vessel formation compared to control siblings. We further show that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results, to the best of our knowledge, provide the first in vivo evidence to indicate the role of Basp1 as an angiogenesis-regulating gene and opens the potential therapeutic avenues for a wide variety of systemic angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Mehrdad Khajavi
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Alex J Schiffer
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Bazinet
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy E Birsner
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonard Zon
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| | - Robert J D'Amato
- Department of Surgery, Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Manganas LN, Durá I, Osenberg S, Semerci F, Tosun M, Mishra R, Parkitny L, Encinas JM, Maletic-Savatic M. BASP1 labels neural stem cells in the neurogenic niches of mammalian brain. Sci Rep 2021; 11:5546. [PMID: 33692421 PMCID: PMC7970918 DOI: 10.1038/s41598-021-85129-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/04/2021] [Indexed: 11/08/2022] Open
Abstract
The mechanisms responsible for determining neural stem cell fate are numerous and complex. To begin to identify the specific components involved in these processes, we generated several mouse neural stem cell (NSC) antibodies against cultured mouse embryonic neurospheres. Our immunohistochemical data showed that the NSC-6 antibody recognized NSCs in the developing and postnatal murine brains as well as in human brain organoids. Mass spectrometry revealed the identity of the NSC-6 epitope as brain abundant, membrane-attached signal protein 1 (BASP1), a signaling protein that plays a key role in neurite outgrowth and plasticity. Western blot analysis using the NSC-6 antibody demonstrated multiple BASP1 isoforms with varying degrees of expression and correlating with distinct developmental stages. Herein, we describe the expression of BASP1 in NSCs in the developing and postnatal mammalian brains and human brain organoids, and demonstrate that the NSC-6 antibody may be a useful marker of these cells.
Collapse
Affiliation(s)
- Louis N Manganas
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Department of Neurology, Stony Brook University Medical Center, Health Sciences Center T-12, room 020, Stony Brook, NY, 11794, USA.
| | - Irene Durá
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sivan Osenberg
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Fatih Semerci
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mehmet Tosun
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Rachana Mishra
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Luke Parkitny
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- The Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Mirjana Maletic-Savatic
- Department of Neurology, Stony Brook University Medical Center, Stony Brook, NY, USA.
- Departments of Pediatrics, Neurology and Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Pediatrics, Neurology, and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children Hospital, 1250 Moursund St., Rm 1250, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Odagaki SI, Maekawa S, Hayashi F, Suzaki T, Morigaki K. The effects of phospholipids and fatty acids on the oligomer formation of NAP-22. Neurosci Lett 2020; 736:135288. [PMID: 32750402 DOI: 10.1016/j.neulet.2020.135288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM fraction of the neuronal cell membrane. Previous studies showed tight binding activity of NAP-22 to acidic membrane lipids and the self-interaction of NAP-22, i.e., oligomerization. In this study, the effect of various phospholipids, lysophospholipids and fatty acids on the oligomerization of NAP-22 was studied through SDS-PAGE after chemical cross-linking and electron microscopic observation. High molecular mass oligomers were detected by SDS-PAGE after incubation in solutions containing over 20 mM NaCl at pH 6.5-8.5, even in the absence of lipid addition, and the addition of Ca2+/calmodulin abolished oligomerization. Higher molecular mass oligomer formation after incubation with acidic phospholipids was detected with gradient SDS-PAGE. Much higher mass oligomers were detected in the presence of polyunsaturated fatty acids. Electron microscopic analysis of the samples after SDS treatment showed tangled rope-like structures. Liposome-bound NAP-22 showed small oval or annular structures after cross-linking and SDS treatment. These oligomers were suggested to make the tangled rope-like structures, for annular structures of the same size were observed in the structure. These results suggest the participation of NAP-22 to liquid-liquid phase separation through oligomerization.
Collapse
Affiliation(s)
- Sin-Ichi Odagaki
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Shohei Maekawa
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan.
| | - Fumio Hayashi
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Toshinobu Suzaki
- Graduate School of Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| | - Kenichi Morigaki
- Graduate School of Agricultural Science, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan; Biosignal Research Center, Kobe University, Rokkodaicho 1-1, Nada, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Ueno S, Miyoshi H, Maruyama Y, Morita M, Maekawa S. Interaction of dynamin I with NAP-22, a neuronal protein enriched in the presynaptic region. Neurosci Lett 2018; 675:59-63. [PMID: 29604406 DOI: 10.1016/j.neulet.2018.03.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 03/28/2018] [Indexed: 10/17/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant low-density membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM and localizes in the presynaptic region. In order to know the role of NAP-22 in the synaptic transmission, NAP-22 binding proteins in the cytosol were searched with an affinity screening with NAP-22 as a bait and several protein bands were detected. Using mass-analysis and western blotting, one of the main band of ∼90 kDa was identified as dynamin I. The GTPase activity of dynamin I was partly inhibited by NAP-22 expressed in bacteria and this inhibition was recovered by the addition of calmodulin, a NAP-22 binding protein. The GTPase activity of dynamin was known to be activated with acidic membrane lipids such as phosphatidylserine and the addition of NAP-22, a phosphatidylserine binding protein, inhibited the activation of the GTPase by this lipid. Since NAP-22 localizes on the presynaptic plasma membrane and on synaptic vesicles, these results suggest the participation of NAP-22 in the membrane cycling through binding to dynamin and acidic membrane lipids at the presynaptic region.
Collapse
Affiliation(s)
- Satoko Ueno
- Department of Biology, Graduate School of Science, Kobe-University, Kobe, 657-8501, Japan
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, 216-8511, Japan
| | - Yoko Maruyama
- Department of Biology, Graduate School of Science, Kobe-University, Kobe, 657-8501, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe-University, Kobe, 657-8501, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe-University, Kobe, 657-8501, Japan.
| |
Collapse
|
9
|
Maruyama Y, Ueno S, Morita M, Hayashi F, Maekawa S. Inhibitory effect of several sphingolipid metabolites on calcineurin. Neurosci Lett 2018. [PMID: 29524645 DOI: 10.1016/j.neulet.2018.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM. In a previous study, we showed that DRM-derived NAP-22 binds ganglioside and the inhibitory effect of ganglioside to calcineurin (CaN), a neuron-enriched calmodulin-regulated phosphoprotein phosphatase. Considering the important roles of CaN in neurons, identification of other cellular regulators of CaN could be a good clue to understand the molecular background of neuronal function. In this study, we screened the effect of several membrane lipid-derived molecules on the CaN activity and found sphingosine and some sphingosine-derived metabolites such as sphingosylphosphorylcholine, galactosylsphingosine (psychosine), and glucosylsphingosine, have inhibitory effect on CaN through the interaction with calmodulin.
Collapse
Affiliation(s)
- Yoko Maruyama
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Satoko Ueno
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Fumio Hayashi
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan.
| |
Collapse
|
10
|
Sun L, Dong H, Zhang Z, Liu J, Hu Y, Ni Y, Grossmann R, Zhao R. Activation of epithelial proliferation induced by Eimeria acervulina infection in the duodenum may be associated with cholesterol metabolism. Oncotarget 2018; 7:27627-40. [PMID: 27050279 PMCID: PMC5053676 DOI: 10.18632/oncotarget.8490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/18/2016] [Indexed: 12/16/2022] Open
Abstract
Cell proliferation in the intestine is commonly occurred during infection and inflammation to replace damaged enterocytes, and cholesterol as an essential constituent of cell membrane, is required for cell proliferation and growth. Here we found that coccidium-challenged (CC) chickens showed severe damages in intestinal structure, a significant increase of cell proliferation, and an activation of genes expression involved in the innate immune response. Compared to control (CON), CC chickens showed a marked decrease of cholesterol (Tch) level in the circulating system, but a significant increase in local duodenum epithelium. Increase of LDLR protein combined with a significant decrease of CYP27A1 protein expression in duodenum epithelium may contribute to intestinal cholesterol accumulation in CC chickens. Moreover, we found miRNAs targeting to CYP27A1 gene participating in post-transcriptional regulation. Hence, these results provide a new insight for the intervention of epithelial proliferation and cholesterol metabolism in the gastrointestinal tracts.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Haibo Dong
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhenchao Zhang
- Department of Veterinary Parasitic Disease, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jie Liu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yun Hu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Roland Grossmann
- Department of Functional Genomics and Bioregulation, Institute of Animal Genetics, FLI, Mariensee, Neustadt a Rbg, Germany
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Nakaya N, Sultana A, Tomarev SI. Impaired AMPA receptor trafficking by a double knockout of zebrafish olfactomedin1a/b. J Neurochem 2017; 143:635-644. [PMID: 28975619 DOI: 10.1111/jnc.14231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023]
Abstract
The olfm1a and olfm1b genes in zebrafish encode conserved secreted glycoproteins. These genes are preferentially expressed in the brain and retina starting from 16 h post-fertilization until adulthood. Functions of the Olfm1 gene is still unclear. Here, we produced and analyzed a null zebrafish mutant of both olfm1a and olfm1b genes (olfm1 null). olfm1 null fish were born at a normal Mendelian ratio and showed normal body shape and fertility as well as no visible defects from larval stages to adult. Olfm1 proteins were preferentially localized in the synaptosomes of the adult brain. Olfm1 co-immunoprecipitated with GluR2 and soluble NSF attachment protein receptor complexes indicating participation of Olfm1 in both pre- and post-synaptic events. Phosphorylation of GluR2 was not changed while palmitoylation of GluR2 was decreased in the brain synaptosomal membrane fraction of olfm1 null compared with wt fish. The levels of GluR2, SNAP25, flotillin1, and VAMP2 were markedly reduced in the synaptic microdomain of olfm1 null brain compared with wt. The internalization of GluR2 in retinal cells and the localization of VAMP2 in brain synaptosome were modified by olfm1 null mutation. This indicates that Olfm1 may regulate receptor trafficking from the intracellular compartments to the synaptic membrane microdomain, partly through the alteration of post-translational GluR2 modifications such as palmitoylation. Olfm1 may be considered a novel regulator of the composition and function of the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor complex.
Collapse
Affiliation(s)
- Naoki Nakaya
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Afia Sultana
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Houyoux N, Wattiez R, Ris L. A proteomic analysis of contextual fear conditioned rats reveals dynamic modifications in neuron and oligodendrocyte protein expression in the dentate gyrus. Eur J Neurosci 2017; 46:2177-2189. [PMID: 28833751 DOI: 10.1111/ejn.13664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Contextual memory is an intricate process involving synaptic plasticity and network rearrangement. Both are governed by many molecular processes including phosphorylation and modulation of protein expression. However, little is known about the molecules involved in it. Here, we exploited the advantages of a quantitative proteomic approach to identify a great number of molecules in the rat dentate gyrus after a contextual fear conditioning session. Our results allowed us to highlight protein expression patterns, not only related to neuroplasticity, but also to myelin structure, such as myelin basic protein and myelin proteolipid protein showing a decrease in expression. Validation of the modification in protein expression reveals a dynamic profile during the 48 h following the fear conditioning session. The expression of proteins involved in neurite outgrowth, such as BASP-1 and calcineurin B1, and in synaptic structure and function, VAMP2 and RAB3C, was increased in the dentate gyrus of rats submitted to fear conditioning compared to controls. We showed that the increase in BASP-1 protein was specific to fear conditioning learning as it was not present in immediate-shock rats, neither in rats exposed to a novel environment without being shocked. As myelin is known to stabilise synaptic network, the decrease in myelin proteins suggests a neuroglia interactive process taking place in the dentate gyrus in the 24 h following contextual fear learning, which has never been demonstrated before. These results therefore open the way to the study of new plasticity mechanisms underlying learning and memory.
Collapse
Affiliation(s)
- Nicolas Houyoux
- Proteomics and Microbiology Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| |
Collapse
|
13
|
Kutuzov N, Gulin A, Lyaskovskiy V, Nadtochenko V, Maksimov G. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study. PLoS One 2015; 10:e0142084. [PMID: 26544552 PMCID: PMC4636249 DOI: 10.1371/journal.pone.0142084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.
Collapse
Affiliation(s)
- Nikolay Kutuzov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
- * E-mail:
| | - Alexander Gulin
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
| | - Vladimir Lyaskovskiy
- All-Russian Research Institute for Optical and Physical Measurements, Ozernaya 46, Moscow, Russian Federation, 119361
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
- Moscow Institute of Physics and Technology State University, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Institute of Problems of Chemical Physics RAS, Academician Semenov avenue 1, Chernogolovka, Moscow region, Russian Federation, 142432
| | - Georgy Maksimov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
| |
Collapse
|
14
|
Maekawa S, Kobayashi Y, Morita M, Suzaki T. Tight binding of NAP-22 with acidic membrane lipids. Neurosci Lett 2015; 600:244-8. [PMID: 26101831 DOI: 10.1016/j.neulet.2015.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 05/31/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. Insolubility of the outer leaflet of DRM to the non-ionic detergent is ascribed to the tight association of cholesterol and sphingolipid. Since, poor localization of sphingolipid is observed in the inner leaflet, the physicochemical background of the insolubility of the inner leaflet is hence still an enigma. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM of the neuronal cell membrane. A previous study showed the presence of several lipids in a NAP-22 fraction after the process of extraction and column chromatography. In this study, the effect of lipid extraction on NAP-22 was studied through native-gel electrophoresis, ultracentrifugation, and electron microscopic observation. The mobility of NAP-22 in native-PAGE was shifted from low to high after delipidation. Delipidated NAP-22 bound phosphatidylserine (PS), phosphatidylinosotol, and ganglioside. Some part of the mixture of PS and NAP-22 was recovered in the insoluble fraction after Triton X-100 treatment and the addition of cholesterol enhanced the amount of NAP-22 in the insoluble fraction.
Collapse
Affiliation(s)
- Shohei Maekawa
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan.
| | - Yuumi Kobayashi
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Mitsuhiro Morita
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| | - Toshinobu Suzaki
- Divison of Biology, Graduate School of Science, Kobe-University, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Kobayashi Y, da Silva R, Kumanogoh H, Miyata S, Sato C, Kitajima K, Nakamura S, Morita M, Hayashi F, Maekawa S. Ganglioside contained in the neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) fraction prepared from the detergent-resistant membrane microdomain of rat brain inhibits the phosphatase activity of calcineurin. J Neurosci Res 2015; 93:1462-70. [PMID: 25981177 DOI: 10.1002/jnr.23599] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/05/2022]
Abstract
Neurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). Neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) is one of the major protein components of neuronal DRM. To determine the cellular function of NAP-22, interacting proteins were screened with an immunoprecipitation assay, and calcineurin (CaN) was detected. Further studies with NAP-22 prepared from DRM and CaN expressed in bacteria showed the binding of these proteins and a dose-dependent inhibitory effect of the NAP-22 fraction on the phosphatase activity of CaN. On the other hand, NAP-22 expressed in bacteria showed low binding to CaN and a weak inhibitory effect on phosphatase activity. To solve this discrepancy, identification of a nonprotein component that modulates CaN activity in the DRM-derived NAP-22 fraction was attempted. After lyophilization, a lipid fraction was extracted with chloroform/methanol. The lipid fraction showed an inhibitory effect on CaN without NAP-22, and further fractionation of the extract with thin-layer chromatography showed the presence of several lipid bands having an inhibitory effect on CaN. The mobility of these bands coincided with that of authentic ganglioside (GM1a, GD1a, GD1b, and GT1b), and authentic ganglioside showed an inhibitory effect on CaN. Treatment of lipid with endoglycoceramidase, which degrades ganglioside to glycochain and ceramide, caused a diminution of the inhibitory effect. These results show that DRM-derived NAP-22 binds several lipids, including ganglioside, and that ganglioside inhibits the phosphatase activity of CaN.
Collapse
Affiliation(s)
- Yuumi Kobayashi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Ronan da Silva
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Haruko Kumanogoh
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shinji Miyata
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Shun Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Mistuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Fumio Hayashi
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
16
|
Characterization of cholesterol crystalline domains in model and biological membranes using X-ray diffraction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:231-45. [PMID: 25408347 DOI: 10.1007/978-3-319-11280-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Jin X, Shah S, Du X, Zhang H, Gamper N. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals. J Physiol 2014; 594:19-30. [PMID: 25398532 PMCID: PMC4704509 DOI: 10.1113/jphysiol.2014.275107] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Ca2+‐activated chloride channels (CaCCs) regulate numerous physiological processes including epithelial transport, smooth muscle contraction and sensory processing. Anoctamin‐1 (ANO1, TMEM16A) is a principal CaCC subunit in many cell types, yet our understanding of the mechanisms of ANO1 activation and regulation are only beginning to emerge. Ca2+ sensitivity of ANO1 is rather low and at negative membrane potentials the channel requires several micromoles of intracellular Ca2+ for activation. However, global Ca2+ levels in cells rarely reach such levels and, therefore, there must be mechanisms that focus intracellular Ca2+ transients towards the ANO1 channels. Recent findings indeed indicate that ANO1 channels often co‐localize with sources of intracellular Ca2+ signals. Interestingly, it appears that in many cell types ANO1 is particularly tightly coupled to the Ca2+ release sites of the intracellular Ca2+ stores. Such preferential coupling may represent a general mechanism of ANO1 activation in native tissues.
Collapse
Affiliation(s)
- Xin Jin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sihab Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Maksimov GV, Bibineyshvili EZ, Yusipovich AI, Levin GG, Rubin AB. Changes in myelin structure and fatty-acid tail ordering upon nerve fiber excitation. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Han MH, Jiao S, Jia JM, Chen Y, Chen CY, Gucek M, Markey SP, Li Z. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics 2013; 12:3719-31. [PMID: 24023391 DOI: 10.1074/mcp.m113.030676] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced.
Collapse
Affiliation(s)
- Meng-Hsuan Han
- National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA, Zhang H, Gamper N. Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal 2013; 6:ra73. [PMID: 23982204 DOI: 10.1126/scisignal.2004184] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report that anoctamin 1 (ANO1; also known as TMEM16A) Ca(2+)-activated Cl(-) channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca(2+). These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca(2+) from intracellular stores but not by Ca(2+) influx through voltage-gated Ca(2+) channels. This ability to discriminate between Ca(2+) pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor 2 and protease-activated receptor 2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the carboxyl terminus and the first intracellular loop of ANO1 with IP3R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP3R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca(2+)signals rather than to global changes in intracellular Ca(2+).
Collapse
Affiliation(s)
- Xin Jin
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Structures of septin filaments prepared from rat brain and expressed in bacteria. Protein Expr Purif 2013; 87:67-71. [DOI: 10.1016/j.pep.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
|
22
|
Maekawa S, Kobayashi Y, Odagaki SI, Makino M, Kumanogoh H, Nakamura S, Morita M, Hayashi F. Interaction of NAP-22 with brain glutamic acid decarboxylase (GAD). Neurosci Lett 2013; 537:50-4. [PMID: 23376695 DOI: 10.1016/j.neulet.2013.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched protein localized mainly in the synaptic vesicles and the synaptic plasma membrane. Biochemically, it is recovered in the lipid raft fraction. In order to understand the physiological function of the neuronal lipid raft, NAP-22 binding proteins were screened with a pull-down assay. Glutamic acid decarboxylase (GAD) was detected through LC-MS/MS, and Western blotting using a specific antibody confirmed the result. Two isoforms of GAD, GAD65 and GAD67, were expressed in bacteria as GST-fusion forms and the interaction with NAP-22 was confirmed in vitro. Partial co-localization of NAP-22 with GAD65 and GAD67 was also observed in cultured neurons. The binding showed no effect on the enzymatic activity of GAD65 and GAD67. These results hence suggest that NAP-22 could participate in the transport of GAD65 and GAD67 to the presynaptic termini and their retention on the synaptic vesicles as an anchoring protein.
Collapse
Affiliation(s)
- Shohei Maekawa
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Maimaitiyiming M, Kobayashi Y, Kumanogoh H, Nakamura S, Morita M, Maekawa S. Identification of dynamin as a septin-binding protein. Neurosci Lett 2012; 534:322-6. [PMID: 23260429 DOI: 10.1016/j.neulet.2012.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/20/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid rafts (detergent-resistant low-density membrane microdomain: DRM) are signal-transducing membrane platforms. In a previous study, we showed maturation-dependent localization of septin in the DRM fraction of rat brain. Mammalian septin is composed with 13-14 isoforms and these isoforms assemble to form rod-shaped hetero-oligomeric complexes. End-to-end polymerization of these complexes results in the formation of higher order structures such as filamentous sheets or bundles of filaments that restrict the fluid-like diffusion of the membrane proteins and lipids. Considering the function of septin as the membrane scaffold, elucidation of the molecular interaction of septin in DRM could be a breakthrough to understand another role of lipid rafts. In order to identify septin-binding proteins in DRM, solubilization and fractionation of septin from DRM was attempted. Several proteins were co-fractionated with septin and LC-MS/MS analysis identified one of these proteins as dynamin and Western blotting using anti-dynamin confirmed this result. Immunoprecipitation of septin11 in a crude supernatant showed co-precipitation of dynamin and dynamin fraction prepared from brain contained several septin isoforms. Within bacterially expressed septin isoforms, septin5 and septin11 bound dynamin but septin9 did not. These results suggest that some septin isoforms participate in the dynamin-related membrane dynamics.
Collapse
|
24
|
Mosevitsky MI, Snigirevskaya ES, Komissarchik YY. Immunoelectron microscopic study of BASP1 and MARCKS location in the early and late rat spermatids. Acta Histochem 2012; 114:237-43. [PMID: 21764106 DOI: 10.1016/j.acthis.2011.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
Immunoelectron microscopy was used to locate the proteins BASP1 and MARCKS in the post-meiotic spermatids of male rat testis. It was shown that in early spermatids, BASP1 and MARCKS accumulate in chromatoid bodies, which are characteristic organelles for these cells. During spermatogenesis, while the spermatid nucleus is still active, the chromatoid body periodically moves to the cell nucleus and absorbs the precursors of definite mRNAs and small RNAs. mRNAs are preserved in the chromatoid body until the corresponding proteins are needed, but their "fresh" mRNA cannot be formed due to the nucleus inactivation. The chromatoid body (0.5-1.5μm in diameter) has a cloud-like fibrous appearance with many fairly round cavities. In the chromatoid body, BASP1 and MARCKS are distributed mainly around the cavities and at periphery. Based on the known functions of BASP1 and MARCKS in neurons, it is conceivable that these proteins participate in non-random movements of the chromatoid body to the nucleus and in Ca(2+)-calmodulin enrichment. In late spermatids, BASP1 and MARCKS are located in the outer dense fiber layer belonging to a metabolically active spermatozoon region, the tail mid-piece. In spermatozoa, as in chromatoid body, BASP1 and MARCKS may bind Ca(2+)-calmodulin and therefore contribute to the activation of calcium-dependent biochemical processes.
Collapse
|
25
|
Methyl-β-cyclodextrin is a useful compound for extraction and purification of prenylated enzymes from the retinal disc membrane. Protein Expr Purif 2011; 82:168-73. [PMID: 22226869 DOI: 10.1016/j.pep.2011.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
cGMP phosphodiesterase 6 (PDE6) and rhodopsin kinase (GRK1) are quantitatively minor prenylated proteins involved in vertebrate phototransduction. Here, we report that methyl-β-cyclodextrin (MCD), a torus-shaped oligosaccharide with a hydrophobic pore, can be used as a selective extractant for such prenylated proteins from frog retinal disc membranes, and that MCD makes it possible to purify frog PDE6 holoenzyme with very simple procedure. The EC50s of MCD for the extraction of GRK1 and PDE6 from the cytoplasmic surface of the disc membrane were 0.17 and 5.1 mM, respectively. By successive extraction of the membrane by 1 mM and then 20 mM MCD, we obtained crude GRK1 and PDE6, respectively. From the 20mM extract, we were able to purify the PDE6 holoenzyme using one-step anion-exchange column chromatography. From 1mM MCD extract, GRK1 was further purified by an affinity column. Following the removal of MCD by ultrafiltration, we were able to confirm integrity of these enzymes by reconstituting phototransduction system in vitro. We have therefore demonstrated that MCD is a useful compound for selective extraction and purification of prenylated peripheral membrane proteins from the cytoplasmic surface of biological membranes.
Collapse
|
26
|
Takaichi R, Odagaki SI, Kumanogoh H, Nakamura S, Morita M, Maekawa S. Inhibitory effect of NAP-22 on the phosphatase activity of synaptojanin-1. J Neurosci Res 2011; 90:21-7. [DOI: 10.1002/jnr.22740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 05/27/2011] [Accepted: 06/20/2011] [Indexed: 01/28/2023]
|
27
|
Modification of activation kinetics of delayed rectifier K+ currents and neuronal excitability by methyl-β-cyclodextrin. Neuroscience 2011; 176:431-41. [DOI: 10.1016/j.neuroscience.2010.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/23/2022]
|
28
|
Mosevitsky M, Silicheva I. Subcellular and regional location of "brain" proteins BASP1 and MARCKS in kidney and testis. Acta Histochem 2011; 113:13-8. [PMID: 19683798 DOI: 10.1016/j.acthis.2009.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 01/04/2023]
Abstract
Proteins BASP1 and MARCKS are abundant in axonal endings of neurons. Similarly to brain-specific protein GAP-43, BASP1 and MARCKS are reversibly bound to the plasma membrane. These proteins control both actin polymerization and actin cytoskeleton binding to the membrane. Performing these functions, BASP1 and MARCKS take part in growth cone guidance during development and in neurotransmitter secretion in adults. These activities predetermine the pivotal role of BASP1 and MARCKS in learning and memory. BASP1 and MARCKS were also found in non-nerve tissues, in particular, in the kidney and testis. Evidently, the physiological roles of these proteins differ in different tissues. Correspondingly, their intracellular location and activities may not be similar to those in neurons. In this paper, we analyze subcellular fractions (cytoplasm and nuclei) of rat kidney and testis with the purpose of determining the intracellular location of BASP1 and MARCKS. Western blots demonstrated that in these tissues, as in the brain, both proteins are present in the cytoplasm of the cell. According to our immunohistochemical study, BASP1 and MARCKS are specifically distributed in the tissues studied. In kidney, both proteins are present in cells located in glomeruli. In the testicular tubules, BASP1 is mainly expressed at the late stage of spermatogenesis (in spermatids) and is preserved in mature spermatozoa, while MARCKS appears equally during all stages of spermatogenesis. MARCKS is not found in mature spermatozoa. The results indicate that study of functions of BASP1 and MARCKS in the kidney and in the reproduction system holds much promise.
Collapse
Affiliation(s)
- Mark Mosevitsky
- Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Leningrad District, Russian Federation.
| | | |
Collapse
|
29
|
Ostroumova OS, Schagina LV, Mosevitsky MI, Zakharov VV. Ion channel activity of brain abundant protein BASP1 in planar lipid bilayers. FEBS J 2010; 278:461-9. [DOI: 10.1111/j.1742-4658.2010.07967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Oligomeric structure of brain abundant proteins GAP-43 and BASP1. J Struct Biol 2010; 170:470-83. [PMID: 20109554 DOI: 10.1016/j.jsb.2010.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/21/2009] [Accepted: 01/20/2010] [Indexed: 11/19/2022]
Abstract
Brain abundant proteins GAP-43 and BASP1 participate in the regulation of actin cytoskeleton dynamics in neuronal axon terminals. The proposed mechanism suggests that the proteins sequester phosphatidylinositol-4,5-diphosphate (PIP(2)) in the inner leaflet of the plasma membrane. We found that model anionic phospholipid membranes in the form of liposomes induce rapid oligomerization of GAP-43 and BASP1 proteins. Multiply charged phosphoinositides produced the most potent effect. Anionic detergent sodium dodecyl sulfate (SDS) at submicellar concentration stimulated formation of similar oligomers in solution. BASP1, but not GAP-43, also formed oligomers at sufficiently high concentration in the absence of lipids and SDS. Electron microscopy study demonstrated that the oligomers have disk-shaped or annular structure of 10-30nm in diameter. BASP1 also formed higher aggregates of linear rod-like structure, with average length of about 100nm. In outward appearance, the oligomers and linear aggregates are reminiscent of oligomers and protofibrils of amyloid proteins. Both the synthetic N-terminal peptide GAP-43(1-40) and the brain-derived fragment GAP-43-3 preserved the ability to oligomerize under the action of acidic phospholipids and SDS. On the contrary, BASP1 fragment truncated by the short N-terminal myristoylated peptide was unable to form oligomers. GAP-43 and BASP1 oligomerization can be regulated by calmodulin, which disrupts the oligomers and displaces the proteins from the membrane. We suggest that in vivo, the role of membrane-bound GAP-43 and BASP1 oligomers consists in accumulation of PIP(2) in functional clusters, which become accessible for other PIP(2)-binding proteins after dissociation of the oligomers.
Collapse
|
31
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem 2010; 51:597-621. [PMID: 20213560 DOI: 10.1007/978-90-481-8622-8_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cholesterol is one of the major constituents of mammalian cell membranes. It plays an indispensable role in regulating the structure and function of cell membranes and affects the pathology of various diseases. In recent decades much attention has been paid to the existence of membrane microdomains, generally termed lipid "rafts", and cholesterol, along with sphingolipids, is thought to play a critical role in raft structural organization and function. Cholesterol-binding probes are likely to provide useful tools for analyzing the distribution and dynamics of membrane cholesterol, as a structural element of raft microdomains, and elsewhere within the cell. Among the probes, non-toxic derivatives of perfringolysin O, a cholesterol-binding cytolysin, bind cholesterol in a concentration-dependent fashion with a strict threshold. They selectively recognize cholesterol in cholesterol-enriched membranes, and have been used in many studies to detect microdomains in plasma and intracellular membranes. Anti-cholesterol antibodies that recognize cholesterol in domain structures have been developed in recent years. In this chapter, we describe the characteristics of these cholesterol-binding proteins and their applications to studies on membrane cholesterol localization.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki City, Fukushima, 970-8551, Japan.
| | | | | | | | | | | |
Collapse
|
32
|
Mateos MV, Salvador GA, Giusto NM. Selective localization of phosphatidylcholine-derived signaling in detergent-resistant membranes from synaptic endings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:624-36. [PMID: 20026046 DOI: 10.1016/j.bbamem.2009.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 11/19/2009] [Accepted: 12/14/2009] [Indexed: 01/21/2023]
Abstract
Detergent-resistant membranes (DRMs) are a class of specialized microdomains that compartmentalize several signal transduction processes. In this work, DRMs were isolated from cerebral cortex synaptic endings (Syn) on the basis of their relative insolubility in cold Triton X-100 (1%). The lipid composition and marker protein content were analyzed in DRMs obtained from adult and aged animals. Both DRM preparations were enriched in Caveolin, Flotillin-1 and c-Src and also presented significantly higher sphingomyelin (SM) and cholesterol content than purified Syn. Total phospholipid-fatty acid composition presented an increase in 16:0 (35%), and a decrease in 20:4n-6 (67%) and 22:6n-3 (68%) content in DRM from adults when compared to entire synaptic endings. A more dramatic decrease was observed in the 20:4n-6 and 22:6n-3 content in DRMs from aged animals (80%) with respect to the results found in adults. The coexistence of phosphatidylcholine-specific-phospholipase C (PC-PLC) and phospholipase D (PLD) in Syn was previously reported. The presence of these signaling pathways was also investigated in DRMs isolated from adult and aged rats. Both PC-PLC and PLD pathways generate the lipid messenger diacylglycerol (DAG) by catalyzing PC hydrolysis. PC-PLC and PLD1 localization were increased in the DRM fraction. The increase in DAG generation (60%) in the presence of ethanol, confirmed that PC-PLC was also activated when compartmentalized in DRMs. Conversely, PLD2 was excluded from the DRM fraction. Our results show an age-related differential fatty acid composition and a selective localization of PC-derived signaling in synaptic DRMs obtained from adult and aged rats.
Collapse
Affiliation(s)
- M V Mateos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, CC 857, B8000FWB Bahía Blanca, Argentina
| | | | | |
Collapse
|
33
|
Odagaki SI, Kumanogoh H, Nakamura S, Maekawa S. Biochemical interaction of an actin-capping protein, CapZ, with NAP-22. J Neurosci Res 2009; 87:1980-5. [DOI: 10.1002/jnr.22040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Toledo A, Arruti C. Actin modulation of a MARCKS phosphorylation site located outside the effector domain. Biochem Biophys Res Commun 2009; 383:353-7. [DOI: 10.1016/j.bbrc.2009.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/06/2009] [Indexed: 10/20/2022]
|
35
|
Musse AA, Gao W, Rangaraj G, Boggs JM, Harauz G. Myelin basic protein co-distributes with other PI(4,5)P2-sequestering proteins in Triton X-100 detergent-resistant membrane microdomains. Neurosci Lett 2009; 450:32-6. [DOI: 10.1016/j.neulet.2008.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/06/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
|
36
|
Adachi T, Sato C, Kishi Y, Totani K, Murata T, Usui T, Kitajima K. Membrane microdomains from early gastrula embryos of medaka, Oryzias latipes, are a platform of E-cadherin- and carbohydrate-mediated cell-cell interactions during epiboly. Glycoconj J 2008; 26:285-99. [PMID: 18766437 DOI: 10.1007/s10719-008-9184-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/14/2008] [Accepted: 08/18/2008] [Indexed: 11/24/2022]
Abstract
Formation of membrane microdomain is critical for cell migration (epiboly) during gastrulation of medaka fish [Adachi et al. (Biochem. Biophys. Res. Commun. 358:848-853, 2007)]. In this study, we characterized membrane microdomain from gastrula embryos to understand its roles in epiboly. A cell adhesion molecule (E-cadherin), its associated protein (beta-catenin), transducer proteins (PLCgamma, cSrc), and a cytoskeleton protein (beta-actin) were enriched in the membrane microdomain. Le(X)-containing glycolipids and glycoproteins (Le(X)-gp) were exclusively enriched in the membrane microdomain. Interestingly, the isolated membrane microdomain had the ability to bind to each other in the presence of Ca(2+). This membrane microdomain binding was achieved through the E-cadherin homophilic and the Le(X)-glycan-mediated interactions. E-cadherin and Le(X)-gp were co-localized on the same membrane microdomain, suggesting that these two interactions are operative at the same time. Thus, the membrane microdomain functions as a platform of the E-cadherin- and Le(X)-glycan-mediated cell adhesion and signal transduction.
Collapse
Affiliation(s)
- Tomoko Adachi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Maimaitiyiming M, Kumanogoh H, Nakamura S, Nagata KI, Suzaki T, Maekawa S. Biochemical characterization of membrane-associated septin from rat brain. J Neurochem 2008; 106:1175-83. [DOI: 10.1111/j.1471-4159.2008.05450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Korshunova I, Caroni P, Kolkova K, Berezin V, Bock E, Walmod PS. Characterization of BASP1‐mediated neurite outgrowth. J Neurosci Res 2008; 86:2201-13. [DOI: 10.1002/jnr.21678] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Epand RM. Proteins and cholesterol-rich domains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1576-82. [DOI: 10.1016/j.bbamem.2008.03.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 03/19/2008] [Accepted: 03/24/2008] [Indexed: 12/21/2022]
|
40
|
Tsuda R, Kumanogoh H, Umeda M, Maekawa S. Morphological analysis on the distribution of membrane lipids and a membrane protein, NAP-22, during neuronal development in vitro. J Mol Histol 2008; 39:371-9. [DOI: 10.1007/s10735-008-9175-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
|
41
|
Buratta S, Felicetti M, Mozzi R. Synthesis of phosphatidylserine by base exchange in Triton-insoluble floating fractions from rat cerebellum. J Neurochem 2007; 103:942-51. [PMID: 17696990 DOI: 10.1111/j.1471-4159.2007.04783.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphatidylserine (PS), which is synthesized in mammalian tissues by the exchange between free serine and the nitrogen bases present in membrane glycerophospholipids, is strictly required for protein kinase C (PKC) activity. PKC, as other molecules involved in signal transduction, is present in lipid rafts, considered as a platform for molecular signaling. Membrane microdomains enriched in components of rafts can be isolated on the basis of their insolubility in Triton X-100 at 4 degrees C and their low density in sucrose density gradient. This study demonstrates the existence of serine base exchange enzyme (SBEE) in Triton-insoluble floating fractions containing associated PKC. Using two fractions of detergent-resistant membranes from rat cerebellum, we observed a correlation between the level of SBEE activity and that of membrane-associated PKC. This suggests that SBEE, synthesizing PS in the binding area for PKC, participates to signal transduction. The capability of SBEE to utilize not only serine but also ethanolamine, as free exchanging base, suggests a mechanism for modulating in loco PS concentration.
Collapse
Affiliation(s)
- Sandra Buratta
- Department of Internal Medicine, Biochemistry Section, University of Perugia, Perugia, Italy
| | | | | |
Collapse
|
42
|
Jiang L, Fernandes D, Mehta N, Bean JL, Michaelis ML, Zaidi A. Partitioning of the plasma membrane Ca2+-ATPase into lipid rafts in primary neurons: effects of cholesterol depletion. J Neurochem 2007; 102:378-88. [PMID: 17596212 DOI: 10.1111/j.1471-4159.2007.04480.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Spatial and temporal alterations in intracellular calcium [Ca(2+)](i) play a pivotal role in a wide array of neuronal functions. Disruption in Ca(2+) homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca(2+)-ATPase (PMCA) is a high affinity Ca(2+) transporter that plays a crucial role in the termination of [Ca(2+)](i) signals and in the maintenance of low [Ca(2+)](i) essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or 'lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca(2+) signaling in the central nervous system.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gouraud SS, Heesom K, Yao ST, Qiu J, Paton JFR, Murphy D. Dehydration-induced proteome changes in the rat hypothalamo-neurohypophyseal system. Endocrinology 2007; 148:3041-52. [PMID: 17412804 DOI: 10.1210/en.2007-0181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamo-neurohypophyseal system (HNS) mediates neuroendocrine responses to dehydration through the action of the antidiuretic hormone vasopressin (VP). VP is synthesized as part of a prepropeptide in magnocellular neurons of the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus. This precursor is processed during transport to axon terminals in the posterior pituitary gland, in which biologically active VP is stored until mobilized for secretion by electrical activity evoked by osmotic cues. During release, VP travels through the blood stream to specific receptor targets located in the kidney in which it increases the permeability of the collecting ducts to water, reducing the renal excretion of water, thus promoting water conservation. The HNS undergoes a dramatic function-related plasticity during dehydration. We hypothesize that alterations in steady-state protein levels might be partially responsible for this remodeling. We investigated dehydration-induced changes in the SON and pituitary neurointermediate lobe (NIL) proteomes using two-dimensional fluorescence difference gel electrophoresis. Seventy proteins were altered by dehydration, including 45 in the NIL and 25 in the SON. Using matrix-assisted laser desorption/ionization mass spectrometry, we identified six proteins in the NIL (four down, two up) and nine proteins in the SON (four up, five down) that are regulated as a consequence of chronic dehydration. Results for five of these proteins, namely Hsp1alpha (heat shock protein 1alpha), NAP22 (neuronal axonal membrane protein 22), GRP58 (58 kDa glucose regulated protein), calretinin, and ProSAAS (proprotein convertase subtilisin/kexin type 1 inhibitor), have been confirmed using independent methods such as semiquantitative Western blotting, two-dimensional Western blotting, enzyme-linked immunoassay, and immunohistochemistry. These proteins may have roles in regulating and effecting HNS remodeling.
Collapse
Affiliation(s)
- S S Gouraud
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Department of Biochemistry Proteomics Facility, Bristol Heart Institute, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Ohno-Iwashita Y, Shimada Y, Waheed AA, Hayashi M, Inomata M, Nakamura M, Maruya M, Iwashita S. Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts. Anaerobe 2007; 10:125-34. [PMID: 16701509 DOI: 10.1016/j.anaerobe.2003.09.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2003] [Revised: 06/29/2003] [Accepted: 09/19/2003] [Indexed: 12/20/2022]
Abstract
Gaining an understanding of the structural and functional roles of cholesterol in membrane lipid rafts is a critical issue in studies on cellular signaling and because of the possible involvement of lipid rafts in various diseases. We have focused on the potential of perfringolysin O (theta-toxin), a cholesterol-binding cytolysin produced by Clostridium perfringens, as a probe for studies on membrane cholesterol. We prepared a protease-nicked and biotinylated derivative of perfringolysin O (BCtheta) that binds selectively to cholesterol in cholesterol-rich microdomains of cell membranes without causing membrane lesions. Since the domains fulfill the criteria of lipid rafts, BCtheta can be used to detect cholesterol-rich lipid rafts. This is in marked contrast to filipin, another cholesterol-binding reagent, which binds indiscriminately to cell cholesterol. Using BCtheta, we are now searching for molecules that localize specifically in cholesterol-rich lipid rafts. Recently, we demonstrated that the C-terminal domain of perfringolysin O, domain 4 (D4), possesses the same binding characteristics as BCtheta. BIAcore analysis showed that D4 binds specifically to cholesterol with the same binding affinity as the full-size toxin. Cell-bound D4 is recovered predominantly from detergent-insoluble, low-density membrane fractions where raft markers, such as cholesterol, flotillin and Src family kinases, are enriched, indicating that D4 also binds selectively to lipid rafts. Furthermore, a green fluorescent protein-D4 fusion protein (GFP-D4) was revealed to be useful for real-time monitoring of cholesterol in lipid rafts in the plasma membrane. In addition, the expression of GFP-D4 in the cytoplasm might allow the investigations of intracellular trafficking of lipid rafts. The simultaneous visualization of lipid rafts in plasma membranes and inside cells might help in gaining a total understanding of the dynamic behavior of lipid rafts.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Taguchi K, Kumanogoh H, Nakamura S, Miyata S, Maekawa S. Myelin protein zero is one of the components of the detergent-resistant membrane microdomain fraction prepared from rat pituitary. J Mol Histol 2007; 38:79-85. [PMID: 17318342 DOI: 10.1007/s10735-007-9080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
Pituitary gland is a well-known endocrine tissue. The hypothalamo-neurohypophysial system, containing arginine vasopressin and oxytocin, shows a reversible morphological reorganization of both neurons and glial cells during chronic physiological stimulations. Since many signal transducing and cell adhesion molecules (CAMs) are recovered in membrane microdomain (MD) fractions, MDs are considered as signaling platforms of cells. In order to know the molecular background for these endocrine systems, we characterized MD-components derived from rat pituitary and found specific enrichment of several proteins in the fraction. One of them was identified as myelin protein zero (P0) with mass analysis and this result was further confirmed by a result that a specific antibody to this protein reacted to the authentic P0 protein in the myelin fraction of rat sciatic nerve. P0 is one of type-I transmembrane CAMs and a major structural component of mammalian peripheral nerve myelin. In mammals, expression of P0 has been considered to be restricted to peripheral nervous system. This result however indicates that P0 expresses more widely and its enrichment in the MD-fraction from rat pituitary suggests the participation in cell-cell communications.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Division of Bioinformation, Department of Biosystems Science, Graduate School of Science and Technology, Kobe-University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
46
|
Taguchi K, Kumanogoh H, Nakamura S, Maekawa S. Localization of phospholipase Cβ1 on the detergent-resistant membrane microdomain prepared from the synaptic plasma membrane fraction of rat brain. J Neurosci Res 2007; 85:1364-71. [PMID: 17348042 DOI: 10.1002/jnr.21243] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The membrane microdomain (MD), such as detergent-resistant low-density membrane microdomain fraction (DRM), has been paid much attention because many signal-transducing molecules are recovered in this fraction, although precise localization and interactions of these molecules are largely unclear. To identify neuronal MD-localized proteins, monoclonal antibodies (mAbs) against the DRM-components of synaptic plasma membrane fraction (SPM) were produced and the antigens were characterized. One of the antigens reacted with two closely positioned bands of about 140 kDa in SDS-PAGE and the antigen showed age-dependent localization on DRM. The antigen was immunoprecipitated with the mAb after partial solubilization with 0.6 M NaCl from SPM-derived DRM and identified as phospholipase C beta 1 through mass analysis. The identity was further confirmed with Western blotting using a specific polyclonal antibody. The enzyme purified from the DRM was activated by the alpha subunit of trimeric G protein, Gq, expressed in HEK293 cells. The lipid composition of the liposomes affected the enzymatic activity and the addition of NAP-22, a neuronal DRM-localized protein, inhibited the activity. These results suggest that there exists a signal-transducing MD that performs important roles in neuronal functions through PIP(2) signaling and Ca(2+) mobilization.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Division of Bioinformation, Department of Biosystems Science, Graduate School of Science and Technology, Kobe-University, Kobe, Japan
| | | | | | | |
Collapse
|
47
|
Taguchi K, Yoshinaka K, Yoshino KI, Yonezawa K, Maekawa S. Biochemical and morphologic evidence of the interaction of oligodendrocyte membrane rafts with actin filaments. J Neurosci Res 2005; 81:218-25. [PMID: 15931670 DOI: 10.1002/jnr.20555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytoskeletal structures under the cell membrane carry out pivotal roles in the maintenance and remodeling of the cell structures. Reforming of the cytoskeletal networks after partial extraction of membrane components could be a good clue to identify molecular components pertaining the interaction of cytoskeleton with membrane. A detergent extract from 3-week-old rat brain membrane fraction was found to make an actin-based gel upon incubation at 25 degrees C. Some protein components of the gelation products were recovered in a Triton-insoluble low-density microdomain fraction (raft) after depolymerization of actin filaments. Some of these proteins were identified as 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG) through electrospray time-of-flight (ESI-TOF) analysis and Western blotting. Because these proteins are well-known marker proteins of oligodendrocytes, localization of these proteins and cholesterol, a raft-localized lipid, with actin filaments was studied using cultured oligodendrocytes. Clear colocalization of these proteins and cholesterol with actin filaments was observed after Triton treatment at 4 degrees C before fixation. These results indicate that raft microdomains participate in the formation of cell shape through interaction with microfilaments in oligodendrocytes.
Collapse
Affiliation(s)
- Katsutoshi Taguchi
- Division of Bioinformation, Department of Biosystems Science, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
48
|
Coppens I, Vielemeyer O. Insights into unique physiological features of neutral lipids in Apicomplexa: from storage to potential mediation in parasite metabolic activities. Int J Parasitol 2005; 35:597-615. [PMID: 15862574 DOI: 10.1016/j.ijpara.2005.01.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 01/05/2005] [Accepted: 01/13/2005] [Indexed: 01/18/2023]
Abstract
The fast intracellular multiplication of apicomplexan parasites including Toxoplasma and Plasmodium, requires large amounts of lipids necessary for the membrane biogenesis of new progenies. Hence, the study of lipids is fundamental in order to understand the biology and pathogenesis of these deadly organisms. Much has been reported on the importance of polar lipids, e.g. phospholipids in Plasmodium. Comparatively, little attention has been paid to the metabolism of neutral lipids, including sterols, steryl esters and acylglycerols. In eukaryotic cells, free sterols are membrane components whereas steryl esters and acylglycerols are stored in cytosolic lipid inclusions. The first part of this review describes the recent advances in neutral lipid synthesis and storage in Toxoplasma and Plasmodium. New potential pharmacological targets in the pathways producing neutral lipids are outlined. In addition to lipid bodies, Apicomplexa contain unique secretory organelles involved in parasite invasion named rhoptries. These compartments appear to sequester most of the cholesterol found in the exocytic pathway. The second part of the review focuses on rhoptry cholesterol and its potential roles in the biogenesis, structural organisation and function of these unique organelles among eukaryotes.
Collapse
Affiliation(s)
- Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205-2223, USA.
| | | |
Collapse
|
49
|
Park EJ, Suh M, Ramanujam K, Steiner K, Begg D, Clandinin MT. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J Pediatr Gastroenterol Nutr 2005; 40:487-95. [PMID: 15795600 DOI: 10.1097/01.mpg.0000157199.25923.64] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The objective of this study was to determine if dietary gangliosides induce changes in the ganglioside content of intestinal mucosa, plasma and brain and to identify where GM3 and GD3 are localized in the enterocyte membrane. METHODS Male 18-day-old Sprague-Dawley rats were fed a semipurified diet containing 20% (w/w) fat. The control diet contained triglyceride, reflecting the fat formulation of an existing infant formula. Two experimental diets were formulated by adding sphingomyelin (1% w/w of total fat) or a ganglioside-enriched lipid (0.1% w/w of total fat) to the control diet fat. The ganglioside fraction of ganglioside-enriched lipid diet contained more than 80% GD3. After 2 weeks of feeding, the total and individual ganglioside and cholesterol content was measured in small intestinal mucosa, plasma and brain. RESULTS The ganglioside-enriched lipid diet significantly increased total gangliosides in the intestinal mucosa, plasma and brain compared with the control diet. The ganglioside-enriched lipid diet significantly increased the level of GD3 (7.5% w/w) in the intestine compared with control (3.2% w/w) while decreasing the level of GM3, the major ganglioside in the intestine. The ratio of cholesterol to ganglioside in the intestinal mucosa, plasma and brain decreased significantly in rats fed the ganglioside-enriched lipid diet compared with controls. Confocal microscopy showed that GM3 is exclusively localized in the apical membrane of the enterocyte whereas GD3 is primarily localized in the basolateral membrane. CONCLUSIONS : The authors conclude that dietary ganglioside is absorbed in the small intestine and transported to different membrane sites, altering ganglioside levels in the intestinal mucosa, plasma and brain and thus possibly having the potential to change developing enterocyte function (and possibly that of other cell lines).
Collapse
Affiliation(s)
- Eek Joong Park
- Nutrition and Metabolism Research Group, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Epand RF, Sayer BG, Epand RM. Induction of raft-like domains by a myristoylated NAP-22 peptide and its Tyr mutant. FEBS J 2005; 272:1792-803. [PMID: 15794765 DOI: 10.1111/j.1742-4658.2005.04612.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The N-terminally myristoylated, 19-amino acid peptide, corresponding to the amino terminus of the neuronal protein NAP-22 (NAP-22 peptide) is a naturally occurring peptide that had been shown by fluorescence to cause the sequestering of a Bodipy-labeled PtdIns(4,5)P2 in a cholesterol-dependent manner. The present work, using differential scanning calorimetry (DSC), extends the observation that formation of a PtdIns(4,5)P2-rich domain is cholesterol dependent and shows that it also leads to the formation of a cholesterol-depleted domain. The PtdIns(4,5)P2 used in the present work is extracted from natural sources and does not contain any label and has the native acyl chain composition. Peptide-induced formation of a cholesterol-depleted domain is abolished when the sole aromatic amino acid, Tyr11 is replaced with a Leu. Despite this, the modified peptide can still sequester PtdIns(4,5)P2 into domains, probably because of the presence of a cluster of cationic residues in the peptide. Cholesterol and PtdIns(4,5)P2 also modulate the insertion of the peptide into the bilayer as revealed by 1H NOESY MAS/NMR. The intensity of cross peaks between the aromatic protons of the Tyr residue and the protons of the lipid indicate that in the presence of cholesterol there is a change in the nature of the interaction of the peptide with the membrane. These results have important implications for the mechanism by which NAP-22 affects actin reorganization in neurons.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada.
| | | | | |
Collapse
|