1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
2
|
Pourcelot E, El Samra G, Mossuz P, Moulis JM. Molecular Insight into Iron Homeostasis of Acute Myeloid Leukemia Blasts. Int J Mol Sci 2023; 24:14307. [PMID: 37762610 PMCID: PMC10531764 DOI: 10.3390/ijms241814307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Acute myeloid leukemia (AML) remains a disease of gloomy prognosis despite intense efforts to understand its molecular foundations and to find efficient treatments. In search of new characteristic features of AML blasts, we first examined experimental conditions supporting the amplification of hematological CD34+ progenitors ex vivo. Both AML blasts and healthy progenitors heavily depended on iron availability. However, even if known features, such as easier engagement in the cell cycle and amplification factor by healthy progenitors, were observed, multiplying progenitors in a fully defined medium is not readily obtained without modifying their cellular characteristics. As such, we measured selected molecular data including mRNA, proteins, and activities right after isolation. Leukemic blasts showed clear signs of metabolic and signaling shifts as already known, and we provide unprecedented data emphasizing disturbed cellular iron homeostasis in these blasts. The combined quantitative data relative to the latter pathway allowed us to stratify the studied patients in two sets with different iron status. This categorization is likely to impact the efficiency of several therapeutic strategies targeting cellular iron handling that may be applied to eradicate AML blasts.
Collapse
Affiliation(s)
- Emmanuel Pourcelot
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France; (E.P.); (G.E.S.)
- Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX a9, France;
| | - Ghina El Samra
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France; (E.P.); (G.E.S.)
| | - Pascal Mossuz
- Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043 Grenoble, CEDEX a9, France;
- Team “Epigenetic and Cellular Signaling”, Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700 Grenoble, France
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France; (E.P.); (G.E.S.)
- University Grenoble Alpes, CEA, IRIG, 38000 Grenoble, France
| |
Collapse
|
3
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Wu S, Yin S, Zhou B. Molecular physiology of iron trafficking in Drosophila melanogaster. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100888. [PMID: 35158107 DOI: 10.1016/j.cois.2022.100888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Iron homeostasis in insects is less-well understood comparatively to mammals. The classic model organism Drosophila melanogaster has been recently employed to explore how iron is trafficked between and within cells. An outline for iron absorption, systemic delivery, and efflux is thus beginning to emerge. The proteins Malvolio, ZIP13, mitoferrin, ferritin, transferrin, and IRP-1A are key players in these processes. While many features are shared with those in mammals, some physiological differences may also exist. Notable remaining questions include the existence and identification of functional transferrin and ferritin receptors, and of an iron exporter like ferroportin, how systemic iron homeostasis is controlled, and the roles of different tissues in regulating iron physiology. By focusing on aspects of iron trafficking, this review updates on presently known complexities of iron homeostasis in Drosophila.
Collapse
Affiliation(s)
- Shitao Wu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China; Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Jayakumar D, S Narasimhan KK, Periandavan K. Triad role of hepcidin, ferroportin, and Nrf2 in cardiac iron metabolism: From health to disease. J Trace Elem Med Biol 2022; 69:126882. [PMID: 34710708 DOI: 10.1016/j.jtemb.2021.126882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Iron is an essential trace element required for several vital physiological and developmental processes, including erythropoiesis, bone, and neuronal development. Iron metabolism and oxygen homeostasis are interlinked to perform a vital role in the functionality of the heart. The metabolic machinery of the heart utilizes almost 90 % of oxygen through the electron transport chain. To handle this tremendous level of oxygen, the iron metabolism in the heart is utmost crucial. Iron availability to the heart is therefore tightly regulated by (i) the hepcidin/ferroportin axis, which controls dietary iron absorption, storage, and recycling, and (ii) iron regulatory proteins 1 and 2 (IRP1/2) via hypoxia inducible factor 1 (HIF1) pathway. Despite iron being vital to the heart, recent investigations have demonstrated that iron imbalance is a common manifestation in conditions of heart failure (HF), since free iron readily transforms between Fe2+ and Fe3+via the Fenton reaction, leading to reactive oxygen species (ROS) production and oxidative damage. Therefore, to combat iron-mediated oxidative stress, targeting Nrf2/ARE antioxidant signaling is rational. The involvement of Nrf2 in regulating several genes engaged in heme synthesis, iron storage, and iron export is beginning to be uncovered. Consequently, it is possible that Nrf2/hepcidin/ferroportin might act as an epicenter connecting iron metabolism to redox alterations. However, the mechanism bridging the two remains obscure. In this review, we tried to summarize the contemporary insight of how cardiomyocytes regulate intracellular iron levels and discussed the mechanisms linking cardiac dysfunction with iron imbalance. Further, we emphasized the impact of Nrf2 on the interplay between systemic/cardiac iron control in the context of heart disease, particularly in myocardial ischemia and HF.
Collapse
Affiliation(s)
- Deepthy Jayakumar
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India
| | - Kishore Kumar S Narasimhan
- Department of Pharmacology and Neurosciences, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Kalaiselvi Periandavan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute for Basic Medical Sciences, University of Madras, Chennai, 600113, Tamil Nadu, India.
| |
Collapse
|
6
|
Urrutia PJ, Bórquez DA, Núñez MT. Inflaming the Brain with Iron. Antioxidants (Basel) 2021; 10:antiox10010061. [PMID: 33419006 PMCID: PMC7825317 DOI: 10.3390/antiox10010061] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023] Open
Abstract
Iron accumulation and neuroinflammation are pathological conditions found in several neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Iron and inflammation are intertwined in a bidirectional relationship, where iron modifies the inflammatory phenotype of microglia and infiltrating macrophages, and in turn, these cells secrete diffusible mediators that reshape neuronal iron homeostasis and regulate iron entry into the brain. Secreted inflammatory mediators include cytokines and reactive oxygen/nitrogen species (ROS/RNS), notably hepcidin and nitric oxide (·NO). Hepcidin is a small cationic peptide with a central role in regulating systemic iron homeostasis. Also present in the cerebrospinal fluid (CSF), hepcidin can reduce iron export from neurons and decreases iron entry through the blood-brain barrier (BBB) by binding to the iron exporter ferroportin 1 (Fpn1). Likewise, ·NO selectively converts cytosolic aconitase (c-aconitase) into the iron regulatory protein 1 (IRP1), which regulates cellular iron homeostasis through its binding to iron response elements (IRE) located in the mRNAs of iron-related proteins. Nitric oxide-activated IRP1 can impair cellular iron homeostasis during neuroinflammation, triggering iron accumulation, especially in the mitochondria, leading to neuronal death. In this review, we will summarize findings that connect neuroinflammation and iron accumulation, which support their causal association in the neurodegenerative processes observed in AD and PD.
Collapse
Affiliation(s)
- Pamela J. Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
| | - Daniel A. Bórquez
- Center for Biomedical Research, Faculty of Medicine, Universidad Diego Portales, 8370007 Santiago, Chile;
| | - Marco Tulio Núñez
- Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024 Santiago, Chile;
- Correspondence: ; Tel.: +56-2-29787360
| |
Collapse
|
7
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|
8
|
Yang X, Lu D, Zhang X, Chen W, Gao S, Dong W, Ma Y, Zhang L. Knockout of ISCA1 causes early embryonic death in rats. Animal Model Exp Med 2019; 2:18-24. [PMID: 31016283 PMCID: PMC6431120 DOI: 10.1002/ame2.12059] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Iron-sulfur cluster assembly 1 (ISCA1) is an iron-sulfur (Fe/S) carrier protein that accepts Fe/S from a scaffold protein and transfers it to target proteins including the mitochondrial Fe/S containing proteins. ISCA1 is also the newly identified causal gene for multiple mitochondrial dysfunctions syndrome (MMDS). However, our knowledge about the physiological function of ISCA1 in vivo is currently limited. In this study, we generated an ISCA1 knockout rat line and analyzed the embryo development. METHODS ISCA1 knockout rats were generated by replacing the exon1 of ISCA1 gene with the mCherry-Cre fusion gene using CRISPR-Cas9 technology. The ISCA1 expression pattern was analyzed by fluorescence imaging using ISCA1 promotor driven Cre and mCherry expression. The embryonic morphology was examinated by microscope and mitochondrial proteins were tested by Western blot. RESULTS An ISCA1 knockout rat line was obtained, which expressed mCherry-Cre fusion protein. Both of the fluorescence images from mCherry and Cre induced mCherry in a reporter rat strain, showing that ISCA1 expressed in most of the tissues in rats. The ISCA1 knockout resulted in abnormal development at 8.5 days, with a significant decrease of NDUFA9 protein and an increase of aconitase 2 (ACO2) in rat embryos. CONCLUSION Deletion of ISCA1 induced early death in rats. ISCA1 affected the expression of key proteins in the mitochondrial respiratory chain complex, suggesting that ISCA1 has an important influence on the respiratory complex and energy metabolism.
Collapse
Affiliation(s)
- Xinlan Yang
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Dan Lu
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Chen
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Shan Gao
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Wei Dong
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
| | - Yuanwu Ma
- Beijing Engineering Research Center for Experimental Animal Models of Human DiseasesInstitute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Neuroscience CenterChinese Academy of Medical SciencesBeijingChina
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Institute of Laboratory Animal SciencePeking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
- Neuroscience CenterChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
9
|
Burkitt MJ. Chemical, Biological and Medical Controversies Surrounding the Fenton Reaction. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967403103165468] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A critical evaluation is made of the role of the Fenton reaction (Fe2+ + H2O2 → Fe3+ + •OH + OH-) in the promotion of oxidative damage in mammalian systems. Following a brief, historical overview of the Fenton reaction, including the formulation of the Haber–Weiss cycle as a mechanism for the catalysis of hydroxyl radical production, an appraisal is made of the biological relevance of the reaction today, following recognition of the important role played by nitric oxide and its congers in the promotion of biomolecular damage. In depth coverage is then given of the evidence (largely from EPR studies) for and against the hydroxyl radical as the active oxidant produced in the Fenton reaction and the role of metal chelating agents (including those of biological importance) and ascorbic acid in the modulation of its generation. This is followed by a description of the important developments that have occurred recently in the molecular and cellular biology of iron, including evidence for the presence of ‘free’ iron that is available in vivo for the Fenton reaction. Particular attention here is given to the role of the iron-regulatory proteins in the modulation of cellular iron status and how their functioning may become dysregulated during oxidative and nitrosative stress, as well as in hereditary haemochromatosis, a common disorder of iron metabolism. Finally, an assessment is made of the biological relevance of ascorbic acid in the promotion of hydroxyl radical generation by the Fenton reaction in health and disease.
Collapse
Affiliation(s)
- Mark J. Burkitt
- Cancer Research UK Free Radicals Research Group, Gray Cancer Institute, PO Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK
| |
Collapse
|
10
|
Pourcelot E, Lénon M, Charbonnier P, Louis F, Mossuz P, Moulis JM. The iron regulatory proteins are defective in repressing translation via exogenous 5' iron responsive elements despite their relative abundance in leukemic cellular models. Metallomics 2018; 10:639-649. [PMID: 29652073 DOI: 10.1039/c8mt00006a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In animal cells the specific translational control of proteins contributing to iron homeostasis is mediated by the interaction between the Iron Regulatory Proteins (IRP1 and IRP2) and the Iron Responsive Elements (IRE) located in the untranslated regions (UTR) of regulated messengers, such as those encoding ferritin or the transferrin receptor. The absolute concentrations of the components of this regulatory system in hematopoietic cells and the ability of the endogenous IRP to regulate exogenous IRE have been measured. The IRP concentration is in the low μM (10-6 M) range, whereas the most abundant IRE-containing messenger RNA (mRNA), i.e. those of the ferritin subunits, do not exceed 100 nM (10-7 M). Most other IRP mRNA targets are around or below 1 nM. The distribution of the mRNA belonging to the cellular iron network is similar in human leukemic cell lines and in normal cord blood progenitors, with differences among the cellular models only associated with their different propensities to synthesize hemoglobin. Thus, the IRP regulator is in large excess over its presently identified regulated mRNA targets. Yet, despite this excess, endogenous IRP poorly represses translation of transfected luciferase cDNA engineered with a series of IRE sequences in the 5' UTR. The cellular concentrations of the central hubs of the mammalian translational iron network will have to be included in the description of the proliferative phenotype of leukemic cells and in assessing any therapeutic action targeting iron provision.
Collapse
Affiliation(s)
- Emmanuel Pourcelot
- Univ. Grenoble Alpes, Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR BEeSy, 38000 Grenoble, France
| | | | | | | | | | | |
Collapse
|
11
|
Mons C, Ferecatu I, Riquier S, Lescop E, Bouton C, Golinelli-Cohen MP. Combined Biochemical, Biophysical, and Cellular Methods to Study Fe-S Cluster Transfer and Cytosolic Aconitase Repair by MitoNEET. Methods Enzymol 2017; 595:83-106. [PMID: 28882209 DOI: 10.1016/bs.mie.2017.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
MitoNEET is the first identified Fe-S protein anchored to mammalian outer mitochondrial membranes with the vast majority of the protein polypeptide located in the cytosol, including its [2Fe-2S] cluster-binding domain. The coordination of the cluster is unusual and involves three cysteines and one histidine. MitoNEET is capable of transferring its redox-active Fe-S cluster to a bacterial apo-ferredoxin in vitro even under aerobic conditions, unlike other Fe-S transfer proteins such as ISCU. This specificity suggests its possible involvement in Fe-S repair after oxidative and/or nitrosative stress. Recently, we identified cytosolic aconitase/iron regulatory protein 1 (IRP1) as the first physiological protein acceptor of the mitoNEET Fe-S cluster in an Fe-S repair process. This chapter describes methods to study in vitro mitoNEET Fe-S cluster transfer/repair to a bacterial ferredoxin used as a model aporeceptor and in a more comprehensive manner to cytosolic aconitase/IRP1 after a nitrosative stress using in vitro, in cellulo, and in vivo methods.
Collapse
Affiliation(s)
- Cécile Mons
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ioana Ferecatu
- INSERM, UMR-S1139, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Riquier
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Bouton
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Chang HC, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SVN, Ardehali H. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med 2016; 8:247-67. [PMID: 26896449 PMCID: PMC4772952 DOI: 10.15252/emmm.201505748] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 01/19/2023] Open
Abstract
Excess cellular iron increases reactive oxygen species (ROS) production and causes cellular damage. Mitochondria are the major site of iron metabolism and ROS production; however, few studies have investigated the role of mitochondrial iron in the development of cardiac disorders, such as ischemic heart disease or cardiomyopathy (CM). We observe increased mitochondrial iron in mice after ischemia/reperfusion (I/R) and in human hearts with ischemic CM, and hypothesize that decreasing mitochondrial iron protects against I/R damage and the development of CM. Reducing mitochondrial iron genetically through cardiac-specific overexpression of a mitochondrial iron export protein or pharmacologically using a mitochondria-permeable iron chelator protects mice against I/R injury. Furthermore, decreasing mitochondrial iron protects the murine hearts in a model of spontaneous CM with mitochondrial iron accumulation. Reduced mitochondrial ROS that is independent of alterations in the electron transport chain's ROS producing capacity contributes to the protective effects. Overall, our findings suggest that mitochondrial iron contributes to cardiac ischemic damage, and may be a novel therapeutic target against ischemic heart disease.
Collapse
Affiliation(s)
- Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chunlei Chen
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anita Thakur
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Konrad T Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sathyamangla V N Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Talib J, Davies MJ. Exposure of aconitase to smoking-related oxidants results in iron loss and increased iron response protein-1 activity: potential mechanisms for iron accumulation in human arterial cells. J Biol Inorg Chem 2016; 21:305-17. [DOI: 10.1007/s00775-016-1340-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
|
14
|
Abstract
To date no models exist to study MnSOD deficiency in human cells. To address this deficiency, we created a SOD2-null human cell line that is completely devoid of detectable MnSOD protein expression and enzyme activity. We utilized the CRISPR/Cas9 system to generate biallelic SOD2 disruption in HEK293T cells. These SOD2-null cells exhibit impaired clonogenic activity, which was rescued by either treatment with GC4419, a pharmacological small-molecule mimic of SOD, or growth in hypoxia. The phenotype of these cells is primarily characterized by impaired mitochondrial bioenergetics. The SOD2-null cells displayed perturbations in their mitochondrial ultrastructure and preferred glycolysis as opposed to oxidative phosphorylation to generate ATP. The activities of mitochondrial complex I and II were both significantly impaired by the absence of MnSOD activity, presumably from disruption of the Fe/S centers in NADH dehydrogenase and succinate dehydrogenase subunit B by the aberrant redox state in the mitochondrial matrix of SOD2-null cells. By creating this model we provide a novel tool with which to study the consequences of lack of MnSOD activity in human cells.
Collapse
Affiliation(s)
- Kimberly Cramer-Morales
- Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA 52242
| | - Collin D Heer
- Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA 52242
| | - Kranti A Mapuskar
- Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA 52242
| | - Frederick E Domann
- Department of Radiation Oncology, B180 Medical Laboratories, The University of Iowa, Iowa City, IA 52242.
| |
Collapse
|
15
|
Pourcelot E, Lénon M, Mobilia N, Cahn JY, Arnaud J, Fanchon E, Moulis JM, Mossuz P. Iron for proliferation of cell lines and hematopoietic progenitors: Nailing down the intracellular functional iron concentration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1596-605. [DOI: 10.1016/j.bbamcr.2015.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 12/29/2022]
|
16
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
17
|
Liu L, Huang M. Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation. Protein Cell 2015; 6:194-210. [PMID: 25645023 PMCID: PMC4348247 DOI: 10.1007/s13238-015-0134-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/04/2015] [Indexed: 11/26/2022] Open
Abstract
DNA primase catalyzes de novo synthesis of a short RNA primer that is further extended by replicative DNA polymerases during initiation of DNA replication. The eukaryotic primase is a heterodimeric enzyme comprising a catalytic subunit Pri1 and a regulatory subunit Pri2. Pri2 is responsible for facilitating optimal RNA primer synthesis by Pri1 and mediating interaction between Pri1 and DNA polymerase α for transition from RNA synthesis to DNA elongation. All eukaryotic Pri2 proteins contain a conserved C-terminal iron-sulfur (Fe-S) cluster-binding domain that is critical for primase catalytic activity in vitro. Here we show that mutations at conserved cysteine ligands for the Pri2 Fe-S cluster markedly decrease the protein stability, thereby causing S phase arrest at the restrictive temperature. Furthermore, Pri2 cysteine mutants are defective in loading of the entire DNA pol α-primase complex onto early replication origins resulting in defective initiation. Importantly, assembly of the Fe-S cluster in Pri2 is impaired not only by mutations at the conserved cysteine ligands but also by increased oxidative stress in the sod1Δ mutant lacking the Cu/Zn superoxide dismutase. Together these findings highlight the critical role of Pri2's Fe-S cluster domain in replication initiation in vivo and suggest a molecular basis for how DNA replication can be influenced by changes in cellular redox state.
Collapse
Affiliation(s)
- Lili Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Mingxia Huang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
18
|
Lane DJR, Richardson DR. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption! Free Radic Biol Med 2014; 75:69-83. [PMID: 25048971 DOI: 10.1016/j.freeradbiomed.2014.07.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 01/18/2023]
Abstract
Ascorbate is a cofactor in numerous metabolic reactions. Humans cannot synthesize ascorbate owing to inactivation of the gene encoding the enzyme l-gulono-γ-lactone oxidase, which is essential for ascorbate synthesis. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance nonheme iron absorption in the gut, ascorbate within mammalian systems can regulate cellular iron uptake and metabolism. Ascorbate modulates iron metabolism by stimulating ferritin synthesis, inhibiting lysosomal ferritin degradation, and decreasing cellular iron efflux. Furthermore, ascorbate cycling across the plasma membrane is responsible for ascorbate-stimulated iron uptake from low-molecular-weight iron-citrate complexes, which are prominent in the plasma of individuals with iron-overload disorders. Importantly, this iron-uptake pathway is of particular relevance to astrocyte brain iron metabolism and tissue iron loading in disorders such as hereditary hemochromatosis and β-thalassemia. Recent evidence also indicates that ascorbate is a novel modulator of the classical transferrin-iron uptake pathway, which provides almost all iron for cellular demands and erythropoiesis under physiological conditions. Ascorbate acts to stimulate transferrin-dependent iron uptake by an intracellular reductive mechanism, strongly suggesting that it may act to stimulate iron mobilization from the endosome. The ability of ascorbate to regulate transferrin iron uptake could help explain the metabolic defect that contributes to ascorbate-deficiency-induced anemia.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
19
|
A role for human mitochondrial complex II in the production of reactive oxygen species in human skin. Redox Biol 2014; 2:1016-22. [PMID: 25460738 PMCID: PMC4215388 DOI: 10.1016/j.redox.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 08/16/2014] [Accepted: 08/25/2014] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC) complexes I, II and III towards production of reactive oxygen species (ROS) have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549). The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05) suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001). The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase) cells than the corresponding wild type cells (P=0.0012) which can be considered (in terms of telomerase activity) as models of younger and older cells respectively. We examined the influence of mitochondrial complex II on ROS production in human skin. Past studies have focussed on ROS production from mitochondrial complexes I and III. DHR123 fluorescence was used following individual complex inhibition and UVA exposure. Only complex II inhibition significantly increased ROS levels in both skin cell types. Complex II had a two-fold greater activity in skin cells compared to liver cells.
Collapse
|
20
|
Ferecatu I, Gonçalves S, Golinelli-Cohen MP, Clémancey M, Martelli A, Riquier S, Guittet E, Latour JM, Puccio H, Drapier JC, Lescop E, Bouton C. The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1. J Biol Chem 2014; 289:28070-86. [PMID: 25012650 DOI: 10.1074/jbc.m114.548438] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.
Collapse
Affiliation(s)
- Ioana Ferecatu
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Sergio Gonçalves
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Marie-Pierre Golinelli-Cohen
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France, the Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Martin Clémancey
- the Direction des Sciences du Vivant, Institute of Life Sciences Research and Technologies, Chemistry and Biology of Metals Laboratory, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Alain Martelli
- the Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France, the INSERM, U596, Illkirch, France, the CNRS, UMR7104, Illkirch, France, the Université de Strasbourg, F-67000 Strasbourg, France, the Collège de France, Chaire de Génétique Humaine, Illkirch, France, and
| | - Sylvie Riquier
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Eric Guittet
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Jean-Marc Latour
- the Direction des Sciences du Vivant, Institute of Life Sciences Research and Technologies, Chemistry and Biology of Metals Laboratory, UMR 5249 CEA-Université Grenoble I-CNRS/Equipe de Physicochimie des Métaux en Biologie, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | - Hélène Puccio
- the Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), F-67400 Illkirch, France, the INSERM, U596, Illkirch, France, the CNRS, UMR7104, Illkirch, France, the Université de Strasbourg, F-67000 Strasbourg, France, the Collège de France, Chaire de Génétique Humaine, Illkirch, France, and
| | - Jean-Claude Drapier
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Ewen Lescop
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Cécile Bouton
- From the Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France,
| |
Collapse
|
21
|
Martínez-Reyes I, Cuezva JM. The H+-ATP synthase: A gate to ROS-mediated cell death or cell survival. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1099-112. [DOI: 10.1016/j.bbabio.2014.03.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/03/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
|
22
|
Oyewole AO, Wilmot M, Fowler M, Birch‐Machin MA. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. FASEB J 2013; 28:485-94. [DOI: 10.1096/fj.13-237008] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anne O. Oyewole
- Department of Dermatological SciencesInstitute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Marie‐Claire Wilmot
- Department of Dermatological SciencesInstitute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| | - Mark Fowler
- Unilever Research and Development ColworthSharnbrookUK
| | - Mark A. Birch‐Machin
- Department of Dermatological SciencesInstitute of Cellular MedicineMedical SchoolNewcastle UniversityNewcastle Upon TyneUK
| |
Collapse
|
23
|
Noriega-Cisneros R, Cortés-Rojo C, Manzo-Avalos S, Clemente-Guerrero M, Calderón-Cortés E, Salgado-Garciglia R, Montoya-Pérez R, Boldogh I, Saavedra-Molina A. Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochondrion 2013; 13:835-40. [PMID: 23751425 DOI: 10.1016/j.mito.2013.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 05/04/2013] [Accepted: 05/30/2013] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is associated with increased production of reactive oxygen and nitrogen species; consequently, an increase in lipid peroxidation and a decrease in antioxidants resulting in mitochondrial dysfunction. Using a rat model of DM induced by streptozotocin, we show the opposite: an increase in NO levels, S-nitrosylation, aconitase activity, and total glutathione and a decrease in lipid peroxidation at early stages of diabetes. These data imply that the decrease in lipid peroxidation is a vital early response to hyperglycemia to prevent escalation of ROS generation in mitochondria. These results also suggest a need for novel therapeutic targets to prevent the neurological consequences of diabetes.
Collapse
Affiliation(s)
- Ruth Noriega-Cisneros
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich., Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Case AJ, Madsen JM, Motto DG, Meyerholz DK, Domann FE. Manganese superoxide dismutase depletion in murine hematopoietic stem cells perturbs iron homeostasis, globin switching, and epigenetic control in erythrocyte precursor cells. Free Radic Biol Med 2013; 56:17-27. [PMID: 23219873 PMCID: PMC3578015 DOI: 10.1016/j.freeradbiomed.2012.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/16/2012] [Accepted: 11/28/2012] [Indexed: 11/20/2022]
Abstract
Heme synthesis partially occurs in the mitochondrial matrix; thus there is a high probability that enzymes and intermediates important in the production of heme will be exposed to metabolic by-products including reactive oxygen species. In addition, the need for ferrous iron for heme production, Fe/S coordination, and other processes occurring in the mitochondrial matrix suggests that aberrant fluxes of reactive oxygen species in this compartment might perturb normal iron homeostasis. Manganese superoxide dismutase (Sod2) is an antioxidant enzyme that governs steady-state levels of the superoxide in the mitochondrial matrix. Using hematopoietic stem cell-specific conditional Sod2 knockout mice we observed increased superoxide concentrations in red cell progeny, which caused significant pathologies including impaired erythrocytes and decreased ferrochelatase activity. Animals lacking Sod2 expression in erythroid precursors also displayed extramedullary hematopoiesis and systemic iron redistribution. Additionally, the increase in superoxide flux in erythroid precursors caused abnormal gene regulation of hematopoietic transcription factors, globins, and iron-response genes. Moreover, the erythroid precursors also displayed evidence of global changes in histone posttranslational modifications, a likely cause of at least some of the aberrant gene expression noted. From a therapeutic translational perspective, mitochondrially targeted superoxide-scavenging antioxidants partially rescued the observed phenotype. Taken together, our findings illuminate the superoxide sensitivity of normal iron homeostasis in erythrocyte precursors and suggest a probable link between mitochondrial redox metabolism and epigenetic control of nuclear gene regulation during mammalian erythropoiesis.
Collapse
Affiliation(s)
- Adam J. Case
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - Joshua M. Madsen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | - David G. Motto
- Division of Hematology Oncology, Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - David K. Meyerholz
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Lee DJ, Kang SW. Reactive oxygen species and tumor metastasis. Mol Cells 2013; 35:93-8. [PMID: 23456330 PMCID: PMC3887897 DOI: 10.1007/s10059-013-0034-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 12/30/2022] Open
Abstract
The migration and invasion of cancer cells are the first steps in metastasis. Through a series of cellular responses, including cytoskeletal reorganization and degradation of the extracellular matrix, cancer cells are able to separate from the primary tumor and metastasize to distant locations in the body. In cancer cells, reactive oxygen species (ROS) play important roles in the migration and invasion of cells. Stimulation of cell surface receptors with growth factors and integrin assembly generates ROS, which relay signals from the cell surface to important signaling proteins. ROS then act within cells to promote migration and invasion. In this review, we collect recent evidence pointing towards the involvement of ROS in tumor metastasis and discuss the roles of ROS at different stages during the process of cancer cell migration, invasion and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Doo Jae Lee
- Division of Life and Pharmaceutical Sciences and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
| | - Sang Won Kang
- Division of Life and Pharmaceutical Sciences and Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750,
Korea
- Department of Life Sciences, Ewha Womans University, Seoul 120-750,
Korea
| |
Collapse
|
26
|
Patel M, Ramavataram DVSS. Non transferrin bound iron: nature, manifestations and analytical approaches for estimation. Indian J Clin Biochem 2012; 27:322-32. [PMID: 24082455 DOI: 10.1007/s12291-012-0250-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/12/2012] [Indexed: 12/20/2022]
Abstract
Iron is an essential trace element and plays a number of vital roles in biological system. It also leads the chains of pathological actions if present in excess and/or present in free form. Major portion of iron in circulation is associated with transferrin, a classical iron transporter, which prevent the existence of free iron. The fraction of iron which is free of transferrin is known as "non transferrin bound iron". Along with the incidence in iron over loaded patient non transferrin bound iron has been indicated in patients without iron overload. It has been suggested as cause as well as consequence in a number of pathological conditions. The major organs influenced by iron toxicity are heart, pancreas, kidney, organs involved in hematopoiesis etc. The most commonly suggested way for iron mediated pathogenesis is through increased oxidative stress and their secondary effects. Generation of free oxygen radicals by iron has been well documented in Fenton chemistry and Haber-Weiss reaction. Non transferrin bound iron has obvious chance to generate the free reactive radicals as it is not been shielded by the protective carrier protein apo transferrin. The nature of non transferrin bound iron is not clear at present time but it is definitely a group of heterogenous iron forms free from transferrin and ferritin. A variety of analytical approaches like colorimetry, chromatography, fluorimetry etc. have been experimented in different research laboratories for estimation of non transferrin bound iron. However the universally accepted gold standard method which can be operated in pathological laboratories is still to be developed.
Collapse
Affiliation(s)
- Meghna Patel
- Institute of Medical Technology, 173-B New Industrial Estate, Road No. 6G, Udyognagar, Udhana, Surat, Gujarat India
| | | |
Collapse
|
27
|
Sheftel AD, Wilbrecht C, Stehling O, Niggemeyer B, Elsässer HP, Mühlenhoff U, Lill R. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol Biol Cell 2012; 23:1157-66. [PMID: 22323289 PMCID: PMC3315811 DOI: 10.1091/mbc.e11-09-0772] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human mitochondrial proteins ISCA1, ISCA2, and IBA57 are essential for the generation of mitochondrial [4Fe-4S] proteins in a late step of Fe/S protein biogenesis. This process is important for mitochondrial physiology, as documented by drastic enlargement of the organelles and the loss of cristae membranes in the absence of these proteins. Members of the bacterial and mitochondrial iron–sulfur cluster (ISC) assembly machinery include the so-called A-type ISC proteins, which support the assembly of a subset of Fe/S apoproteins. The human genome encodes two A-type proteins, termed ISCA1 and ISCA2, which are related to Saccharomyces cerevisiae Isa1 and Isa2, respectively. An additional protein, Iba57, physically interacts with Isa1 and Isa2 in yeast. To test the cellular role of human ISCA1, ISCA2, and IBA57, HeLa cells were depleted for any of these proteins by RNA interference technology. Depleted cells contained massively swollen and enlarged mitochondria that were virtually devoid of cristae membranes, demonstrating the importance of these proteins for mitochondrial biogenesis. The activities of mitochondrial [4Fe-4S] proteins, including aconitase, respiratory complex I, and lipoic acid synthase, were diminished following depletion of the three proteins. In contrast, the mitochondrial [2Fe-2S] enzyme ferrochelatase and cellular heme content were unaffected. We further provide evidence against a localization and direct Fe/S protein maturation function of ISCA1 and ISCA2 in the cytosol. Taken together, our data suggest that ISCA1, ISCA2, and IBA57 are specifically involved in the maturation of mitochondrial [4Fe-4S] proteins functioning late in the ISC assembly pathway.
Collapse
Affiliation(s)
- Alex D Sheftel
- Institut für Zytobiologie, Philipps-Universität-Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 2012; 24:981-90. [PMID: 22286106 DOI: 10.1016/j.cellsig.2012.01.008] [Citation(s) in RCA: 2951] [Impact Index Per Article: 227.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/13/2012] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.
Collapse
|
29
|
Baumgart M, Bott M. Biochemical characterisation of aconitase from Corynebacterium glutamicum. J Biotechnol 2011; 154:163-70. [DOI: 10.1016/j.jbiotec.2010.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
30
|
Kumar SN, Konorev EA, Aggarwal D, Kalyanaraman B. Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte. J Proteomics 2011; 74:683-97. [PMID: 21338723 DOI: 10.1016/j.jprot.2011.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/10/2011] [Accepted: 02/12/2011] [Indexed: 12/27/2022]
Abstract
Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity.
Collapse
Affiliation(s)
- Suresh N Kumar
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
31
|
Jang S, Imlay JA. Hydrogen peroxide inactivates the Escherichia coli Isc iron-sulphur assembly system, and OxyR induces the Suf system to compensate. Mol Microbiol 2010; 78:1448-67. [PMID: 21143317 DOI: 10.1111/j.1365-2958.2010.07418.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Environmental H(2) O(2) creates several injuries in Escherichia coli, including the oxidative conversion of dehydratase [4Fe-4S] clusters to an inactive [3Fe-4S] form. To protect itself, H(2) O(2) -stressed E. coli activates the OxyR regulon. This regulon includes the suf operon, which encodes an alternative to the housekeeping Isc iron-sulphur cluster assembly system. Previously studied [3Fe-4S] clusters are repaired by an Isc/Suf-independent pathway, so the rationale for Suf induction was not obvious. Using strains that cannot scavenge H(2) O(2) , we imposed chronic low-grade stress and found that suf mutants could not maintain the activity of isopropylmalate isomerase, a key iron-sulphur dehydratase. Experiments showed that its damaged cluster was degraded in vivo beyond the [3Fe-4S] state, presumably to an apoprotein form, and thus required a de novo assembly system for reactivation. Surprisingly, submicromolar H(2) O(2) poisoned the Isc machinery, thereby creating a requirement for Suf both to repair the isomerase and to activate nascent Fe-S enzymes in general. The IscS and IscA components of the Isc system are H(2) O(2) -resistant, suggesting that oxidants disrupt Isc by oxidizing clusters as they are assembled on or transferred from the IscU scaffold. Consistent with these results, organisms that are routinely exposed to oxidants rely upon Suf rather than Isc for cluster assembly.
Collapse
Affiliation(s)
- Soojin Jang
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
32
|
Condò I, Malisan F, Guccini I, Serio D, Rufini A, Testi R. Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin. Hum Mol Genet 2010; 19:1221-9. [PMID: 20053667 DOI: 10.1093/hmg/ddp592] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The inability to produce normal levels of the mitochondrial protein frataxin causes the hereditary degenerative disorder Friedreich's Ataxia (FRDA), a syndrome characterized by progressive gait instability, cardiomyopathy and high incidence of diabetes. Frataxin is an iron-binding protein involved in the biogenesis of iron-sulfur clusters (ISC), prosthetic groups allowing essential cellular functions such as oxidative phosphorylation, enzyme catalysis and gene regulation. Although several evidence suggest that frataxin acts as an iron-chaperone within the mitochondrial compartment, we have recently demonstrated the existence of a functional extramitochondrial pool of mature frataxin in various human cell types. Here, we show that a similar proteolytic process generates both mature mitochondrial and extramitochondrial frataxin. To address the physiological function of human extramitochondrial frataxin, we searched for ISC-dependent interaction partners. We demonstrate that the extramitochondrial form of frataxin directly interacts with cytosolic aconitase/iron regulatory protein-1 (IRP1), a bifunctional protein alternating between an enzymatic and a RNA-binding function through the 'iron-sulfur switch' mechanism. Importantly, we found that the cytosolic aconitase defect and consequent IRP1 activation occurring in FRDA cells are reversed by the action of extramitochondrial frataxin. These results provide new insight into the control of cytosolic aconitase/IRP1 switch and expand current knowledge about the molecular pathogenesis of FRDA.
Collapse
Affiliation(s)
- Ivano Condò
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Tan YF, O'Toole N, Taylor NL, Millar AH. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. PLANT PHYSIOLOGY 2010; 152:747-61. [PMID: 20018591 PMCID: PMC2815878 DOI: 10.1104/pp.109.147942] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 12/10/2009] [Indexed: 05/18/2023]
Abstract
Understanding the metal ion content of plant mitochondria and metal ion interactions with the proteome are vital for insights into both normal respiratory function and the process of protein damage during oxidative stress. We have analyzed the metal content of isolated Arabidopsis (Arabidopsis thaliana) mitochondria, revealing a 26:8:6:1 molar ratio for iron:zinc:copper:manganese and trace amounts of cobalt and molybdenum. We show that selective changes occur in mitochondrial copper and iron content following in vivo and in vitro oxidative stresses. Immobilized metal affinity chromatography charged with Cu(2+), Zn(2+), and Co(2+) was used to identify over 100 mitochondrial proteins with metal-binding properties. There were strong correlations between the sets of immobilized metal affinity chromatography-interacting proteins, proteins predicted to contain metal-binding motifs, and protein sets known to be oxidized or degraded during abiotic stress. Mitochondrial respiratory chain pathways and matrix enzymes varied widely in their susceptibility to metal-induced loss of function, showing the selectivity of the process. A detailed study of oxidized residues and predicted metal interaction sites in the tricarboxylic acid cycle enzyme aconitase identified selective oxidation of residues in the active site and showed an approach for broader screening of functionally significant oxidation events in the mitochondrial proteome.
Collapse
|
34
|
Song D, Tu Z, Lee FS. Human ISCA1 interacts with IOP1/NARFL and functions in both cytosolic and mitochondrial iron-sulfur protein biogenesis. J Biol Chem 2010; 284:35297-307. [PMID: 19864422 DOI: 10.1074/jbc.m109.040014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.
Collapse
Affiliation(s)
- Daisheng Song
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
35
|
Theil EC, Goss DJ. Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev 2009; 109:4568-79. [PMID: 19824701 PMCID: PMC2919049 DOI: 10.1021/cr900052g] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elizabeth C Theil
- CHORI (Children's Hospital Oakland Research Institute), Oakland, California 94609, USA.
| | | |
Collapse
|
36
|
Mladenka P, Simůnek T, Hübl M, Hrdina R. The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 2009; 40:263-72. [PMID: 16484042 DOI: 10.1080/10715760500511484] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The catalytic role of iron in the Haber-Weiss chemistry, which results in propagation of damaging reactive oxygen species (ROS), is well established. In this review, we attempt to summarize the recent evidence showing the reverse: That reactive oxygen and nitrogen species can significantly affect iron metabolism. Their interaction with iron-regulatory proteins (IRPs) seems to be one of the essential mechanisms of influencing iron homeostasis. Iron depletion is known to provoke normal iron uptake via IRPs, superoxide and hydrogen peroxide are supposed to cause unnecessary iron uptake by similar mechanism. Furthermore, ROS are able to release iron from iron-containing molecules. On the contrary, nitric oxide (NO) appears to be involved in cellular defense against the iron-mediated ROS generation probably mainly by inducing iron removal from cells. In addition, NO may attenuate the effect of superoxide by mutual reaction, although the reaction product-peroxynitrite-is capable to produce highly reactive hydroxyl radicals.
Collapse
Affiliation(s)
- Premysl Mladenka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
37
|
Abstract
By virtue of its unique electrochemical properties, iron makes an ideal redox active cofactor for many biologic processes. In addition to its important role in respiration, central metabolism, nitrogen fixation, and photosynthesis, iron also is used as a sensor of cellular redox status. Iron-based sensors incorporate Fe-S clusters, heme, and mononuclear iron sites to act as switches to control protein activity in response to changes in cellular redox balance. Here we provide an overview of iron-based redox sensor proteins, in both prokaryotes and eukaryotes, that have been characterized at the biochemical level. Although this review emphasizes redox sensors containing Fe-S clusters, proteins that use heme or novel iron sites also are discussed.
Collapse
Affiliation(s)
- F Wayne Outten
- Department of Chemistry and Biochemistry, The University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | | |
Collapse
|
38
|
Rousselet E, Moulis JM. Iron regulatory protein 1 is not an early target of cadmium toxicity in mice, but it is sensitive to cadmium stress in a human epithelial cell line. Biochem Cell Biol 2008; 86:416-24. [DOI: 10.1139/o08-120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of iron homeostasis at the levels of intestinal absorption or erythropoiesis contributes to cadmium toxicity. Cellular iron homeostasis in metazoans is maintained by the iron regulatory proteins (IRPs) that regulate the synthesis of proteins involved in the transport, use, and storage of iron. The effect of cadmium intoxication on this regulatory system has been investigated in a cellular model of human epithelium. Cadmium exposure of HeLa cells did not activate the IRPs; rather, the amount of these proteins relative to that of housekeeping proteins decreased. Accordingly, the transferrin receptor mRNA level decreased upon cadmium insult. In a more integrated investigation, separate groups of mice had free access to different doses of cadmium in drinking water for 3 weeks. Cadmium accumulated in all analyzed organs, but its concentration in mouse tissues did not correlate with changes of the activity of the IRPs. The intoxicated mice did not show any sign of anemia, indicating that iron homeostasis was not immediately disrupted after the onset of cadmium accumulation. These data establish that cadmium destabilizes IRPs in mammalian cells, but that iron imbalance is not an early event of cadmium intoxication.
Collapse
Affiliation(s)
- Estelle Rousselet
- CEA-Grenoble, DSV, IRTSV, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, Grenoble 38054, France
- LCBM, CNRS, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Jean-Marc Moulis
- CEA-Grenoble, DSV, IRTSV, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, Grenoble 38054, France
- LCBM, CNRS, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| |
Collapse
|
39
|
Carvalho H, Meneghini R. Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL. ACTA ACUST UNITED AC 2008; 41:270-6. [PMID: 18297188 DOI: 10.1590/s0100-879x2008005000009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/11/2007] [Indexed: 11/21/2022]
Abstract
Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.
Collapse
Affiliation(s)
- H Carvalho
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brasil.
| | | |
Collapse
|
40
|
Dycke C, Bougault C, Gaillard J, Andrieu JP, Pantopoulos K, Moulis JM. Human iron regulatory protein 2 is easily cleaved in its specific domain: consequences for the haem binding properties of the protein. Biochem J 2008; 408:429-39. [PMID: 17760563 PMCID: PMC2267363 DOI: 10.1042/bj20070983] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian IRPs (iron regulatory proteins), IRP1 and IRP2, are cytosolic RNA-binding proteins that post-transcriptionally control the mRNA of proteins involved in storage, transport, and utilization of iron. In iron-replete cells, IRP2 undergoes degradation by the ubiquitin/proteasome pathway. Binding of haem to a 73aa-Domain (73-amino-acid domain) that is unique in IRP2 has been previously proposed as the initial iron-sensing mechanism. It is shown here that recombinant IRP2 and the 73aa-Domain are sensitive to proteolysis at the same site. NMR results suggest that the isolated 73aa-Domain is not structured. Iron-independent cleavage of IRP2 within the 73aa-Domain also occurs in lung cancer (H1299) cells. Haem interacts with a cysteine residue only in truncated forms of the 73aa-Domain, as shown by a series of complementary physicochemical approaches, including NMR, EPR and UV-visible absorption spectroscopy. In contrast, the cofactor is not ligated by the same residue in the full-length peptide or intact IRP2, although non-specific interaction occurs between these molecular forms and haem. Therefore it is unlikely that the iron-dependent degradation of IRP2 is mediated by haem binding to the intact 73aa-Domain, since the sequence resembling an HRM (haem-regulatory motif) in the 73aa-Domain does not provide an axial ligand of the cofactor unless this domain is cleaved.
Collapse
Affiliation(s)
- Camille Dycke
- *CEA, DSV, IRTSV, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, Grenoble F-38054, France
- †LCBM, CNRS, Grenoble, France
- ‡Université Joseph Fourier, Grenoble, France
| | - Catherine Bougault
- ‡Université Joseph Fourier, Grenoble, France
- §Laboratoire de Résonance Magnétique Nucléaire, Institut de Biologie Structurale – Jean-Pierre Ebel, 41 rue Jules Horowitz, F-38027 Grenoble, France
- ∥IBS, CNRS, Grenoble, France
| | - Jacques Gaillard
- ¶Département de Recherche Fondamentale sur la Matière Condensée, Service de Chimie Inorganique et Biologique, 17 rue des Martyrs, Grenoble F-38054, France
| | - Jean-Pierre Andrieu
- ‡Université Joseph Fourier, Grenoble, France
- ∥IBS, CNRS, Grenoble, France
- **Laboratoire d'Enzymologie Moléculaire, Institut de Biologie Structurale – Jean-Pierre Ebel, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | - Kostas Pantopoulos
- ††Lady Davis Institute for Medical Research, 3999 Côte Ste Catherine, Montréal, QC, Canada H3T 1E2
- ‡‡Department of Medicine, McGill University, Montréal, QC, Canada
| | - Jean-Marc Moulis
- †LCBM, CNRS, Grenoble, France
- ‡Université Joseph Fourier, Grenoble, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
41
|
Llorens JV, Navarro JA, Martínez-Sebastián MJ, Baylies MK, Schneuwly S, Botella JA, Moltó MD. Causative role of oxidative stress in a Drosophila model of Friedreich ataxia. FASEB J 2007; 21:333-44. [PMID: 17167074 DOI: 10.1096/fj.05-5709com] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Friedreich ataxia (FA), the most common form of hereditary ataxia, is caused by a deficit in the mitochondrial protein frataxin. While several hypotheses have been suggested, frataxin function is not well understood. Oxidative stress has been suggested to play a role in the pathophysiology of FA, but this view has been recently questioned, and its link to frataxin is unclear. Here, we report the use of RNA interference (RNAi) to suppress the Drosophila frataxin gene (fh) expression. This model system parallels the situation in FA patients, namely a moderate systemic reduction of frataxin levels compatible with normal embryonic development. Under these conditions, fh-RNAi flies showed a shortened life span, reduced climbing abilities, and enhanced sensitivity to oxidative stress. Under hyperoxia, fh-RNAi flies also showed a dramatic reduction of aconitase activity that seriously impairs the mitochondrial respiration while the activities of succinate dehydrogenase, respiratory complex I and II, and indirectly complex III and IV are normal. Remarkably, frataxin overexpression also induced the oxidative-mediated inactivation of mitochondrial aconitase. This work demonstrates, for the first time, the essential function of frataxin in protecting aconitase from oxidative stress-dependent inactivation in a multicellular organism. Moreover our data support an important role of oxidative stress in the progression of FA and suggest a tissue-dependent sensitivity to frataxin imbalance. We propose that in FA, the oxidative mediated inactivation of aconitase, which occurs normally during the aging process, is enhanced due to the lack of frataxin.
Collapse
Affiliation(s)
- José V Llorens
- Departament de Genètica, Universitat de València, Carrer Doctor Moliner 50, 46100-Burjassot, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
42
|
Solov’eva ME, Solov’ev VV, Faskhutdinova AA, Kudryavtsev AA, Akatov VS. Prooxidant and cytotoxic action of N-acetylcysteine and glutathione in combinations with vitamin B12b. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07010063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:668-89. [PMID: 16872694 PMCID: PMC2291536 DOI: 10.1016/j.bbamcr.2006.05.004] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 02/06/2023]
Abstract
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system.
Collapse
Affiliation(s)
- Michelle L. Wallander
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Elizabeth A. Leibold
- Department of Medicine, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Department of Oncological Sciences, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, 15N. 2030E., Salt Lake City, UT 84112, USA
| | - Richard S. Eisenstein
- Department of Nutritional Sciences, University of Wisconsin, 1415 Linden Drive, Madison, WI 53706, USA
- Corresponding author. Tel.: +1 608 262 5830. E-mail address: (R.S. Eisenstein)
| |
Collapse
|
44
|
Lind MI, Missirlis F, Melefors O, Uhrigshardt H, Kirby K, Phillips JP, Söderhäll K, Rouault TA. Of two cytosolic aconitases expressed in Drosophila, only one functions as an iron-regulatory protein. J Biol Chem 2006; 281:18707-14. [PMID: 16679315 DOI: 10.1074/jbc.m603354200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mammalian cells, iron homeostasis is largely regulated by post-transcriptional control of gene expression through the binding of iron-regulatory proteins (IRP1 and IRP2) to iron-responsive elements (IREs) contained in the untranslated regions of target mRNAs. IRP2 is the dominant iron sensor in mammalian cells under normoxia, but IRP1 is the more ancient protein in evolutionary terms and has an additional function as a cytosolic aconitase. The Caenorhabditis elegans genome does not contain an IRP2 homolog or identifiable IREs; its IRP1 homolog has aconitase activity but does not bind to mammalian IREs. The Drosophila genome offers an evolutionary intermediate containing two IRP1-like proteins (IRP-1A and IRP-1B) and target genes with IREs. Here, we used purified recombinant IRP-1A and IRP-1B from Drosophila melanogaster and showed that only IRP-1A can bind to IREs, although both proteins possess aconitase activity. These results were also corroborated in whole-fly homogenates from transgenic flies that overexpress IRP-1A and IRP-1B in their fat bodies. Ubiquitous and muscle-specific overexpression of IRP-1A, but not of IRP-1B, resulted in pre-adult lethality, underscoring the importance of the biochemical difference between the two proteins. Domain-swap experiments showed that multiple amino acid substitutions scattered throughout the IRP1 domains are synergistically required for conferring IRE binding activity. Our data suggest that as a first step during the evolution of the IRP/IRE system, the ancient cytosolic aconitase was duplicated in insects with one variant acquiring IRE-specific binding.
Collapse
Affiliation(s)
- Maria I Lind
- Department of Comparative Physiology, Evolutionary Biology Centre, Uppsala University, S-75236 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Banting GS, Glerum DM. Mutational analysis of the Saccharomyces cerevisiae cytochrome c oxidase assembly protein Cox11p. EUKARYOTIC CELL 2006; 5:568-78. [PMID: 16524911 PMCID: PMC1398067 DOI: 10.1128/ec.5.3.568-578.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa(3) peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Deltacox11, like Deltasco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.
Collapse
Affiliation(s)
- Graham S Banting
- Department of Medical Genetics, University of Alberta, 8-33 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
46
|
Danzeisen R, Achsel T, Bederke U, Cozzolino M, Crosio C, Ferri A, Frenzel M, Gralla EB, Huber L, Ludolph A, Nencini M, Rotilio G, Valentine JS, Carrì MT. Superoxide dismutase 1 modulates expression of transferrin receptor. J Biol Inorg Chem 2006; 11:489-98. [PMID: 16680451 DOI: 10.1007/s00775-006-0099-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Copper-zinc superoxide dismutase (SOD1) plays a protective role against the toxicity of superoxide, and studies in Saccharomyces cerevisiae and in Drosophila have suggested an additional role for SOD1 in iron metabolism. We have studied the effect of the modulation of SOD1 levels on iron metabolism in a cultured human glial cell line and in a mouse motoneuronal cell line. We observed that levels of the transferrin receptor and the iron regulatory protein 1 were modulated in response to altered intracellular levels of superoxide dismutase activity, carried either by wild-type SOD1 or by an SOD-active amyotrophic lateral sclerosis (ALS) mutant enzyme, G93A-SOD1, but not by a superoxide dismutase inactive ALS mutant, H46R-SOD1. Ferritin expression was also increased by wild-type SOD1 overexpression, but not by mutant SOD1s. We propose that changes in superoxide levels due to alteration of SOD1 activity affect iron metabolism in glial and neuronal cells from higher eukaryotes and that this may be relevant to diseases of the nervous system.
Collapse
Affiliation(s)
- Ruth Danzeisen
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tong WH, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell Metab 2006; 3:199-210. [PMID: 16517407 DOI: 10.1016/j.cmet.2006.02.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/24/2006] [Accepted: 02/10/2006] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S) clusters are required for the functions of mitochondrial aconitase, mammalian iron regulatory protein 1, and many other proteins in multiple subcellular compartments. Recent studies in Saccharomyces cerevisiae indicated that Fe-S cluster biogenesis also has an important role in mitochondrial iron homeostasis. Here we report the functional analysis of the mitochondrial and cytosolic isoforms of the human Fe-S cluster scaffold protein, ISCU. Suppression of human ISCU by RNAi not only inactivated mitochondrial and cytosolic aconitases in a compartment-specific manner but also inappropriately activated the iron regulatory proteins and disrupted intracellular iron homeostasis. Furthermore, endogenous ISCU levels were suppressed by iron deprivation. These results provide evidence for a coordinated response to iron deficiency that includes activation of iron uptake, redistribution of intracellular iron, and decreased utilization of iron in Fe-S proteins.
Collapse
Affiliation(s)
- Wing-Hang Tong
- National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
48
|
Yarian CS, Toroser D, Sohal RS. Aconitase is the main functional target of aging in the citric acid cycle of kidney mitochondria from mice. Mech Ageing Dev 2005; 127:79-84. [PMID: 16289253 PMCID: PMC2835517 DOI: 10.1016/j.mad.2005.09.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/30/2005] [Indexed: 11/28/2022]
Abstract
The activities of the citric acid cycle enzymes were determined in mitochondria isolated from kidneys of relatively young, middle age, and old mice. Aconitase exhibited the most significant decrease in activity with age. The activity of alpha-ketoglutarate dehydrogenase exhibited a modest decrease in activity, while NADP(+)-isocitrate dehydrogenase (NADP(+)-ICD) activity increased moderately with age. Activities of citrate synthase, NAD(+)-isocitrate dehydrogenase (NAD(+)-ICD), succinyl-CoA synthetase (SCS), succinate dehydrogenase (SD), fumarase (FUM), and malate dehydrogenase (MD) were not affected. The molar ratio of the intra-mitochondrial redox indicator, NADPH:NADP(+), was higher in young compared to old animals, while the NADH:NAD(+) molar ratio remained unchanged. It is suggested that an age-related decrease in aconitase activity along with relatively subtle alterations in activities of some other citric acid cycle enzymes are likely to contribute to a decline in the overall efficiency of mitochondrial bioenergetics. The biological consequences of such alterations include age-related fluctuations in the citric acid cycle intermediates, which are precursors of protein synthesis, activators of fatty acid synthesis, and can also act as ligands for orphan G-protein coupled receptors.
Collapse
Affiliation(s)
| | | | - Rajindar S. Sohal
- Corresponding author. Tel.: +1 323 442 1860; fax: +1 323 224 7473. (R.S. Sohal)
| |
Collapse
|
49
|
Fernaeus S, Reis K, Bedecs K, Land T. Increased susceptibility to oxidative stress in scrapie-infected neuroblastoma cells is associated with intracellular iron status. Neurosci Lett 2005; 389:133-6. [PMID: 16095817 DOI: 10.1016/j.neulet.2005.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 11/15/2022]
Abstract
The molecular mechanism of neurodegeneration in prion diseases remains largely uncertain, but one of the features of infected cells is higher sensitivity to induced oxidative stress. In this study, we have investigated the role of iron in hydrogen peroxide (H(2)O(2))-induced toxicity in scrapie-infected mouse neuroblastoma N2a (ScN 2 a) cells. ScN 2 a cells were significantly more susceptible to H(2)O(2) toxicity than N2a cells as revealed by cell viability (MTT) assay. After 2h exposure, significant decrease in cell viability in ScN 2 a cells was observed at low concentrations of extracellular H(2)O(2) (5-10 microM), whereas N2a cells were not affected. The increased H(2)O(2) toxicity in ScN 2 a cells may be related to intracellular iron status since ferrous iron (Fe(2+)) chelator 2,2'-bipyridyl (BIP) prevented H(2)O(2)-induced decrease in cell viability. Further, the level of calcein-sensitive labile iron pool (LIP) was significantly increased in ScN 2 a cells after H(2)O(2) treatment. Finally, the production of reactive oxygen species (ROS) was inhibited by 30% by iron chelators desferrioxamine (DFO) and BIP in ScN 2 a cells, whereas no significant effect of iron chelators on basal ROS production was observed in N2a cells. This study indicates that cellular resistance to oxidative stress in ScN 2 a cells is associated with intracellular status of reactive iron.
Collapse
Affiliation(s)
- Sandra Fernaeus
- Department of Neurochemistry, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | |
Collapse
|
50
|
Abstract
The amount of iron within the cell is carefully regulated in order to provide an adequate level of the micronutrient while preventing its accumulation to toxic levels. Iron excess is believed to generate oxidative stress, understood as an increase in the steady state concentration of oxygen radical intermediates. The main aspects of cellular metabolism of iron, with special emphasis on the role of iron with respect to oxidative damage to lipid membranes, are briefly reviewed here. Both in vitro and in vivo models are examined. Finally, a discussion of iron overload and its impact on human health is included. Overall, further studies are required to assess more effective means to limit iron-dependent damage, by minimizing the formation and release of free radicals in tissues when the cellular iron steady state concentration is increased either as a consequence of disease or by therapeutic iron supplementation.
Collapse
Affiliation(s)
- Susana Puntarulo
- Physical Chemistry-PRALIB, School of Pharmacy and Biochemistry, University of Buenos Aires, 1113 Buenos Aires, Argentina.
| |
Collapse
|