1
|
Mohanty S, Suklabaidya S, Lavorgna A, Ueno T, Fujisawa JI, Ngouth N, Jacobson S, Harhaj EW. The tyrosine kinase KDR is essential for the survival of HTLV-1-infected T cells by stabilizing the Tax oncoprotein. Nat Commun 2024; 15:5380. [PMID: 38918393 PMCID: PMC11199648 DOI: 10.1038/s41467-024-49737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia/lymphoma (ATLL) and the neuroinflammatory disease, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax oncoprotein regulates viral gene expression and persistently activates NF-κB to maintain the viability of HTLV-1-infected T cells. Here, we utilize a kinome-wide shRNA screen to identify the tyrosine kinase KDR as an essential survival factor of HTLV-1-transformed cells. Inhibition of KDR specifically induces apoptosis of Tax expressing HTLV-1-transformed cell lines and CD4 + T cells from HAM/TSP patients. Furthermore, inhibition of KDR triggers the autophagic degradation of Tax resulting in impaired NF-κB activation and diminished viral transmission in co-culture assays. Tax induces the expression of KDR, forms a complex with KDR, and is phosphorylated by KDR. These findings suggest that Tax stability is dependent on KDR activity which could be exploited as a strategy to target Tax in HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Millipore-Sigma, Rockville, MD, USA
| | - Takaharu Ueno
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | | | - Nyater Ngouth
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Song X, Qu Z. NF-κB1 deficiency promotes macrophage-derived adrenal tumors but decreases neurofibromas in HTLV-I LTR-Tax transgenic mice. PLoS One 2024; 19:e0303138. [PMID: 38722890 PMCID: PMC11081228 DOI: 10.1371/journal.pone.0303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I) is an oncogenic virus whose infection can cause diverse diseases, most notably adult T-cell leukemia/lymphoma (ATL or ATLL), an aggressive and fatal malignancy of CD4 T cells. The oncogenic ability of HTLV-I is mostly attributed to the viral transcriptional transactivator Tax. Tax alone is sufficient to induce specific tumors in mice depending on the promotor used to drive Tax expression, thereby being used to understand HTLV-I tumorigenesis and model the tumor types developed in Tax transgenic mice. Tax exerts its oncogenic role predominantly by activating the cellular transcription factor NF-κB. Here, we report that genetic deletion of NF-κB1, the prototypic member of the NF-κB family, promotes adrenal medullary tumors but suppresses neurofibromas in mice with transgenic Tax driven by the HTLV-I Long Terminal Repeat (LTR) promoter. The adrenal tumors are derived from macrophages. Neoplastic macrophages also infiltrate the spleen and lymph nodes, causing splenomegaly and lymphadenopathy in mice. Nevertheless, the findings could be human relevant, because macrophages are important target cells of HTLV-I infection and serve as a virus reservoir in vivo. Moreover, the spleen, lymph nodes and adrenal glands are the most common sites of tumor cell infiltration in HTLV-I-infected patients. These data provide new mechanistic insights into the complex interaction between Tax and NF-κB, therefore improving our understanding of HTLV-I oncogenic pathogenesis. They also expand our knowledge and establish a new animal model of macrophage neoplasms and adrenal tumors.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Zhaoxia Qu
- Department of Microbiology and Molecular Genetics, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Microbiology and Immunology, Hastings Center for Pulmonary Research, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA, United States of America
| |
Collapse
|
3
|
Su R, Kang X, Niu Y, Zhao T, Wang H. PCBP1 interacts with the HTLV-1 Tax oncoprotein to potentiate NF-κB activation. Front Immunol 2024; 15:1375168. [PMID: 38690287 PMCID: PMC11058652 DOI: 10.3389/fimmu.2024.1375168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/25/2024] [Indexed: 05/02/2024] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma. The HTLV-1 Tax constitutively activates nuclear factor-κB (NF-κB) to promote the survival and transformation of HTLV-1-infected T cells. Despite extensive study of Tax, how Tax interacts with host factors to regulate NF-κB activation and HTLV-1-driven cell proliferation is not entirely clear. Here, we showed that overexpression of Poly (rC)-binding protein 1 (PCBP1) promoted Tax-mediated IκB kinase (IKK)-NF-κB signaling activation, whereas knockdown of PCBP1 attenuated Tax-dependent IKK-NF-κB activation. However, Tax activation of HTLV-1 long terminal repeat was unaffected by PCBP1. Furthermore, depletion of PCBP1 led to apoptosis and reduced proliferation of HTLV-1-transformed cells. Mechanistically, PCBP1 interacted and co-localized with Tax in the cytoplasm, and PCBP1 KH3 domain was indispensable for the interaction between PCBP1 and Tax. Moreover, PCBP1 facilitated the assembly of Tax/IKK complex. Collectively, our results demonstrated that PCBP1 may exert an essential effect in Tax/IKK complex combination and subsequent NF-κB activation, which provides a novel insight into the pathogenetic mechanisms of HTLV-1.
Collapse
Affiliation(s)
- Rui Su
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Xue Kang
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Yifan Niu
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
| | - Tiesuo Zhao
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
4
|
Nakashima M, Uchimaru K. CD30 Expression and Its Functions during the Disease Progression of Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2023; 24:ijms24108731. [PMID: 37240076 DOI: 10.3390/ijms24108731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
5
|
Heym S, Mohr CF, Engelbrecht HC, Fleckenstein B, Thoma-Kress AK. Alternative NF-κB Signaling Discriminates Induction of the Tumor Marker Fascin by the Viral Oncoproteins Tax-1 and Tax-2 of Human T-Cell Leukemia Viruses. Cancers (Basel) 2022; 14:cancers14030537. [PMID: 35158803 PMCID: PMC8833421 DOI: 10.3390/cancers14030537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional regulation of the actin-bundling protein and tumor marker Fascin is highly diverse depending on cell and tumor type. Previously, we discovered that the viral oncoprotein Tax-1 of human T-cell leukemia virus type 1 (HTLV-1) considerably enhances Fascin expression in T-cells, depending on classical NF-κB signaling. In this study, we asked if the non-oncogenic Tax-2 of the related HTLV-2 is still able to induce Fascin by using luciferase assays, immunoblot, and qPCR. We found that Tax-2 only slightly induces Fascin expression compared to Tax-1; however, both Tax-1 and Tax-2 comparably activated a 1.6 kb fragment in the human Fascin promoter including Tax-responsive elements. Furthermore, we identified a link between Tax-induced activity of the alternative NF-κB pathway and Fascin induction. While treatment with the second mitochondria-derived activator of caspases (SMAC)-mimetic AZD5582, a compound known to robustly activate alternative NF-κB signaling, did not induce Fascin, combination of AZD5582 with activation of classical NF-κB signaling by Tax-2 significantly induced Fascin expression. In conclusion, our data demonstrate that both classical and alternative NF-κB activity are necessary for strong Fascin induction by the viral Tax oncoproteins, thus, shedding new light on the regulation of Fascin in T-cells and during viral transformation.
Collapse
Affiliation(s)
- Stefanie Heym
- FAU-Nachwuchsgruppe “Retroviral Pathogenesis” and BMBF Junior Research Group in Infection Research “Milk-Transmission of Viruses”, Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (H.C.E.)
| | - Caroline F. Mohr
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Hanna C. Engelbrecht
- FAU-Nachwuchsgruppe “Retroviral Pathogenesis” and BMBF Junior Research Group in Infection Research “Milk-Transmission of Viruses”, Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (H.C.E.)
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Andrea K. Thoma-Kress
- FAU-Nachwuchsgruppe “Retroviral Pathogenesis” and BMBF Junior Research Group in Infection Research “Milk-Transmission of Viruses”, Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.H.); (H.C.E.)
- Correspondence: ; Tel.: +49-9131-85-43662
| |
Collapse
|
6
|
Ducasa N, Grasso D, Benencio P, Papademetrio DL, Biglione M, Kashanchi F, Berini C, Garcia MN. Autophagy in Human T-Cell Leukemia Virus Type 1 (HTLV-1) Induced Leukemia. Front Oncol 2021; 11:641269. [PMID: 33869030 PMCID: PMC8045967 DOI: 10.3389/fonc.2021.641269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/10/2021] [Indexed: 12/23/2022] Open
Abstract
Viruses play an important role in the development of certain human cancers. They are estimated to contribute 16% to all human cancers. Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus to be discovered and is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive T-cell malignancy with poor prognosis. HTLV-1 viral proteins interact with mechanisms and proteins present in host cells for their own benefit, evading the immune system and promoting the establishment of disease. Several viruses manipulate the autophagy pathway to achieve their infective goals, and HTLV-1 is not the exception. HTLV-1 Tax viral protein engages NF-κB and autophagy pathways prone favoring viral replication and T cell transformation. In this review we focus on describing the relationship of HTLV-1 with the autophagy machinery and its implication in the development of ATLL.
Collapse
Affiliation(s)
- Nicolás Ducasa
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Grasso
- Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
| | - Paula Benencio
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela L. Papademetrio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirna Biglione
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA, United States
| | - Carolina Berini
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET- Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Noé Garcia
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Estudios de la Inmunidad Humoral (IDEHU), Buenos Aires, Argentina
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mohanty S, Han T, Choi YB, Lavorgna A, Zhang J, Harhaj EW. The E3/E4 ubiquitin conjugation factor UBE4B interacts with and ubiquitinates the HTLV-1 Tax oncoprotein to promote NF-κB activation. PLoS Pathog 2020; 16:e1008504. [PMID: 33362245 PMCID: PMC7790423 DOI: 10.1371/journal.ppat.1008504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 01/07/2021] [Accepted: 11/13/2020] [Indexed: 11/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), and the neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein persistently activates the NF-κB pathway to enhance the proliferation and survival of HTLV-1 infected T cells. Lysine 63 (K63)-linked polyubiquitination of Tax provides an important regulatory mechanism that promotes Tax-mediated interaction with the IKK complex and activation of NF-κB; however, the host proteins regulating Tax ubiquitination are largely unknown. To identify new Tax interacting proteins that may regulate its ubiquitination we conducted a yeast two-hybrid screen using Tax as bait. This screen yielded the E3/E4 ubiquitin conjugation factor UBE4B as a novel binding partner for Tax. Here, we confirmed the interaction between Tax and UBE4B in mammalian cells by co-immunoprecipitation assays and demonstrated colocalization by proximity ligation assay and confocal microscopy. Overexpression of UBE4B specifically enhanced Tax-induced NF-κB activation, whereas knockdown of UBE4B impaired Tax-induced NF-κB activation and the induction of NF-κB target genes in T cells and ATLL cell lines. Furthermore, depletion of UBE4B with shRNA resulted in apoptotic cell death and diminished the proliferation of ATLL cell lines. Finally, overexpression of UBE4B enhanced Tax polyubiquitination, and knockdown or CRISPR/Cas9-mediated knockout of UBE4B attenuated both K48- and K63-linked polyubiquitination of Tax. Collectively, these results implicate UBE4B in HTLV-1 Tax polyubiquitination and downstream NF-κB activation. Infection with the retrovirus HTLV-1 leads to the development of either CD4+CD25+ leukemia/lymphoma (ATLL) or a demyelinating neuroinflammatory disease (HAM/TSP) in a subset of infected individuals. The HTLV-1 Tax protein is a regulatory protein which regulates viral gene expression and persistently activates cellular signaling pathways such as NF-κB to drive the clonal expansion and longevity of HTLV-1 infected CD4+ T cells. Polyubiquitination of Tax is a key mechanism of NF-κB activation by assembling and activating IκB kinase (IKK) signaling complexes; however, the host factors regulating Tax ubiquitination have remained elusive. Here, we have identified the E3/E4 ubiquitin conjugation factor UBE4B as a novel Tax binding protein that promotes both K48- and K63-linked polyubiquitination of Tax. Knockdown or knockout of UBE4B impairs Tax-induced NF-κB activation and triggers apoptosis of HTLV-1-transformed cells. Therefore, UBE4B is an integral host factor that supports HTLV-1 Tax polyubiquitination, NF-κB activation and cell survival.
Collapse
Affiliation(s)
- Suchitra Mohanty
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Teng Han
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Jiawen Zhang
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
| | - Edward William Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, United States of America
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Millen S, Meretuk L, Göttlicher T, Schmitt S, Fleckenstein B, Thoma-Kress AK. A novel positive feedback-loop between the HTLV-1 oncoprotein Tax and NF-κB activity in T-cells. Retrovirology 2020; 17:30. [PMID: 32912211 PMCID: PMC7488018 DOI: 10.1186/s12977-020-00538-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
Background Human T-cell leukemia virus type 1 (HTLV-1) infects primarily CD4+ T-lymphocytes and evoques severe diseases, predominantly Adult T-Cell Leukemia/ Lymphoma (ATL/L) and HTLV-1-associated Myelopathy/ Tropical Spastic Paraparesis (HAM/TSP). The viral transactivator of the pX region (Tax) is important for initiating malignant transformation, and deregulation of the major signaling pathway nuclear factor of kappa B (NF-κB) by Tax represents a hallmark of HTLV-1 driven cancer. Results Here we found that Tax mutants which are defective in NF-κB signaling showed diminished protein expression levels compared to Tax wildtype in T-cells, whereas Tax transcript levels were comparable. Strikingly, constant activation of NF-κB signaling by the constitutive active mutant of inhibitor of kappa B kinase (IKK2, IKK-β), IKK2-EE, rescued protein expression of the NF-κB defective Tax mutants M22 and K1-10R and even increased protein levels of Tax wildtype in various T-cell lines while Tax transcript levels were only slightly affected. Using several Tax expression constructs, an increase of Tax protein occurred independent of Tax transcripts and independent of the promoter used. Further, Tax and M22 protein expression were strongly enhanced by 12-O-Tetradecanoylphorbol-13-Acetate [TPA; Phorbol 12-myristate 13-acetate (PMA)]/ ionomycin, inducers of NF-κB and cytokine signaling, but not by tumor necrosis factor alpha (TNF-α). On the other hand, co-expression of Tax with a dominant negative inhibitor of κB, IκBα-DN, or specific inhibition of IKK2 by the compound ACHP, led to a vast decrease in Tax protein levels to some extent independent of Tax transcripts in transiently transfected and Tax-transformed T-cells. Cycloheximide chase experiments revealed that co-expression of IKK2-EE prolongs the half-life of M22, and constant repression of NF-κB signaling by IκBα-DN strongly reduces protein stability of Tax wildtype suggesting that NF-κB activity is required for Tax protein stability. Finally, protein expression of Tax and M22 could be recovered by NH4Cl and PYR-41, inhibitors of the lysosome and the ubiquitin-activating enzyme E1, respectively. Conclusions Together, these findings suggest that Tax’s capability to induce NF-κB is critical for protein expression and stabilization of Tax itself. Overall, identification of this novel positive feedback loop between Tax and NF-κB in T-cells improves our understanding of Tax-driven transformation.
Collapse
Affiliation(s)
- Sebastian Millen
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lina Meretuk
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Göttlicher
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sarah Schmitt
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernhard Fleckenstein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Mohanty S, Harhaj EW. Mechanisms of Oncogenesis by HTLV-1 Tax. Pathogens 2020; 9:E543. [PMID: 32645846 PMCID: PMC7399876 DOI: 10.3390/pathogens9070543] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
The human T-cell lymphotropic virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), a neoplasm of CD4+CD25+ T cells that occurs in 2-5% of infected individuals after decades of asymptomatic latent infection. Multiple HTLV-1-encoded regulatory proteins, including Tax and HTLV-1 basic leucine zipper factor (HBZ), play key roles in viral persistence and latency. The HTLV-1 Tax oncoprotein interacts with a plethora of host cellular proteins to regulate viral gene expression and also promote the aberrant activation of signaling pathways such as NF-κB to drive clonal proliferation and survival of T cells bearing the HTLV-1 provirus. Tax undergoes various post-translational modifications such as phosphorylation and ubiquitination that regulate its function and subcellular localization. Tax shuttles in different subcellular compartments for the activation of anti-apoptotic genes and deregulates the cell cycle with the induction of DNA damage for the accumulation of genomic instability that can result in cellular immortalization and malignant transformation. However, Tax is highly immunogenic and therefore HTLV-1 has evolved numerous strategies to tightly regulate Tax expression while maintaining the pool of anti-apoptotic genes through HBZ. In this review, we summarize the key findings on the oncogenic mechanisms used by Tax that set the stage for the development of ATLL, and the strategies used by HTLV-1 to tightly regulate Tax expression for immune evasion and viral persistence.
Collapse
Affiliation(s)
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
10
|
Ameur LB, Marie P, Thenoz M, Giraud G, Combe E, Claude JB, Lemaire S, Fontrodona N, Polveche H, Bastien M, Gessain A, Wattel E, Bourgeois CF, Auboeuf D, Mortreux F. Intragenic recruitment of NF-κB drives splicing modifications upon activation by the oncogene Tax of HTLV-1. Nat Commun 2020; 11:3045. [PMID: 32546717 PMCID: PMC7298006 DOI: 10.1038/s41467-020-16853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB–responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases. The nuclear factors κB (NF-κB) is a transcription factor involved in immune functions, inflammation, and cancer. Here, the authors show that the NF-κB factor RELA regulates splicing of target genes by recruiting DDX17 on chromatin upon expression of the viral oncogene Tax.
Collapse
Affiliation(s)
- Lamya Ben Ameur
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Paul Marie
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Morgan Thenoz
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,Department of Pediatrics and Medical Genetics, Faculty of Medicine and Health Sciences, 9000, Gent, Belgium
| | - Guillaume Giraud
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Emmanuel Combe
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Sebastien Lemaire
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | | | - Marine Bastien
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Antoine Gessain
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogénes, Institut Pasteur, Paris, France
| | - Eric Wattel
- Université Lyon 1, CNRS UMR5239, Oncovirologie et Biothérapies, Faculté de Médecine Lyon Sud, ENS - HCL, Pierre Bénite, France.,Université Lyon 1, Service d'Hématologie, Pavillon Marcel Bérard, Centre Hospitalier Lyon-Sud, Pierre Bénite, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, 46 Allée d'Italie Site Jacques Monod, 69007, Lyon, France.
| |
Collapse
|
11
|
El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T, Hermine O. Novel Treatments of Adult T Cell Leukemia Lymphoma. Front Microbiol 2020; 11:1062. [PMID: 32547515 PMCID: PMC7270167 DOI: 10.3389/fmicb.2020.01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Adult T cell leukemia-lymphoma (ATL) is an aggressive malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-I) retrovirus. ATL carries a dismal prognosis. ATL classifies into four subtypes (acute, lymphoma, chronic, and smoldering) which display different clinical features, prognosis and response to therapy, hence requiring different clinical management. Smoldering and chronic subtypes respond well to antiretroviral therapy using the combination of zidovudine (AZT) and interferon-alpha (IFN) with a significant prolongation of survival. Conversely, the watch and wait strategy or chemotherapy for these indolent subtypes allies with a poor long-term outcome. Acute ATL is associated with chemo-resistance and dismal prognosis. Lymphoma subtypes respond better to intensive chemotherapy but survival remains poor. Allogeneic hematopoietic stem cell transplantation (HSCT) results in long-term survival in roughly one third of transplanted patients but only a small percentage of patients can make it to transplant. Overall, current treatments of aggressive ATL are not satisfactory. Prognosis of refractory or relapsed patients is dismal with some encouraging results when using lenalidomide or mogamulizumab. To overcome resistance and prevent relapse, preclinical or pilot clinical studies using targeted therapies such as arsenic/IFN, monoclonal antibodies, epigenetic therapies are promising but warrant further clinical investigation. Anti-ATL vaccines including Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients. Finally, based on the progress in understanding the pathophysiology of ATL, and the risk-adapted treatment approaches to different ATL subtypes, treatment strategies of ATL should take into account the host immune responses and the host microenvironment including HTLV-1 infected non-malignant cells. Herein, we will provide a summary of novel treatments of ATL in vitro, in vivo, and in early clinical trials.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Morgane Cheminant
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Toshiki Watanabe
- Department of Medical Genome Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
12
|
Sadek J, Wuo MG, Rooklin D, Hauenstein A, Hong SH, Gautam A, Wu H, Zhang Y, Cesarman E, Arora PS. Modulation of virus-induced NF-κB signaling by NEMO coiled coil mimics. Nat Commun 2020; 11:1786. [PMID: 32286300 PMCID: PMC7156456 DOI: 10.1038/s41467-020-15576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/12/2020] [Indexed: 01/07/2023] Open
Abstract
Protein-protein interactions featuring intricate binding epitopes remain challenging targets for synthetic inhibitors. Interactions of NEMO, a scaffolding protein central to NF-κB signaling, exemplify this challenge. Various regulators are known to interact with different coiled coil regions of NEMO, but the topological complexity of this protein has limited inhibitor design. We undertook a comprehensive effort to block the interaction between vFLIP, a Kaposi’s sarcoma herpesviral oncoprotein, and NEMO using small molecule screening and rational design. Our efforts reveal that a tertiary protein structure mimic of NEMO is necessary for potent inhibition. The rationally designed mimic engages vFLIP directly causing complex disruption, protein degradation and suppression of NF-κB signaling in primary effusion lymphoma (PEL). NEMO mimic treatment induces cell death and delays tumor growth in a PEL xenograft model. Our studies with this inhibitor reveal the critical nexus of signaling complex stability in the regulation of NF-κB by a viral oncoprotein. NF-κB signalling involves the scaffold protein NEMO, which can be bound by the oncoprotein vFLIP to promote cell survival and oncogenic transformation. Here the authors rationally engineer a tertiary protein mimic of NEMO to disrupt the vFLIP-NEMO interaction to induce cell death.
Collapse
Affiliation(s)
- Jouliana Sadek
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Michael G Wuo
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - David Rooklin
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Arthur Hauenstein
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Archana Gautam
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, 10003, USA.,NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, 200122, Shanghai, China
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
13
|
Xu X, Kalac M, Markson M, Chan M, Brody JD, Bhagat G, Ang RL, Legarda D, Justus SJ, Liu F, Li Q, Xiong H, Ting AT. Reversal of CYLD phosphorylation as a novel therapeutic approach for adult T-cell leukemia/lymphoma (ATLL). Cell Death Dis 2020; 11:94. [PMID: 32024820 PMCID: PMC7002447 DOI: 10.1038/s41419-020-2294-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/08/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a malignancy of mature T cells associated with chronic infection by human T-cell lymphotropic virus type-1 (HTLV-1). ATLL patients with aggressive subtypes have dismal outcomes. We demonstrate that ATLL cells co-opt an early checkpoint within the tumor necrosis factor receptor 1 (TNFR1) pathway, resulting in survival advantage. This early checkpoint revolves around an interaction between the deubiquitinase CYLD and its target RIPK1. The status of RIPK1 K63-ubiquitination determines cell fate by creating either a prosurvival signal (ubiquitinated RIPK1) or a death signal (deubiquitinated RIPK1). In primary ATLL samples and in cell line models, an increased baseline level of CYLD phosphorylation was observed. We therefore tested the hypothesis that this modification of CYLD, which has been reported to inhibit its deubiquitinating function, leads to increased RIPK1 ubiquitination and thus provides a prosurvival signal to ATLL cells. CYLD phosphorylation can be pharmacologically reversed by IKK inhibitors, specifically by TBK1/IKKε and IKKβ inhibitors (MRT67307 and TPCA). Both of the IKK sub-families can phosphorylate CYLD, and the combination of MRT67307 and TPCA have a marked effect in reducing CYLD phosphorylation and triggering cell death. ATLL cells overexpressing a kinase-inactive TBK1 (TBK1-K38A) demonstrate lower CYLD phosphorylation and subsequently reduced proliferation. IKK blockade reactivates CYLD, as evidenced by the reduction in RIPK1 ubiquitination, which leads to the association of RIPK1 with the death-inducing signaling complex (DISC) to trigger cell death. In the absence of CYLD, RIPK1 ubiquitination remains elevated following IKK blockade and it does not associate with the DISC. SMAC mimetics can similarly disrupt CYLD phosphorylation and lead to ATLL cell death through reduction of RIPK1 ubiquitination, which is CYLD dependent. These results identify CYLD as a crucial regulator of ATLL survival and point to its role as a potential novel target for pharmacologic modification in this disease.
Collapse
Affiliation(s)
- Xin Xu
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, GuangDong, 510180, People's Republic of China
| | - Matko Kalac
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Markson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joshua D Brody
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rosalind L Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Diana Legarda
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Scott J Justus
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Liu
- Department of Geriatrics, Hematology & Oncology Ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, GuangDong, 510180, People's Republic of China
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, GuangDong, 510180, People's Republic of China
| | - Huabao Xiong
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adrian T Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
14
|
Schwob A, Teruel E, Dubuisson L, Lormières F, Verlhac P, Abudu YP, Gauthier J, Naoumenko M, Cloarec-Ung FM, Faure M, Johansen T, Dutartre H, Mahieux R, Journo C. SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [DOI: https:/doi.org/10.1038/s41598-019-52408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2023] Open
Abstract
AbstractThe NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
15
|
SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [PMID: 31690813 PMCID: PMC6831704 DOI: 10.1038/s41598-019-52408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
The NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
16
|
Abstract
It has been nearly 40 years since human T-cell leukemia virus-1 (HTLV-1), the first oncogenic retrovirus in humans and the first demonstrable cause of cancer by an infectious agent, was discovered. Studies indicate that HTLV-1 is arguably one of the most carcinogenic agents to humans. In addition, HTLV-1 causes a diverse array of diseases, including myelopathy and immunodeficiency, which cause morbidity and mortality to many people in the world, including the indigenous population in Australia, a fact that was emphasized only recently. HTLV-1 can be transmitted by infected lymphocytes, from mother to child via breast feeding, by sex, by blood transfusion, and by organ transplant. Therefore, the prevention of HTLV-1 infection is possible but such action has been taken in only a limited part of the world. However, until now it has not been listed by the World Health Organization as a sexually transmitted organism nor, oddly, recognized as an oncogenic virus by the recent list of the National Cancer Institute/National Institutes of Health. Such underestimation of HTLV-1 by health agencies has led to a remarkable lack of funding supporting research and development of treatments and vaccines, causing HTLV-1 to remain a global threat. Nonetheless, there are emerging novel therapeutic and prevention strategies which will help people who have diseases caused by HTLV-1. In this review, we present a brief historic overview of the key events in HTLV-1 research, including its pivotal role in generating ideas of a retrovirus cause of AIDS and in several essential technologies applicable to the discovery of HIV and the unraveling of its genes and their function. This is followed by the status of HTLV-1 research and the preventive and therapeutic developments of today. We also discuss pending issues and remaining challenges to enable the eradication of HTLV-1 in the future.
Collapse
Affiliation(s)
- Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
17
|
[Astute strategies of HTLV-1 with driven viral genes]. Uirusu 2019; 69:37-46. [PMID: 32938893 DOI: 10.2222/jsv.69.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the world's first retrovirus with pathogenicity to cause adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases,such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. As the virological characteristic, HTLV-1 can transmit efficiently only through cell-to-cell contact. Spread of infection and viral persistence is ingeniously driven by several viral genes as exemplified by HTLV-1 bZIP factor (HBZ) and tax. After the infection, the virus promotes proliferation and immortalization of the infected cells with acculturating immunophenotype into effector/memory T cells. In addition, HBZ enhances expression of co-inhibitory receptors on the surface of infected cells, potentially leading to suppression of host immune responses. These viral strategies can also result in unforeseen by-product, the pathogenicity of HTLV-1-associated diseases. In this review, with recent progress of HTLV-1 researches, we focus on astute regulation systems of the viral genes developed by HTLV-1.
Collapse
|
18
|
Molecular effect of an OPTN common variant associated to Paget's disease of bone. PLoS One 2018; 13:e0197543. [PMID: 29782529 PMCID: PMC5962077 DOI: 10.1371/journal.pone.0197543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Paget’s disease of bone (PDB) is a chronic bone disorder and although genetic factors appear to play an important role in its pathogenesis, to date PDB causing mutations were identified only in the Sequestosome 1 (SQSTM1) gene at the PDB3 locus. PDB6 locus, also previously linked to PDB, contains several candidate genes for metabolic bone diseases. We focused our analysis in the most significantly associated variant with PDB, within the Optineurin (OPTN) gene, i.e. the common variant rs1561570. Although it was previously shown to be strongly associated with PDB in several populations, its contribution to PDB pathogenesis remains unclear. In this study we have shown that rs1561570 may contribute to PDB since its T allele results in the loss of a methylation site in patients’ DNA, leading to higher levels of OPTN gene expression and a corresponding increase in protein levels in patients’ osteoclasts. This increase in OPTN expression leads to higher levels of NF-κB translocation into the nucleus and increasing expression of its target genes, which may contribute to the overactivity of osteoclasts observed in PDB. We also reported a tendency for a more severe clinical phenotype in the presence of a haplotype containing the rs1561570 T allele, which appear to be re-enforced with the presence of the SQSTM1/P392L mutation. In conclusion, our work provides novel insight towards understanding the functional effects of this variant, located in OPTN intron 7, and its implication in the contribution to PDB pathogenesis.
Collapse
|
19
|
Harhaj EW, Giam CZ. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J 2018; 285:3324-3336. [PMID: 29722927 DOI: 10.1111/febs.14492] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) is a complex deltaretrovirus linked to adult T-cell leukemia/lymphoma (ATLL), a fatal CD4 + malignancy in 3-5% of infected individuals. The HTLV-1 Tax regulatory protein plays indispensable roles in regulating viral gene expression and activating cellular signaling pathways that drive the proliferation and clonal expansion of T cells bearing HTLV-1 proviral integrations. Tax is a potent activator of NF-κB, a key signaling pathway that is essential for the survival and proliferation of HTLV-1-infected T cells. However, constitutive NF-κB activation by Tax also triggers a senescence response, suggesting the possibility that only T cells capable of overcoming NF-κB-induced senescence can selectively undergo clonal expansion after HTLV-1 infection. Tax expression is often silenced in the majority of ATLL due to genetic alterations in the tax gene or DNA hypermethylation of the 5'-LTR. Despite the loss of Tax, NF-κB activation remains persistently activated in ATLL due to somatic mutations in genes in the T/B-cell receptor (T/BCR) and NF-κB signaling pathways. In this review, we focus on the key events driving Tax-dependent and -independent mechanisms of NF-κB activation during the multistep process leading to ATLL.
Collapse
Affiliation(s)
- Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chou-Zen Giam
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
20
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Shibata Y, Tokunaga F, Goto E, Komatsu G, Gohda J, Saeki Y, Tanaka K, Takahashi H, Sawasaki T, Inoue S, Oshiumi H, Seya T, Nakano H, Tanaka Y, Iwai K, Inoue JI. HTLV-1 Tax Induces Formation of the Active Macromolecular IKK Complex by Generating Lys63- and Met1-Linked Hybrid Polyubiquitin Chains. PLoS Pathog 2017; 13:e1006162. [PMID: 28103322 PMCID: PMC5283754 DOI: 10.1371/journal.ppat.1006162] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/31/2017] [Accepted: 01/01/2017] [Indexed: 11/18/2022] Open
Abstract
The Tax protein of human T-cell leukemia virus type 1 (HTLV-1) is crucial for the development of adult T-cell leukemia (ATL), a highly malignant CD4+ T cell neoplasm. Among the multiple aberrant Tax-induced effects on cellular processes, persistent activation of transcription factor NF-κB, which is activated only transiently upon physiological stimulation, is essential for leukemogenesis. We and others have shown that Tax induces activation of the IκB kinase (IKK) complex, which is a critical step in NF-κB activation, by generating Lys63-linked polyubiquitin chains. However, the molecular mechanism underlying Tax-induced IKK activation is controversial and not fully understood. Here, we demonstrate that Tax recruits linear (Met1-linked) ubiquitin chain assembly complex (LUBAC) to the IKK complex and that Tax fails to induce IKK activation in cells that lack LUBAC activity. Mass spectrometric analyses revealed that both Lys63-linked and Met1-linked polyubiquitin chains are associated with the IKK complex. Furthermore, treatment of the IKK-associated polyubiquitin chains with Met1-linked-chain-specific deubiquitinase (OTULIN) resulted in the reduction of high molecular weight polyubiquitin chains and the generation of short Lys63-linked ubiquitin chains, indicating that Tax can induce the generation of Lys63- and Met1-linked hybrid polyubiquitin chains. We also demonstrate that Tax induces formation of the active macromolecular IKK complex and that the blocking of Tax-induced polyubiquitin chain synthesis inhibited formation of the macromolecular complex. Taken together, these results lead us to propose a novel model in which the hybrid-chain-dependent oligomerization of the IKK complex triggered by Tax leads to trans-autophosphorylation-mediated IKK activation.
Collapse
Affiliation(s)
- Yuri Shibata
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Fuminori Tokunaga
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Eiji Goto
- Department of Pathobiochemistry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ginga Komatsu
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Oshiumi
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo, Japan
| | - Yuetsu Tanaka
- Division of Immunology, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuhiro Iwai
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
22
|
A Luciferase Functional Quantitative Assay for Measuring NF-ĸB Promoter Transactivation Mediated by HTLV-1 and HTLV-2 Tax Proteins. Methods Mol Biol 2017; 1582:79-87. [PMID: 28357663 DOI: 10.1007/978-1-4939-6872-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
HTLV-1 and HTLV-2 viruses express Tax transactivator proteins required for viral genome transcription and capable of transforming cells in vivo and in vitro. Although Tax oncogenic potential needs to be further elucidated, it is well established that Tax proteins activate, among others, transcription factors of the NF-ĸB family, which are involved in immune and inflammatory responses, cell growth, apoptosis, stress responses and oncogenesis. Here, we describe a reporter gene assay applied for quantitative analysis of Tax-dependent NF-ĸB activation. The procedure is based on co-transfection of two individual vectors containing the cDNA for firefly and Renilla luciferase enzymes and vectors expressing Tax proteins. The luciferase expression is driven by cis-NF-ĸB promoter regulatory elements responsive to Tax transactivating factor. This assay is particularly useful to investigate Tax influence on NF-ĸB activation mediated by viral or host factors.
Collapse
|
23
|
Chan CP, Kok KH, Jin DY. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:147-166. [PMID: 29052136 DOI: 10.1007/978-981-10-5765-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4+ T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, 145 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
24
|
Wang C, Long W, Peng C, Hu L, Zhang Q, Wu A, Zhang X, Duan X, Wong CCL, Tanaka Y, Xia Z. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains. PLoS Pathog 2016; 12:e1005584. [PMID: 27082114 PMCID: PMC4833305 DOI: 10.1371/journal.ppat.1005584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/29/2016] [Indexed: 11/29/2022] Open
Abstract
The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM), a distinct neurological disorder with inflammatory symptoms and incomplete paralysis of the limbs, and adult T-cell leukemia/lymphoma (ATL), a highly aggressive malignant proliferation of CD4+ T lymphocytes. Both TSP/HAM and ATL are mainly driven by the activation of IκB kinase (IKK)-NF-κB stimulated by HTLV-1 oncoprotein Tax. The molecular mechanism by which Tax activates IKK remains unclear. Here, we found that Tax is an E3 ubiquitin ligase, which, together with its cognate ubiquitin-conjugating enzymes (E2s) UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of unanchored free mixed-linkage polyubiquitin chains. The polyubiquitin chains can activate IKK complex directly by binding to the NEMO subunit. Our studies uncovered the essential cellular factors hijacked by HTLV-1 for infection and pathogenesis, as well as the biochemical function and the underlying mechanism of Tax in the process of IKK activation. Our work might shed light on potential development of therapeutics for TSP/HAM and ATL.
Collapse
Affiliation(s)
- Chong Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenying Long
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chao Peng
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Lin Hu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiong Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ailing Wu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoqing Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotao Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Catherine C. L. Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| | - Zongping Xia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
25
|
Suppression of Type I Interferon Production by Human T-Cell Leukemia Virus Type 1 Oncoprotein Tax through Inhibition of IRF3 Phosphorylation. J Virol 2016; 90:3902-3912. [PMID: 26819312 DOI: 10.1128/jvi.00129-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/24/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Infection with human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and tropical spastic paraparesis. Type I interferons (IFNs) are key effectors of the innate antiviral response, and IFN-α combined with the nucleoside reverse transcriptase inhibitor zidovudine is considered the standard first-line therapy for ATL. HTLV-1 oncoprotein Tax is known to suppress innate IFN production and response but the underlying mechanisms remain to be fully established. In this study, we report on the suppression of type I IFN production by HTLV-1 Tax through interaction with and inhibition of TBK1 kinase that phosphorylates IRF3. Induced transcription of IFN-β was severely impaired in HTLV-1-transformed ATL cells and freshly infected T lymphocytes. The ability to suppress IRF3 activation was ascribed to Tax. The expression of Tax alone sufficiently repressed the induction of IFN production by RIG-I plus PACT, cGAMP synthase plus STING, TBK1, IKKε, IRF3, and IRF7, but not by IRF3-5D, a dominant-active phosphomimetic mutant. This suggests that Tax perturbs IFN production at the step of IRF3 phosphorylation. Tax mutants deficient for CREB or NF-κB activation were fully competent in the suppression of IFN production. Coimmunoprecipitation experiments confirmed the association of Tax with TBK1, IKKε, STING, and IRF3.In vitrokinase assay indicated an inhibitory effect of Tax on TBK1-mediated phosphorylation of IRF3. Taken together, our findings suggested a new mechanism by which HTLV-1 oncoprotein Tax circumvents the production of type I IFNs in infected cells. Our findings have implications in therapeutic intervention of ATL. IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia (ATL), an aggressive and fatal blood cancer, as well as another chronic disabling disease of the spinal cord. Treatments are unsatisfactory, and options are limited. A combination of antiviral cellular protein alpha interferon and zidovudine, which is an inhibitor of a viral enzyme called reverse transcriptase, has been recommended as the standard first-line therapy for ATL. Exactly how HTLV-1 interacts with the cellular machinery for interferon production and action is not well understood. Our work sheds light on the mechanism of action for the inhibition of interferon production by an HTLV-1 oncogenic protein called Tax. Our findings might help to improve interferon-based anti-HTLV-1 and anti-ATL therapy.
Collapse
|
26
|
Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016; 8:v8020031. [PMID: 26828513 PMCID: PMC4776186 DOI: 10.3390/v8020031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.
Collapse
|
27
|
The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein. J Virol 2016; 90:3708-21. [PMID: 26792751 DOI: 10.1128/jvi.03000-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. IMPORTANCE HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral transactivator Tax-1 plays a central role in the onset of ATLL, mostly by deregulating the NF-κB pathway. We demonstrate that CIITA, a key regulator of adaptive immunity, suppresses Tax-1-dependent activation of NF-κB by acting at several levels: it retains most of Tax-1 and RelA in the cytoplasm and inhibits their residual functional activity in the nucleus. Importantly, this inhibition occurs in cells that are targets of HTLV-1 infection. These findings are of interest in the field of virology because they expand the current knowledge of the functional relationship between viral products and cellular interactors and provide the basis for a better understanding of the molecular countermeasures adopted by the host cell to antagonize HTLV-1 spreading and transforming properties. Within this framework, our results may contribute to the establishment of novel strategies against HTLV-1 infection and virus-dependent oncogenic transformation.
Collapse
|
28
|
Romano S, Xiao Y, Nakaya M, D'Angelillo A, Chang M, Jin J, Hausch F, Masullo M, Feng X, Romano MF, Sun SC. FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Res 2015; 43:6983-93. [PMID: 26101251 PMCID: PMC4538817 DOI: 10.1093/nar/gkv615] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 06/02/2015] [Indexed: 12/24/2022] Open
Abstract
Melanoma is the most aggressive skin cancer; its prognosis, particularly in advanced stages, is disappointing largely due to the resistance to conventional anticancer treatments and high metastatic potential. NF-κB constitutive activation is a major factor for the apoptosis resistance of melanoma. Several studies suggest a role for the immunophilin FKBP51 in NF-κB activation, but the underlying mechanism is still unknown. In the present study, we demonstrate that FKBP51 physically interacts with IKK subunits, and facilitates IKK complex assembly. FKBP51-knockdown inhibits the binding of IKKγ to the IKK catalytic subunits, IKK-α and -β, and attenuates the IKK catalytic activity. Using FK506, an inhibitor of the FKBP51 isomerase activity, we found that the IKK-regulatory role of FKBP51 involves both its scaffold function and its isomerase activity. Moreover, FKBP51 also interacts with TRAF2, an upstream mediator of IKK activation. Interestingly, both FKBP51 TPR and PPIase domains are required for its interaction with TRAF2 and IKKγ, whereas only the TPR domain is involved in interactions with IKKα and β. Collectively, these results suggest that FKBP51 promotes NF-κB activation by serving as an IKK scaffold as well as an isomerase. Our findings have profound implications for designing novel melanoma therapies based on modulation of FKBP51.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yichuan Xiao
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Mako Nakaya
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Mikyoung Chang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Felix Hausch
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Mariorosario Masullo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy Department of Movement Sciences and Wellness, University of Naples 'Parthenope', Naples 80133, Italy
| | - Xixi Feng
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, München 80804, Germany
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples 80131, Italy
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling. PLoS Pathog 2015; 11:e1004721. [PMID: 25774694 PMCID: PMC4361615 DOI: 10.1371/journal.ppat.1004721] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Persistent activation of NF-κB by the Human T-cell leukemia virus type 1 (HTLV-1) oncoprotein, Tax, is vital for the development and pathogenesis of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). K63-linked polyubiquitinated Tax activates the IKK complex in the plasma membrane-associated lipid raft microdomain. Tax also interacts with TAX1BP1 to inactivate the NF-κB negative regulatory ubiquitin-editing A20 enzyme complex. However, the molecular mechanisms of Tax-mediated IKK activation and A20 protein complex inactivation are poorly understood. Here, we demonstrated that membrane associated CADM1 (Cell adhesion molecule1) recruits Ubc13 to Tax, causing K63-linked polyubiquitination of Tax, and IKK complex activation in the membrane lipid raft. The c-terminal cytoplasmic tail containing PDZ binding motif of CADM1 is critical for Tax to maintain persistent NF-κB activation. Finally, Tax failed to inactivate the NF-κB negative regulator ubiquitin-editing enzyme A20 complex, and activate the IKK complex in the lipid raft in absence of CADM1. Our results thus indicate that CADM1 functions as a critical scaffold molecule for Tax and Ubc13 to form a cellular complex with NEMO, TAX1BP1 and NRP, to activate the IKK complex in the plasma membrane-associated lipid rafts, to inactivate NF-κB negative regulators, and maintain persistent NF-κB activation in HTLV-1 infected cells. HTLV-1 infection leads to the development of Adult T-cell Leukemia (ATL) or HTLV-1 associated myelopathy/ tropical spastic paraparesis (HAM/TSP). One of the major causes responsible for the development of HTLV-1 associated diseases is chronic inflammation directed by NF-kappaB (NF-κB). NF-κB activation in response to a wide variety of signals is transient and tightly controlled by ubiquitin-editing enzyme A20. One of the mechanisms of persistent NF-κB activation in HTLV-1 infected cells is inactivation of NF-κB negative regulators; however, the precise mechanism is unknown. Here, we focused on host tumor suppressor Cell adhesion molecule 1 (CADM1) that is robustly upregulated in HTLV-1 infected cells. The expression of CADM1 is frequently silenced in several cancers; however, it is critical for HTLV-1 associated ATL tumor cell survival. We characterized the role of CADM1 in persistent NF-κB activation in HTLV-1 infected cells. We found that CADM1 is required for the HTLV-1 oncoprotein, Tax, to form a cellular complex with Ubc13, TAX1BP1, NRP and NEMO in the membrane lipid rafts micorodomain. We further demonstrated that Tax requires CADM1 to inactivate NF-κB negative regulator and maintain persistent NF-κB activation. Our study reveals a novel mechanism of chronic NF-κB activation by CADM1 in HTLV-1 infected cells.
Collapse
|
30
|
Ren T, Takahashi Y, Liu X, Loughran TP, Sun SC, Wang HG, Cheng H. HTLV-1 Tax deregulates autophagy by recruiting autophagic molecules into lipid raft microdomains. Oncogene 2015; 34:334-45. [PMID: 24362528 PMCID: PMC4067462 DOI: 10.1038/onc.2013.552] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 10/14/2013] [Accepted: 11/01/2013] [Indexed: 12/13/2022]
Abstract
The retroviral oncoprotein Tax from human T-cell leukemia virus type 1 (HTLV-1), an etiological factor that causes adult T-cell leukemia and lymphoma, has a crucial role in initiating T-lymphocyte transformation by inducing oncogenic signaling activation. We here report that Tax is a determining factor for dysregulation of autophagy in HTLV-1-transformed T cells and Tax-immortalized CD4 memory T cells. Tax facilitated autophagic process by activating inhibitor of κB (IκB) kinase (IKK) complex, which subsequently recruited an autophagy molecular complex containing Beclin1 and Bif-1 to the lipid raft microdomains. Tax engaged a crosstalk between IKK complex and autophagic molecule complex by directly interacting with both complexes, promoting assembly of LC3+ autophagosomes. Moreover, expression of lipid raft-targeted Bif-1 or Beclin1 was sufficient to induce formation of LC3+ autophagosomes, suggesting that Tax recruitment of autophagic molecules to lipid rafts is a dominant strategy to deregulate autophagy in the context of HTLV-1 transformation of T cells. Furthermore, depletion of autophagy molecules such as Beclin1 and PI3 kinase class III resulted in impaired growth of HTLV-1-transformed T cells, indicating a critical role of Tax-deregulated autophagy in promoting survival and transformation of virally infected T cells.
Collapse
Affiliation(s)
- Tong Ren
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA 17033
| | - Yoshinori Takahashi
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033
| | - Xin Liu
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
| | - Thomas P. Loughran
- Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030
| | - Hong-Gang Wang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033
| | - Hua Cheng
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
31
|
Diani E, Avesani F, Bergamo E, Cremonese G, Bertazzoni U, Romanelli MG. HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression. Virology 2014; 476:92-99. [PMID: 25531185 DOI: 10.1016/j.virol.2014.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022]
Abstract
The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression.
Collapse
Affiliation(s)
- Erica Diani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Francesca Avesani
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Elisa Bergamo
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Giorgia Cremonese
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| | - Maria Grazia Romanelli
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Strada le Grazie 8, 37134 Verona, Italy.
| |
Collapse
|
32
|
Hävemeier A, Gramolelli S, Pietrek M, Jochmann R, Stürzl M, Schulz TF. Activation of NF-κB by the Kaposi's sarcoma-associated herpesvirus K15 protein involves recruitment of the NF-κB-inducing kinase, IκB kinases, and phosphorylation of p65. J Virol 2014; 88:13161-72. [PMID: 25187543 PMCID: PMC4249085 DOI: 10.1128/jvi.01766-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/26/2014] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma herpesvirus (KSHV) (or human herpesvirus 8) is the cause of Kaposi's sarcoma, primary effusion lymphoma (PEL), and the plasma cell variant of multicentric Castleman's disease (MCD). The transmembrane K15 protein, encoded by KSHV, has been shown to activate NF-κB and the mitogen-activated protein kinases (MAPKs) c-jun-N-terminal kinase (JNK) and extracellular signal-regulated kinase (Erk) as well as phospholipase C gamma (PLCγ) and to contribute to KSHV-induced angiogenesis. Here we investigate how the K15 protein activates the NF-κB pathway. We show that activation of NF-κB involves the recruitment of NF-κB-inducing kinase (NIK) and IKK α/β to result in the phosphorylation of p65/RelA on Ser536. A K15 mutant devoid in NIK/IKK recruitment fails to activate NF-κB but remains proficient in the stimulation of both NFAT- and AP1-dependent promoters, showing that the structural integrity of the mutant K15 protein has not been altered dramatically. Direct recruitment of NIK represents a novel way for a viral protein to activate and manipulate the NF-κB pathway. IMPORTANCE KSHV K15 is a viral protein involved in the activation of proinflammatory and angiogenic pathways. Previous studies reported that K15 can activate the NF-κB pathway. Here we show the molecular mechanism underlying the activation of this signaling pathway by K15, which involves direct recruitment of the NF-κB-inducing kinase NIK to K15 as well as NIK-mediated NF-κB p65 phosphorylation on Ser536. K15 is the first viral protein shown to activate NF-κB through direct recruitment of NIK. These results indicate a new mechanism whereby a viral protein can manipulate the NF-κB pathway.
Collapse
Affiliation(s)
- Anika Hävemeier
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Silvia Gramolelli
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marcel Pietrek
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ramona Jochmann
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Michael Stürzl
- Chirurgische Klinik, Abteilung Molekulare und Experimentelle Chirurgie, Translational Research Center Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
33
|
HTLV-1 tax stabilizes MCL-1 via TRAF6-dependent K63-linked polyubiquitination to promote cell survival and transformation. PLoS Pathog 2014; 10:e1004458. [PMID: 25340740 PMCID: PMC4207805 DOI: 10.1371/journal.ppat.1004458] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/09/2014] [Indexed: 12/21/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) Tax protein hijacks the host ubiquitin machinery to activate IκB kinases (IKKs) and NF-κB and promote cell survival; however, the key ubiquitinated factors downstream of Tax involved in cell transformation are unknown. Using mass spectrometry, we undertook an unbiased proteome-wide quantitative survey of cellular proteins modified by ubiquitin in the presence of Tax or a Tax mutant impaired in IKK activation. Tax induced the ubiquitination of 22 cellular proteins, including the anti-apoptotic BCL-2 family member MCL-1, in an IKK-dependent manner. Tax was found to promote the nondegradative lysine 63 (K63)-linked polyubiquitination of MCL-1 that was dependent on the E3 ubiquitin ligase TRAF6 and the IKK complex. Tax interacted with and activated TRAF6, and triggered its mitochondrial localization, where it conjugated four carboxyl-terminal lysine residues of MCL-1 with K63-linked polyubiquitin chains, which stabilized and protected MCL-1 from genotoxic stress-induced degradation. TRAF6 and MCL-1 played essential roles in the survival of HTLV-1 transformed cells and the immortalization of primary T cells by HTLV-1. Therefore, K63-linked polyubiquitination represents a novel regulatory mechanism controlling MCL-1 stability that has been usurped by a viral oncogene to precipitate cell survival and transformation. HTLV-1 infection is etiologically linked to the development of the neuroinflammatory disorder HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia (ATL), an aggressive CD4+CD25+ malignancy. The HTLV-1 regulatory protein Tax constitutively activates the IκB kinases (IKKs) and NF-κB to promote cell survival, proliferation and transformation. However, the precise mechanisms by which Tax and IKK regulate cell survival are largely unknown. Here, we found that Tax interacts with and activates the host ubiquitin ligase TRAF6, and promotes a redistribution of TRAF6 to the mitochondria. TRAF6 conjugates the anti-apoptotic BCL-2 family member MCL-1 with lysine 63 (K63)-linked polyubiquitin chains that antagonize MCL-1 interaction with the 20S proteasome, thereby protecting MCL-1 from degradation elicited by chemotherapeutic drugs. TRAF6 and MCL-1 both played pivotal roles in the survival of ATL cells and the immortalization of primary T cells by HTLV-1. Overall, our study has identified a novel TRAF6/MCL-1 axis that has been subverted by the HTLV-1 Tax protein to maintain the survival of HTLV-1 infected T cells.
Collapse
|
34
|
Regulation of HTLV-1 tax stability, cellular trafficking and NF-κB activation by the ubiquitin-proteasome pathway. Viruses 2014; 6:3925-43. [PMID: 25341660 PMCID: PMC4213571 DOI: 10.3390/v6103925] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that infects CD4+ T cells and causes adult T-cell leukemia/lymphoma (ATLL) in 3%–5% of infected individuals after a long latent period. HTLV-1 Tax is a trans-activating protein that regulates viral gene expression and also modulates cellular signaling pathways to enhance T-cell proliferation and cell survival. The Tax oncoprotein promotes T-cell transformation, in part via constitutive activation of the NF-κB transcription factor; however, the underlying mechanisms remain unknown. Ubiquitination is a type of post-translational modification that occurs in a three-step enzymatic cascade mediated by E1, E2 and E3 enzymes and regulates protein stability as well as signal transduction, protein trafficking and the DNA damage response. Emerging studies indicate that Tax hijacks the ubiquitin machinery to activate ubiquitin-dependent kinases and downstream NF-κB signaling. Tax interacts with the E2 conjugating enzyme Ubc13 and is conjugated on C-terminal lysine residues with lysine 63-linked polyubiquitin chains. Tax K63-linked polyubiquitination may serve as a platform for signaling complexes since this modification is critical for interactions with NEMO and IKK. In addition to NF-κB signaling, mono- and polyubiquitination of Tax also regulate its subcellular trafficking and stability. Here, we review recent advances in the diverse roles of ubiquitin in Tax function and how Tax usurps the ubiquitin-proteasome pathway to promote oncogenesis.
Collapse
|
35
|
Lavorgna A, Matsuoka M, Harhaj EW. A critical role for IL-17RB signaling in HTLV-1 tax-induced NF-κB activation and T-cell transformation. PLoS Pathog 2014; 10:e1004418. [PMID: 25340344 PMCID: PMC4207800 DOI: 10.1371/journal.ppat.1004418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infection is linked to the development of adult T-cell leukemia (ATL) and the neuroinflammatory disease HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 Tax protein functions as a potent viral oncogene that constitutively activates the NF-κB transcription factor to transform T cells; however, the underlying mechanisms remain obscure. Here, using next-generation RNA sequencing we identified the IL-25 receptor subunit IL-17RB as an aberrantly overexpressed gene in HTLV-1 immortalized T cells. Tax induced the expression of IL-17RB in an IκB kinase (IKK) and NF-κB-dependent manner. Remarkably, Tax activation of the canonical NF-κB pathway in T cells was critically dependent on IL-17RB expression. IL-17RB and IL-25 were required for HTLV-1-induced immortalization of primary T cells, and the constitutive NF-κB activation and survival of HTLV-1 transformed T cells. IL-9 was identified as an important downstream target gene of the IL-17RB pathway that drives the proliferation of HTLV-1 transformed cells. Furthermore, IL-17RB was overexpressed in leukemic cells from a subset of ATL patients and also regulated NF-κB activation in some, but not all, Tax-negative ATL cell lines. Together, our results support a model whereby Tax instigates an IL-17RB-NF-κB feed-forward autocrine loop that is obligatory for HTLV-1 leukemogenesis.
Collapse
Affiliation(s)
- Alfonso Lavorgna
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang X, Wang S, Liu Y, Huang D, Zheng K, Zhang Y, Wang X, Liu Q, Yang D, Wang Y. Comparative effects of SNX-7081 and SNX-2112 on cell cycle, apoptosis and Hsp90 client proteins in human cancer cells. Oncol Rep 2014; 33:230-8. [PMID: 25334086 DOI: 10.3892/or.2014.3552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/01/2014] [Indexed: 11/06/2022] Open
Abstract
SNX-2112, a novel 2-aminobenzamide inhibitor of Hsp90, previously showed a broad spectrum of anticancer activity. However, subsequent development has been discontinued due to ocular toxicity as identified in a phase I study. SNX-7081, another closely related Hsp90 inhibitor with a side chain of indole instead of indazole, has recently attracted attention. The aim of the present study was to investigate the anticancer effects of SNX-7081 in eleven cell lines, as well as the mechanisms involved, with SNX-2112 serving as a reference. The cytotoxic effects were determined using an MTT assay and apoptosis was measured using flow cytometry. The results showed that SNX-7081 exerted better inhibitory effects than SNX-2112 in six eighths of the human cancer cell lines, with an average IC50 of 1 µM. The two inhibitors exerted low cytotoxicity in L-02, HDF and MRC5 normal human cells (IC50 >50 µM), and arrested cancer cells at the G2/M phase in a similar manner to normal cells. Compared with SNX-2112, SNX-7081 exhibited more potent effects on cell apoptosis in four sixths of the human cancer cell lines, and was more active in the downregulation of Hsp90 client proteins. In addition, SNX-7081 exhibited a stronger binding affinity to Hsp90 than SNX-2112 in molecular docking experiments. Considering the superior effects against Hsp90 affinity, cell growth, apoptosis, and Hsp90 client proteins in a majority of human cancer cells, the novel SNX-7081 may be a promising alternative to SNX-2112, which merits further evaluation.
Collapse
Affiliation(s)
- Xiao Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Shaoxiang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yuting Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong 510095, P.R. China
| | - Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yi Zhang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaoyan Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiuying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
37
|
Higuchi M, Takahashi M, Tanaka Y, Fujii M. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax. Cancer Med 2014; 3:1605-14. [PMID: 25175936 PMCID: PMC4298387 DOI: 10.1002/cam4.329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 07/26/2014] [Accepted: 08/05/2014] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo.
Collapse
Affiliation(s)
- Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
38
|
Schmitz ML, Kracht M, Saul VV. The intricate interplay between RNA viruses and NF-κB. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2754-2764. [PMID: 25116307 PMCID: PMC7114235 DOI: 10.1016/j.bbamcr.2014.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/19/2022]
Abstract
RNA viruses have rapidly evolving genomes which often allow cross-species transmission and frequently generate new virus variants with altered pathogenic properties. Therefore infections by RNA viruses are a major threat to human health. The infected host cell detects trace amounts of viral RNA and the last years have revealed common principles in the biochemical mechanisms leading to signal amplification that is required for mounting of a powerful antiviral response. Components of the RNA sensing and signaling machinery such as RIG-I-like proteins, MAVS and the inflammasome inducibly form large oligomers or even fibers that exhibit hallmarks of prions. Following a nucleation event triggered by detection of viral RNA, these energetically favorable and irreversible polymerization events trigger signaling cascades leading to the induction of antiviral and inflammatory responses, mediated by interferon and NF-κB pathways. Viruses have evolved sophisticated strategies to manipulate these host cell signaling pathways in order to ensure their replication. We will discuss at the examples of influenza and HTLV-1 viruses how a fascinating diversity of biochemical mechanisms is employed by viral proteins to control the NF-κB pathway at all levels.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University Giessen, D-35392 Giessen, Germany
| | - Vera V Saul
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
39
|
Liu R, Lin Y, Jia R, Geng Y, Liang C, Tan J, Qiao W. HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1. Retrovirology 2014; 11:45. [PMID: 24912525 PMCID: PMC4057933 DOI: 10.1186/1742-4690-11-45] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS Here, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|
40
|
Mukai R, Ohshima T. HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 2014; 33:2317-28. [PMID: 23708656 DOI: 10.1038/onc.2013.181] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) infection causes adult T-cell leukemia (ATL). Modulation of the transcriptional control of cellular genes by HTLV-1 is thought to be associated with the development of ATL. The viral protein HTLV-1 basic leucine-zipper factor (HBZ) has been shown to dysregulate the activity of cellular transcription factors. Here, we demonstrate that HBZ is exported from the nucleus to the cytoplasm, where it activates the mammalian target of rapamycin (mTOR) signaling pathway through an association with growth arrest and DNA damage gene 34 (GADD34). The N-terminal region of HBZ interacts with the C-terminal region of GADD34. HBZ contains a functional nuclear export signal (NES) sequence within its N-terminal region and it is exported from the nucleus via the CRM1-dependent pathway. Nuclear export of HBZ is essential for its interaction with GADD34 and increased phosphorylation of S6 kinase, which is an established downstream target of the mTOR pathway. Starvation-induced autophagy is significantly suppressed by the overexpression of HBZ. These findings indicate that HBZ is actively exported to the cytoplasm, where it dysregulates the function of cellular factors.
Collapse
Affiliation(s)
- R Mukai
- Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - T Ohshima
- 1] Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan [2] Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
41
|
Zane L, Jeang KT. HTLV-1 and leukemogenesis: virus-cell interactions in the development of adult T-cell leukemia. Recent Results Cancer Res 2014; 193:191-210. [PMID: 24008300 DOI: 10.1007/978-3-642-38965-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) was originally discovered in the early 1980s. It is the first retrovirus to be unambiguously linked causally to a human cancer. HTLV-1 currently infects approximately 20 million people worldwide. In this chapter, we review progress made over the last 30 years in our understanding of HTLV-1 infection, replication, gene expression, and cellular transformation.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, The National Institutes of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, 20892-0460, USA
| | | |
Collapse
|
42
|
Human T-cell leukemia virus type 1 Tax-deregulated autophagy pathway and c-FLIP expression contribute to resistance against death receptor-mediated apoptosis. J Virol 2013; 88:2786-98. [PMID: 24352466 DOI: 10.1128/jvi.03025-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The human T-cell leukemia virus type 1 (HTLV-1) Tax protein is considered to play a central role in the process that leads to adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 Tax-expressing cells show resistance to apoptosis induced by Fas ligand (FasL) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). The regulation of Tax on the autophagy pathway in HeLa cells and peripheral T cells was recently reported, but the function and underlying molecular mechanism of the Tax-regulated autophagy are not yet well defined. Here, we report that HTLV-1 Tax deregulates the autophagy pathway, which plays a protective role during the death receptor (DR)-mediated apoptosis of human U251 astroglioma cells. The cellular FLICE-inhibitory protein (c-FLIP), which is upregulated by Tax, also contributes to the resistance against DR-mediated apoptosis. Both Tax-induced autophagy and Tax-induced c-FLIP expression require Tax-induced activation of IκB kinases (IKK). Furthermore, Tax-induced c-FLIP expression is regulated through the Tax-IKK-NF-κB signaling pathway, whereas Tax-triggered autophagy depends on the activation of IKK but not the activation of NF-κB. In addition, DR-mediated apoptosis is correlated with the degradation of Tax, which can be facilitated by the inhibitors of autophagy. IMPORTANCE Our study reveals that Tax-deregulated autophagy is a protective mechanism for DR-mediated apoptosis. The molecular mechanism of Tax-induced autophagy is also illuminated, which is different from Tax-increased c-FLIP. Tax can be degraded via manipulation of autophagy and TRAIL-induced apoptosis. These results outline a complex regulatory network between and among apoptosis, autophagy, and Tax and also present evidence that autophagy represents a new possible target for therapeutic intervention for the HTVL-1 related diseases.
Collapse
|
43
|
Wang J, Niu Z, Shi Y, Gao C, Wang X, Han J, Li J, Gao Z, Zhu X, Song X, Qin Z, Wang H. Bcl-3, induced by Tax and HTLV-1, inhibits NF-κB activation and promotes autophagy. Cell Signal 2013; 25:2797-804. [DOI: 10.1016/j.cellsig.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
|
44
|
HSP90 protects the human T-cell leukemia virus type 1 (HTLV-1) tax oncoprotein from proteasomal degradation to support NF-κB activation and HTLV-1 replication. J Virol 2013; 87:13640-54. [PMID: 24109220 DOI: 10.1128/jvi.02006-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The HTLV-1 genome encodes the Tax protein that plays essential regulatory roles in HTLV-1 replication and oncogenic transformation of T lymphocytes. Despite intensive study of Tax, how Tax interfaces with host signaling pathways to regulate virus replication and drive T-cell proliferation and immortalization remains poorly understood. To gain new insight into the mechanisms of Tax function and regulation, we used tandem affinity purification and mass spectrometry to identify novel cellular Tax-interacting proteins. This screen identified heat shock protein 90 (HSP90) as a new binding partner of Tax. The interaction between HSP90 and Tax was validated by coimmunoprecipitation assays, and colocalization between the two proteins was observed by confocal microscopy. Treatment of HTLV-1-transformed cells with the HSP90 inhibitor 17-DMAG elicited proteasomal degradation of Tax in the nuclear matrix with concomitant inhibition of NF-κB and HTLV-1 long terminal repeat (LTR) activation. Knockdown of HSP90 by lentiviral shRNAs similarly provoked a loss of Tax protein in HTLV-1-transformed cells. Finally, treatment of HTLV-1-transformed cell lines with 17-DMAG suppressed HTLV-1 replication and promoted apoptotic cell death. Taken together, our results reveal that Tax is a novel HSP90 client protein and HSP90 inhibitors may exert therapeutic benefits for ATL and HAM/TSP patients.
Collapse
|
45
|
Romanelli MG, Diani E, Bergamo E, Casoli C, Ciminale V, Bex F, Bertazzoni U. Highlights on distinctive structural and functional properties of HTLV Tax proteins. Front Microbiol 2013; 4:271. [PMID: 24058363 PMCID: PMC3766827 DOI: 10.3389/fmicb.2013.00271] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/20/2013] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia viruses (HTLVs) are complex human retroviruses of the Deltaretrovirus genus. Four types have been identified thus far, with HTLV-1 and HTLV-2 much more prevalent than HTLV-3 or HTLV-4. HTLV-1 and HTLV-2 possess strictly related genomic structures, but differ significantly in pathogenicity, as HTLV-1 is the causative agent of adult T cell leukemia and of HTLV-associated myelopathy/tropical spastic paraparesis, whereas HTLV-2 is not associated with neoplasia. HTLVs code for a protein named Tax that is responsible for enhancing viral expression and drives cell transformation. Much effort has been invested to dissect the impact of Tax on signal transduction pathways and to identify functional differences between the HTLV Tax proteins that may explain the distinct oncogenic potential of HTLV-1 and HTLV-2. This review summarizes our current knowledge of Tax-1 and Tax-2 with emphasis on their structure, role in activation of the NF-κB (nuclear factor kappa-B) pathway, and interactions with host factors.
Collapse
|
46
|
Failure in activation of the canonical NF-κB pathway by human T-cell leukemia virus type 1 Tax in non-hematopoietic cell lines. Virology 2013; 443:226-35. [DOI: 10.1016/j.virol.2013.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/25/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
|
47
|
Shirinian M, Kfoury Y, Dassouki Z, El-Hajj H, Bazarbachi A. Tax-1 and Tax-2 similarities and differences: focus on post-translational modifications and NF-κB activation. Front Microbiol 2013; 4:231. [PMID: 23966989 PMCID: PMC3744011 DOI: 10.3389/fmicb.2013.00231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/29/2013] [Indexed: 11/13/2022] Open
Abstract
Although human T cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) share similar genetic organization, they have major differences in their pathogenesis and disease manifestation. HTLV-1 is capable of transforming T lymphocytes in infected patients resulting in adult T cell leukemia/lymphoma whereas HTLV-2 is not clearly associated with lymphoproliferative diseases. Numerous studies have provided accumulating evidence on the involvement of the viral transactivators Tax-1 versus Tax-2 in T cell transformation. Tax-1 is a potent transcriptional activator of both viral and cellular genes. Tax-1 post-translational modifications and specifically ubiquitylation and SUMOylation have been implicated in nuclear factor-kappaB (NF-κB) activation and may contribute to its transformation capacity. Although Tax-2 has similar protein structure compared to Tax-1, the two proteins display differences both in their protein–protein interaction and activation of signal transduction pathways. Recent studies on Tax-2 have suggested ubiquitylation and SUMOylation independent mechanisms of NF-κB activation. In this present review, structural and functional differences between Tax-1 and Tax-2 will be summarized. Specifically, we will address their subcellular localization, nuclear trafficking and their effect on cellular regulatory proteins. A special attention will be given to Tax-1/Tax-2 post-translational modification such as ubiquitylation, SUMOylation, phosphorylation, acetylation, NF-κB activation, and protein–protein interactions involved in oncogenecity both in vivo and in vitro.
Collapse
Affiliation(s)
- Margret Shirinian
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | |
Collapse
|
48
|
Rahman KM, Jackson PJM, James CH, Basu BP, Hartley JA, de la Fuente M, Schatzlein A, Robson M, Pedley RB, Pepper C, Fox KR, Howard PW, Thurston DE. GC-targeted C8-linked pyrrolobenzodiazepine-biaryl conjugates with femtomolar in vitro cytotoxicity and in vivo antitumor activity in mouse models. J Med Chem 2013; 56:2911-35. [PMID: 23514599 DOI: 10.1021/jm301882a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA binding 4-(1-methyl-1H-pyrrol-3-yl)benzenamine (MPB) building blocks have been developed that span two DNA base pairs with a strong preference for GC-rich DNA. They have been conjugated to a pyrrolo[2,1-c][1,4]benzodiazepine (PBD) molecule to produce C8-linked PBD-MPB hybrids that can stabilize GC-rich DNA by up to 13-fold compared to AT-rich DNA. Some have subpicomolar IC50 values in human tumor cell lines and in primary chronic lymphocytic leukemia cells, while being up to 6 orders less cytotoxic in the non-tumor cell line WI38, suggesting that key DNA sequences may be relevant targets in these ultrasensitive cancer cell lines. One conjugate, 7h (KMR-28-39), which has femtomolar activity in the breast cancer cell line MDA-MB-231, has significant dose-dependent antitumor activity in MDA-MB-231 (breast) and MIA PaCa-2 (pancreatic) human tumor xenograft mouse models with insignificant toxicity at therapeutic doses. Preliminary studies suggest that 7h may sterically inhibit interaction of the transcription factor NF-κB with its cognate DNA binding sequence.
Collapse
Affiliation(s)
- Khondaker M Rahman
- Department of Pharmacy, Institute of Pharmaceutical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sakakibara S, Espigol-Frigole G, Gasperini P, Uldrick TS, Yarchoan R, Tosato G. A20/TNFAIP3 inhibits NF-κB activation induced by the Kaposi's sarcoma-associated herpesvirus vFLIP oncoprotein. Oncogene 2013; 32:1223-32. [PMID: 22525270 PMCID: PMC3594048 DOI: 10.1038/onc.2012.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) K13/vFLIP (viral Flice-inhibitory protein) induces transcription of numerous genes through NF-κB activation, including pro-inflammatory cytokines, which contribute to the pathogenesis of Kaposi's sarcoma (KS). In this study, we report that KSHV vFLIP induces the expression of the NF-κB regulatory proteins A20, ABIN-1 and ABIN-3 (A20-binding NF-κB inhibitors) in primary human endothelial cells, and that KS spindle cells express A20 in KS tissue. In reporter assays, A20 strongly impaired vFLIP-induced NF-κB activation in 293T cells, but ABIN-1 and ABIN-3 did not. Mutational analysis established that the C-terminal domain (residues 427-790) is critical for A20 modulation of NF-κB, but the ubiquitin-editing OTU (ovarian tumor) domain is not. In functional assays, A20 inhibited vFLIP-induced expression of the chemokine IP-10, reduced vFLIP-induced cell proliferation and increased IKK1 protein levels. Thus, we demonstrate that A20 negatively regulates NF-κB activation directly induced by KSHV vFLIP. By attenuating excessive and prolonged vFLIP-induced NF-κB activation that could be harmful to KSHV-infected cells, A20 likely has an important role in the pathogenesis of KSHV-associated diseases, in which vFLIP is expressed.
Collapse
Affiliation(s)
- S Sakakibara
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Espigol-Frigole
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - P Gasperini
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - TS Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - G Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Zane L, Yasunaga J, Mitagami Y, Yedavalli V, Tang SW, Chen CY, Ratner L, Lu X, Jeang KT. Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis. Retrovirology 2012; 9:114. [PMID: 23256545 PMCID: PMC3532233 DOI: 10.1186/1742-4690-9-114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/15/2012] [Indexed: 01/07/2023] Open
Abstract
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice.
Collapse
Affiliation(s)
- Linda Zane
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | | | |
Collapse
|