1
|
Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR-G Protein Complexes and the Role of Hypoxia. J Membr Biol 2019; 252:509-526. [PMID: 31485700 DOI: 10.1007/s00232-019-00091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR-G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.
Collapse
|
2
|
Mulvaney EP, O'Meara F, Khan AR, O'Connell DJ, Kinsella BT. Identification of α-helix 4 (α4) of Rab11a as a novel Rab11-binding domain (RBD): Interaction of Rab11a with the Prostacyclin Receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1819-1832. [PMID: 28739266 DOI: 10.1016/j.bbamcr.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
The cellular trafficking of numerous G protein-coupled receptors (GPCRs) is known to be regulated by Rab proteins that involves a direct protein:protein interaction between the receptor and the GTPase. In the case of the human prostacyclin receptor (hIP), it undergoes agonist-induced internalization and subsequent Rab11a-dependent recyclization involving an interaction between a Rab11-binding domain (RBD) localized within its carboxyl-tail domain with Rab11a. However, the GPCR-interacting domain on Rab11a itself is unknown. Hence, we sought to identify the region within Rab11a that mediates its interaction with the RBD of the hIP. The α4 helix region of Rab11 was identified as a novel binding domain for the hIP, a site entirely distinct from the Switch I/Switch II -regions that act as specific binding domain for most other Rab and Ras-like GTPase interactants. Specifically, Glu138 within α4 helix of Rab11a appears to contact with key residues (e.g. Lys304) within the RBD of the hIP, where such contacts differ depending on the agonist-activated versus -inactive status of the hIP. Through mutational studies, supported by in silico homology modelling of the inactive and active hIP:Rab11a complexes, a mechanism is proposed to explain both the constitutive and agonist-induced binding of Rab11a to regulate intracellular trafficking of the hIP. Collectively, these studies are not only the first to identify α4 helix of Rab11a as a protein binding domain on the GTPase but also reveal novel mechanistic insights into the intracellular trafficking of the hIP, and potentially of other members of the GPCR superfamily, involving Rab11-dependent mechanisms.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fergal O'Meara
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Eivers SB, Kinsella BT. Regulated expression of the prostacyclin receptor (IP) gene by androgens within the vasculature: Combined role for androgens and serum cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1333-51. [PMID: 27365208 DOI: 10.1016/j.bbagrm.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
Abstract
The prostanoid prostacyclin plays a key cardioprotective role within the vasculature. There is increasing evidence that androgens may also confer cardioprotection but through unknown mechanisms. This study investigated whether the androgen dihydrotestosterone (DHT) may regulate expression of the prostacyclin/I prostanoid receptor or, in short, the IP in platelet-progenitor megakaryoblastic and vascular endothelial cells. DHT significantly increased IP mRNA and protein expression, IP-induced cAMP generation and promoter (PrmIP)-directed gene expression in all cell types examined. The androgen-responsive region was localised to a cis-acting androgen response element (ARE), which lies in close proximity to a functional sterol response element (SRE) within the core promoter. In normal serum conditions, DHT increased IP expression through classic androgen receptor (AR) binding to the functional ARE within the PrmIP. However, under conditions of low-cholesterol, DHT led to further increases in IP expression through an indirect mechanism involving AR-dependent upregulation of SCAP expression and enhanced SREBP1 processing & binding to the SRE within the PrmIP. Chromatin immunoprecipitation assays confirmed DHT-induced AR binding to the ARE in vivo in cells cultured in normal serum while, in conditions of low cholesterol, DHT led to increased AR and SREBP1 binding to the functional ARE and SRE cis-acting elements, respectively, within the core PrmIP resulting in further increases in IP expression. Collectively, these data establish that the human IP gene is under the transcriptional regulation of DHT, where this regulation is further influenced by serum-cholesterol levels. This may explain, in part, some of the protective actions of androgens within the vasculature.
Collapse
Affiliation(s)
- Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
4
|
Prostacyclin receptors: Transcriptional regulation and novel signalling mechanisms. Prostaglandins Other Lipid Mediat 2015; 121:70-82. [DOI: 10.1016/j.prostaglandins.2015.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/18/2015] [Indexed: 12/24/2022]
|
5
|
Role of post-translational modifications on structure, function and pharmacology of class C G protein-coupled receptors. Eur J Pharmacol 2015; 763:233-40. [PMID: 25981296 DOI: 10.1016/j.ejphar.2015.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/06/2015] [Accepted: 05/11/2015] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors are divided into three classes (A, B and C) based on homology of their seven transmembrane domains. Class C is the smallest class with 22 human receptor subtypes including eight metabotropic glutamate (mGlu1-8) receptors, two GABAB receptors (GABAB1 and GABAB2), three taste receptors (T1R1-3), one calcium-sensing (CaS) receptor, one GPCR, class C, group 6, subtype A (GPRC6) receptor, and seven orphan receptors. G protein-coupled receptors undergo a number of post-translational modifications, which regulate their structure, function and/or pharmacology. Here, we review the existence of post-translational modifications in class C G protein-coupled receptors and their regulatory roles, with particular focus on glycosylation, phosphorylation, ubiquitination, SUMOylation, disulphide bonding and lipidation.
Collapse
|
6
|
Birrane G, Mulvaney EP, Pal R, Kinsella BT, Kocher O. Molecular analysis of the prostacyclin receptor's interaction with the PDZ1 domain of its adaptor protein PDZK1. PLoS One 2013; 8:e53819. [PMID: 23457445 PMCID: PMC3566133 DOI: 10.1371/journal.pone.0053819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/03/2012] [Indexed: 01/07/2023] Open
Abstract
The prostanoid prostacyclin, or prostaglandin I2, plays an essential role in many aspects of cardiovascular disease. The actions of prostacyclin are mainly mediated through its activation of the prostacyclin receptor or, in short, the IP. In recent studies, the cytoplasmic carboxy-terminal domain of the IP was shown to bind several PDZ domains of the multi-PDZ adaptor PDZK1. The interaction between the two proteins was found to enhance cell surface expression of the IP and to be functionally important in promoting prostacyclin-induced endothelial cell migration and angiogenesis. To investigate the interaction of the IP with the first PDZ domain (PDZ1) of PDZK1, we generated a nine residue peptide (KK(411)IAACSLC(417)) containing the seven carboxy-terminal amino acids of the IP and measured its binding affinity to a recombinant protein corresponding to PDZ1 by isothermal titration calorimetry. We determined that the IP interacts with PDZ1 with a binding affinity of 8.2 µM. Using the same technique, we also determined that the farnesylated form of carboxy-terminus of the IP does not bind to PDZ1. To understand the molecular basis of these findings, we solved the high resolution crystal structure of PDZ1 bound to a 7-residue peptide derived from the carboxy-terminus of the non-farnesylated form of IP ((411)IAACSLC(417)). Analysis of the structure demonstrates a critical role for the three carboxy-terminal amino acids in establishing a strong interaction with PDZ1 and explains the inability of the farnesylated form of IP to interact with the PDZ1 domain of PDZK1 at least in vitro.
Collapse
Affiliation(s)
- Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eamon P. Mulvaney
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - B. Therese Kinsella
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Interaction of the human prostacyclin receptor and the NHERF4 family member intestinal and kidney enriched PDZ protein (IKEPP). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1998-2012. [DOI: 10.1016/j.bbamcr.2012.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 11/24/2022]
|
8
|
Turner EC, Kinsella BT. Regulation of the human prostacyclin receptor gene by the cholesterol-responsive SREBP1. J Lipid Res 2012; 53:2390-404. [PMID: 22969152 DOI: 10.1194/jlr.m029314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostacyclin and its prostacyclin receptor, the I Prostanoid (IP), play essential roles in regulating hemostasis and vascular tone and have been implicated in a range cardio-protective effects but through largely unknown mechanisms. In this study, the influence of cholesterol on human IP [(h)IP] gene expression was investigated in cultured vascular endothelial and platelet-progenitor megakaryocytic cells. Cholesterol depletion increased human prostacyclin receptor (hIP) mRNA, hIP promoter-directed reporter gene expression, and hIP-induced cAMP generation in all cell types. Furthermore, the constitutively active sterol-response element binding protein (SREBP)1a, but not SREBP2, increased hIP mRNA and promoter-directed gene expression, and deletional and mutational analysis uncovered an evolutionary conserved sterol-response element (SRE), adjacent to a known functional Sp1 element, within the core hIP promoter. Moreover, chromatin immunoprecipitation assays confirmed direct cholesterol-regulated binding of SREBP1a to this hIP promoter region in vivo, and immunofluorescence microscopy corroborated that cholesterol depletion significantly increases hIP expression levels. In conclusion, the hIP gene is directly regulated by cholesterol depletion, which occurs through binding of SREBP1a to a functional SRE within its core promoter. Mechanistically, these data establish that cholesterol can regulate hIP expression, which may, at least in part, account for the combined cardio-protective actions of low serum cholesterol through its regulation of IP expression within the human vasculature.
Collapse
Affiliation(s)
- Elizebeth C Turner
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
9
|
Turner EC, Mulvaney EP, Reid HM, Kinsella BT. Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis. Mol Biol Cell 2011; 22:2664-79. [PMID: 21653824 PMCID: PMC3145543 DOI: 10.1091/mbc.e11-04-0374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prostacyclin is widely implicated in re-endothelialization and angiogenesis but through unknown mechanisms. Herein the HDL scavenger receptor class B, type 1 adapter PDZK1 was identified as a direct, functional interactant of the human prostacyclin receptor and was found to influence prostacyclin-mediated endothelial migration and in vitro angiogenesis. Prostacyclin is increasingly implicated in re-endothelialization and angiogenesis but through largely unknown mechanisms. Herein the high-density lipoprotein (HDL) scavenger receptor class B, type 1 (SR-B1) adapter protein PDZ domain-containing protein 1 (PDZK1) was identified as an interactant of the human prostacyclin receptor (hIP) involving a Class I PDZ ligand at its carboxyl terminus and PDZ domains 1, 3, and 4 of PDZK1. Although the interaction is constitutive, it may be dynamically regulated following cicaprost activation of the hIP through a mechanism involving cAMP-dependent protein kinase (PK)A-phosphorylation of PDZK1 at Ser-505. Although PDZK1 did not increase overall levels of the hIP, it increased its functional expression at the cell surface, enhancing ligand binding and cicaprost-induced cAMP generation. Consistent with its role in re-endothelialization and angiogenesis, cicaprost activation of the hIP increased endothelial cell migration and tube formation/in vitro angiogenesis, effects completely abrogated by the specific IP antagonist RO1138452. Furthermore, similar to HDL/SR-B1, small interfering RNA (siRNA)-targeted disruption of PDZK1 abolished cicaprost-mediated endothelial responses but did not affect VEGF responses. Considering the essential role played by prostacyclin throughout the cardiovascular system, identification of PDZK1 as a functional interactant of the hIP sheds significant mechanistic insights into the protective roles of these key players, and potentially HDL/SR-B1, within the vascular endothelium.
Collapse
Affiliation(s)
- Elizebeth C Turner
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
10
|
Reid HM, Wikström K, Kavanagh DJ, Mulvaney EP, Kinsella BT. Interaction of angio-associated migratory cell protein with the TPα and TPβ isoforms of the human thromboxane A2 receptor. Cell Signal 2011; 23:700-17. [DOI: 10.1016/j.cellsig.2010.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/12/2010] [Indexed: 11/16/2022]
|
11
|
Downey JD, Sanders CR, Breyer RM. Evidence for the presence of a critical disulfide bond in the mouse EP3γ receptor. Prostaglandins Other Lipid Mediat 2011; 94:53-8. [PMID: 21236356 DOI: 10.1016/j.prostaglandins.2010.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 12/30/2010] [Accepted: 12/30/2010] [Indexed: 11/29/2022]
Abstract
To determine the contribution of cysteines to the function of the mouse E-prostanoid subtype 3 gamma (mEP3γ), we tested a series of cysteine-to-alanine mutants. Two of these mutants, C107A and C184A, showed no agonist-dependent activation in a cell-based reporter assay for mEP3γ, whereas none of the other cysteine-to-alanine mutations disrupted mEP3γ signal transduction. Total cell membranes prepared from HEK293 cells transfected with mEP3γ C107A or C184A had no detectable radioligand binding. Other mutant mEP3γ receptors had radioligand affinities and receptor densities similar to wild-type. Cell-surface ELISA against the N-terminal HA-tag of C107A and C184A demonstrated 40% and 47% reductions respectively in receptor protein expression at the cell surface, and no radioligand binding was detected as assessed by intact cell radioligand binding experiments. These data suggest a key role for C107 and C184 in both receptor structure/stability and function and is consistent with the presence of a conserved disulfide bond between C107 and C184 in mouse EP3 that is required for normal receptor expression and function. Our results also indicate that if a second disulfide bond is present in the native receptor it is non-essential for receptor assembly or function.
Collapse
Affiliation(s)
- Jason D Downey
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | | |
Collapse
|
12
|
Donnellan PD, Kimbembe CC, Reid HM, Kinsella BT. Identification of a novel endoplasmic reticulum export motif within the eighth α-helical domain (α-H8) of the human prostacyclin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1202-18. [PMID: 21223948 DOI: 10.1016/j.bbamem.2011.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 12/20/2010] [Accepted: 01/03/2011] [Indexed: 01/20/2023]
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-dependent trafficking involving a direct interaction with Rab11a GTPase. The region of interaction was localised to a 14 residue Rab11a binding domain (RBD) within the proximal carboxyl-terminal (C)-tail domain of the hIP, consisting of Val(299)-Val(307) within the eighth helical domain (α-H8) adjacent to the palmitoylated residues at Cys(308)-Cys(311). However, the factors determining the anterograde transport of the newly synthesised hIP from the endoplasmic reticulum (ER) to the plasma membrane (PM) have not been identified. The aim of the current study was to identify the major ER export motif(s) within the hIP initially by investigating the role of Lys residues in its maturation and processing. Through site-directed and Ala-scanning mutational studies in combination with analyses of protein expression and maturation, functional analyses of ligand binding, agonist-induced intracellular signalling and confocal image analyses, it was determined that Lys(297), Arg(302) and Lys(304) located within α-H8 represent the critical determinants of a novel ER export motif of the hIP. Furthermore, while substitution of those critical residues significantly impaired maturation and processing of the hIP, replacement of the positively charged Lys with Arg residues, and vice versa, was functionally permissible. Hence, this study has identified a novel 8 residue ER export motif within the functionally important α-H8 of the hIP. This ER export motif, defined by "K/R(X)(4)K/R(X)K/R," has a strict requirement for positively charged, basic Lys/Arg residues at the 1st, 6th and 8th positions and appears to be evolutionarily conserved within IP sequences from mouse to man.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Arginine/chemistry
- Arginine/genetics
- Arginine/metabolism
- Binding Sites
- Blotting, Western
- Calcium/metabolism
- Calnexin/metabolism
- Computational Biology
- Endoplasmic Reticulum/metabolism
- HEK293 Cells
- Humans
- Lysine/chemistry
- Lysine/genetics
- Lysine/metabolism
- Microscopy, Confocal
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Protein Binding
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Transport
- Radioligand Assay
- Receptors, Epoprostenol/chemistry
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Peter D Donnellan
- School of Biomeolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
13
|
Reid HM, Mulvaney EP, Turner EC, Kinsella BT. Interaction of the human prostacyclin receptor with Rab11: characterization of a novel Rab11 binding domain within alpha-helix 8 that is regulated by palmitoylation. J Biol Chem 2010; 285:18709-26. [PMID: 20395296 PMCID: PMC2881795 DOI: 10.1074/jbc.m110.106476] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/14/2010] [Indexed: 11/06/2022] Open
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys(308) and Cys(311), in addition to Cys(309), that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val(299) and Leu(312), and proposed to be organized into an eighth alpha-helical domain (alpha-helix 8), comprising Val(299)-Val(307), adjacent to the palmitoylated residues at Cys(308)-Cys(311). From mutational and [(3)H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys(311) in addition to agonist-regulated deacylation at Cys(309) > Cys(308) may dynamically position alpha-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within alpha-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an alpha-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for alpha-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.
Collapse
Affiliation(s)
- Helen M. Reid
- From the School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eamon P. Mulvaney
- From the School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elizebeth C. Turner
- From the School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B. Therese Kinsella
- From the School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Mubarak KK. A review of prostaglandin analogs in the management of patients with pulmonary arterial hypertension. Respir Med 2010; 104:9-21. [DOI: 10.1016/j.rmed.2009.07.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/25/2009] [Accepted: 07/19/2009] [Indexed: 10/20/2022]
|
15
|
Donnellan PD, Kinsella BT. Immature and mature species of the human Prostacyclin Receptor are ubiquitinated and targeted to the 26S proteasomal or lysosomal degradation pathways, respectively. J Mol Signal 2009; 4:7. [PMID: 19781057 PMCID: PMC2760523 DOI: 10.1186/1750-2187-4-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 09/25/2009] [Indexed: 12/22/2022] Open
Abstract
Background The human prostacyclin receptor (hIP) undergoes agonist-induced phosphorylation, desensitisation and internalisation and may be recycled to the plasma membrane or targeted for degradation by, as yet, unknown mechanism(s). Results Herein it was sought to investigate the turnover of the hIP under basal conditions and in response to cicaprost stimulation. It was established that the hIP is subject to low-level basal degradation but, following agonist stimulation, degradation is substantially enhanced. Inhibition of the lysosomal pathway prevented basal and agonist-induced degradation of the mature species of the hIP (46-66 kDa). Conversely, inhibition of the proteasomal pathway had no effect on levels of the mature hIP but led to time-dependent accumulation of four newly synthesised immature species (38-44 kDa). It was established that both the mature and immature species of the hIP may be polyubiquitinated and this modification may be required for lysosomal sorting of the mature, internalised receptors and for degradation of the immature receptors by the 26S proteasomes through the ER-associated degradation (ERAD) process, respectively. Moreover, these data substantially advance knowledge of the factors regulating processing and maturation of the hIP, a complex receptor subject to multiple post-translational modifications including N-glycosylation, phosphorylation, isoprenylation, palmitoylation, in addition to polyubiquitination, as determined herein. Conclusion These findings indicate that the hIP is post-translationally modified by ubiquitination, which targets the immature species to the 26S proteasomal degradation pathway and the mature species to the lysosomal degradation pathway.
Collapse
Affiliation(s)
- Peter D Donnellan
- School of Biomolecular and Biomedical Sciences, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
16
|
Wikström K, Reid HM, Hill M, English KA, O'Keeffe MB, Kimbembe CC, Kinsella BT. Recycling of the human prostacyclin receptor is regulated through a direct interaction with Rab11a GTPase. Cell Signal 2008; 20:2332-46. [PMID: 18832025 DOI: 10.1016/j.cellsig.2008.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/26/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
Abstract
The human prostacyclin receptor (hIP) undergoes agonist-induced internalization but the mechanisms regulating its intracellular trafficking and/or recycling to the plasma membrane are poorly understood. Herein, we conducted a yeast-two-hybrid screen to identify proteins interacting with the carboxyl-terminal (C)-tail domain of the hIP and discovered a novel interaction with Rab11a. This interaction was confirmed by co-immunoprecipitations in mammalian HEK293 and was augmented by cicaprost stimulation. The hIP co-localized to Rab11-containing recycling endosomes in both HEK293 and endothelial EA.hy 926 cells in a time-dependent manner following cicaprost stimulation. Moreover, over-expression of Rab11a significantly increased recycling of the hIP, while the dominant negative Rab11(S25N) impaired that recycling. Conversely, while the hIP co-localized to Rab4-positive endosomes in response to cicaprost, ectopic expression of Rab4a did not substantially affect overall recycling nor did Rab4a directly interact with the hIP. The specific interaction between the hIP and Rab11a was dependent on a 22 amino acid (Val(299)-Gln(320)) sequence within its C-tail domain and was independent of isoprenylation of the hIP. This study elucidates a critical role for Rab11a in regulating trafficking of the hIP and has identified a novel Rab11 binding domain (RBD) within its C-tail domain that is both necessary and sufficient to mediate interaction with Rab11a.
Collapse
Affiliation(s)
- Katarina Wikström
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
17
|
O'Keeffe MB, Reid HM, Kinsella BT. Agonist-dependent internalization and trafficking of the human prostacyclin receptor: a direct role for Rab5a GTPase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1914-28. [PMID: 18498773 PMCID: PMC2680976 DOI: 10.1016/j.bbamcr.2008.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/21/2008] [Accepted: 04/22/2008] [Indexed: 11/19/2022]
Abstract
The human prostacyclin receptor (hIP) undergoes rapid agonist-induced internalization by largely unknown mechanism(s). Herein the involvement of Rab5 in regulating cicaprost-induced internalization of the hIP expressed in human embryonic kidney 293 cells was investigated. Over-expression of Rab5a significantly increased agonist-induced hIP internalization. Additionally, the hIP co-localized to Rab5a-containing endocytic vesicles in response to cicaprost stimulation and there was a coincident net translocation of Rab5 from the cytosol/soluble fraction of the cell. Co-immunoprecipitation studies confirmed a direct physical interaction between the hIP and Rab5a that was augmented by cicaprost. Whilst the dominant negative Rab5a(S34N) did not show decreased interaction with the hIP or fully impair internalization, it prevented hIP sorting to endocytic vesicles. Moreover, the GTPase deficient Rab5a(Q79L) significantly increased internalization and co-localized with the hIP in enlarged endocytic vesicles. While deletion of the carboxyl terminal (C)-tail domain of the hIP did not inhibit agonist-induced internalization, co-localization or co-immunoprecipitation with Rab5a per se, receptor trafficking was altered suggesting that it contains structural determinant(s) for hIP sorting post Rab5-mediated endocytosis. Taken together, data herein and in endothelial EA.hy 926 cells demonstrate a direct role for Rab5a in agonist-internalization and trafficking of the hIP and increases knowledge of the factors regulating prostacyclin signaling.
Collapse
|
18
|
Zhang XH, Li GR, Bourreau JP. The effect of adrenomedullin on the L-type calcium current in myocytes from septic shock rats: signaling pathway. Am J Physiol Heart Circ Physiol 2007; 293:H2888-93. [PMID: 17766482 DOI: 10.1152/ajpheart.00312.2007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (ADM) is upregulated in cardiac tissue under various pathophysiological conditions, particularly in septic shock. The intracellular mechanisms involved in the effect of ADM on adult rat ventricular myocytes are still to be elucidated. Ventricular myocytes were isolated from adult rats 4 h after an intraperitoneal injection of lipopolysaccharide (LPS, 10 mg/kg). Membrane potential and L-type calcium current ( ICa,L) were determined using whole cell patch-clamp methods. APD in LPS group was significantly shorter than control values (time to 50% repolarization: LPS, 169 ± 2 ms; control, 257 ± 2 ms, P < 0.05; time to 90% repolarization: LPS, 220 ± 2 ms; control, 305 ± 2 ms, P < 0.05). ICa,Ldensity was significantly reduced in myocytes from the LPS group (−3.2 ± 0.8 pA/pF) compared with that of control myocytes (−6.7 ± 0.3 pA/pF, P < 0.05). The ADM antagonist ADM-(22-52) reversed the shortened APD and abolished the reduction of ICa,Lin shock myocytes. In myocytes from control rats, incubating with ADM for 1 h induced a marked decrease in peak ICa,Ldensity. This effect was reversed by ADM-(22-52). The Giprotein inhibitor, pertussis toxin (PTX), the protein kinase A (PKA) inhibitor, KT-5720, and the specific cyclooxygenase 2 (COX-2) inhibitor, nimesulide, reversed the LPS-induced reduction in peak ICa,L. The results suggest a COX-2-involved PKA-dependent switch from Gscoupled to PTX-sensitive Gicoupling by ADM in adult rat ventricular myocytes. The present study delineates the intracellular pathways involved in ADM-mediated effects on ICa,Lin adult rat ventricular myocytes and also suggests a role of ADM in sepsis.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Physiology and Institute of Cardiovascular Sciences and Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region of China, Hong Kong, China.
| | | | | |
Collapse
|
19
|
Nasrallah R, Clark J, Hébert RL. Prostaglandins in the kidney: developments since Y2K. Clin Sci (Lond) 2007; 113:297-311. [PMID: 17760567 DOI: 10.1042/cs20070089] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are five major PGs (prostaglandins/prostanoids) produced from arachidonic acid via the COX (cyclo-oxygenase) pathway: PGE(2), PGI(2) (prostacyclin), PGD(2), PGF(2alpha) and TXA(2) (thromboxane A(2)). They exert many biological effects through specific G-protein-coupled membrane receptors, namely EP (PGE(2) receptor), IP (PGI(2) receptor), DP (PGD(2) receptor), FP (PGF(2alpha) receptor) and TP (TXA(2) receptor) respectively. PGs are implicated in physiological and pathological processes in all major organ systems, including cardiovascular function, gastrointestinal responses, reproductive processes, renal effects etc. This review highlights recent insights into the role of each prostanoid in regulating various aspects of renal function, including haemodynamics, renin secretion, growth responses, tubular transport processes and cell fate. A thorough review of the literature since Y2K (year 2000) is provided, with a general overview of PGs and their synthesis enzymes, and then specific considerations of each PG/prostanoid receptor system in the kidney.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
20
|
Zhang XC, Strassman AM, Burstein R, Levy D. Sensitization and Activation of Intracranial Meningeal Nociceptors by Mast Cell Mediators. J Pharmacol Exp Ther 2007; 322:806-12. [PMID: 17483291 DOI: 10.1124/jpet.107.123745] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracranial headaches such as migraine are thought to result from activation of sensory trigeminal pain neurons that supply intracranial blood vessels and the meninges, also known as meningeal nociceptors. Although the mechanism underlying the triggering of such activation is not completely understood, our previous work indicates that the local activation of the inflammatory dural mast cells can provoke a persistent sensitization of meningeal nociceptors. Given the potential importance of mast cells to the pain of migraine it is important to understand which mast cell-derived mediators interact with meningeal nociceptors to promote their activation and sensitization. In the present study, we have used in vivo electrophysiological single-unit recording of meningeal nociceptors in the trigeminal ganglion of anesthetized rats to examine the effect of a number of mast cell mediators on the activity level and mechanosensitivity of meningeal nociceptors. We have found that that serotonin (5-HT), prostaglandin I(2) (PGI(2)), and to a lesser extent histamine can promote a robust sensitization and activation of meningeal nociceptors, whereas the inflammatory eicosanoids PGD(2) and leukotriene C(4) are largely ineffective. We propose that dural mast cells could promote headache by releasing 5-HT, PGI(2), and histamine.
Collapse
Affiliation(s)
- Xi-Chun Zhang
- Headache Research Laboratory, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Room 856, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
21
|
|
22
|
Reid HM, Kinsella BT. Palmitoylation of the TPbeta isoform of the human thromboxane A2 receptor. Modulation of G protein: effector coupling and modes of receptor internalization. Cell Signal 2006; 19:1056-70. [PMID: 17229546 PMCID: PMC2680975 DOI: 10.1016/j.cellsig.2006.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/05/2006] [Accepted: 12/05/2006] [Indexed: 11/28/2022]
Abstract
Palmitoylation is a prevalent feature amongst G protein-coupled receptors. In this study we sought to establish whether the TPα and TPβ isoforms of the human prostanoid thromboxane (TX) A2 receptor (TP) are palmitoylated and to assess the functional consequences thereof. Consistent with the presence of three cysteines within its unique carboxyl-terminal domain, metabolic labelling and site-directed mutagenesis confirmed that TPβ is palmitoylated at Cys347 and, to a lesser extent, at Cys373,377 whereas TPα is not palmitoylated. Impairment of palmitoylation did not affect TPβ expression or its ligand affinity. Conversely, agonist-induced [Ca2+]i mobilization by TPβC347S and the non-palmitoylated TPβC347,373,377S, but not by TPβC373S or TPβC373,377S, was significantly reduced relative to the wild type TPβ suggesting that palmitoylation at Cys347 is specifically required for efficient Gq/phospholipase Cβ effector coupling. Furthermore, palmitoylation at Cys373,377 is critical for TPβ internalization with TPβC373S, TPβC373,377S and TPβC347,373,377S failing to undergo either agonist-induced or temperature-dependent tonic internalization. On the other hand, whilst TPβC347S underwent reduced agonist-induced internalization, it underwent tonic internalization to a similar extent as TPβ. The deficiency in agonist-induced internalization by TPβC347S, but not by TPβC373,377 nor TPβC347,373,377S, was overcome by over-expression of either β-arrestin1 or β-arrestin2. Taken together, data herein suggest that whilst palmitoylation of TPβ at Cys373,377 is critical for both agonist- and tonic-induced internalization, palmitoylation at Cys347 has a role in determining which pathway is followed, be it by the β-arrestin-dependent agonist-induced pathway or by the β-arrestin-independent tonic internalization pathway.
Collapse
|
23
|
Stitham J, Gleim SR, Douville K, Arehart E, Hwa J. Versatility and differential roles of cysteine residues in human prostacyclin receptor structure and function. J Biol Chem 2006; 281:37227-36. [PMID: 17015447 DOI: 10.1074/jbc.m604042200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostacyclin plays important roles in vascular homeostasis, promoting vasodilatation and inhibiting platelet thrombus formation. Previous studies have shown that three of six cytoplasmic cysteines, particularly those within the C-terminal tail, serve as important lipidation sites and are differentially conjugated to palmitoyl and isoprenyl groups (Miggin, S. M., Lawler, O. A., and Kinsella, B. T. (2003) J. Biol. Chem. 278, 6947-6958). Here we report distinctive roles for extracellular- and transmembrane-located cysteine residues in human prostacyclin receptor structure-function. Within the extracellular domain, all cysteines (4 of 4) appear to be involved in disulfide bonding interactions (i.e. a highly conserved Cys-92-Cys-170 bond and a putative non-conserved Cys-5-Cys-165 bond), and within the transmembrane (TM) region there are several cysteines (3 of 8) that maintain critical hydrogen bonding interactions (Cys-118 (TMIII), Cys-251 (TMVI), and Cys-202 (TMV)). This study highlights the necessity of sulfhydryl (SH) groups in maintaining the structural integrity of the human prostacyclin receptor, as 7 of 12 extracellular and transmembrane cysteines studied were found to be differentially indispensable for receptor binding, activation, and/or trafficking. Moreover, these results also demonstrate the versatility and reactivity of these cysteine residues within different receptor environments, that is, extracellular (disulfide bonds), transmembrane (H-bonds), and cytoplasmic (lipid conjugation).
Collapse
Affiliation(s)
- Jeremiah Stitham
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
24
|
Matteo M, Cicinelli E, Sciorsci RL, Grandone E, Cardo G, Colaizzo D, Rizzo A, Greco P. Expression and hormonal modulation of the thromboxane A2 receptor gene in mammalian testicular arteries. Fertil Steril 2006; 85 Suppl 1:1276-80. [PMID: 16616102 DOI: 10.1016/j.fertnstert.2005.09.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Thromboxane A2 (TXA2) is a biologically potent arachidonate metabolite which causes vasoconstriction and platelet aggregation. This study aimed to evaluate the presence of TXA2 receptors in mammalian testicular arteries and the influence of exogenous gonadotropin administration on their expression. DESIGN Experimental study. SETTING Experimental animals in an academic research environment. ANIMAL(S) Seven rams aged 4-6 years, weighing 60-90 kg. INTERVENTION(S) Both testicular arteries of seven rams were extracted before (from one testis) and after (from the opposite testis) IV administration of 5,000 IU human chorionic gonadotropin (hCG). MAIN OUTCOME MEASURE(S) The expression of the TXA2 receptor gene was investigated by the real-time polymerase chain reaction. Data were analyzed by means of Student t test. Results were expressed as mean +/- standard deviation. A P value of <.01 was considered statistically significant. RESULT(S) Polymerase chain reaction revealed the presence of TXA2 messenger RNA receptor in all the basal samples, but the expression of TXA2 receptor gene was undetectable in all the arteries obtained 24 h after the administration of hCG. CONCLUSION(S) These preliminary results demonstrated for the first time the presence of TXA2 receptors in mammalian testicular arteries. Results also showed that their expression was down-regulated after hCG administration.
Collapse
Affiliation(s)
- Maria Matteo
- Department of Surgical Sciences, University of Foggia, Foggia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lamango NS. Liver prenylated methylated protein methyl esterase is an organophosphate-sensitive enzyme. J Biochem Mol Toxicol 2006; 19:347-57. [PMID: 16292756 DOI: 10.1002/jbt.20100] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prenylation and subsequent methylation are essential modifications on a significant proportion of eucaryotic proteins. Proteins such as the G-gamma subunits of G-protein coupled receptors, nuclear lamins, and guanine nucleotide-binding proteins such as Ras are prenylated and undergo methylation. Prenylated methylated protein methyl esterase (PMPMEase) readily hydrolyses the prenylated protein methyl esters, thus making this step reversible and possibly regulatory. Benzoyl-glycyl-farnesyl-cysteine methyl ester (BzGFCM) was developed as a specific PMPMEase substrate and characterized by electron spray ionization mass spectrometry (ESI-MS) to be of the calculated molecular mass. Rat liver and brain PMPMEase hydrolyzed BzGFCM, forming benzoyl-glycyl-farnesyl-cysteine (BzGFC) in a time- and concentration-dependent manner. Both enzymes cleaved BzGFCM with K(m) values of 4.58 +/- 0.30 and 25.57 +/- 2.36 microM and V(max) values of 2.21 +/- 0.03 and 0.17 +/- 0.003 nmol/min/mg, respectively. The liver enzyme eluted from a gel-filtration column as a single peak of apparent size, 89 kDa. The brain enzyme eluted as two main peaks of 53 and 890 kDa. Organophosphorus pesticides (OPs), which are suspected to be involved in human disorders such as parkinsonism, neuronal, and retinal degeneration, inhibited the liver enzyme with IC(50) values from 4.77 muM for parathion to 0.04 microM for paraoxon, respectively. Only about 25% of the brain enzyme was inhibited by 0.5-1 mM solutions of mipafox, while 0.1 and 1 mM paraoxon inhibited over 50% and 95% of the enzyme, respectively. Paraoxon is thus about 2,250 times less potent against the brain than the liver PMPMEase. BzGFCM was not hydrolyzed by various cholinesterases, indicating its specificity for PMPMEase. Perturbations in prenylated protein metabolism might play a role in noncholinergic OPs-induced toxicity, since prenylated proteins play such important roles in cell signaling, proliferation, differentiation, and apoptosis.
Collapse
Affiliation(s)
- Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, 32307, USA.
| |
Collapse
|
26
|
Wilson SJ, Smyth EM. Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J Biol Chem 2006; 281:11780-6. [PMID: 16527812 DOI: 10.1074/jbc.m513110200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prostacyclin, the major cyclooxygenase-derived product of arachidonic acid formed in the vasculature, mediates its potent anti-thrombotic and anti-proliferative effects through its G protein-coupled receptor (GPCR) termed the IP. Unlike many GPCRs, agonist-induced internalization of the IP occurs in an arrestin/GPCR kinase-independent manner. However, deletion of the IP COOH-terminal region prevented internalization suggesting that protein interactions at this region are involved in IP regulation. Using the COOH-terminal region of IP as bait we identified the delta subunit of cGMP phosphodiesterase 6 (PDE6delta) as a novel hIP-interacting protein in two independent yeast two-hybrid screens. Interaction of IP and PDE6delta was confirmed by co-immunoprecipitation in HEK293 cells, and in HEPG2 cells, which endogenously express neither IP nor PDE6delta. IP isoprenylation was critical for this interaction, as PDE6delta was unable to associate with an isoprenylation-deficient mutant IP (IPSSLC). PDE6delta overexpression altered the temporal pattern of agonist-induced internalization of IP, but not IPSSLC, in HEPG2 cells, increasing initial internalization but facilitating the return of IP to the cell surface despite the continued presence of agonist. Depletion of PDE6delta using short interfering RNA abolished cicaprost-induced IP internalization in human aortic smooth muscle cells. Recycling of IP, but not IPSSLC, upon agonist removal was facilitated by overexpression of PDE6delta. Thus PDE6delta interacts specifically with IP to modulate receptor trafficking.
Collapse
Affiliation(s)
- Stephen J Wilson
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
27
|
Ferri N, Paoletti R, Corsini A. Lipid-modified proteins as biomarkers for cardiovascular disease: a review. Biomarkers 2005; 10:219-37. [PMID: 16191483 DOI: 10.1080/13547500500216660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Lipid-modified proteins are classified based on the identity of the attached lipid, a post- or co-translational modification required for their biological function. At least five different lipid modifications of cysteines, glycines and other residues on the COOH- and NH(2)-terminal domains have been described. Cysteine residues may be modified by the addition of a 16-carbon saturated fatty acyl group by a labile thioester bond (palmitoylation) or by prenylation processes that catalyze the formation of thioether bond with mevalonate derived isoprenoids, farnesol and geranylgeraniol. The NH(2)-terminal glycine residues may undergo a quite distinct process involving the formation of an amide bond with a 14-carbon saturated acyl group (myristoylation), while glycine residues in the COOH-terminal may be covalently attached with a cholesterol moiety by an ester bond. Finally, cell surface proteins can be anchored to the membrane through the addition of glycosylphosphatidylinositol moiety. Several lines of evidence suggest that lipid-modified proteins are directly involved in different steps of the development of lesions of atherosclerosis, from leukocyte recruitment to plaque rupture, and their expression or lipid modification are likely altered during atherogenesis. This review will briefly summarize the different enzymatic pathways of lipid modification and propose a series of lipid-modified proteins that can be used as biomarkers for cardiovascular disease.
Collapse
Affiliation(s)
- N Ferri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | | |
Collapse
|
28
|
Huang Y, Sirkowski EE, Stickney JT, Scherer SS. Prenylation-defective human connexin32 mutants are normally localized and function equivalently to wild-type connexin32 in myelinating Schwann cells. J Neurosci 2005; 25:7111-20. [PMID: 16079393 PMCID: PMC6725241 DOI: 10.1523/jneurosci.1319-05.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 06/17/2005] [Accepted: 06/18/2005] [Indexed: 12/18/2022] Open
Abstract
Mutations in GJB1, the gene encoding the gap junction protein connexin32 (Cx32), cause the X-linked form of Charcot-Marie-Tooth disease, an inherited demyelinating neuropathy. The C terminus of human Cx32 contains a putative prenylation motif that is conserved in Cx32 orthologs. Using [3H]mevalonolactone ([3H]MVA) incorporation, we demonstrated that wild-type human connexin32 can be prenylated in COS7 cells, in contrast to disease-associated mutations that are predicted to disrupt the prenylation motif. We generated transgenic mice that express these mutants in myelinating Schwann cells. Male mice expressing a transgene were crossed with female Gjb1-null mice; the male offspring were all Gjb1-null, and one-half were transgene positive; in these mice, all Cx32 was derived from expression of the transgene. The mutant human protein was properly localized in myelinating Schwann cells in multiple transgenic lines and did not alter the localization of other components of paranodes and incisures. Finally, both the C280G and the S281x mutants appeared to "rescue" the phenotype of Gjb1-null mice, because transgene-positive male mice had significantly fewer abnormally myelinated axons than did their transgene-negative male littermates. These results indicate that Cx32 is prenylated, but that prenylation is not required for proper trafficking of Cx32 and perhaps not even for certain aspects of its function, in myelinating Schwann cells.
Collapse
Affiliation(s)
- Yan Huang
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
29
|
Nasrallah R, Hébert RL. Prostacyclin signaling in the kidney: implications for health and disease. Am J Physiol Renal Physiol 2005; 289:F235-46. [PMID: 16006589 DOI: 10.1152/ajprenal.00454.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The balance between vasodilator and vasoconstrictor pathways is key to the maintenance of homeostasis and the outcome of disease. In the kidney, prostaglandins (PGs) uphold this balance and regulate renal function: hemodynamics, renin secretion, growth responses, tubular transport processes, and cell fate. With the advent of cyclooxygenase (COX)-2-selective inhibitors, targeted deletions in mice (COX knockouts, PG receptor knockouts), and the discovery of intracrine signaling options for PGs (peroxisome proliferator-activated receptors and perinuclear PGE2receptors: EP1,3,4), many advances have been made in the study of arachidonic acid metabolites. Although prostacyclin (PGI2) is a major product of the COX pathway, there is very little emphasis on its importance to the kidney. This review will discuss PGI2biology and its relevance to different aspects of renal disease (growth, fibrosis, apoptosis), highlighting the most significant research from the past decade of PGI2literature, what we have learned from other organ systems, while stressing the significance of cross talk between various PGI2signaling pathways and its implications for renal health and disease.
Collapse
Affiliation(s)
- Rania Nasrallah
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| | | |
Collapse
|
30
|
O'Meara S, Kinsella B. The effect of the farnesyl protein transferase inhibitor SCH66336 on isoprenylation and signalling by the prostacyclin receptor. Biochem J 2005; 386:177-89. [PMID: 15469414 PMCID: PMC1134780 DOI: 10.1042/bj20041290] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/05/2004] [Accepted: 10/06/2004] [Indexed: 11/17/2022]
Abstract
Like Ras, farnesylation of the IP (prostacyclin receptor) is required for its efficient intracellular signalling, and hence the IP represents a potential target for inhibition by FTIs [FTase (farnesyl protein transferase) inhibitors]. Herein, the effect of SCH66336 on the isoprenylation and function of the human and mouse IPs overexpressed in human embryonic kidney 293 cells, and by the IP endogenously expressed in human erythroleukaemia cells, was investigated. SCH66336 yielded concentration-dependent decreases in IP-mediated cAMP generation (IC50 0.27-0.62 nM), [Ca2+]i mobilization (IC50 26.6-48.3 nM) and IP internalization, but had no effect on signalling by the non-isoprenylated beta2 adrenergic receptor or b isoform of the TP (prostanoid thromboxane A2 receptor). Additionally, SCH66336 impaired IP-mediated crossdesensitization of TPa signalling (IC50 56.1 nM) and reduced farnesylation of the molecular chaperone protein HDJ-2 (IC50 3.1 nM). To establish whether farnesylation of the IP is inhibited and/or whether its 'CaaX motif' might undergo alternative geranylgeranylation in the presence of SCH66336, a series of chimaeric Ha (Harvey)-Ras fusions were generated by replacing its CaaX motif (-CVLS) with that of the IP (-CSLC) or, as controls, of Ki (Kirsten)-Ras 4B (-CVIM) or Rac 1 (-CVLL). Whereas SCH66336 had no effect on Ha-RasCVLL isoprenylation in vitro or in whole cells, it supported alternative geranylgeranylation of Ha-RasCVIM, but completely impaired isoprenylation of both Ha-RasCVLS and Ha-RasCSLC. These data confirm that the -CSLC motif of the IP is a direct target for inhibition by the FTI SCH66336, and in the presence of strong FTase inhibition, the IP does not undergo compensatory geranylgeranylation
Collapse
Key Words
- desensitization
- farnesyl protein transferase inhibitor
- isoprenylation
- prostacyclin receptor
- ras
- thromboxane a2
- β2ar, β2 adrenergic receptor
- [ca2+]i, intracellular calcium
- fbs, fetal bovine serum
- fpp, farnesyl pyrophosphate
- ftase, farnesyl protein transferase
- fti, farnesyl protein transferase inhibitor
- ggpp, geranylgeranyl pyrophosphate
- fura 2/am, fura 2 acetoxymethyl ester
- ggtase, geranylgeranyl protein transferase
- gpcr, g-protein-coupled receptor
- ha, haemagglutinin
- ha-ras, harvey ras
- hek, human embryonic kidney
- hel, human erythroleukaemia
- (h/m)ip, (human/mouse) prostacyclin receptor
- ki-ras, kirsten ras
- ldh, lactate dehydrogenase
- mva, mevalonolactone
- n-ras, neuronal ras
- pka, camp-dependent protein kinase
- plcβ, phospholipase cβ
- txa2, thromboxane a2
- tp, prostanoid txa2 receptor
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Amino Acid Motifs
- Animals
- Calcium Signaling/drug effects
- Carrier Proteins/metabolism
- Cell Line
- Cell Line, Tumor/metabolism
- Cyclic AMP/biosynthesis
- Dose-Response Relationship, Drug
- Endocytosis/drug effects
- Epoprostenol/analogs & derivatives
- Epoprostenol/pharmacology
- Farnesyltranstransferase
- HSP40 Heat-Shock Proteins
- Heat-Shock Proteins/metabolism
- Humans
- Iloprost/metabolism
- Isoproterenol/pharmacology
- Kidney
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Mutagenesis, Site-Directed
- Organophosphorus Compounds/metabolism
- Piperidines/pharmacology
- Proline/analogs & derivatives
- Proline/metabolism
- Propanolamines/metabolism
- Protein Prenylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Proto-Oncogene Proteins p21(ras)/chemistry
- Proto-Oncogene Proteins p21(ras)/metabolism
- Pyridines/pharmacology
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Epoprostenol/drug effects
- Receptors, Epoprostenol/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/drug effects
- Recombinant Fusion Proteins/metabolism
- Signal Transduction/drug effects
- Transfection
Collapse
Affiliation(s)
- Sarah J. O'Meara
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B. Therese Kinsella
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
31
|
Hata AN, Breyer RM. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol Ther 2005; 103:147-66. [PMID: 15369681 DOI: 10.1016/j.pharmthera.2004.06.003] [Citation(s) in RCA: 600] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prostaglandins are lipid-derived autacoids that modulate many physiological systems including the CNS, cardiovascular, gastrointestinal, genitourinary, endocrine, respiratory, and immune systems. In addition, prostaglandins have been implicated in a broad array of diseases including cancer, inflammation, cardiovascular disease, and hypertension. Prostaglandins exert their effects by activating rhodopsin-like seven transmembrane spanning G protein-coupled receptors (GPCRs). The prostanoid receptor subfamily is comprised of eight members (DP, EP1-4, FP, IP, and TP), and recently, a ninth prostaglandin receptor was identified-the chemoattractant receptor homologous molecule expressed on Th2 cells (CRTH2). The precise roles prostaglandin receptors play in physiologic and pathologic settings are determined by multiple factors including cellular context, receptor expression profile, ligand affinity, and differential coupling to signal transduction pathways. This complexity is highlighted by the diverse and often opposing effects of prostaglandins within the immune system. In certain settings, prostaglandins function as pro-inflammatory mediators, but in others, they appear to have anti-inflammatory properties. In this review, we will discuss the pharmacology and signaling of the nine known prostaglandin GPCRs and highlight the specific roles that these receptors play in inflammation and immune modulation.
Collapse
MESH Headings
- Humans
- Inflammation/metabolism
- Phylogeny
- Prostaglandins/physiology
- Receptors, Epoprostenol/genetics
- Receptors, Epoprostenol/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
Collapse
Affiliation(s)
- Aaron N Hata
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | |
Collapse
|
32
|
Hanson J, Rolin S, Reynaud D, Qiao N, Kelley LP, Reid HM, Valentin F, Tippins J, Kinsella BT, Masereel B, Pace-Asciak C, Pirotte B, Dogné JM. In vitro and in vivo pharmacological characterization of BM-613 [N-n-pentyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], a novel dual thromboxane synthase inhibitor and thromboxane receptor antagonist. J Pharmacol Exp Ther 2004; 313:293-301. [PMID: 15626721 DOI: 10.1124/jpet.104.079301] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thromboxane A2 (TXA2) is a key mediator of platelet aggregation and smooth muscle contraction. Its action is mediated by its G protein-coupled receptor of which two isoforms, termed TPalpha and TPbeta, occur in humans. TXA2 has been implicated in pathologies such as cardiovascular diseases, pulmonary embolism, atherosclerosis, and asthma. This study describes the pharmacological characterization of BM-613 [N-n-pentyl-N'-[2-(4'-methylphenylamino)-5-nitrobenzenesulfonyl]urea], a new combined TXA2 receptor antagonist and TXA2 synthase inhibitor. It exhibits a strong affinity for human platelet TP receptors (IC50 = 1.4 nM), TPalpha and TPbeta expressed in COS-7 cells (IC(50) = 2.1 and 3.1 nM, respectively), and TPs expressed in human coronary artery smooth muscle cells (IC50 = 29 microM). BM-613 shows a weak ability to prevent contraction of isolated rat aorta (ED50 = 1.52 microM) and guinea pig trachea (ED50 = 2.5 microM) induced by TXA2 agonist U-46619 (9.11-dideoxy-9.11-methanoepoxy-prostaglandin F2). Besides, BM-613 antagonizes TPalpha (IC50 = 0.11 microM) and TPbeta (IC50 = 0.17 microM) calcium mobilization induced by U-46619 and inhibits human platelet aggregation induced by U-46619 (ED50 = 0.278 microM), arachidonic acid (ED50 = 0.375 microM), and the second wave of ADP. BM-613 also dose dependently prevents TXA2 production by human platelets (IC50 = 0.15 microM). In a rat model of ferric chloride-induced thrombosis, BM-613 significantly reduces weight of formed thrombus by 79, 49, and 28% at 5, 2, and 1 mg/kg i.v., respectively. In conclusion, BM-613 is a dual and potent TP receptor antagonist and TXA2 synthase inhibitor characterized by a strong antiplatelet and antithrombotic potency. These results suggest that BM-613 could be a potential therapeutic drug for thrombotic disorders.
Collapse
Affiliation(s)
- Julien Hanson
- Natural and Synthetic Drugs Research Centre, Department of Pharmacy, Laboratory of Medicinal Chemistry, University of Liège, 1, Av de L'hôpital, 4000 Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Reid TS, Terry KL, Casey PJ, Beese LS. Crystallographic Analysis of CaaX Prenyltransferases Complexed with Substrates Defines Rules of Protein Substrate Selectivity. J Mol Biol 2004; 343:417-33. [PMID: 15451670 DOI: 10.1016/j.jmb.2004.08.056] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Revised: 08/13/2004] [Accepted: 08/18/2004] [Indexed: 11/26/2022]
Abstract
Post-translational modifications are essential for the proper function of many proteins in the cell. The attachment of an isoprenoid lipid (a process termed prenylation) by protein farnesyltransferase (FTase) or geranylgeranyltransferase type I (GGTase-I) is essential for the function of many signal transduction proteins involved in growth, differentiation, and oncogenesis. FTase and GGTase-I (also called the CaaX prenyltransferases) recognize protein substrates with a C-terminal tetrapeptide recognition motif called the Ca1a2X box. These enzymes possess distinct but overlapping protein substrate specificity that is determined primarily by the sequence identity of the Ca1a2X motif. To determine how the identity of the Ca1a2X motif residues and sequence upstream of this motif affect substrate binding, we have solved crystal structures of FTase and GGTase-I complexed with a total of eight cognate and cross-reactive substrate peptides, including those derived from the C termini of the oncoproteins K-Ras4B, H-Ras and TC21. These structures suggest that all peptide substrates adopt a common binding mode in the FTase and GGTase-I active site. Unexpectedly, while the X residue of the Ca1a2X motif binds in the same location for all GGTase-I substrates, the X residue of FTase substrates can bind in one of two different sites. Together, these structures outline a series of rules that govern substrate peptide selectivity; these rules were utilized to classify known protein substrates of CaaX prenyltransferases and to generate a list of hypothetical substrates within the human genome.
Collapse
Affiliation(s)
- T Scott Reid
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
34
|
O'Meara SJ, Kinsella BT. Investigation of the effect of the farnesyl protein transferase inhibitor R115777 on isoprenylation and intracellular signalling by the prostacyclin receptor. Br J Pharmacol 2004; 143:318-30. [PMID: 15339863 PMCID: PMC1575341 DOI: 10.1038/sj.bjp.0705956] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The human (h) and mouse (m) prostacyclin receptors (IPs) undergo isoprenylation through attachment of a C-15 farnesyl moiety within their conserved carboxyl terminal -CSLC sequences. Herein, the effects of a novel farnesyl transferase inhibitor R115777 on signalling by the hIP and mIP, overexpressed in human embryonic kidney 293 cells, and by the hIP endogenously expressed in human erythroleukaemia cells were investigated. R115777 significantly impaired IP-mediated cyclic AMP generation (IC(50) 0.37-0.60 nm) and intracellular calcium ([Ca(2+)](i)) mobilization (IC(50) 37-65 nm), but had no effect on signalling by the control nonisoprenylated beta(2) adrenergic receptor or the alpha or beta isoforms of the human thromboxane A(2) receptor (TP). Additionally, R115777 significantly reduced IP-mediated cross-desensitization of signalling by the TP alpha, but not by the TP beta, isoform of the human TP and impaired the farnesylation-dependent processing of the chaperone HDJ-2 protein (IC(50) 4.5 nm). Furthermore, R115777 fully impaired isoprenylation of both the Ha-Ras(WT) and Ha-Ras(CSLC) in vitro and in whole cells confirming that, unlike N-Ras and Ki-Ras, the -CSLC motif associated with the IP cannot support alternative geranylgeranylation in the presence of R115777 and does not act as a substrate for geranylgeranyl transferase 1 in vitro or in whole cells. In conclusion, these data confirm that R115777 potently impairs IP isoprenylation and signalling, and suggest that clinically it may not only target Ras proteins but may also disrupt IP isoprenylation, events which could impact on physiologic processes in which prostacyclin and its receptor are implicated.
Collapse
Affiliation(s)
- Sarah J O'Meara
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Author for correspondence:
| |
Collapse
|
35
|
Lamango NS, Ayuk-Takem LT, Nesby R, Zhao WQ, Charlton CG. Inhibition mechanism of S-adenosylmethionine-induced movement deficits by prenylcysteine analogs. Pharmacol Biochem Behav 2004; 76:433-42. [PMID: 14643842 DOI: 10.1016/j.pbb.2003.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We previously showed that S-adenosylmethionine (SAM) induces movement impairments similar to those observed in Parkinson's disease (PD) apparently by prenylated protein methylation; 5 kDa molecules being methylated and the symptoms being inhibited by prenylcysteine (PC) analogs. In the present study, we explore the biochemical mechanism of action of the PC analogs. N-acetylgeranylcysteine (AGC), N-acetylfarnesylcysteine (AFC), N-acetylgeranylgeranylcysteine (AGGC), farnesylthioacetic acid (FTA), farnesyl-2-ethanesulfonic acid (FTE) and farnesylsuccinic acid (FMS), but not farnesylthiotriazole (FTT) and farnesylthiolactic acid (FTL), inhibited the SAM-induced motor impairments. Incubation of the respective analogs with rat brain membranes containing prenylated protein methyltransferase (PPMTase) resulted in the methylation of AGC, AFC and AGGC. FTA, FTE, FMS and FTT, but not FTL, inhibited the enzyme activity. A single injection of the active analogs remained effective for at least 3 days against repeated injections of 1 micromol SAM. Amphetamine-induced hyperactivity in rats was inhibited by SAM but potentiated by FTE. During 60 min, the movement time for amphetamine-treated rats was 1477 s compared with 633 and 1664 s for amphetamine+SAM- and amphetamine+FTE-treated rats, respectively. The total distance for amphetamine+FTE-treated rats was 82% higher than for amphetamine. The horizontal activity was 30,728 (amphetamine), 15,430 (FTE), 18,526 (amphetamine+SAM), 41,736 (amphetamine+FTE) and 7004 (SAM) as compared to the PBS control (4726). The intricate relationship between the actions of SAM, which speeds up prenylated protein methylation and impairs movement, amphetamine, which increases synaptic dopamine levels and movement, and the PC analogs, which prevent the SAM-induced movement impairments, suggests a SAM-induced defect on dopamine signaling as the likely cause of the symptoms. The data reveal that interaction of PC analogs with PPMTase may not be an indicator of anti-PD-like activity.
Collapse
Affiliation(s)
- Nazarius S Lamango
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| | | | | | | | | |
Collapse
|
36
|
O'Meara SJ, Kinsella BT. Effect of the statin atorvastatin on intracellular signalling by the prostacyclin receptor in vitro and in vivo. Br J Pharmacol 2004; 143:292-302. [PMID: 15326037 PMCID: PMC1575340 DOI: 10.1038/sj.bjp.0705947] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Prostacyclin plays a central role within the vasculature. We have previously established that the prostacyclin receptor (IP) undergoes isoprenylation, a lipid modification obligate for its function. The aim of the current study was to investigate the effect of the hydroxy methyl glutaryl co-enzyme A reductase inhibitor atorvastatin on signalling and function of the IP expressed in mammalian whole cells and in platelets isolated from patients undergoing therapeutic intervention with atorvastatin. Initially, the effect of atorvastatin on signalling by the human (h) and mouse (m) IP overexpressed in human embryonic kidney 293 cells and the hIP endogenously expressed in human erythroleukaemic 92.1.7 cells was investigated. Atorvastatin significantly reduced IP-mediated cAMP generation (IC(50) 6.6-11.1 microm) and [Ca(2+)](i) mobilization (IC(50) 7.2-16.4 microm) in a concentration-dependent manner, but had no effect on signalling by the nonisoprenylated beta(2) adrenergic receptor or the alpha or beta isoforms of the human thromboxane A(2) receptor (TP). Moreover, atorvastatin significantly reduced IP-mediated crossdesensitization of signalling by TP alpha (IC(50) 10.4 microm), but not by TP beta. In contrast to the whole-cell data, atorvastatin therapy did not interfere with IP-mediated cAMP generation or IP-induced inhibition of TP-mediated aggregation of platelets isolated from human volunteers undergoing therapeutic intervention with atorvastatin (10-80 mg per daily dose). In conclusion, while data generated in whole cells indicated that atorvastatin significantly impairs signalling by both the hIP and mP, the in vivo clinical data indicated that, at the administered therapeutic dose, atorvastatin does not significantly compromise IP signalling and function in humans.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Adenylyl Cyclases/drug effects
- Adenylyl Cyclases/metabolism
- Animals
- Atorvastatin
- Blood Platelets/drug effects
- Blood Platelets/metabolism
- Bridged Bicyclo Compounds, Heterocyclic
- Calcium/metabolism
- Cell Line
- Cell Line, Tumor
- Cholesterol/blood
- Cholesterol/classification
- Clinical Trials as Topic
- Cyclic AMP/antagonists & inhibitors
- Cyclic AMP/metabolism
- Drug Evaluation, Preclinical/methods
- Fatty Acids, Unsaturated
- Female
- Heptanoic Acids/blood
- Heptanoic Acids/pharmacology
- Heptanoic Acids/therapeutic use
- Humans
- Hydantoins/pharmacology
- Hydrazines/pharmacology
- Iloprost/pharmacology
- Ireland
- Lipids/blood
- Lipids/classification
- Male
- Mice
- Middle Aged
- Propanolamines/pharmacology
- Protein Prenylation/drug effects
- Pyrroles/blood
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
- Radioligand Assay/methods
- Receptor Cross-Talk/drug effects
- Receptors, Epoprostenol
- Receptors, Immunologic/drug effects
- Receptors, Immunologic/metabolism
- Receptors, Prostaglandin/drug effects
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin/physiology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tritium
Collapse
Affiliation(s)
- Sarah J O'Meara
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- Author for correspondence:
| |
Collapse
|
37
|
Kelley-Hickie LP, Kinsella BT. EP1- and FP-mediated cross-desensitization of the alpha (alpha) and beta (beta) isoforms of the human thromboxane A2 receptor. Br J Pharmacol 2004; 142:203-21. [PMID: 15100160 PMCID: PMC1574916 DOI: 10.1038/sj.bjp.0705695] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. Heterologous desensitization or intermolecular cross-talk plays a critical role in regulating intracellular signalling by diverse members of the G-protein-coupled receptor superfamily. We have previously established that the alpha and beta isoforms of the human thromboxane A(2) receptor (TP) undergo differential desensitization of signalling in response to 17 phenyl trinor prostaglandin (PG)E(2), an agonist of the EP(1) subtype of the PGE(2) receptor (EP) family. 2. Herein, we investigated the molecular basis of TPalpha and TPbeta desensitization in human embryonic kidney (HEK) 293 cells and in renal mesangial cells in response to 17 phenyl trinor PGE(2) and in response to the PGF(2alpha) receptor (FP) agonist PGF(2alpha), and sought to identify the target site(s) of those desensitizations. 3. Our results demonstrated that TPalpha and TPbeta receptors are subject to desensitization in response to both EP(1) and FP receptor activation and that these effects are mediated by direct protein kinase (PK)C phosphorylation of the individual TP isoforms within their unique carboxyl-terminal (C)-tail domains. 4. Moreover, deletion/site-directed mutagenesis and metabolic labelling studies identified Thr(337), within TPalpha, and Thr(399), within TPbeta, as the specific target residues for PKC phosphorylation and EP(1)- and FP-mediated desensitization of TPalpha and TPbeta signalling, respectively. 5. Hence, in conclusion, while the TPalpha and TPbeta diverge within their C-tail domains, they have evolved to share a similar mechanism of PKC-induced phosphorylation and desensitization in response to EP(1) and FP receptor activation, though it occurs at sites unique to the individual TP isoforms.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Amino Acid Sequence
- Cell Line
- Humans
- Molecular Sequence Data
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Prostaglandin/genetics
- Receptors, Prostaglandin/metabolism
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
Collapse
Affiliation(s)
- Leanne P Kelley-Hickie
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
- Author for correspondence:
| |
Collapse
|
38
|
Li RC, Cindrova-Davies T, Skepper JN, Sellers LA. Prostacyclin Induces Apoptosis of Vascular Smooth Muscle Cells by a cAMP-Mediated Inhibition of Extracellular Signal-Regulated Kinase Activity and Can Counteract the Mitogenic Activity of Endothelin-1 or Basic Fibroblast Growth Factor. Circ Res 2004; 94:759-67. [PMID: 14963006 DOI: 10.1161/01.res.0000121568.40692.97] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostanoids can suppress vascular smooth muscle cell (VSMC) proliferation, but the mechanism through which this is mediated has not been identified. In this study, we show rat aortic VSMCs to express the EP
1
, EP
2
, EP
3
, EP
4
, and IP receptors. The EP
4
receptor–specific agonist, 11-deoxy-PGE
1
, induced a time-dependent phosphorylation of protein kinase C and extracellular signal-regulated kinase (ERK) 1/2 in serum-depleted (0.1%) VSMCs, whereas the EP
2
receptor agonist, butaprost, was without effect. PGI
2
or iloprost at the IP receptor inhibited basal ERK phosphorylation with IC
50
values of ≈10 nmol/L. Iloprost also attenuated the sustained activation of ERK induced by endothelin-1 or basic fibroblast growth factor (bFGF). Endothelin-1 or bFGF significantly increased the number of VSMCs counted 24 hours later compared with basal, and both responses were blocked by the MEK inhibitor, U0126, or iloprost. Under basal conditions, U0126 or iloprost reduced the number of viable cells and increased caspase-3 activity, which could be reversed by coapplication with endothelin-1, bFGF, or the adenylate cyclase inhibitor, SQ22536. Endothelin-1, bFGF, or SQ22536 prevented the depression to below basal levels of ERK phosphorylation induced by iloprost. Forskolin activated caspase-3 and attenuated basal ERK phosphorylation, which were prevented by SQ22536, endothelin-1, or bFGF. These data suggest that iloprost induces apoptosis via a cAMP-mediated suppression of ERK activity. In turn, this apoptotic response can be blocked by a mitogenic stimulus that re-establishes ERK activity back to basal levels, but at the expense of any concomitant proliferative activity. However, ERK stimulation by a selective EP
4
receptor agonist, suggests that prostanoids may have diverse and complex roles in VSMC physiology.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Apoptosis/drug effects
- Butadienes/pharmacology
- Caspase 3
- Caspases/metabolism
- Cell Division/drug effects
- Colforsin/pharmacology
- Endothelin-1/antagonists & inhibitors
- Enzyme Activation/drug effects
- Epoprostenol/pharmacology
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Iloprost/pharmacology
- MAP Kinase Kinase Kinases
- MAP Kinase Signaling System/drug effects
- Microscopy, Confocal
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/physiology
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Nitriles/pharmacology
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Rats
- Receptors, Prostaglandin E/drug effects
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP1 Subtype
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP3 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
Collapse
|
39
|
Mittra S, Hyvelin JM, Shan Q, Tang F, Bourreau JP. Role of cyclooxygenase in ventricular effects of adrenomedullin: is adrenomedullin a double-edged sword in sepsis? Am J Physiol Heart Circ Physiol 2004; 286:H1034-42. [PMID: 14766677 DOI: 10.1152/ajpheart.00337.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (ADM) is upregulated in cardiac tissue under various pathophysiological conditions. However, the direct inotropic effect of ADM on normal and compromised cardiomyocytes is not clear. In rat ventricular myocytes, ADM produced an initial (<30 min) increase in cell shortening and Ca2+ transient and, on prolonged incubation (>1 h), a marked decrease in cell shortening and Ca2+ transient. Both effects were sensitive to inhibition by the ADM antagonist ADM-(22–52). The increase and decrease in cell shortening and Ca2+ transient were attenuated by pretreatment with indomethacin [a nonspecific cyclooxygenase (COX) inhibitor], nimesulide and SC-236 (specific COX-2 inhibitors), and tranylcypromine (a prostacyclin synthase inhibitor); SQ-29548 (a thromboxane receptor antagonist) was without effect. Cells isolated from LPS-treated rats that were in the late, hypodynamic phase of septic shock also showed a marked decrease in cell shortening and Ca2+ transient. Because ADM is overexpressed in sepsis, we repeated the above protocol in cells isolated from LPS-treated rats. At 4 h after LPS injection, ADM levels markedly increased in plasma, ventricles, and freshly isolated ventricular myocytes. Decreases in cell shortening and Ca2+ transient in LPS-treated cells were reversed by pretreatment with ADM-(22–52). Anti-ADM (rat) IgG also reversed the decrease in cell shortening and other parameters of cell kinetics. Indomethacin, SC-236, and tranylcypromine restored cell contractility and the decrease in Ca2+ transient, whereas SQ-29548 had no effect, implying that prostacyclin played a role in both effects. However, with regard to cell-shortening kinetics, indomethacin and SQ-29548 decreased the amount of time taken by the cells to return to baseline, whereas SC-236 and tranylcypromine did not, implying that not only prostacyclin, but also thromboxane, is involved. The results indicate that ADM interacts with COX to yield prostanoids, which mediate its negative inotropic effect in LPS-treated rat ventricular myocytes.
Collapse
Affiliation(s)
- Shivani Mittra
- Dept. of Physiology, 4/F, Laboratory Block, Faculty of Medicine Bldg., Univ. of Hong Kong, 21 Sassoon Rd., Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- J Vane
- The William Harvey Research Institute, Charterhouse Square, London, UK
| | | |
Collapse
|
41
|
Reid HM, Kinsella BT. The α, but Not the β, Isoform of the Human Thromboxane A2 Receptor Is a Target for Nitric Oxide-mediated Desensitization. J Biol Chem 2003; 278:51190-202. [PMID: 14530262 DOI: 10.1074/jbc.m309314200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans, thromboxane A2 signals through two thromboxane A2 receptor (TP) isoforms termed TP alpha and TP beta. Signaling by TP alpha, but not TP beta, is subject to prostacyclin-induced desensitization mediated by direct protein kinase (PK) A phosphorylation where Ser329 represents the phosphotarget (Walsh, M. T., Foley, J. F., and Kinsella, B. T. (2000) J. Biol. Chem. 275, 20412-20423). In the current study, the effect of the vasodilator nitric oxide (NO) on intracellular signaling by the TP isoforms was investigated. The NO donor 3-morpholinosydnonimine, HCl (SIN-1) and 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br-cGMP) functionally desensitized U46619-mediated calcium mobilization and inositol 1,4,5-trisphosphate generation by TP alpha whereas signaling by TP beta was unaffected by either agent. NO-mediated desensitization of TP alpha signaling occurred through a PKG-dependent, PKA- and PKC-independent mechanism. TP alpha, but not TP beta, was efficiently phosphorylated by PKG in vitro and underwent NO/PKG-mediated phosphorylation in whole cells. Deletion/site-directed mutagenesis and metabolic labeling studies identified Ser331 as the target residue of NO-induced PKG phosphorylation of TP alpha. Although TP alpha S331A was insensitive to NO/PKG-desensitization, similar to wild type TP alpha its signaling was fully desensitized by the prostacyclin receptor agonist cicaprost occurring through a PKA-dependent mechanism. Conversely, signaling by TP alpha S329A was insensitive to cicaprost stimulation whereas it was fully desensitized by NO/PKG signaling. In conclusion, TP alpha undergoes both NO- and prostacyclin-mediated desensitization that occur through entirely independent mechanisms involving direct PKG phosphorylation of Ser331, in response to NO, and PKA phosphorylation of Ser329, in response to prostacyclin, within the unique carboxyl-terminal tail domain of TP alpha. On the other hand, signaling by TP beta is unaffected by either NO or prostacyclin.
Collapse
Affiliation(s)
- Helen M Reid
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
42
|
Hasse A, Nilius SM, Schrör K, Meyer-Kirchrath J. Long-term-desensitization of prostacyclin receptors is independent of the C-terminal tail. Biochem Pharmacol 2003; 65:1991-5. [PMID: 12787879 DOI: 10.1016/s0006-2952(03)00184-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Persistent stimulation of the G(s) protein-coupled prostacyclin receptor (IP-R) causes its slow desensitization in a variety of cell types, a significant desensitization requiring several hours. To evaluate the role of the human IP-R C-terminus in desensitization and agonist-induced internalization, a C-terminally truncated hIP-receptor was generated. The C-terminal 68 amino acid residues were deleted by introduction of a stop codon for exchange of the original S319 codon (termed D318 mutant). Wild-type (WT) and truncated receptor were expressed in COS1 cells. Pretreatment of cells with the stable prostacyclin mimetic cicaprost (200 nM) desensitized cAMP production via WT and D318 receptors to similar extents. The cAMP response of WT and D318, respectively, was reduced by approximately 50% of maximal cAMP formation after 8 hr of continuous agonist stimulation, indicating significant long-term desensitization. Moreover, agonist-promoted sequestration of WT and D318 C-terminally tagged with green fluorescent protein was demonstrated, indicating that receptor internalization was not prevented by truncation of the C-terminus. These results demonstrated that long-term desensitization and sequestration of hIP-R did not depend on structures located in the hIP-R C-terminus.
Collapse
Affiliation(s)
- Andreas Hasse
- Institut für Pharmakologie und Klinische Pharmakologie, UniversitätsKlinikum Düsseldorf, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | |
Collapse
|
43
|
Kelley LP, Kinsella BT. The role of N-linked glycosylation in determining the surface expression, G protein interaction and effector coupling of the alpha (alpha) isoform of the human thromboxane A(2) receptor. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1621:192-203. [PMID: 12726995 DOI: 10.1016/s0304-4165(03)00059-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In humans, thromboxane (TX) A(2) signals through two TXA(2) receptor (TP) isoforms, termed TPalpha and TPbeta, that diverge exclusively within the carboxyl terminal cytoplasmic domains. The amino terminal extracellular region of the TPs contains two highly conserved Asn (N)-linked glycosylation sites at Asn(4) and Asn(16). While it has been established that impairment of N-glycosylation of TPalpha significantly affects ligand binding/intracellular signalling, previous studies did not ascertain whether N-linked glycosylation was critical for ligand binding per se or whether it was required for the intracellular trafficking and the functional expression of TPalpha on the plasma membrane (PM). In the current study, we investigated the role of N-linked glycosylation in determining the functional expression of TPalpha, by assessment of its ligand binding, G protein coupling and intracellular signalling properties, correlating it with the level of antigenic TPalpha protein expressed on the PM and/or retained intracellularly. From our data, we conclude that N-glycosylation of either Asn(4) or Asn(16) is required and sufficient for expression of functionally active TPalpha on the PM while the fully non-glycosylated TPalpha(N4,N16-Q4,Q16) is almost completely retained within the endoplasmic reticulum (ER) and remains functionally inactive, failing to associate with its coupling G protein Galpha(q) and, in turn, failing to mediate phospholipase (PL) Cbeta activation.
Collapse
Affiliation(s)
- Leanne P Kelley
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
44
|
Miggin SM, Lawler OA, Kinsella BT. Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J Biol Chem 2003; 278:6947-58. [PMID: 12488443 DOI: 10.1074/jbc.m210637200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously established that isoprenylation of the prostacyclin receptor (IP) is required for its efficient G protein coupling and effector signaling (Hayes, J. S., Lawler, O. A., Walsh, M. T., and Kinsella, B. T. (1999) J. Biol. Chem. 274, 23707-23718). In the present study, we sought to investigate whether the IP may actually be subject to palmitoylation in addition to isoprenylation and to establish the functional significance thereof. The human (h) IP was efficiently palmitoylated at Cys(308) and Cys(311), proximal to transmembrane domain 7 within its carboxyl-terminal (C)-tail domain, whereas Cys(309) was not palmitoylated. The isoprenylation-defective hIP(SSLC) underwent palmitoylation but did not efficiently couple to G(s) or G(q), confirming that isoprenylation is required for G protein coupling. Deletion of C-tail sequences distal to Val(307) generated hIP(Delta307) that was neither palmitoylated nor isoprenylated and did not efficiently couple to G(s) or to G(q), whereas hIP(Delta312) was palmitoylated and ably coupled to both effector systems. Conversion of Cys(308), Cys(309), Cys(311), Cys(308,309), or Cys(309,311) to corresponding Ser residues, while leaving the isoprenylation CAAX motif intact, did not affect hIP coupling to G(s) signaling, whereas mutation of Cys(308,311) and Cys(308,309,311) abolished signaling, indicating that palmitoylation of either Cys(308) or Cys(311) is sufficient to maintain functional G(s) coupling. Although mutation of Cys(309) and Cys(311) did not affect hIP-mediated G(q) coupling, mutation of Cys(308) abolished signaling, indicating a specific requirement for palmitoylation of Cys(308) for G(q) coupling. Consistent with this, neither hIP(C308S,C309S), hIP(C308S,C311S), nor hIP(C308S,C309S,C311S) coupled to G(q). Taken together, these data confirm that the hIP is isoprenylated and palmitoylated, and collectively these modifications modulate its G protein coupling and effector signaling. We propose that through lipid modification followed by membrane insertion, the C-tail domain of the IP may contain a double loop structure anchored by the dynamically regulated palmitoyl groups proximal to transmembrane domain 7 and by a distal farnesyl isoprenoid permanently attached to its carboxyl terminus.
Collapse
Affiliation(s)
- Sinead M Miggin
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | |
Collapse
|
45
|
Wise H, Chow KBS, Wing KY, Kobayashi T, Tse DLY, Cheng CHK. Properties of chimeric prostacyclin/prostaglandin D2 receptors: site-directed mutagenesis reveals the significance of the isoleucine residue at position 323. J Recept Signal Transduct Res 2003; 23:83-97. [PMID: 12680591 DOI: 10.1081/rrs-120018762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mouse prostacyclin (mIP) receptors transiently expressed in Chinese hamster ovary (CHO) cells activated both adenylyl cyclase and phospholipase C, with a 33-fold preference for signaling through Gs. The prostacyclin (IP) receptor agonists cicaprost, iloprost, carbacyclin, and prostaglandin E1 showed a similar order of potency for activation of both signaling pathways in cells transiently transfected with the mIP and the chimeric prostacyclin/prostaglandin D2 (IPN-VII/DPC and IPN-V/DPVI-C) receptors. Substitution of the carboxyl-terminal tail of the prostacyclin receptor with the corresponding region of the mDP receptor (IPN-VII/DPC) produced a receptor with increased coupling to both Gs and Gq. However, this increased G-protein coupling was lost in the IPN-V/DPVI-C receptor. The observation that both these chimeric receptors can activate phospholipase C indicates that the carboxyl-terminal tail of the IP receptor is not entirely responsible for its ability to couple to Gq. Site-directed mutagenesis studies suggest that isoleucine at position 323 in the IPN-VII/DPC receptor plays an important role in mediating the increased potency of this chimeric receptor.
Collapse
Affiliation(s)
- Helen Wise
- Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Prostacyclin, a member of the eicosanoid family of lipid mediators, is the major product of arachidonic acid metabolism formed in the marcovascular endothelium. It is a potent vasodilator, antithrombotic, and antiplatelet agent that mediates it effects through a membrane-associated receptor termed the IP. Cloning of the cDNA for IP, from human and other species, indicated its membership of the G protein-coupled receptor superfamily and has allowed detailed examination of the signaling and regulatory pathways utilized by this receptor. This article examines the current state of knowledge of the IP, its signaling and regulation, and its biological role in vivo and examines the possible existence of multiple PGI2 receptor sites.
Collapse
Affiliation(s)
- Emer M Smyth
- Center for Experimental Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
47
|
Konger RL, Scott GA, Landt Y, Ladenson JH, Pentland AP. Loss of the EP2 prostaglandin E2 receptor in immortalized human keratinocytes results in increased invasiveness and decreased paxillin expression. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:2065-78. [PMID: 12466123 PMCID: PMC1850902 DOI: 10.1016/s0002-9440(10)64485-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandin E(2) (PGE(2)) receptor subtype EP(2), which is coupled to cAMP metabolism, is known to mediate proliferation of primary human keratinocytes in vitro. The effect of gain or loss of EP(2) receptors in immortalized human keratinocytes (HaCat cells) was examined. HaCat keratinocytes were transfected with sense or anti-sense constructs of the EP(2) receptor. Loss or gain of EP(2) expression was documented by immunoblot and associated changes in agonist-stimulated cAMP production. Loss or gain of EP(2) receptor expression correlated with alterations in plating efficiencies but with modest affects on growth. When cell lines were studied in an organ culture model, anti-sense clones were highly invasive compared with vector controls and sense transfectants. A marked increase in prostaglandin production is commonly seen in malignant lesions. Because prostaglandin receptors are known to undergo ligand-induced receptor down-regulation, we sought to determine whether EP(2) receptor down-regulation results in increased invasiveness. In vector controls, invasiveness was reproduced by ligand-dependent EP(2) receptor down-regulation as assessed by immunohistochemistry. In addition, loss of EP(2) receptor expression was associated with decreased paxillin expression, a critical component of focal adhesion assembly. Thus, down-regulation of EP(2) receptors represents a potential mechanism for neoplastic progression to an invasive phenotype.
Collapse
Affiliation(s)
- Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 406 Fesler Hall, 1120 South Drive, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
48
|
The TRQQKRP motif located near the C-terminus of Rac2 is essential for Rac2 biologic functions and intracellular localization. Blood 2002. [DOI: 10.1182/blood.v100.5.1679.h81702001679_1679_1688] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rac GTPases regulate a wide variety of cellular processes including actin cytoskeleton organization, gene expression, cell-cycle progression, and apoptosis. Here we report that the TRQQKRP motif of Rac2 located near the C-terminus, a region of sequence disparity among Rac proteins, is essential for complementation of Rac2 function in Rac2-deficient cells. Deletion of this sequence can also intragenically suppress the dominant-negative Rac2D57Nmutation in a variety of functional assays. In Rac2-deficient cells, expression of TRQQKRP-deleted Rac2 protein is unable to completely rescue migration and nicotinamide adenine dinucleotide phosphate oxidase deficiencies previously described in these cells. In fibroblasts, the Rac2D57N mutant phenotypes of abnormal proliferation, cell morphology, and membrane ruffling are suppressed by the TRQQKRP motif deletion. In myeloid hematopoietic cells, the deletion of the TRQQKRP motif eliminates a Rac2D57N-induced block in in vitro differentiation of neutrophils not previously described with this mutant. Mechanistically, deletion of the TRQQKRP motif results in diminished geranylgeranylation and delocalization of intracellular Rac2 protein. Taken together, these results indicate that the TRQQKRP motif in Rac2 protein is required for efficient prenylation and correct intracellular localization of Rac2 protein and is essential for Rac2 to mediate a variety of its biologic functions. These data suggest that precise localization of Rac2 protein in intracellular compartments and/or with other proteins/lipids is a prerequisite for its diverse functions.
Collapse
|
49
|
Miggin SM, Kinsella BT. Investigation of the mechanisms of G protein: effector coupling by the human and mouse prostacyclin receptors. Identification of critical species-dependent differences. J Biol Chem 2002; 277:27053-64. [PMID: 12016224 DOI: 10.1074/jbc.m203353200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently identified a novel mechanism explaining how the mouse (m) prostacyclin receptor (IP) couples to Galpha(s), Galpha(i), and Galpha(q) (Lawler, O. A., Miggin, S. M., and Kinsella, B. T. (2001) J. Biol. Chem. 276, 33596-33607) whereby mIP coupling to Galpha(i) and Galpha(q) is dependent on its initial coupling to Galpha(s) and subsequent phosphorylation by cAMP-dependent protein kinase A (PKA) on Ser(357). In the current study, the generality of that mechanism was investigated by examining the G protein coupling specificity of the human (h) IP. The hIP efficiently coupled to Galpha(s)/adenylyl cyclase and to Galpha(q)/phospholipase C activation but failed to couple to Galpha(i). Coupling of the hIP to Galpha(q), or indeed to Galpha(s) or Galpha(i), was unaffected by the PKA or protein kinase C (PKC) inhibitors H-89 and GF 109203X, respectively. Thus, mIP and hIP exhibit essential differences in their coupling to Galpha(i) and in their dependence on PKA in regulating their coupling to Galpha(q). Analysis of their primary sequences revealed that the critical PKA phosphorylation site within the mIP, at Ser(357), is replaced by a PKC site within the hIP, at Ser(328). Conversion of the PKC site of the hIP to a PKA site generated hIP(QL325,326RP) that efficiently coupled to Galpha(s) and to Galpha(i) and Galpha(q); coupling of hIP(QL325,326RP) to Galpha(i) but not to Galpha(s) or Galpha(q) was inhibited by H-89. Abolition of the PKC site of the hIP generated hIP(S328A) that efficiently coupled to Galpha(s) and Galpha(q) but failed to couple to Galpha(i). Finally, conversion of the PKA site at Ser(357) within the mIP to a PKC site generated mIP(RP354,355QL) that efficiently coupled to Galpha(s) but not to Galpha(i) or Galpha(q). Collectively, our data highlight critical differences in signaling by the mIP and hIP that are regulated by their differential phosphorylation by PKA and PKC together with contextual sequence differences surrounding those sites.
Collapse
Affiliation(s)
- Sinead M Miggin
- Department of Biochemistry, Conway Institute of Biomolecular and Biomedical Research, Merville House, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
50
|
Stitham J, Stojanovic A, Hwa J. Impaired receptor binding and activation associated with a human prostacyclin receptor polymorphism. J Biol Chem 2002; 277:15439-44. [PMID: 11854299 DOI: 10.1074/jbc.m201187200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human prostacyclin receptor (hIP) is a seven transmembrane-spanning G-protein-coupled receptor that plays an important role in vascular homeostasis. Recent genetic analyses (SNP database, NCBI) have revealed the first two polymorphisms within the coding sequence, V25M and R212H. Here we present structure-function characterizations of these polymorphisms at physiological pH (7.4) and at an acidic pH (6.8) that would be encountered during stress such as renal, respiratory, or heart failure. Through a series of competition binding and G-protein activation assays (measured by cAMP production), we determined that the V25M polymorph exhibited agonist binding and G-protein activation similar to wild-type receptor at normal pH (7.4). However, the R212H variant demonstrated a significant decrease in binding affinity at lower pH (R212H at pH 7.4, K(i) = 2.2 +/- 1.2 nm; pH 6.8 K(i) = 45.6 +/- 12.0 nm). The R212H polymorph also exhibited abnormal activation at both pH 7.4 and pH 6.8 (pH 7.4, R212H EC(50) = 2.8 +/- 0.5 nm versus wild-type hIP EC(50) = 0.5 +/- 0.1 nm; pH 6.8, R212H EC(50) = 3.2 +/- 1.6 nm versus wild-type hIP EC(50) = 0.5 +/- 0.2 nm). Polymorphisms of the human prostacyclin receptor potentially may be important predictors of disease progress during biological stressors such as acidosis in which urgent correction of bodily pH may be required to restore normal hemostasis and vasodilation. This study provides the mechanistic basis for further research into genetic risk factors and pharmacogenetics of cardiovascular disease associated with hIP.
Collapse
Affiliation(s)
- Jeremiah Stitham
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|