1
|
Cron KR, Sivan A, Aquino-Michaels K, Ziblat A, Higgs EF, Sweis RF, Tonea R, Lee S, Gajewski TF. PKCδ Germline Variants and Genetic Deletion in Mice Augment Antitumor Immunity through Regulation of Myeloid Cells. Cancer Immunol Res 2025; 13:547-559. [PMID: 39808445 DOI: 10.1158/2326-6066.cir-23-0999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/04/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified protein kinase C delta (PKCδ) as a candidate. Genetic deletion of Prkcd in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1. Single-cell RNA sequencing revealed myeloid cell expression of Prkcd, and PKCδ deletion caused a shift in macrophage gene expression from an M2-like to an M1-like phenotype. Conditional deletion of Prkcd in myeloid cells recapitulated improved tumor control that was augmented further with anti-PD-L1. Analysis of clinical samples confirmed an association between PRKCD variants and M1/M2 phenotype, as well as between a PKCδ knockout-like gene signature and clinical benefit from anti-PD-1. Our results identify PKCδ as a candidate therapeutic target that modulates myeloid cell states.
Collapse
Affiliation(s)
- Kyle R Cron
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ayelet Sivan
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Keston Aquino-Michaels
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Andrea Ziblat
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Emily F Higgs
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Randy F Sweis
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Ruxandra Tonea
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Seoho Lee
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, Illinois
- Department of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Brodnanova M, Cibulka M, Grendar M, Gondas E, Kolisek M. IL-6 Does Not Influence the Expression of SLC41A1 and Other Mg-Homeostatic Factors. Int J Mol Sci 2024; 25:13274. [PMID: 39769039 PMCID: PMC11675721 DOI: 10.3390/ijms252413274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Together with chronic inflammation, disturbed magnesium homeostasis is a factor accompanying chronic disease which thus contributes to a reduced quality of human life. In this study, our objective was to examine the possible IL-6-mediated chronic inflammation-dependent regulation of nine magnesiotropic genes encoding for constituents of magnesium homeostasis of the cell. We used three cell lines (HepG2, U-266, and PANC-1), all characterized by high expression of the IL6R gene and the presence of a membrane form of IL-6R capable of responding to human IL-6. Despite the confirmed activation of the IL-6R/JAK/STAT3 pathway after hIL-6 treatment, we observed no biologically relevant changes in the transcription intensity of the studied magnesiotropic genes. This, however, does not exclude the possibility that IL-6 can affect magnesium homeostasis at levels other than through modified transcription.
Collapse
Affiliation(s)
- Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia; (M.B.); (M.C.); (M.G.)
| | - Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia; (M.B.); (M.C.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia; (M.B.); (M.C.); (M.G.)
| | - Eduard Gondas
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia;
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, 03601 Martin, Slovakia; (M.B.); (M.C.); (M.G.)
| |
Collapse
|
3
|
Manoharan S, Perumal E. A strategic review of STAT3 signaling inhibition by phytochemicals for cancer prevention and treatment: Advances and insights. Fitoterapia 2024; 179:106265. [PMID: 39437855 DOI: 10.1016/j.fitote.2024.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Cancer remains a significant global health concern. The dysregulation of signaling networks in tumor cells greatly affects their functions. This review intends to explore phytochemicals possessing potent anticancer properties that specifically target the STAT3 signaling pathway, elucidating strategies and emphasizing their potential as promising candidates for cancer therapy. The review comprehensively examines various STAT3 inhibitors designed to disrupt the signaling cascade, including those targeting upstream activation, SH2 domain phosphorylation, DNA binding domain (DBD), N-terminal domain (NTD), nuclear translocation, and enhancing endogenous STAT3 negative regulators. A literature review was conducted to identify phytochemicals with anticancer activity targeting the STAT3 signaling pathway. Popular research databases such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, and ResearchGate were searched from the years 1989 - 2023 based on the keywords "Cancer", "STAT3", "Phytochemicals", "Phytochemicals targeting STAT3 signaling", "upstream activation of STAT3", "SH2 domain of STAT3", "DBD of STAT3", "NTD of STAT3, "endogenous negative regulators of STAT3", or "nuclear translocation of STAT3", and their combinations. A total of 264 relevant studies were selected and analyzed based on the mechanisms of action and the efficacy of the phytocompounds. The majority of the discussed phytochemicals primarily focus on inhibiting upstream activation of STAT3. Additionally, flavonoid and terpenoid compounds exhibit multifaceted effects by targeting one or more checkpoints within the STAT3 pathway. Analysis reveals that phytochemicals targeting upstream activation predominantly belong to the classes of flavonoids and terpenoids, which hold significant promise as effective anticancer therapeutics. Future research in this field can be directed towards exploring and developing these scrutinized classes of phytochemicals to achieve desired therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Suryaa Manoharan
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
4
|
Xu L, Ji J, Wang L, Pan J, Xiao M, Zhang C, Gan Y, Xie G, Tan M, Wang X, Wen C, Fan Y, Chin YE. LIF Promotes Sec15b-Mediated STAT3 Exosome Secretion to Maintain Stem Cell Pluripotency in Mouse Embryonic Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407971. [PMID: 39475099 DOI: 10.1002/advs.202407971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/22/2024] [Indexed: 12/28/2024]
Abstract
LIF maintains self-renewal growth in mouse embryonic stem cells (mESC) by activating STAT3, which translocates into nucleus for pluripotent gene induction. However, the ERK signaling pathway activated by LIF at large counteract with pluripotent gene induction during self-renewal growth. Here, it is reported that in mESC STAT3 undergoes multivesicular endosomes (MVEs) translocation and subsequent secretion, LIF-activated STAT3 is acetylated on K177/180 and phosphorylated on Y293 residues within the N-terminal coiled-coil domain, which is responsible for the interaction between STAT3 and Secl5b, an exocyst complex component 6B (EXOC6B). STAT3 translocation into MVEs resulted in the downregulation of T202/Y204-ERK1/2 phosphorylation and up-regulation of S9-GSK3β phosphorylation for maintaining mESC self-renewal growth. STAT3 with K177R/K180R or Y293F substitution fails to execute MVEs translocation and Secl5b-dependent secretion. Mice expressing K177RK180R substitution (STAT3mut/mut) are partially embryonic lethal. In STAT3mut/mut embryos, gene expressions related to hematological system function changed significantly and those living ones carry a series of abnormalities in the hematopoietic system. Furthermore, mice with Secl5b knockout exhibit embryonic lethality. Thus, Secl5b mediated STAT3 MVEs translocation regulates the balance of ERK and GSK3β signaling pathways and maintain mESC self-renewal growth, which is involved in regulating the stability of hematopoietic system.
Collapse
Affiliation(s)
- Li Xu
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Lingbo Wang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jieli Pan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingzhe Xiao
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chenxi Zhang
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yihong Gan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Guanqun Xie
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Mingdian Tan
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
| | - Yongsheng Fan
- College of Basic Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, 310051, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Y Eugene Chin
- Clinical Medicine Research Institute, Zhejiang Provincial People's Hospital, Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
5
|
Wu MH, Chao AC, Hsieh YH, Lien Y, Lin YC, Yang DI. Protein Kinase C-Delta Mediates Cell Cycle Reentry and Apoptosis Induced by Amyloid-Beta Peptide in Post-Mitotic Cortical Neurons. Int J Mol Sci 2024; 25:9626. [PMID: 39273571 PMCID: PMC11395613 DOI: 10.3390/ijms25179626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Amyloid-beta peptide (Aβ) is a neurotoxic constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aβ toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aβ25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aβ25-35 and Aβ1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aβ exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aβ25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aβs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis.
Collapse
Affiliation(s)
- Ming-Hsuan Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (M.-H.W.); (Y.-H.H.); (Y.L.)
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan;
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (M.-H.W.); (Y.-H.H.); (Y.L.)
| | - You Lien
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (M.-H.W.); (Y.-H.H.); (Y.L.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (M.-H.W.); (Y.-H.H.); (Y.L.)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
6
|
Naik A, Thomas R, Sikhondze M, Babiker A, Lattab B, Qasem H, Jafar U, Decock J. The LDHC-STAT3 Signaling Network Is a Key Regulator of Basal-like Breast Cancer Cell Survival. Cancers (Basel) 2024; 16:2451. [PMID: 39001513 PMCID: PMC11240808 DOI: 10.3390/cancers16132451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/30/2024] [Indexed: 07/16/2024] Open
Abstract
Breast cancer treatment has evolved drastically with the addition of immunotherapy and novel targeted drugs to the current treatment options. However, achieving long-term responses with minimal adverse events remains challenging. Cancer testis antigens (CTAs) offer novel opportunities for drug development thanks to their tumor specificity, immunogenicity, pro-tumorigenic functions, and negative prognostic connotations. We previously reported that lactate dehydrogenase C (LDHC) plays a key role in regulating genomic stability and that targeting LDHC significantly improved treatment response to DNA damage response drugs in breast cancer. Here, we explored the molecular mechanisms associated with LDHC silencing in two basal-like breast cancer cell lines, MDA-MB-468 and BT-549, and a Her2-enriched breast cancer cell line, HCC-1954. Transcriptomic analyses identified the cell line-dependent differential activation of the pro-survival STAT3 pathway following LDHC depletion. While LDHC silencing significantly compromised cell survival in basal-like breast cancer cells in conjunction with a downregulation of STAT3 signaling, the opposite effect was observed in Her2-enriched breast cancer cells, which demonstrated the enhanced activation of the pro-survival STAT3 signaling pathway. The inhibition of STAT3 not only reversed the unfavorable effect of LDHC silencing in the Her2-enriched cancer cells but also demonstrated significant anti-cancer activity when used as a single agent. Our findings suggest that the LDHC-STAT3 signaling axis plays a role in regulating breast tumor cell survival in a subtype-dependent manner. Thus, LDHC-targeted therapy could be a viable therapeutic approach for a subset of breast cancer patients, particularly patients with basal-like breast cancer, whereas patients carrying Her2-enriched tumors may likely benefit more from monotherapy with STAT3 inhibitors.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
| | - Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
| | - Martin Sikhondze
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
| | - Abeer Babiker
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Umar Jafar
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar (A.B.); haqa24936@ hbku.edu.qa (H.Q.); (U.J.)
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| |
Collapse
|
7
|
Jaime-Sánchez E, Lara-Ramírez EE, López-Ramos JE, Ramos-González EJ, Cisneros-Méndez AL, Oropeza-Valdez JJ, Zenteno-Cuevas R, Martínez-Aguilar G, Bastian Y, Castañeda-Delgado JE, Serrano CJ, Enciso-Moreno JA. Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study. Mol Genet Genomics 2024; 299:60. [PMID: 38801463 DOI: 10.1007/s00438-024-02139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.
Collapse
Affiliation(s)
- Elena Jaime-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Área de Ciencias de La Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara, Zacatecas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Juan Ernesto López-Ramos
- Academia de Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos No. 18, Zacatecas, México
| | | | | | - Juan José Oropeza-Valdez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | - Yadira Bastian
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
- Investigador por Mexico/Catedras CONAHCYT, Consejo nacional de Humanidades, Ciencias y Tecnologias, Ciudad de Mexico, México
- Consejo Nacional de Ciencia y Tecnologia, CONACYT, Ciudad de Mexico, México
| | | | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.
- Facultad de Química, Cerro de Las Campanas S/N, Universidad Autónoma de Querétaro, Colonia Las Campanas, Centro Universitario, C.P. 76010, Querétaro, México.
| |
Collapse
|
8
|
Banik A, Datta Chaudhuri R, Vashishtha S, Gupta S, Kar A, Bandyopadhyay A, Kundu B, Sarkar S. Deoxyelephantopin-a novel PPARγ agonist regresses pressure overload-induced cardiac fibrosis via IL-6/STAT-3 pathway in crosstalk with PKCδ. Eur J Pharmacol 2023:175841. [PMID: 37329972 DOI: 10.1016/j.ejphar.2023.175841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo was performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.
Collapse
Affiliation(s)
- Anirban Banik
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Soumyadeep Gupta
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
9
|
Kriaučiūnaitė K, Pociūtė A, Kaušylė A, Verkhratsky A, Pivoriūnas A. Basic Fibroblast Growth Factor Opens and Closes the Endothelial Blood-Brain Barrier in a Concentration-Dependent Manner. Neurochem Res 2023; 48:1211-1221. [PMID: 35859077 DOI: 10.1007/s11064-022-03678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Multiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF. Treatment with bFGF (8 ng/ml) for 3 days increased phosphorylation of ERK1/2 and STAT3. Treatment with FGF receptor 1 (FGFR1) inhibitor PD173074 (15 μM) suppressed both basal and bFGF-induced activation of ERK1/2 and STAT3. Suppression of STAT signalling with Janus kinase inhibitor JAKi (15 nM) alone or in the presence of bFGF did not change TEER in BEC monolayers. Exposure to JAKi affected neither proliferation, nor expression and distribution of tight junction (TJ) proteins claudin-5, occludin and zonula occludens-1 (ZO-1). In contrast, treatment with MEK 1/2 inhibitor U0126 (10 μM) partially neutralised inhibitory effect of bFGF thus increasing TEER, whereas U0126 alone did not affect resistance of endothelial barrier. Our findings demonstrate that MAPK/ERK signalling pathway does not affect autocrine bFGF signalling-dependent BECs barrier function but is largely responsible for the disruptive effects of the exogenous bFGF. We speculate that bFGF may (depending on concentration and possibly origin) dynamically regulate permeability of the endothelial blood-brain barrier.
Collapse
Affiliation(s)
- Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Agnė Pociūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Aida Kaušylė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- IKERBASQUE, Basque Foundation for Science, Achucarro Centre for Neuroscience, 48011, Bilbao, Spain.
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| |
Collapse
|
10
|
Imeri F, Stepanovska Tanturovska B, Manaila R, Pavenstädt H, Pfeilschifter J, Huwiler A. Loss of S1P Lyase Expression in Human Podocytes Causes a Reduction in Nephrin Expression That Involves PKCδ Activation. Int J Mol Sci 2023; 24:3267. [PMID: 36834691 PMCID: PMC9965238 DOI: 10.3390/ijms24043267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) lyase (SPL, Sgpl1) is an ER-associated enzyme that irreversibly degrades the bioactive lipid, S1P, and thereby regulates multiple cellular functions attributed to S1P. Biallelic mutations in the human Sglp1 gene lead to a severe form of a particular steroid-resistant nephrotic syndrome, suggesting that the SPL is critically involved in maintaining the glomerular ultrafiltration barrier, which is mainly built by glomerular podocytes. In this study, we have investigated the molecular effects of SPL knockdown (kd) in human podocytes to better understand the mechanism underlying nephrotic syndrome in patients. A stable SPL-kd cell line of human podocytes was generated by the lentiviral shRNA transduction method and was characterized for reduced SPL mRNA and protein levels and increased S1P levels. This cell line was further studied for changes in those podocyte-specific proteins that are known to regulate the ultrafiltration barrier. We show here that SPL-kd leads to the downregulation of the nephrin protein and mRNA expression, as well as the Wilms tumor suppressor gene 1 (WT1), which is a key transcription factor regulating nephrin expression. Mechanistically, SPL-kd resulted in increased total cellular protein kinase C (PKC) activity, while the stable downregulation of PKCδ revealed increased nephrin expression. Furthermore, the pro-inflammatory cytokine, interleukin 6 (IL-6), also reduced WT1 and nephrin expression. In addition, IL-6 caused increased PKCδ Thr505 phosphorylation, suggesting enzyme activation. Altogether, these data demonstrate that nephrin is a critical factor downregulated by the loss of SPL, which may directly cause podocyte foot process effacement as observed in mice and humans, leading to albuminuria, a hallmark of nephrotic syndrome. Furthermore, our in vitro data suggest that PKCδ could represent a new possible pharmacological target for the treatment of a nephrotic syndrome induced by SPL mutations.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| | | | - Roxana Manaila
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| | - Hermann Pavenstädt
- Medizinische Klinik D, University Hospital Münster, D-48149 Münster, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern Kai 7, D-60590 Frankfurt am Main, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, CH-3010 Bern, Switzerland
| |
Collapse
|
11
|
Abousaad S, Ahmed F, Abouzeid A, Ongeri EM. Meprin β expression modulates the interleukin-6 mediated JAK2-STAT3 signaling pathway in ischemia/reperfusion-induced kidney injury. Physiol Rep 2022; 10:e15468. [PMID: 36117389 PMCID: PMC9483619 DOI: 10.14814/phy2.15468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023] Open
Abstract
Meprin metalloproteinases have been implicated in the pathophysiology of ischemia/reperfusion (IR)-induced kidney injury. Previous in vitro data showed that meprin β proteolytically processes interleukin-6 (IL-6) resulting in its inactivation. Recently, meprin-β was also shown to cleave the IL-6 receptor. The goal of this study was to determine how meprin β expression impacts IL-6 and downstream modulators of the JAK2-STAT3-mediated signaling pathway in IR-induced kidney injury. IR was induced in 12-week-old male wild-type (WT) and meprin β knockout (βKO) mice and kidneys obtained at 24 h post-IR. Real-time PCR, western blot, and immunostaining/microscopy approaches were used to quantify mRNA and protein levels respectively, and immunofluorescence counterstaining with proximal tubule (PT) markers to determine protein localization. The mRNA levels for IL-6, CASP3 and BCL-2 increased significantly in both genotypes. Interestingly, western blot data showed increases in protein levels for IL-6, CASP3, and BCL-2 in the βKO but not in WT kidneys. However, immunohistochemical data showed increases in IL-6, CASP3, and BCL-2 proteins in select kidney tubules in both genotypes, shown to be PTs by immunofluorescence counterstaining. IR-induced increases in p-STAT-3 and p-JAK-2 in βKO at a global level but immunoflourescence counterstaining demonstrated p-JAK2 and p-STAT3 increases in select PT for both genotypes. BCL-2 increased only in the renal corpuscle of WT kidneys, suggesting a role for meprins expressed in leukocytes. Immunohistochemical analysis confirmed higher levels of leukocyte infiltration in WT kidneys when compared to βKO kidneys. The present data demonstrate that meprin β modulates IR-induced kidney injury in part via IL-6/JAK2/STAT3-mediated signaling.
Collapse
Affiliation(s)
- Shaymaa Abousaad
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Faihaa Ahmed
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Ayman Abouzeid
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| | - Elimelda Moige Ongeri
- Department of KinesiologyCollege of Health and Human Sciences, North Carolina A&T State UniversityGreensboroNorth CarolinaUSA
| |
Collapse
|
12
|
Pevna V, Wagnières G, Huntosova V. Autophagy and Apoptosis Induced in U87 MG Glioblastoma Cells by Hypericin-Mediated Photodynamic Therapy Can Be Photobiomodulated with 808 nm Light. Biomedicines 2021; 9:biomedicines9111703. [PMID: 34829932 PMCID: PMC8615841 DOI: 10.3390/biomedicines9111703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma is one of the most aggressive types of tumors. Although few treatment options are currently available, new modalities are needed to improve prognosis. In this context, photodynamic therapy (PDT) is a promising adjuvant treatment modality. In the present work, hypericin-mediated PDT (hypericin-PDT, 2 J/cm2) of U87 MG cells is combined with (2 min, 15 mW/cm2 at 808 nm) photobiomodulation (PBM). We observed that PBM stimulates autophagy, which, in combination with PDT, increases the treatment efficacy and leads to apoptosis. Confocal fluorescence microscopy, cytotoxicity assays and Western blot were used to monitor apoptotic and autophagic processes in these cells. Destabilization of lysosomes, mitochondria and the Golgi apparatus led to an increase in lactate dehydrogenase activity, oxidative stress levels, LC3-II, and caspase-3, as well as a decrease of the PKCα and STAT3 protein levels in response to hypericin-PDT subcellular concentration in U87 MG cells. Our results indicate that therapeutic hypericin concentrations can be reduced when PDT is combined with PBM. This will likely allow to reduce the damage induced in surrounding healthy tissues when PBM-hypericin-PDT is used for in vivo tumor treatments.
Collapse
Affiliation(s)
- Viktoria Pevna
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia;
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 6, Building CH, 1015 Lausanne, Switzerland;
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54 Kosice, Slovakia
- Correspondence:
| |
Collapse
|
13
|
Nyandwi JB, Ko YS, Jin H, Yun SP, Park SW, Kim HJ. Rosmarinic Acid Increases Macrophage Cholesterol Efflux through Regulation of ABCA1 and ABCG1 in Different Mechanisms. Int J Mol Sci 2021; 22:8791. [PMID: 34445501 PMCID: PMC8395905 DOI: 10.3390/ijms22168791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 01/12/2023] Open
Abstract
Lipid dysregulation in diabetes mellitus escalates endothelial dysfunction, the initial event in the development and progression of diabetic atherosclerosis. In addition, lipid-laden macrophage accumulation in the arterial wall plays a significant role in the pathology of diabetes-associated atherosclerosis. Therefore, inhibition of endothelial dysfunction and enhancement of macrophage cholesterol efflux is the important antiatherogenic mechanism. Rosmarinic acid (RA) possesses beneficial properties, including its anti-inflammatory, antioxidant, antidiabetic and cardioprotective effects. We previously reported that RA effectively inhibits diabetic endothelial dysfunction by inhibiting inflammasome activation in endothelial cells. However, its effect on cholesterol efflux remains unknown. Therefore, in this study, we aimed to assess the effect of RA on cholesterol efflux and its underlying mechanisms in macrophages. RA effectively reduced oxLDL-induced cholesterol contents under high glucose (HG) conditions in macrophages. RA enhanced ATP-binding cassette transporter A1 (ABCA1) and G1 (ABCG1) expression, promoting macrophage cholesterol efflux. Mechanistically, RA differentially regulated ABCA1 expression through JAK2/STAT3, JNK and PKC-p38 and ABCG1 expression through JAK2/STAT3, JNK and PKC-ERK1/2/p38 in macrophages. Moreover, RA primarily stabilized ABCA1 rather than ABCG1 protein levels by impairing protein degradation. These findings suggest RA as a candidate therapeutic to prevent atherosclerotic cardiovascular disease complications related to diabetes by regulating cholesterol efflux in macrophages.
Collapse
Affiliation(s)
- Jean-Baptiste Nyandwi
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali 4285, Rwanda
| | - Young Shin Ko
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Hana Jin
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea; (J.-B.N.); (Y.S.K.); (H.J.); (S.P.Y.); (S.W.P.)
- Department of Convergence Medical Science (BK21 Plus), Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
14
|
Chou X, Ma K, Shen Y, Min Z, Wu Q, Sun D. Dual role of inositol-requiring enzyme 1α (IRE-1α) in Cd-induced apoptosis in human renal tubular epithelial cells: Endoplasmic reticulum stress and STAT3 signaling activation. Toxicology 2021; 456:152769. [PMID: 33813002 DOI: 10.1016/j.tox.2021.152769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a nephrotoxicant that primarily damages renal proximal tubular cells. Endoplasmic reticulum (ER) stress is mechanistically linked to Cd-induced renal injury. Inositol-requiring enzyme 1 (IRE-1α) is the most conserved ER stress transducer protein, which has both kinase and endonuclease activities. This study aimed to investigate whether the two enzymatic activities of IRE-1α have different effects in its regulation of Cd-induced apoptosis. Human proximal tubular (HK-2) cells were treated with 20 μM CdCl2 for 0-24 h, and mice were fed with Cd-containing drinking water (100-400 mg/L) for 24 weeks. We found that Cd increased cell apoptosis in HK-2 cells and mouse kidneys in a time-dependent manner. Such cytotoxicity was correlated with activation of ER stress, evidenced by upregulation of IRE-1α and its target protein spliced X-box binding protein-1 (XBP-1 s). Interestingly, inhibition of IRE-1α kinase activity by KIRA6 was more protective against Cd-induced apoptosis than inhibition of its RNase activity by STF-083010. Mechanistically, Cd promoted the binding of IRE-1α with signal transducer and activator of transcription-3 (STAT3) leading to elevated phosphorylation of STAT3 at Ser727 and thus inactivation of STAT3 signaling, which resulted in aggravation of Cd-induced apoptosis in HK-2 cells. Collectively, our findings indicate that IRE-1α coordinate ER stress and STAT3 signaling in mediating Cd-induced renal toxicity, suggesting that targeting IRE-1α might be a potential therapeutic approach for Cd-induced renal dysfunction and disease.
Collapse
Affiliation(s)
- Xin Chou
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China; School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China
| | - Kunpeng Ma
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Yue Shen
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Zhen Min
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China
| | - Qing Wu
- School of Public Health, Fudan University, 130 Dong'An Road, Shanghai, 200032, China.
| | - Daoyuan Sun
- Shanghai Pulmonary Hospital Affiliated Tongji University, 507 Zhengmin Road, Shanghai, 200433, China.
| |
Collapse
|
15
|
Belousov DM, Mikhaylenko EV, Somasundaram SG, Kirkland CE, Aliev G. The Dawn of Mitophagy: What Do We Know by Now? Curr Neuropharmacol 2021; 19:170-192. [PMID: 32442087 PMCID: PMC8033973 DOI: 10.2174/1570159x18666200522202319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Cecil E. Kirkland
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| | - Gjumrakch Aliev
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| |
Collapse
|
16
|
Enriched conditioning expands the regenerative ability of sensory neurons after spinal cord injury via neuronal intrinsic redox signaling. Nat Commun 2020; 11:6425. [PMID: 33349630 PMCID: PMC7752916 DOI: 10.1038/s41467-020-20179-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022] Open
Abstract
Overcoming the restricted axonal regenerative ability that limits functional repair following a central nervous system injury remains a challenge. Here we report a regenerative paradigm that we call enriched conditioning, which combines environmental enrichment (EE) followed by a conditioning sciatic nerve axotomy that precedes a spinal cord injury (SCI). Enriched conditioning significantly increases the regenerative ability of dorsal root ganglia (DRG) sensory neurons compared to EE or a conditioning injury alone, propelling axon growth well beyond the spinal injury site. Mechanistically, we established that enriched conditioning relies on the unique neuronal intrinsic signaling axis PKC-STAT3-NADPH oxidase 2 (NOX2), enhancing redox signaling as shown by redox proteomics in DRG. Finally, NOX2 conditional deletion or overexpression respectively blocked or phenocopied enriched conditioning-dependent axon regeneration after SCI leading to improved functional recovery. These studies provide a paradigm that drives the regenerative ability of sensory neurons offering a potential redox-dependent regenerative model for mechanistic and therapeutic discoveries. Pre conditioning injury or environmental enrichment have been shown to promote axon regeneration. Here the authors show that environmental enrichment, combined with preconditioning injury promotes regeneration via a redox signalling dependent mechanism.
Collapse
|
17
|
Perspectives Regarding the Intersections between STAT3 and Oxidative Metabolism in Cancer. Cells 2020; 9:cells9102202. [PMID: 33003453 PMCID: PMC7600636 DOI: 10.3390/cells9102202] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) functions as a major molecular switch that plays an important role in the communication between cytokines and kinases. In this role, it regulates the transcription of genes involved in various biochemical processes, such as proliferation, migration, and metabolism of cancer cells. STAT3 undergoes diverse post-translational modifications, such as the oxidation of cysteine by oxidative stress, the acetylation of lysine, or the phosphorylation of serine/threonine. In particular, the redox modulation of critical cysteine residues present in the DNA-binding domain of STAT3 inhibits its DNA-binding activity, resulting in the inactivation of STAT3-mediated gene expression. Accumulating evidence supports that STAT3 is a key protein that acts as a mediator of metabolism and mitochondrial activity. In this review, we focus on the post-translational modifications of STAT3 by oxidative stress and how the modification of STAT3 regulates cell metabolism, particularly in the metabolic pathways in cancer cells.
Collapse
|
18
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK) Enhances Activation of STAT3/NLRC4 Inflammasome Signaling Axis through PKCδ in Astrocytes: Implications for Parkinson's Disease. Cells 2020; 9:cells9081831. [PMID: 32759670 PMCID: PMC7464730 DOI: 10.3390/cells9081831] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/26/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Astrocytic dysfunction has been implicated in Parkinson's disease (PD) pathogenesis. While the Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 signaling axis is known to play a role in PD-like neuropathology, the molecular mechanisms that govern this process remain poorly understood. Herein, we show that TWEAK levels are elevated in PD serum compared to controls. Moreover, using both U373 human astrocyte cells and primary mouse astrocytes, we demonstrate that TWEAK induces mitochondrial oxidative stress as well as protein kinase C delta (PKCδ) and signal transducer and activator of transcription 3 (STAT3) activation, accompanied by NLRC4 inflammasome activation and upregulation and release of proinflammatory cytokines, including IL-1β, TNF-α, and IL-18. Mechanistically, TWEAK-induced PKCδ activation enhances the STAT3/NLRC4 signaling pathway and other proinflammatory mediators through a mitochondrial oxidative stress-dependent mechanism. We further show that PKCδ knockdown and mito-apocynin, a mitochondrial antioxidant, suppress TWEAK-induced proinflammatory NLRC4/STAT3 signaling and cellular oxidative stress response. Notably, we validated our in vitro findings in an MPTP mouse model of PD and in mice receiving intrastriatal administration of TWEAK. These results indicate that TWEAK is a key regulator of astroglial reactivity and illustrate a novel mechanism by which mitochondrial oxidative stress may influence dopaminergic neuronal survival in PD.
Collapse
|
19
|
Xu S, Wu X, Zhang X, Chen C, Chen H, She F. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells. Gut Pathog 2020; 12:31. [PMID: 32636937 PMCID: PMC7333391 DOI: 10.1186/s13099-020-00368-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori colonises the stomach of approximately 50% of the global population. Cytotoxin-associated gene A protein (CagA) is one of the important virulent factors responsible for the increased inflammation and increases the risk of developing peptic ulcers and gastric carcinoma. The cytokine interleukin-6 (IL-6) has particularly important roles in the malignant transformation of gastric and intestinal epithelial cells as it is upregulated in H. pylori-infected gastric mucosa. In this study, we investigated the underlying mechanisms of CagA-induced IL-6 up-regulation during H. pylori infection. AGS cells, a human gastric adenocarcinoma cell line, lacking eEF1A1 were infected with CagA+ H. pylori (NCTC11637), CagA- H. pylori (NCTC11637ΔcagA), or transduced by Ad-cagA/Ad-GFP. The expression and production of IL-6 were measured by quantitative real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The interactions among CagA, eukaryotic translation elongation factor 1-alpha 1 (eEF1A1), protein kinase Cδ (PKCδ), and signal transducer and activator of transcription 3 (STAT3) were determined by western blot or co-immunoprecipitation. Results During H. pylori infection, CagA-M (residues 256‒871aa) was found to interact with eEF1A1-I (residues 1‒240aa). NCTC11637 increased the expression of IL-6 in AGS cells compared with NCTC11637ΔcagA whereas knockdown of eEF1A1 in AGS cells completely abrogated these effects. Moreover, the CagA-eEF1A1 complex promoted the expression of IL-6 in AGS cells. CagA and eEF1A1 cooperated to mediate the expression of IL-6 by affecting the activity of p-STATS727 in the nucleus. Further, CagA-eEF1A1 affected the activity of STAT3 by recruiting PKCδ. However, blocking PKCδ inhibited the phosphorylation of STAT3S727 and induction of IL-6 by CagA. Conclusions CagA promotes the expression of IL-6 in AGS cells by recruiting PKCδ through eEF1A1 in the cytoplasm to increase the phosphorylation of STAT3S727 in the nucleus. These findings provide new insights into the function of CagA-eEF1A1 interaction in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Shaohan Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China.,First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001 People's Republic of China
| | - Xiaoqian Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Hao Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| |
Collapse
|
20
|
Gharibi T, Babaloo Z, Hosseini A, Abdollahpour-alitappeh M, Hashemi V, Marofi F, Nejati K, Baradaran B. Targeting STAT3 in cancer and autoimmune diseases. Eur J Pharmacol 2020; 878:173107. [DOI: 10.1016/j.ejphar.2020.173107] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
21
|
LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat 2020; 181:31-41. [PMID: 32240456 DOI: 10.1007/s10549-020-05613-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/23/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Persistent STAT3 signaling is frequently detected in many cancer types including triple-negative breast cancer, and thus could potentially serve as a viable therapeutic target. We have designed a novel non-peptide compound LLY17 targeting STAT3 using Advanced Multiple Ligand Simultaneous Docking (AMLSD) methods. However, the efficacy of LLY17 has not been evaluated extensively in human and murine triple-negative breast cancer cells. In this study, we tested LLY17 in multiple human and murine triple-negative breast cancer cell lines. METHODS Human triple-negative breast cancer MDA-MB-468, MDA-MB-231, SUM159, and BT-549 cells, and murine triple-negative breast cancer 4T1 cells were used to study the inhibition effects of LLY17. The inhibition of STAT3 activation of LLY17 was investigated using western blot analysis. Cell viability, apoptosis and migration assays were carried out by MTT assay, Caspase-3/7 assay and wound healing assay, respectively. A mammary fat pad syngeneic mouse model was used to evaluate the antitumor effect of LLY17 in vivo. RESULTS LLY17 inhibited IL-6-mediated induction of STAT3 phosphorylation but had no effect on IFN-γ-induced STAT1 phosphorylation or EGF-induced ERK phosphorylation. LLY17 inhibited STAT3 phosphorylation and induced apoptosis in human and murine triple-negative breast cancer cells but exhibited minimal toxicity toward Luminal A subtype breast cancer MCF-7 cells. RNAi attenuation experiments supported the requirement of STAT3 for LLY17-mediated inhibition of cell viability in triple-negative breast cancer cells. In addition, LLY17 inhibited cell migration of human and murine triple-negative breast cancer cells. Furthermore, LLY17 suppressed tumor growth and STAT3 phosphorylation of triple-negative breast cancer cells in a mammary fat pad syngeneic mouse model in vivo. CONCLUSIONS Together, our findings suggest that targeting persistent STAT3 signaling by novel small molecule LLY17 may be a potential approach for the therapy of triple-negative breast cancer.
Collapse
|
22
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Balic JJ, Saad MI, Dawson R, West AJ, McLeod L, West AC, D'Costa K, Deswaerte V, Dev A, Sievert W, Gough DJ, Bhathal PS, Ferrero RL, Jenkins BJ. Constitutive STAT3 Serine Phosphorylation Promotes Helicobacter-Mediated Gastric Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1256-1270. [PMID: 32201262 DOI: 10.1016/j.ajpath.2020.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ruby Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Kimberley D'Costa
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Anouk Dev
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - William Sievert
- Department of Gastroenterology and Hepatology, Monash Health, Melbourne, Victoria, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Prithi S Bhathal
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
24
|
Arshad S, Naveed M, Ullia M, Javed K, Butt A, Khawar M, Amjad F. Targeting STAT-3 signaling pathway in cancer for development of novel drugs: Advancements and challenges. Genet Mol Biol 2020; 43:e20180160. [PMID: 32167126 PMCID: PMC7198026 DOI: 10.1590/1678-4685-gmb-2018-0160] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Signal transducers and activators of transcription 3 (STAT-3) is a transcription
factor that regulates the gene expression of several target genes. These factors
are activated by the binding of cytokines and growth factors with STAT-3
specific receptors on cell membrane. Few years ago, STAT-3 was considered an
acute phase response element having several cellular functions such as
inflammation, cell survival, invasion, metastasis and proliferation, genetic
alteration, and angiogenesis. STAT-3 is activated by several types of
inflammatory cytokines, carcinogens, viruses, growth factors, and oncogenes.
Thus, the STAT3 pathway is a potential target for cancer therapeutics. Abnormal
STAT-3 activity in tumor development and cellular transformation can be targeted
by several genomic and pharmacological methodologies. An extensive review of the
literature has been conducted to emphasize the role of STAT-3 as a unique cancer
drug target. This review article discusses in detail the wide range of STAT-3
inhibitors that show antitumor effects both in vitro and
in vivo. Thus, targeting constitutive STAT-3 signaling is a
remarkable therapeutic methodology for tumor progression. Finally, current
limitations, trials and future perspectives of STAT-3 inhibitors are also
critically discussed.
Collapse
Affiliation(s)
- Sundas Arshad
- University of Lahore, Department of Allied Health Sciences, Gujrat Campus, Pakistan
| | - Muhammad Naveed
- University of Central Punjab, Faculty of life sciences, Department of Biotechnology, Lahore, Pakistan
| | - Mahad Ullia
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Khadija Javed
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Ayesha Butt
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Masooma Khawar
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| | - Fazeeha Amjad
- University of Gujrat, Department of Biochemistry and Biotechnology Sialkot sub Campus, Pakistan
| |
Collapse
|
25
|
Ren J, Zhou T, Pilli VSS, Phan N, Wang Q, Gupta K, Liu Z, Sheibani N, Liu B. Novel Paracrine Functions of Smooth Muscle Cells in Supporting Endothelial Regeneration Following Arterial Injury. Circ Res 2020; 124:1253-1265. [PMID: 30739581 DOI: 10.1161/circresaha.118.314567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Ting Zhou
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Vijaya Satish Sekhar Pilli
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Noel Phan
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Qiwei Wang
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Kartik Gupta
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Zhenjie Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.).,Department of Vascular Surgery, 2nd Affiliated Hospital School of Medicine, Zhejiang University (Z.L.)
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison (N.S.)
| | - Bo Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| |
Collapse
|
26
|
Hu YS, Han X, Liu XH. STAT3: A Potential Drug Target for Tumor and Inflammation. Curr Top Med Chem 2019; 19:1305-1317. [PMID: 31218960 DOI: 10.2174/1568026619666190620145052] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
STAT (Signal Transducers and Activators of Transcription) is a cellular signal transcription factor involved in the regulation of many cellular activities, such as cell differentiation, proliferation, angiogenesis in normal cells. During the study of the STAT family, STAT3 was found to be involved in many diseases, such as high expression and sustained activation of STAT3 in tumor cells, promoting tumor growth and proliferation. In the study of inflammation, it was found that it plays an important role in the anti-inflammatory and repairing of damage tissues. Because of the important role of STAT3, a large number of studies have been obtained. At the same time, after more than 20 years of development, STAT3 has also been used as a target for drug therapy. And the discovery of small molecule inhibitors also promoted the study of STAT3. Since STAT3 has been extensively studied in inflammation and tumor regulation, this review presents the current state of research on STAT3.
Collapse
Affiliation(s)
- Yang Sheng Hu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xu Han
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
27
|
Balic JJ, Garama DJ, Saad MI, Yu L, West AC, West AJ, Livis T, Bhathal PS, Gough DJ, Jenkins BJ. Serine-Phosphorylated STAT3 Promotes Tumorigenesis via Modulation of RNA Polymerase Transcriptional Activity. Cancer Res 2019; 79:5272-5287. [PMID: 31481496 DOI: 10.1158/0008-5472.can-19-0974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
Deregulated activation of the latent oncogenic transcription factor STAT3 in many human epithelial malignancies, including gastric cancer, has invariably been associated with its canonical tyrosine phosphorylation and enhanced transcriptional activity. By contrast, serine phosphorylation (pS) of STAT3 can augment its nuclear transcriptional activity and promote essential mitochondrial functions, yet the role of pS-STAT3 among epithelial cancers is ill-defined. Here, we reveal that genetic ablation of pS-STAT3 in the gp130 F/F spontaneous gastric cancer mouse model and human gastric cancer cell line xenografts abrogated tumor growth that coincided with reduced proliferative potential of the tumor epithelium. Microarray gene expression profiling demonstrated that the suppressed gastric tumorigenesis in pS-STAT3-deficient gp130 F/F mice associated with reduced transcriptional activity of STAT3-regulated gene networks implicated in cell proliferation and migration, inflammation, and angiogenesis, but not mitochondrial function or metabolism. Notably, the protumorigenic activity of pS-STAT3 aligned with its capacity to primarily augment RNA polymerase II-mediated transcriptional elongation, but not initiation, of STAT3 target genes. Furthermore, by using a combinatorial in vitro and in vivo proteomics approach based on the rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) assay, we identified RuvB-like AAA ATPase 1 (RUVBL1/Pontin) and enhancer of rudimentary homolog (ERH) as interacting partners of pS-STAT3 that are pivotal for its transcriptional activity on STAT3 target genes. Collectively, these findings uncover a hitherto unknown transcriptional role and obligate requirement for pS-STAT3 in gastric cancer that could be extrapolated to other STAT3-driven cancers. SIGNIFICANCE: These findings reveal a new transcriptional role and mandatory requirement for constitutive STAT3 serine phosphorylation in gastric cancer.
Collapse
Affiliation(s)
- Jesse J Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel J Garama
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alice J West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Prithi S Bhathal
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Daniel J Gough
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia. .,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Pham TH, Bak Y, Kwon T, Kwon SB, Oh JW, Park JH, Choi YK, Hong JT, Yoon DY. Interleukin-32θ inhibits tumor-promoting effects of macrophage-secreted CCL18 in breast cancer. Cell Commun Signal 2019; 17:53. [PMID: 31126309 PMCID: PMC6534939 DOI: 10.1186/s12964-019-0374-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022] Open
Abstract
Background Tumor-associated macrophages can promote breast cancer metastasis by secreting cytokines and growth factors. Interleukin (IL)-32θ, a newly identified IL-32 isoform, was previously shown to down-regulate various proinflammatory factors of macrophages. Here, we report the presence of IL-32θ in breast cancer tissues and evaluate its effects on macrophage-regulated breast cancer metastasis. Methods RT-qPCR was used to analyze the mRNA expression of IL-32θ, Chemokine (C-C motif) ligand 18 (CCL18) in breast cancer tissues. In vitro cell-based experiments using IL-32θ-expressing MDA-MB-231 cells were conducted to examine the effects of IL-32θ on metastasis and its molecular signaling. In vivo xenograft, immunohistochemistry, and optical imaging models were generated to support in vitro and clinical findings. Results The clinical data displayed opposite expression patterns of CCL18 and IL-32θ mRNA in macrophage-infiltrated breast tumor tissues compared with those in the other tissues tested. In MDA-MB-231 cells, IL-32θ overexpression attenuated migration, invasion, tumor-promoting factors, and increased epithelial markers levels upon treatment with conditioned media from THP-1-derived macrophages. Additionally, IL-32θ expression in a xenograft model led to a remarkable decrease in tumor size and macrophage-stimulated tumor promotion. This inhibition was mediated through a direct interaction with protein kinase C-δ (PKCδ), subsequently eliminating the downstream factors STAT3 and NF-κB. Blocking CCL18 during co-culture of macrophages and breast cancer cells reduced the levels of breast cancer progression-related factors and PKCδ downstream signaling suggesting CCL18 as the main macrophage-secreted factors triggering the signaling pathway inhibited by IL-32θ. Conclusions Our findings demonstrate a novel role of IL-32θ as an intracellular modulator to suppress macrophage-promoted breast cancer progression by targeting CCL18-dependent signaling. Electronic supplementary material The online version of this article (10.1186/s12964-019-0374-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thu-Huyen Pham
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Jayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yesol Bak
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Jayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Taeho Kwon
- Primate Resource Center, Division of Bioinfrastructure, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeollabuk-do, Republic of Korea
| | - Sae-Bom Kwon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Jayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jong-Hyung Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Jayang-dong, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
29
|
Inhibition of IL-13 and IL-13Rα2 Expression by IL-32θ in Human Monocytic Cells Requires PKCδ and STAT3 Association. Int J Mol Sci 2019; 20:ijms20081949. [PMID: 31010051 PMCID: PMC6514684 DOI: 10.3390/ijms20081949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-32θ, a newly identified IL-32 isoform, has been reported to exert pro-inflammatory effects through the association with protein kinase C delta (PKCδ). In this study, we further examined the effects of IL-32θ on IL-13 and IL-13Rα2 expression and the related mechanism in THP-1 cells. Upon stimulating IL-32θ-expressing and non-expressing cells with phorbol 12-myristate 13-acetate (PMA), the previous microarray analysis showed that IL-13Rα2 and IL-13 mRNA expression were significantly decreased by IL-32θ. The protein expression of these factors was also confirmed to be down-regulated. The nuclear translocation of transcription factors STAT3 and STAT6, which are necessary for IL-13Rα2 and IL-13 promoter activities, was suppressed by IL-32θ. Additionally, a direct association was found between IL-32θ, PKCδ, and signal transducer and activator of transcription 3 (STAT3), but not STAT6, revealing that IL-32θ might act mainly through STAT3 and indirectly affect STAT6. Moreover, the interaction of IL-32θ with STAT3 requires PKCδ, since blocking PKCδ activity eliminated the interaction and consequently limited the inhibitory effect of IL-32θ on STAT3 activity. Interfering with STAT3 or STAT6 binding by decoy oligodeoxynucleotides (ODNs) identified that IL-32θ had additive effects with the STAT3 decoy ODN to suppress IL-13 and IL-13Rα2 mRNA expression. Taken together, our data demonstrate the intracellular interaction of IL-32θ, PKCδ, and STAT3 to regulate IL-13 and IL-13Rα2 synthesis, supporting the role of IL-32θ as an inflammatory modulator.
Collapse
|
30
|
He B, Tran JT, Sanchez DJ. Manipulation of Type I Interferon Signaling by HIV and AIDS-Associated Viruses. J Immunol Res 2019; 2019:8685312. [PMID: 31089479 PMCID: PMC6476103 DOI: 10.1155/2019/8685312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Type I Interferons were first described for their profound antiviral abilities in cell culture and animal models, and later, they were translated into potent antiviral therapeutics. However, as additional studies into the function of Type I Interferons progressed, it was also seen that pathogenic viruses have coevolved to encode potent mechanisms allowing them to evade or suppress the impact of Type I Interferons on their replication. For chronic viral infections, such as HIV and many of the AIDS-associated viruses, including HTLV, HCV, KSHV, and EBV, the clinical efficacy of Type I Interferons is limited by these mechanisms. Here, we review some of the ways that HIV and AIDS-associated viruses thrive in Type I Interferon-rich environments via mechanisms that block the function of this important antiviral cytokine. Overall, a better understanding of these mechanisms creates avenues to better understand the innate immune response to these viruses as well as plan the development of antivirals that would allow the natural antiviral effect of Type I Interferons to manifest during these infections.
Collapse
Affiliation(s)
- Buyuan He
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - James T. Tran
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| | - David Jesse Sanchez
- Pharmaceutical Sciences Department, College of Pharmacy, Western University of Health Sciences, Pomona 91766, California, USA
| |
Collapse
|
31
|
The Role of Tyrosine Phosphorylation of Protein Kinase C Delta in Infection and Inflammation. Int J Mol Sci 2019; 20:ijms20061498. [PMID: 30917487 PMCID: PMC6471617 DOI: 10.3390/ijms20061498] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/30/2022] Open
Abstract
Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.
Collapse
|
32
|
Weber R, Meister M, Muley T, Thomas M, Sültmann H, Warth A, Winter H, Herth FJ, Schneider MA. Pathways regulating the expression of the immunomodulatory protein glycodelin in non‑small cell lung cancer. Int J Oncol 2019; 54:515-526. [PMID: 30535430 PMCID: PMC6317686 DOI: 10.3892/ijo.2018.4654] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
Glycodelin [gene name, progesterone associated endometrial protein (PAEP)] was initially described as an immune system modulator in reproduction. Today, it is also known to be expressed in several types of cancer, including non‑small cell lung cancer (NSCLC). In this cancer type, the feasibility of its usage as a follow‑up biomarker and its potential role as an immune system modulator were described. It is assumed that NSCLC tumours secrete glycodelin to overcome immune surveillance. Therefore, targeting glycodelin might be a future approach with which to weaken the immune system defence of NSCLC tumours. In this context, it is important to understand the regulatory pathways of PAEP/glycodelin expression, as these are mostly unknown so far. In this study, we analysed the influence of several inducers and of their downstream pathways on PAEP/glycodelin expression in a human lung adenocarcinoma carcinoma (ADC; H1975) and a human lung squamous cell carcinoma (SQCC) cell line (2106T). PAEP/glycodelin expression was notably stimulated by the canonical transforming growth factor (TGF)‑β pathway in SQCC cells and the PKC signalling cascade in both cell lines. The PI3K/AKT pathway inhibited PAEP/glycodelin expression in the ADC cells and an antagonizing role towards the other investigated signalling cascades is suggested herein. Furthermore, the mitogen‑activated protein kinase kinase (MEK)/extracellular‑signal regulated kinases (ERK) pathway was, to a lesser extent, found to be associated with increased PAEP/glycodelin amounts. The phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT), MEK/ERK pathway and TGF‑β are targets of NSCLC drugs that are already approved or are currently under investigation. On the whole, the findings of this study provide evidence that inhibiting these targets affects the expression of glycodelin and its immunosuppressive effect in NSCLC tumours. Moreover, understanding the regulation of glycodelin expression may lead to the development of novel therapeutic approaches with which to weaken the immune system defence of NSCLC tumours in the future.
Collapse
Affiliation(s)
- Rebecca Weber
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Michael Meister
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| | - Michael Thomas
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
| | - Holger Sültmann
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Division of Cancer Genome Research Group, German Cancer Research Centre (DKFZ) and German Cancer Consortium (DKTK)
| | - Arne Warth
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Institute of Pathology, University of Heidelberg, 69120 Heidelberg
| | - Hauke Winter
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Surgery
| | - Felix J.F. Herth
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
- Department of Pneumology, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg
- Translational Lung Research Center Heidelberg, member of the German Centre for Lung Research (DZL-TLRC), 69120 Heidelberg
| |
Collapse
|
33
|
Billing U, Jetka T, Nortmann L, Wundrack N, Komorowski M, Waldherr S, Schaper F, Dittrich A. Robustness and Information Transfer within IL-6-induced JAK/STAT Signalling. Commun Biol 2019; 2:27. [PMID: 30675525 PMCID: PMC6338669 DOI: 10.1038/s42003-018-0259-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/07/2018] [Indexed: 01/06/2023] Open
Abstract
Cellular communication via intracellular signalling pathways is crucial. Expression and activation of signalling proteins is heterogenous between isogenic cells of the same cell-type. However, mechanisms evolved to enable sufficient communication and to ensure cellular functions. We use information theory to clarify mechanisms facilitating IL-6-induced JAK/STAT signalling despite cell-to-cell variability. We show that different mechanisms enabling robustness against variability complement each other. Early STAT3 activation is robust as long as cytokine concentrations are low. Robustness at high cytokine concentrations is ensured by high STAT3 expression or serine phosphorylation. Later the feedback-inhibitor SOCS3 increases robustness. Channel Capacity of JAK/STAT signalling is limited by cell-to-cell variability in STAT3 expression and is affected by the same mechanisms governing robustness. Increasing STAT3 amount increases Channel Capacity and robustness, whereas increasing STAT3 tyrosine phosphorylation reduces robustness but increases Channel Capacity. In summary, we elucidate mechanisms preventing dysregulated signalling by enabling reliable JAK/STAT signalling despite cell-to-cell heterogeneity.
Collapse
Affiliation(s)
- Ulrike Billing
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Tomasz Jetka
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Division of Modelling in Biology and Medicine, Pawinskiego 5B, 02- 106, Warszawa, Poland
| | - Lukas Nortmann
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Nicole Wundrack
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Michal Komorowski
- Polish Academy of Sciences, Institute of Fundamental Technological Research, Division of Modelling in Biology and Medicine, Pawinskiego 5B, 02- 106, Warszawa, Poland
| | - Steffen Waldherr
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200f - box 2424, 3001 Leuven, Belgium
| | - Fred Schaper
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Anna Dittrich
- Otto-von-Guericke University Magdeburg, Institute of Biology, Department of Systems Biology, Universitätsplatz 2, 39106 Magdeburg, Germany
| |
Collapse
|
34
|
Santarelli R, Carillo V, Romeo MA, Gaeta A, Nazzari C, Gonnella R, Granato M, D'Orazi G, Faggioni A, Cirone M. STAT3 phosphorylation affects p53/p21 axis and KSHV lytic cycle activation. Virology 2019; 528:137-143. [PMID: 30616203 DOI: 10.1016/j.virol.2018.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
The Tyr705 STAT3 constitutive activation, besides promoting PEL cell survival, contributes to the maintenance of viral latency. We found indeed that its de-phosphorylation by AG490 induced KSHV lytic cycle. Moreover, Tyr705 STAT3 de-phosphorylation, mediated by the activation of tyrosine phosphatases, together with the increase of Ser727 STAT3 phosphorylation contributed to KSHV lytic cycle induction by TPA. We then observed that p53-p21 axis, essential for the induction of KSHV replication, was activated by the inhibition of Tyr705 and by the increase of Ser727 STAT3 phosphorylation. As a possible link between STAT3, p53-p21 and KSHV lytic cycle, we found that TPA and AG490 reduced the expression of KAP-1, promoting p53 stability, p21 transcription and KSHV lytic cycle activation in PEL cells.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Valentina Carillo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Cristina Nazzari
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Gabriella D'Orazi
- Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy; Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
35
|
IL-17 production by NKG2D-expressing CD56+ T cells in type 2 diabetes. Mol Immunol 2018; 106:22-28. [PMID: 30576948 DOI: 10.1016/j.molimm.2018.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 02/06/2023]
Abstract
T cells expressing CD56 (identified as CD3+CD56+) play a potential role in activation or regulation of other immune cells by secreting various cytokines. We hypothesized that these cells expressing the natural group 2, member D (NKG2D) could produce high levels of interleukin (IL)-17 in type 2 diabetes (T2D). CD56 + T cells expressing NKG2D of T2D patients, particularly in poor glycemic control (PC) predominantly produced higher IL-17 compared to the NKG2D negative population. IL-17 production of CD56 + T cells with NKG2D + was positively correlated with the level of HbA1c (N = 22, R2 = 0.120 and P = 0.044). Interestingly, CD56+ T cells with NKG2DHi of T2D patients had significantly higher IL-17 production than those of CD56 + T cells with NKG2DLow (P = 0.027) and showed statistically significant with P-value < 0.001 compared to CD56 + T cells with NKG2DHi of non-diabetic individuals (ND). In summary, CD56 + T cells expressing NKG2D, especially in the NKG2DHi population may be involved in pathogenesis and severity of T2D via IL-17.
Collapse
|
36
|
Hao J, Zhang Y, Yan X, Yan F, Sun Y, Zeng J, Waigel S, Yin Y, Fraig MM, Egilmez NK, Suttles J, Kong M, Liu S, Cleary MP, Sauter E, Li B. Circulating Adipose Fatty Acid Binding Protein Is a New Link Underlying Obesity-Associated Breast/Mammary Tumor Development. Cell Metab 2018; 28:689-705.e5. [PMID: 30100196 PMCID: PMC6221972 DOI: 10.1016/j.cmet.2018.07.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/24/2018] [Accepted: 07/11/2018] [Indexed: 12/26/2022]
Abstract
It is clear that obesity increases the risk of many types of cancer, including breast cancer. However, the underlying molecular mechanisms by which obesity is linked to cancer risk remain to be defined. Herein, we report that circulating adipose fatty acid binding protein (A-FABP) promotes obesity-associated breast cancer development. Using clinical samples, we demonstrated that circulating A-FABP levels were significantly increased in obese patients with breast cancer in comparison with those without breast cancer. Circulating A-FABP released by adipose tissue directly targeted mammary tumor cells, enhancing tumor stemness and aggressiveness through activation of the IL-6/STAT3/ALDH1 pathway. Importantly, genetic deletion of A-FABP successfully reduced tumor ALHD1 activation and obesity-associated mammary tumor growth and development in different mouse models. Collectively, these data suggest circulating A-FABP as a new link between obesity and breast cancer risk, thereby revealing A-FABP as a potential new therapeutic target for treatment of obesity-associated cancers.
Collapse
Affiliation(s)
- Jiaqing Hao
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Yuwen Zhang
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Xiaofang Yan
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Fei Yan
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yanwen Sun
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jun Zeng
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Sabine Waigel
- Genomics Facility and Life Tech Supply Center, University of Louisville, Louisville, KY, USA
| | - Yanhui Yin
- Department of Immunology, Peking University Health Science Center, Beijing, China
| | - Mostafa M Fraig
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Jill Suttles
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Edward Sauter
- Hartford Healthcare Cancer Institute, Hartford, CT, USA
| | - Bing Li
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock Street, Louisville, KY 40202, USA.
| |
Collapse
|
37
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Galoczova M, Coates P, Vojtesek B. STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett 2018; 23:12. [PMID: 29588647 PMCID: PMC5863838 DOI: 10.1186/s11658-018-0078-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/07/2018] [Indexed: 12/15/2022] Open
Abstract
Signal Transducer and Activator of Transcription 3 (STAT3) is a transcription factor with many important functions in the biology of normal and transformed cells. Its regulation is highly complex as it is involved in signaling pathways in many different cell types and under a wide variety of conditions. Besides other functions, STAT3 is an important regulator of normal stem cells and cancer stem cells. p63 which is a member of the p53 protein family is also involved in these functions and is both physically and functionally connected with STAT3. This review summarizes STAT3 function and regulation, its role in stem cell and cancer stem cell properties and highlights recent reports about its relationship to p63.
Collapse
Affiliation(s)
- Michaela Galoczova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Philip Coates
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
39
|
Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget 2018; 7:25162-79. [PMID: 27036017 PMCID: PMC5041895 DOI: 10.18632/oncotarget.7301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Fascin-1, an actin-bundling protein, plays an important role in cancer cell migration and invasion; however, the underlying mechanism remains unclear. On the basis of a 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell migration model, it was shown that TPA increased fascin-1 mRNA and protein expression and fascin-1-dependent cell migration. TPA dose- and time-dependently increased PKCδ and STAT3α activation and GSK3β phosphorylation; up-regulated Wnt-1, β-catenin, and STAT3α expression; and increased the nuclear translocation of β-catenin and STAT3α. Rottlerin, a PKCδ inhibitor, abrogated the increases in STAT3α activation and β-catenin and fascin-1 expression. WP1066, a STAT3 inhibitor, suppressed TPA-induced STAT3α DNA binding activity and β-catenin expression. Knockdown of β-catenin attenuated TPA-induced fascin-1 and STAT3α expression as well as cell migration. In addition to MCF-7, migration of Hs578T breast cancer cells was inhibited by silencing fascin-1, β-catenin, and STAT3α expression as well. TPA also induced Wnt-1 expression and secretion, and blocking Wnt-1 signaling abrogated β-catenin induction. DHA pretreatment attenuated TPA-induced cell migration, PKCδ and STAT3α activation, GSK3β phosphorylation, and Wnt-1, β-catenin, STAT3α, and fascin-1 expression. Our results demonstrated that TPA-induced migration is likely associated with the PKCδ and Wnt-1 pathways, which lead to STAT3α activation, GSK3β inactivation, and β-catenin increase and up-regulation of fascin-1 expression. Moreover, the anti-metastatic potential of DHA is partly attributed to its suppression of TPA-activated PKCδ and Wnt-1 signaling.
Collapse
|
40
|
Masliantsev K, Pinel B, Balbous A, Guichet PO, Tachon G, Milin S, Godet J, Duchesne M, Berger A, Petropoulos C, Wager M, Karayan-Tapon L. Impact of STAT3 phosphorylation in glioblastoma stem cells radiosensitization and patient outcome. Oncotarget 2017; 9:3968-3979. [PMID: 29423098 PMCID: PMC5790515 DOI: 10.18632/oncotarget.23374] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/29/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and lethal primary malignant brain tumor. The standard treatment for glioblastoma patients involves surgical resection with concomitant radio and chemotherapy. Despite today’s clinical protocol, the prognosis for patients remains very poor with a median survival of 15 months. Tumor resistance and recurrence is strongly correlated with a subpopulation of highly radioresistant and invasive cells termed Glioblastoma Stem Cells (GSCs). The transcription factor STAT3 has been found to be constitutively activated in different tumors including GBM and enhanced tumor radioresistance. In this study, we assessed radiosensitization of GSC lines isolated from patients by inhibition of STAT3 activation using Stattic or WP1066. We showed that inhibitor treatment before cell irradiation decreased the surviving fraction of GSCs suggesting that STAT3 inhibition could potentiate radiation effects. Finally, we investigated STAT3 activation status on 61 GBM clinical samples and found a preferential phosphorylation of STAT3 on Serine727 (pS727). Moreover, we found that pS727 was associated with a significant lower overall patient survival and progression-free survival but not pY705. Taken together, our results suggest that pS727-STAT3 could be a potential prognostic marker and could constitute a therapeutic target to sensitize highly radioresistant GSCs.
Collapse
Affiliation(s)
- Konstantin Masliantsev
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Baptiste Pinel
- CHU de Poitiers, Service d'Oncologie Radiothérapique, Poitiers F-86021, France
| | - Anaïs Balbous
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Pierre-Olivier Guichet
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Gaëlle Tachon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Serge Milin
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Mathilde Duchesne
- CHU de Poitiers, Service d'Anatomo-Cytopathologie, Poitiers F-86021, France
| | - Antoine Berger
- CHU de Poitiers, Service d'Oncologie Radiothérapique, Poitiers F-86021, France
| | - Christos Petropoulos
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| | - Michel Wager
- Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Service de Neurochirurgie, Poitiers F-86021, France
| | - Lucie Karayan-Tapon
- Inserm U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers F-86073, France.,Université de Poitiers, Poitiers F-86073, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers F-86022, France
| |
Collapse
|
41
|
Momtaz S, Niaz K, Maqbool F, Abdollahi M, Rastrelli L, Nabavi SM. STAT3 targeting by polyphenols: Novel therapeutic strategy for melanoma. Biofactors 2017; 43:347-370. [PMID: 27896891 DOI: 10.1002/biof.1345] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/17/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
Melanoma or malignant melanocytes appear with the low incidence rate, but very high mortality rate worldwide. Epidemiological studies suggest that polyphenolic compounds contribute for prevention or treatment of several cancers particularly melanoma. Such findings motivate to dig out novel therapeutic strategies against melanoma, including research toward the development of new chemotherapeutic and biologic agents that can target the tumor cells by different mechanisms. Recently, it has been found that signal transducer and activator of transcription 3 (STAT3) is activated in many cancer cases surprisingly. Different evidences supply the aspect that STAT3 activation plays a vital role in the metastasis, including proliferation of cells, survival, invasion, migration, and angiogenesis. This significant feature plays a vital role in various cellular processes, such as cell proliferation and survival. Here, we reviewed the mechanisms of the STAT3 pathway regulation and their role in promoting melanoma. Also, we have evaluated the emerging data on polyphenols (PPs) specifically their contribution in melanoma therapies with an emphasis on their regulatory/inhibitory actions in relation to STAT3 pathway and current progress in the development of phytochemical therapeutic techniques. An understanding of targeting STAT3 by PPs brings an opportunity to melanoma therapy. © 2016 BioFactors, 43(3):347-370, 2017.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Kamal Niaz
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Faheem Maqbool
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Xiong Q, Wu S, Wang J, Zeng X, Chen J, Wei M, Guan H, Fan C, Chen L, Guo D, Sun G. Hepatitis B virus promotes cancer cell migration by downregulating miR-340-5p expression to induce STAT3 overexpression. Cell Biosci 2017; 7:16. [PMID: 28413603 PMCID: PMC5389182 DOI: 10.1186/s13578-017-0144-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, and infection with hepatitis B virus (HBV) is a leading cause of HCC. Previous studies have demonstrated that expression of the tumor inhibitor miR-340 is significantly downregulated in HCC tissues compared with normal liver tissues. However, the precise biological role of miR-340-5p in HBV–HCC and its molecular mechanism of action remain unknown. Results Expression of miR-340-5p was downregulated in HBV-associated HCC liver tissue and HBV-infected cells, facilitating migration of liver cancer cells. Signal transducer and activator of transcription (STAT)3 was found to be a direct functional target of miR-340-5p. The regulation of STAT3 expression by miR-340-5p was assessed using qRT-PCR and western blotting, and the effects of exogenous miR-340-5p and STAT3 on the migration of HBV-infected cells were evaluated in vitro using Transwell® and wound-healing assays. The expression of E-cadherin and vimentin, associated with epithelial–mesenchymal transition, was also assessed using Western blotting after transfection of miR-340-5p mimics and/or STAT3 expression vectors. Overexpression of STAT3 resulted in rescue of HBV effects, decreased E-cadherin expression, increased vimentin expression, and ultimately, enhanced cell migration. Re-introduction of the STAT3 CDS led to marked reversal of the inhibition of cell migration in HBV-infected cells mediated by miR-340-5p. Conclusions Hepatitis B virus promotes the migration of liver cancer cells by downregulating miR-340-5p expression to induce STAT3 overexpression. Our results show that STAT3 plays a key role in regulating cell migration in HBV–HCC involving miR-340-5p.
Collapse
Affiliation(s)
- Qiushuang Xiong
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Shaoshuai Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Jingwen Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Xianhuang Zeng
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Jianwen Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Mingcong Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Haotong Guan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China
| | - Lang Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| | - Deyin Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| | - Guihong Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430072 People's Republic of China.,Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, People's Republic of China
| |
Collapse
|
43
|
Viral microRNAs Target a Gene Network, Inhibit STAT Activation, and Suppress Interferon Responses. Sci Rep 2017; 7:40813. [PMID: 28102325 PMCID: PMC5244407 DOI: 10.1038/srep40813] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 pre-microRNAs during latency that are processed to yield ~25 mature microRNAs (miRNAs). We were interested in identifying cellular networks that were targeted by KSHV-miRNAs and employed network building strategies using validated KSHV miRNA targets. Here, we report the identification of a gene network centering on the transcription factor- signal transducer and activator of transcription 3 (STAT3) that is targeted by KSHV miRNAs. KSHV miRNAs suppressed STAT3 and STAT5 activation and inhibited STAT3-dependent reporter activation upon IL6-treatment. KSHV miRNAs also repressed the induction of antiviral interferon-stimulated genes upon IFNα- treatment. Finally, we observed increased lytic reactivation of KSHV from latently infected cells upon STAT3 repression with siRNAs or a small molecule inhibitor. Our data suggest that treatment of infected cells with a STAT3 inhibitor and a viral replication inhibitor, ganciclovir, represents a possible strategy to eliminate latently infected cells without increasing virion production. Together, we show that KSHV miRNAs suppress a network of targets associated with STAT3, deregulate cytokine-mediated gene activation, suppress an interferon response, and influence the transition into the lytic phase of viral replication.
Collapse
|
44
|
Ouédraogo ZG, Biau J, Kemeny JL, Morel L, Verrelle P, Chautard E. Role of STAT3 in Genesis and Progression of Human Malignant Gliomas. Mol Neurobiol 2016; 54:5780-5797. [PMID: 27660268 DOI: 10.1007/s12035-016-0103-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in glioblastoma and has been identified as a relevant therapeutic target in this disease and many other human cancers. After two decades of intensive research, there is not yet any approved STAT3-based glioma therapy. In addition to the canonical activation by tyrosine 705 phosphorylation, concordant reports described a potential therapeutic relevance of other post-translational modifications including mainly serine 727 phosphorylation. Such reports reinforce the need to refine the strategy of targeting STAT3 in each concerned disease. This review focuses on the role of serine 727 and tyrosine 705 phosphorylation of STAT3 in glioma. It explores their contribution to glial cell transformation and to the mechanisms that make glioma escape to both immune control and standard treatment.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouédraogo
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Laboratoire de Pharmacologie, de Toxicologie et de Chimie Thérapeutique, Université de Ouagadougou, 03, Ouagadougou, BP 7021, Burkina Faso
| | - Julian Biau
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Département de Radiothérapie, Institut Curie, 91405, Orsay, France
| | - Jean-Louis Kemeny
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,CHU Clermont-Ferrand, Service d'Anatomopathologie, F-63003, Clermont-Ferrand, France
| | - Laurent Morel
- Clermont Université, Université Blaise-Pascal, GReD, UMR CNRS 6293, INSERM U1103, 24 Avenue des Landais BP80026, 63171, Aubière, France
| | - Pierre Verrelle
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France.,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.,Département de Radiothérapie, Institut Curie, 91405, Orsay, France
| | - Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA 7283, CREaT, BP 10448, F-63000, Clermont-Ferrand, France. .,Département de Radiothérapie, Laboratoire de Radio-Oncologie Expérimentale, Centre Jean Perrin, EA7283 CREaT - Université d'Auvergne, 58 rue Montalembert, F-63000-63011, Clermont Ferrand, France.
| |
Collapse
|
45
|
Aberrant NKG2D expression with IL-17 production of CD4+ T subsets in patients with type 2 diabetes. Immunobiology 2016; 222:944-951. [PMID: 27168217 DOI: 10.1016/j.imbio.2016.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 03/24/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes (T2D) is a systemic inflammatory disease. Although the natural killer group 2, member D (NKG2D) receptor, was not expressed normally on CD4+ T cells, the aberrant expression was found in pathological conditions such as in auto-immune diseases. However, the involvement of NKG2D in pathogenesis of T2D is unclear. We hypothesize that there is an inflammatory CD4+ T cell subpopulation expressing NKG2D and producing interleukin (IL)-17 in T2D. NKG2D expression on CD4+ T cells and their subsets were analyzed by multi-color staining using flow cytometry. Lymphocytes were activated by phorbol-12-myristate-13-acetate (PMA) and ionomycin, and were stained for intracellular IL-17. To investigate the mechanism of IL-17 production, patients' lymphocytes were stimulated using specific anti-T cell receptor (TCR) alone, anti-NKG2D alone or a combination of the two antibodies. CD4+ T cells and particularly, CD4+CD28nullT subset of T2D patients were highly expressed NKG2D and more prevalent compared to non-diabetic individuals (ND) (P=0.039 and P=0.022, respectively). Significantly higher percentages of CD4+CD28nullNKG2D+T cells of patients produced IL-17 when compared to those of ND (P=0.024) and were positively correlated with the level of glycated hemoglobin A1c (HbA1c) (R2=0.386, P=0.041). Additionally, this cell population could be stimulated by specific monoclonal anti-NKG2D to produce IL-17. In conclusion, CD4+CD28nullNKG2D+T cells were expanded in T2D, especially in patients with poor glycemic control. NKG2D may be one of the surrogate co-stimulatory receptors leading to irregular inflammatory function producing IL-17. An IL-17 producing CD4+CD28nullNKG2D+T cells may potentially be involved in pathogenesis and drive severity of the disease with the glycemic dependence. This particular cell type could be targeted for prognostic or therapeutic purposes.
Collapse
|
46
|
Kaur T, Borse V, Sheth S, Sheehan K, Ghosh S, Tupal S, Jajoo S, Mukherjea D, Rybak LP, Ramkumar V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J Neurosci 2016; 36:3962-77. [PMID: 27053204 PMCID: PMC4821909 DOI: 10.1523/jneurosci.3111-15.2016] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 01/19/2023] Open
Abstract
Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R-phenylisopropyladenosine (R-PIA) and showed that it reduced cisplatin-induced inflammation and apoptosis in the rat cochlea and preserved hearing. The mechanism of protection involves suppression of the NOX3 NADPH oxidase enzyme, a major target of cisplatin-induced reactive oxygen species (ROS) generation in the cochlea. ROS initiates an inflammatory and apoptotic cascade in the cochlea by activating STAT1 transcription factor, which is attenuated byR-PIA. Therefore, trans-tympanic delivery of A1AR agonists could effectively treat cisplatin ototoxicity.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | | | | | - Kelly Sheehan
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | | | | | | - Debashree Mukherjea
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | - Leonard P Rybak
- Department of Pharmacology and Department of Surgery, Southern Illinois University School of Medicine, Springfield, Illinois 62794
| | | |
Collapse
|
47
|
Yuan J, Zhang F, Niu R. Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep 2015; 5:17663. [PMID: 26631279 PMCID: PMC4668392 DOI: 10.1038/srep17663] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
STAT3 is both a transcription activator and an oncogene that is tightly regulated under normal physiological conditions. However, abundant evidence indicates that STAT3 is persistently activated in several cancers, with a crucial position in tumor onset and progression. In addition to its traditional role in cancer cell proliferation, invasion, and migration, STAT3 also promotes cancer through altering gene expression via epigenetic modification, inducing epithelial–mesenchymal transition (EMT) phenotypes in cancer cells, regulating the tumor microenvironment, and promoting cancer stem cells (CSCs) self-renewal and differentiation. STAT3 is regulated not only by the canonical cytokines and growth factors, but also by the G-protein-coupled receptors, cadherin engagement, Toll-like receptors (TLRs), and microRNA (miRNA). Despite the presence of diverse regulators and pivotal biological functions in cancer, no effective therapeutic inventions are available for inhibiting STAT3 and acquiring potent antitumor effects in the clinic. An improved understanding of the complex roles of STAT3 in cancer is required to achieve optimal therapeutic effects.
Collapse
Affiliation(s)
- Jie Yuan
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Fei Zhang
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| | - Ruifang Niu
- Public Laboratory, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Medical University, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin, 300060, People's Republic of China
| |
Collapse
|
48
|
Lu D, Liu L, Ji X, Gao Y, Chen X, Liu Y, Liu Y, Zhao X, Li Y, Li Y, Jin Y, Zhang Y, McNutt MA, Yin Y. The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat Immunol 2015; 16:1263-73. [PMID: 26479789 DOI: 10.1038/ni.3278] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/24/2015] [Indexed: 02/08/2023]
Abstract
Deregulation of the TH17 subset of helper T cells is closely linked with immunological disorders and inflammatory diseases. However, the mechanism by which TH17 cells are regulated remains elusive. Here we found that the phosphatase DUSP2 (PAC1) negatively regulated the development of TH17 cells. DUSP2 was directly associated with the signal transducer and transcription activator STAT3 and attenuated its activity through dephosphorylation of STAT3 at Tyr705 and Ser727. DUSP2-deficient mice exhibited severe susceptibility to experimental colitis, with enhanced differentiation of TH17 cells and secretion of proinflammatory cytokines. In clinical patients with ulcerative colitis, DUSP2 was downregulated by DNA methylation and was not induced during T cell activation. Our data demonstrate that DUSP2 is a true STAT3 phosphatase that modulates the development of TH17 cells in the autoimmune response and inflammation.
Collapse
Affiliation(s)
- Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liang Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xin Ji
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xi Chen
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yang Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yunqiao Li
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
49
|
Schaper F, Rose-John S. Interleukin-6: Biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 2015; 26:475-87. [DOI: 10.1016/j.cytogfr.2015.07.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023]
|
50
|
Ohtsuka S, Nakai-Futatsugi Y, Niwa H. LIF signal in mouse embryonic stem cells. JAKSTAT 2015; 4:e1086520. [PMID: 27127728 PMCID: PMC4802755 DOI: 10.1080/21623996.2015.1086520] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Since the establishment of mouse embryonic stem cells (mESCs) in the 1980s, a number of important notions on the self-renewal of pluripotent stem cells in vitro have been found. In serum containing conventional culture, an exogenous cytokine, leukemia inhibitory factor (LIF), is absolutely essential for the maintenance of pluripotency. In contrast, in serum-free culture with simultaneous inhibition of Map-kinase and Gsk3 (so called 2i-culture), LIF is no longer required. However, recent findings also suggest that LIF may have a role not covered by the 2i for the maintenance of naïve pluripotency. These suggest that LIF functions for the maintenance of naïve pluripotency in a context dependent manner. We summarize how LIF-signal pathway is converged to maintain the naïve state of pluripotency.
Collapse
Affiliation(s)
- Satoshi Ohtsuka
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Yoko Nakai-Futatsugi
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN ; Kobe, Japan
| | - Hitoshi Niwa
- Laboratory for Pluripotent Stem Cell Studies; Center for Developmental Biology (CDB) RIKEN; Kobe, Japan; Department of Pluripotent Stem Cell Biology; Institute of Molecular Embryology and Genetics (IMEG); Kumamoto University; Kumamoto, Japan
| |
Collapse
|