1
|
Zhao Y, Vidossich P, Forbush B, Ma J, Rinehart J, De Vivo M, Cao E. Structural basis for human NKCC1 inhibition by loop diuretic drugs. EMBO J 2025:10.1038/s44318-025-00368-6. [PMID: 39875725 DOI: 10.1038/s44318-025-00368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/11/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Pietro Vidossich
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, Via Morego 30, 16163, Italy
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Junfeng Ma
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, 20057, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Marco De Vivo
- Laboratory of Molecular Modelling & Drug Discovery, Istituto Italiano di Tecnologia, Genoa, Via Morego 30, 16163, Italy
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112-5650, USA.
| |
Collapse
|
2
|
Woodward SE, Neufeld LMP, Peña-Díaz J, Feng W, Serapio-Palacios A, Tarrant I, Deng W, Finlay BB. Both pathogen and host dynamically adapt pH responses along the intestinal tract during enteric bacterial infection. PLoS Biol 2024; 22:e3002761. [PMID: 39146372 PMCID: PMC11349234 DOI: 10.1371/journal.pbio.3002761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/27/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024] Open
Abstract
Enteric pathogens navigate distinct regional microenvironments within the intestine that cue important adaptive behaviors. We investigated the response of Citrobacter rodentium, a model of human pathogenic Escherichia coli infection in mice, to regional gastrointestinal pH. We found that small intestinal pH (4.4-4.8) triggered virulence gene expression and altered cell morphology, supporting initial intestinal attachment, while higher pH, representative of C. rodentium's replicative niches further along the murine intestine, supported pathogen growth. Gastric pH, a key barrier to intestinal colonization, caused significant accumulation of intra-bacterial reactive oxygen species (ROS), inhibiting growth of C. rodentium and related human pathogens. Within-host adaptation increased gastric acid survival, which may be due to a robust acid tolerance response (ATR) induced at colonic pH. However, the intestinal environment changes throughout the course of infection. We found that murine gastric pH decreases postinfection, corresponding to increased serum gastrin levels and altered host expression of acid secretion-related genes. Similar responses following Salmonella infection may indicate a protective host response to limit further pathogen ingestion. Together, we highlight interlinked bacterial and host adaptive pH responses as an important component of host-pathogen coevolution.
Collapse
Affiliation(s)
- Sarah E. Woodward
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Laurel M. P. Neufeld
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Jorge Peña-Díaz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wenny Feng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Antonio Serapio-Palacios
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Isabel Tarrant
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - B. Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Bovee S, Klump GM, Köppl C, Pyott SJ. The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss. Int J Mol Sci 2024; 25:5391. [PMID: 38791427 PMCID: PMC11121695 DOI: 10.3390/ijms25105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.
Collapse
Affiliation(s)
- Sonny Bovee
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
| | - Georg M. Klump
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sonja J. Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
- The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
5
|
Tang LQ, Fraebel J, Jin S, Winesett SP, Harrell J, Chang WH, Cheng SX. Calcium/calcimimetic via calcium-sensing receptor ameliorates cholera toxin-induced secretory diarrhea in mice. World J Gastroenterol 2024; 30:268-279. [PMID: 38314127 PMCID: PMC10835527 DOI: 10.3748/wjg.v30.i3.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Enterotoxins produce diarrhea through direct epithelial action and indirectly by activating the enteric nervous system. Calcium-sensing receptor (CaSR) inhibits both actions. The latter has been well documented in vitro but not in vivo. The hypothesis to be tested was that activating CaSR inhibits diarrhea in vivo. AIM To determine whether CaSR agonists ameliorate secretory diarrhea evoked by cholera toxin (CTX) in mice. METHODS CTX was given orally to C57BL/6 mice to induce diarrhea. Calcium and calcimimetic R568 were used to activate CaSR. To maximize their local intestinal actions, calcium was administered luminally via oral rehydration solution (ORS), whereas R568 was applied serosally using an intraperitoneal route. To verify that their actions resulted from the intestine, effects were also examined on Cre-lox intestine-specific CaSR knockouts. Diarrhea outcome was measured biochemically by monitoring changes in fecal Cl- or clinically by assessing stool consistency and weight loss. RESULTS CTX induced secretory diarrhea, as evidenced by increases in fecal Cl-, stool consistency, and weight loss following CTX exposure, but did not alter CaSR, neither in content nor in function. Accordingly, calcium and R568 were each able to ameliorate diarrhea when applied to diseased intestines. Intestinal CaSR involvement is suggested by gene knockout experiments where the anti-diarrheal actions of R568 were lost in intestinal epithelial CaSR knockouts (villinCre/Casrflox/flox) and neuronal CaSR knockouts (nestinCre/Casrflox/flox). CONCLUSION Treatment of acute secretory diarrheas remains a global challenge. Despite advances in diarrhea research, few have been made in the realm of diarrhea therapeutics. ORS therapy has remained the standard of care, although it does not halt the losses of intestinal fluid and ions caused by pathogens. There is no cost-effective therapeutic for diarrhea. This and other studies suggest that adding calcium to ORS or using calcimimetics to activate intestinal CaSR might represent a novel approach for treating secretory diarrheal diseases.
Collapse
Affiliation(s)
- Lie-Qi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, United States
| | - Johnathan Fraebel
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, United States
- College of Medicine, University of Florida, Gainesville, FL 32610, United States
| | - Shi Jin
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, United States
| | - Steven P Winesett
- Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32610, United States
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Gainesville, FL 32610, United States
| | - Jane Harrell
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, United States
| | - Wen-Han Chang
- Department of Medicine, Endocrine Research Unit, Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA 94121, United States
| | - Sam Xianjun Cheng
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Florida Shands Children’s Hospital, Gainesville, FL 32608, United States
| |
Collapse
|
6
|
de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Köchl R, Tybulewicz VLJ. T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023; 14:7844. [PMID: 38057317 PMCID: PMC10700356 DOI: 10.1038/s41467-023-43423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.
Collapse
Affiliation(s)
- Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Serena Melgrati
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Alexander Griffiths
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Renata Magueta
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Alexander Morrell
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
7
|
Johns JD, Olszewski R, Strepay D, Lopez IA, Ishiyama A, Hoa M. Emerging Mechanisms in the Pathogenesis of Menière's Disease: Evidence for the Involvement of Ion Homeostatic or Blood-Labyrinthine Barrier Dysfunction in Human Temporal Bones. Otol Neurotol 2023; 44:1057-1065. [PMID: 37733989 PMCID: PMC10840868 DOI: 10.1097/mao.0000000000004016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
HYPOTHESIS Analysis of human temporal bone specimens of patients with Menière's disease (MD) may demonstrate altered expression of gene products related to barrier formation and ionic homeostasis within cochlear structures compared with control specimens. BACKGROUND MD represents a challenging otologic disorder for investigation. Despite attempts to define the pathogenesis of MD, there remain many gaps in our understanding, including differences in protein expression within the inner ear. Understanding these changes may facilitate the identification of more targeted therapies for MD. METHODS Human temporal bones from patients with MD (n = 8) and age-matched control patients (n = 8) were processed with immunohistochemistry stains to detect known protein expression related to ionic homeostasis and barrier function in the cochlea, including CLDN11, CLU, KCNJ10, and SLC12A2. Immunofluorescence intensity analysis was performed to quantify protein expression in the stria vascularis, organ of Corti, and spiral ganglion neuron (SGN). RESULTS Expression of KCNJ10 was significantly reduced in all cochlear regions, including the stria vascularis (9.23 vs 17.52, p = 0.011), OC (14.93 vs 29.16, p = 0.014), and SGN (7.69 vs 18.85, p = 0.0048) in human temporal bone specimens from patients with MD compared with control, respectively. CLDN11 (7.40 vs 10.88, p = 0.049) and CLU (7.80 vs 17.51, p = 0.0051) expression was significantly reduced in the SGN. CONCLUSION The results of this study support that there may be differences in the expression of proteins related to ionic homeostasis and barrier function within the cochlea, potentially supporting the role of targeted therapies to treat MD.
Collapse
Affiliation(s)
- J. Dixon Johns
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Dillon Strepay
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ivan A. Lopez
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California School of Medicine, Los Angeles, CA, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, Georgetown University School of Medicine, Washington DC, USA
| |
Collapse
|
8
|
Delpire E, Koumangoye R. NKCC1 in human diseases: is the SLC12A2 gene haploinsufficient? Am J Physiol Cell Physiol 2023; 325:C385-C390. [PMID: 37399495 PMCID: PMC10393318 DOI: 10.1152/ajpcell.00238.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/17/2023] [Accepted: 06/17/2023] [Indexed: 07/05/2023]
Abstract
Mutations in the SLC12A2 gene, which encodes the Na-K-2Cl cotransporter-1 (NKCC1), are linked to various conditions such as neurodevelopmental deficits, deafness, and fluid secretion in different epithelia. Cases of complete NKCC1 deficiency in young patients are straightforward, leading to clinical presentations that overlap with the phenotypes observed in NKCC1 knockout mouse models. However, cases involving deleterious variants in one allele are more difficult, as the clinical presentation is variable, and the cause-effect relationship is not always clear. For instance, we worked on a single patient's case from multiple angles and published six related papers to convince ourselves of the cause-and-effect relationship between her NKCC1 mutation and her clinical presentations. The cluster of mutations in a small portion of the carboxyl terminus and its association with deafness point to a cause-and-effect relationship, even if the molecular mechanism is unknown. Overall, the preponderance of evidence suggests that the SLC12A2 gene is a human disease-causing and likely haploinsufficient gene that requires further investigation.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Fame RM, Xu H, Pragana A, Lehtinen M. Age-appropriate potassium clearance from perinatal cerebrospinal fluid depends on choroid plexus NKCC1. Fluids Barriers CNS 2023; 20:45. [PMID: 37328833 PMCID: PMC10276483 DOI: 10.1186/s12987-023-00438-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/06/2023] [Indexed: 06/18/2023] Open
Abstract
Regulation of the volume and electrolyte composition of the cerebrospinal fluid (CSF) is vital for brain development and function. The Na-K-Cl co-transporter NKCC1 in the choroid plexus (ChP) plays key roles in regulating CSF volume by co-transporting ions and mediating same-direction water movements. Our previous study showed ChP NKCC1 is highly phosphorylated in neonatal mice as the CSF K+ level drastically decreases and that overexpression of NKCC1 in the ChP accelerates CSF K+ clearance and reduces ventricle size [1]. These data suggest that NKCC1 mediates CSF K+ clearance following birth in mice. In this current study, we used CRISPR technology to create a conditional NKCC1 knockout mouse line and evaluated CSF K+ by Inductively Coupled Plasma Optical Emission spectroscopy (ICP-OES). We demonstrated ChP-specific reduction of total and phosphorylated NKCC1 in neonatal mice following embryonic intraventricular delivery of Cre recombinase using AAV2/5. ChP-NKCC1 knockdown was accompanied by a delayed perinatal clearance of CSF K+. No gross morphological disruptions were observed in the cerebral cortex. We extended our previous results by showing embryonic and perinatal rats shared key characteristics with mice, including decreased ChP NKCC1 expression level, increased ChP NKCC1 phosphorylation state, and increased CSF K+ levels compared to adult. Collectively, these follow up data support ChP NKCC1's role in age-appropriate CSF K+ clearance during neonatal development.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Present Address: Department of Neurosurgery, Stanford University, Stanford, CA, 94305, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Aja Pragana
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Lehtinen
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Fujimoto S, Leiwe MN, Aihara S, Sakaguchi R, Muroyama Y, Kobayakawa R, Kobayakawa K, Saito T, Imai T. Activity-dependent local protection and lateral inhibition control synaptic competition in developing mitral cells in mice. Dev Cell 2023:S1534-5807(23)00237-X. [PMID: 37290446 DOI: 10.1016/j.devcel.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
In developing brains, activity-dependent remodeling facilitates the formation of precise neuronal connectivity. Synaptic competition is known to facilitate synapse elimination; however, it has remained unknown how different synapses compete with one another within a post-synaptic cell. Here, we investigate how a mitral cell in the mouse olfactory bulb prunes all but one primary dendrite during the developmental remodeling process. We find that spontaneous activity generated within the olfactory bulb is essential. We show that strong glutamatergic inputs to one dendrite trigger branch-specific changes in RhoA activity to facilitate the pruning of the remaining dendrites: NMDAR-dependent local signals suppress RhoA to protect it from pruning; however, the subsequent neuronal depolarization induces neuron-wide activation of RhoA to prune non-protected dendrites. NMDAR-RhoA signals are also essential for the synaptic competition in the mouse barrel cortex. Our results demonstrate a general principle whereby activity-dependent lateral inhibition across synapses establishes a discrete receptive field of a neuron.
Collapse
Affiliation(s)
- Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan
| | - Marcus N Leiwe
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shuhei Aihara
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richi Sakaguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yuko Muroyama
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Reiko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; PRESTO and CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|
11
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Hayward DA, Vanes L, Wissmann S, Sivapatham S, Hartweger H, Biggs O’May J, de Boer LL, Mitter R, Köchl R, Stein JV, Tybulewicz VL. B cell-intrinsic requirement for WNK1 kinase in antibody responses in mice. J Exp Med 2023; 220:e20211827. [PMID: 36662229 PMCID: PMC9872328 DOI: 10.1084/jem.20211827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.
Collapse
Affiliation(s)
| | | | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Sujana Sivapatham
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
13
|
Lam P, Newland J, Faull RLM, Kwakowsky A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023; 28:1344. [PMID: 36771011 PMCID: PMC9920462 DOI: 10.3390/molecules28031344] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression. Expression of the K-Cl-2 (KCC2) and N-K-C1-1 (NKCC1) cation-chloride cotransporters (CCCs) has recently been linked to the disruption of GABAergic activity by affecting the polarity of GABAA receptor signaling. KCC2 and NKCC1 play a part in multiple neurological and neuropsychiatric disorders, making them a target of interest for potential therapies. This review explores current research suggesting the pathophysiological role and therapeutic importance of KCC2 and NKCC1 in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
14
|
Boyd-Shiwarski CR, Shiwarski DJ, Griffiths SE, Beacham RT, Norrell L, Morrison DE, Wang J, Mann J, Tennant W, Anderson EN, Franks J, Calderon M, Connolly KA, Cheema MU, Weaver CJ, Nkashama LJ, Weckerly CC, Querry KE, Pandey UB, Donnelly CJ, Sun D, Rodan AR, Subramanya AR. WNK kinases sense molecular crowding and rescue cell volume via phase separation. Cell 2022; 185:4488-4506.e20. [PMID: 36318922 PMCID: PMC9699283 DOI: 10.1016/j.cell.2022.09.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022]
Abstract
When challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume. WNK1 condensate formation is driven by its intrinsically disordered C terminus, whose evolutionarily conserved signatures are necessary for efficient phase separation and volume recovery. This disorder-encoded phase behavior occurs within physiological constraints and is activated in vivo by molecular crowding rather than changes in cell size. This allows kinase activity despite an inhibitory ionic milieu and permits cell volume recovery through condensate-mediated signal amplification. Thus, WNK kinases are physiological crowding sensors that phase separate to coordinate a cell volume rescue response.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shawn E Griffiths
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Rebecca T Beacham
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Logan Norrell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Daryl E Morrison
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Wang
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jacob Mann
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - William Tennant
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Eric N Anderson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jonathan Franks
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael Calderon
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kelly A Connolly
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Muhammad Umar Cheema
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire J Weaver
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Lubika J Nkashama
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Claire C Weckerly
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Katherine E Querry
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Christopher J Donnelly
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA
| | - Aylin R Rodan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT 84132, USA; Department of Internal Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT 84132, USA; Medical Service, VA Salt Lake City Health Care System, Salt Lake City, UT 84148, USA
| | - Arohan R Subramanya
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for Protein Conformational Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
15
|
Hollenhorst MI, Kumar P, Zimmer M, Salah A, Maxeiner S, Elhawy MI, Evers SB, Flockerzi V, Gudermann T, Chubanov V, Boehm U, Krasteva-Christ G. Taste Receptor Activation in Tracheal Brush Cells by Denatonium Modulates ENaC Channels via Ca2+, cAMP and ACh. Cells 2022; 11:cells11152411. [PMID: 35954259 PMCID: PMC9367940 DOI: 10.3390/cells11152411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023] Open
Abstract
Mucociliary clearance is a primary defence mechanism of the airways consisting of two components, ciliary beating and transepithelial ion transport (ISC). Specialised chemosensory cholinergic epithelial cells, named brush cells (BC), are involved in regulating various physiological and immunological processes. However, it remains unclear if BC influence ISC. In murine tracheae, denatonium, a taste receptor agonist, reduced basal ISC in a concentration-dependent manner (EC50 397 µM). The inhibition of bitter taste signalling components with gallein (Gβγ subunits), U73122 (phospholipase C), 2-APB (IP3-receptors) or with TPPO (Trpm5, transient receptor potential-melastatin 5 channel) reduced the denatonium effect. Supportively, the ISC was also diminished in Trpm5−/− mice. Mecamylamine (nicotinic acetylcholine receptor, nAChR, inhibitor) and amiloride (epithelial sodium channel, ENaC, antagonist) decreased the denatonium effect. Additionally, the inhibition of Gα subunits (pertussis toxin) reduced the denatonium effect, while an inhibition of phosphodiesterase (IBMX) increased and of adenylate cyclase (forskolin) reversed the denatonium effect. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh172 and the KCNQ1 potassium channel antagonist chromanol 293B both reduced the denatonium effect. Thus, denatonium reduces ISC via the canonical bitter taste signalling cascade leading to the Trpm5-dependent nAChR-mediated inhibition of ENaC as well as Gα signalling leading to a reduction in cAMP-dependent ISC. Therefore, BC activation contributes to the regulation of fluid homeostasis.
Collapse
Affiliation(s)
| | - Praveen Kumar
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Maxim Zimmer
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Alaa Salah
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Stephan Maxeiner
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | | | - Saskia B. Evers
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
| | - Veit Flockerzi
- Institute for Experimental and Clinical Pharmacology and Toxicology, Centre for Molecular Signalling, Saarland University, 66421 Homburg, Germany
| | - Thomas Gudermann
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Vladimir Chubanov
- Walter-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University and German Centre for Lung Research (DZL), 80366 Munich, Germany
| | - Ulrich Boehm
- Experimental Pharmacology, Centre for Molecular Signalling, School of Medicine, Saarland University, 66421 Homburg, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, 66421 Homburg, Germany
- Correspondence: ; Tel.: +49-6841-16-26101
| |
Collapse
|
16
|
Delpire E, Ben-Ari Y. A Wholistic View of How Bumetanide Attenuates Autism Spectrum Disorders. Cells 2022; 11:2419. [PMID: 35954263 PMCID: PMC9367773 DOI: 10.3390/cells11152419] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 01/27/2023] Open
Abstract
The specific NKCC1 cotransporter antagonist, bumetanide, attenuates the severity of Autism Spectrum Disorders (ASD), and many neurodevelopmental or neurodegenerative disorders in animal models and clinical trials. However, the pervasive expression of NKCC1 in many cell types throughout the body is thought to challenge the therapeutic efficacy of bumetanide. However, many peripheral functions, including intestinal, metabolic, or vascular, etc., are perturbed in brain disorders contributing to the neurological sequels. Alterations of these functions also increase the incidence of the disorder suggesting complex bidirectional links with the clinical manifestations. We suggest that a more holistic view of ASD and other disorders is warranted to account for the multiple sites impacted by the original intra-uterine insult. From this perspective, large-spectrum active repositioned drugs that act centrally and peripherally might constitute a useful approach to treating these disorders.
Collapse
Affiliation(s)
- Eric Delpire
- Departments of Anesthesiology and Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yehezkel Ben-Ari
- NeuroChlore, Campus Scientifique de Luminy, 163 Route de Luminy, 13273 Marseilles, France
| |
Collapse
|
17
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
18
|
Structural basis for inhibition of the Cation-chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat Commun 2022; 13:2747. [PMID: 35585053 PMCID: PMC9117670 DOI: 10.1038/s41467-022-30407-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cation-chloride cotransporters (CCCs) NKCC1 and NKCC2 catalyze electroneutral symport of 1 Na+, 1 K+, and 2 Cl− across cell membranes. NKCC1 mediates trans-epithelial Cl− secretion and regulates excitability of some neurons and NKCC2 is critical to renal salt reabsorption. Both transporters are inhibited by the so-called loop diuretics including bumetanide, and these drugs are a mainstay for treating edema and hypertension. Here, our single-particle electron cryo-microscopy structures supported by functional studies reveal an outward-facing conformation of NKCC1, showing bumetanide wedged into a pocket in the extracellular ion translocation pathway. Based on these and the previously published inward-facing structures, we define the translocation pathway and the conformational changes necessary for ion translocation. We also identify an NKCC1 dimer with separated transmembrane domains and extensive transmembrane and C-terminal domain interactions. We further define an N-terminal phosphoregulatory domain that interacts with the C-terminal domain, suggesting a mechanism whereby (de)phosphorylation regulates NKCC1 by tuning the strength of this domain association. Loop diuretics including bumetanide inhibit Na+-K+-Cl−-cotransporters (NKCCs) and are used for the treatment of edema and hypertension. Here, Zhao et. al. report structures of NKCC1 with bumetanide bound, revealing its mechanism of action that would facilitate design of novel diuretics.
Collapse
|
19
|
NKCC1 Deficiency in Forming Hippocampal Circuits Triggers Neurodevelopmental Disorder: Role of BDNF-TrkB Signalling. Brain Sci 2022; 12:brainsci12040502. [PMID: 35448033 PMCID: PMC9030861 DOI: 10.3390/brainsci12040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
The time-sensitive GABA shift from excitatory to inhibitory is critical in early neural circuits development and depends upon developmentally regulated expression of cation-chloride cotransporters NKCC1 and KCC2. NKCC1, encoded by the SLC12A2 gene, regulates neuronal Cl− homeostasis by chloride import working opposite KCC2. The high NKCC1/KCC2 expression ratio decreases in early neural development contributing to GABA shift. Human SLC12A2 loss-of-function mutations were recently associated with a multisystem disorder affecting neural development. However, the multisystem phenotype of rodent Nkcc1 knockout models makes neurodevelopment challenging to study. Brain-Derived Neurotrophic Factor (BDNF)-NTRK2/TrkB signalling controls KCC2 expression during neural development, but its impact on NKCC1 is still controversial. Here, we discuss recent evidence supporting BDNF-TrkB signalling controlling Nkcc1 expression and the GABA shift during hippocampal circuit formation. Namely, specific deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects their integration and maturation in the hippocampal circuitry and reduces Nkcc1 expression in their target region, the CA3 principal cells, leading to premature GABA shift, ultimately influencing the establishment of functional hippocampal circuitry and animal behaviour in adulthood. Thus, immature DGCs emerge as a potential therapeutic target as GABAergic transmission is vital for specific neural progenitors generating dentate neurogenesis in early development and the mature brain.
Collapse
|
20
|
Sekulic-Jablanovic M, Paproth J, Sgambato C, Albano G, Fuster DG, Bodmer D, Petkovic V. Lack of NHE6 and Inhibition of NKCC1 Associated With Increased Permeability in Blood Labyrinth Barrier-Derived Endothelial Cell Layer. Front Cell Neurosci 2022; 16:862119. [PMID: 35496913 PMCID: PMC9039518 DOI: 10.3389/fncel.2022.862119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022] Open
Abstract
Acoustic trauma, autoimmune inner ear disease, and presbycusis feature loss of the integrity of the blood-labyrinth barrier (BLB). Normal BLB function depends on endothelial structural integrity, which is supported and maintained by tight junctions and adherens junctions within the microvascular endothelial layer. When these junctions are disrupted, vascular leakage occurs. Tight junctions and adherens junctions are functionally and structurally linked, but the exact signaling pathways underlying their interaction remain unknown. In addition, solute carriers (SC) are essential for optimal exchange through BLB. Previously, we found that SC family member, the sodium–hydrogen exchanger NHE6, was expressed in all wildtype cochlear tissues, and that Nhe6-knockout mice displayed moderate hearing loss. Moreover, NHE6 depletion affected Trk protein turnover and endosomal signaling. Here, we investigated whether NHE6 might impact BLB integrity. We found that Nhe6-knockout, BLB-derived endothelial cells showed reduced expression of major junctional genes: Tjp1, F11r, Ocln, Cdh5, and Cldn5. Co-culturing BLB-derived endothelial cells with pericytes and/or perivascular resident macrophage-like melanocytes in a transwell system showed that monolayers of Nhe6-knockout BLB-derived cells had lower electrical resistance and higher permeability, compared to wildtype endothelial monolayers. Additionally, another SC, NKCC1, which was previously linked to congenital deafness, was downregulated in our Nhe6-knockout mouse model. Blocking NKCC1 with a NKCC1-specific inhibitor, bumetanide, in wildtype BLB-derived endothelial cells also caused the downregulation of major junctional proteins, particularly Tjp1 and F11r, which encode the zonula occludens and junctional adhesion molecule-1 proteins, respectively. Moreover, bumetanide treatment increased cell permeability. In conclusion, we showed that the lack or inhibition of NHE6 or NKCC1 affected the permeability of endothelial BLB-derived cells. These findings suggested that NHE6 and NKCC1 could serve as potential targets for modifying BLB permeability to facilitate drug delivery across the BLB to the cochlea or to protect the cochlea from ototoxic insults.
Collapse
Affiliation(s)
- Marijana Sekulic-Jablanovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- *Correspondence: Marijana Sekulic-Jablanovic,
| | - Jessica Paproth
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cinzia Sgambato
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuseppe Albano
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel G. Fuster
- Inselspital Bern, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Lam P, Vinnakota C, Guzmán BCF, Newland J, Peppercorn K, Tate WP, Waldvogel HJ, Faull RLM, Kwakowsky A. Beta-Amyloid (Aβ 1-42) Increases the Expression of NKCC1 in the Mouse Hippocampus. Molecules 2022; 27:2440. [PMID: 35458638 PMCID: PMC9027496 DOI: 10.3390/molecules27082440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation-chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABAA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD. NKCC1 and KCC2 regulate intracellular chloride [Cl-]i by accumulating and extruding Cl-, respectively. Increased NKCC1 expression in mature neurons has been reported in these disease conditions, and bumetanide, an NKCC1 inhibitor, is suggested to show potential therapeutic benefits. This study used primary mouse hippocampal neurons to explore if KCC2 and NKCC1 expression levels are altered following beta-amyloid (Aβ1-42) treatment and the potential neuroprotective effects of bumetanide. KCC2 and NKCC1 expression levels were also examined in 18-months-old male C57BL/6 mice following bilateral hippocampal Aβ1-42 stereotaxic injection. No change in KCC2 and NKCC1 expression levels were observed in mouse hippocampal neurons treated with 1 nM Aβ1-42, but NKCC1 expression increased 30-days post-Aβ1-42-injection in the CA1 region of the mouse hippocampus. Primary mouse hippocampal cultures were treated with 1 nM Aβ1-42 alone or with various concentrations of bumetanide (1 µM, 10 µM, 100 µM, 1 mM) to investigate the effect of the drug on cell viability. Aβ1-42 produced 53.1 ± 1.4% cell death after 5 days, and the addition of bumetanide did not reduce this. However, the drug at all concentrations significantly reduced cell viability, suggesting bumetanide is highly neurotoxic. In summary, these results suggest that chronic exposure to Aβ1-42 alters the balance of KCC2 and NKCC1 expression in a region-and layer-specific manner in mouse hippocampal tissue; therefore, this process most likely contributes to altered hippocampal E/I balance in this model. Furthermore, bumetanide induces hippocampal neurotoxicity, thus questioning its suitability for AD therapy. Further investigations are required to examine the effects of Aβ1-42 on KCC2 and NKCC1 expression and whether targeting CCCs might offer a therapeutic approach for AD.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Warren P. Tate
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
22
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
23
|
An L1 retrotransposon insertion-induced deafness mouse model for studying the development and function of the cochlear stria vascularis. Proc Natl Acad Sci U S A 2021; 118:2107933118. [PMID: 34583993 DOI: 10.1073/pnas.2107933118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 01/23/2023] Open
Abstract
Dysregulation of ion and potential homeostasis in the scala media is the most prevalent cause of hearing loss in mammals. However, it is not well understood how the development and function of the stria vascularis regulates this fluid homeostasis in the scala media. From a mouse genetic screen, we characterize a mouse line, named 299, that displays profound hearing impairment. Histology suggests that 299 mutant mice carry a severe, congenital structural defect of the stria vascularis. The in vivo recording of 299 mice using double-barreled electrodes shows that endocochlear potential is abolished and potassium concentration is reduced to ∼20 mM in the scala media, a stark contrast to the +80 mV endocochlear potential and the 150 mM potassium concentration present in healthy control mice. Genomic analysis revealed a roughly 7-kb-long, interspersed nuclear element (LINE-1 or L1) retrotransposon insertion on chromosome 11. Strikingly, the deletion of this L1 retrotransposon insertion from chromosome 11 restored the hearing of 299 mutant mice. In summary, we characterize a mouse model that enables the study of stria vascularis development and fluid homeostasis in the scala media.
Collapse
|
24
|
Portioli C, Ruiz Munevar MJ, De Vivo M, Cancedda L. Cation-coupled chloride cotransporters: chemical insights and disease implications. TRENDS IN CHEMISTRY 2021; 3:832-849. [PMID: 34604727 PMCID: PMC8461084 DOI: 10.1016/j.trechm.2021.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cation-coupled chloride cotransporters (CCCs) modulate the transport of sodium and/or potassium cations coupled with chloride anions across the cell membrane. CCCs thus help regulate intracellular ionic concentration and consequent cell volume homeostasis. This has been largely exploited in the past to develop diuretic drugs that act on CCCs expressed in the kidney. However, a growing wealth of evidence has demonstrated that CCCs are also critically involved in a great variety of other pathologies, motivating most recent drug discovery programs targeting CCCs. Here, we examine the structure–function relationship of CCCs. By linking recent high-resolution cryogenic electron microscopy (cryo-EM) data with older biochemical/functional studies on CCCs, we discuss the mechanistic insights and opportunities to design selective CCC modulators to treat diverse pathologies. The structural topology and function of all cation-coupled chloride cotransporters (CCCs) have been continuously investigated over the past 40 years, with great progress also thanks to the recent cryogenic electron microscopy (cryo-EM) resolution of the structures of five CCCs. In particular, such studies have clarified the structure–function relationship for the Na-K-Cl cotransporter NKCC1 and K-Cl cotransporters KCC1–4. The constantly growing evidence of the crucial involvement of CCCs in physiological and various pathological conditions, as well as the evidence of their wide expression in diverse body tissues, has promoted CCCs as targets for the discovery and development of new, safer, and more selective/effective drugs for a plethora of pathologies. Post-translational modification anchor points on the structure of CCCs may offer alternative strategies for small molecule drug discovery.
Collapse
Affiliation(s)
- Corinne Portioli
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | | | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, IIT, Via Morego, 30 16163 Genoa, Italy
| | - Laura Cancedda
- Brain Development and Disease Laboratory, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, Italy.,Dulbecco Telethon Institute, Via Varese 16b, 00185 Rome, Italy
| |
Collapse
|
25
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
26
|
Okuda K, Dang H, Kobayashi Y, Carraro G, Nakano S, Chen G, Kato T, Asakura T, Gilmore RC, Morton LC, Lee RE, Mascenik T, Yin WN, Barbosa Cardenas SM, O'Neal YK, Minnick CE, Chua M, Quinney NL, Gentzsch M, Anderson CW, Ghio A, Matsui H, Nagase T, Ostrowski LE, Grubb BR, Olsen JC, Randell SH, Stripp BR, Tata PR, O'Neal WK, Boucher RC. Secretory Cells Dominate Airway CFTR Expression and Function in Human Airway Superficial Epithelia. Am J Respir Crit Care Med 2021; 203:1275-1289. [PMID: 33321047 DOI: 10.1164/rccm.202008-3198oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Identification of the specific cell types expressing CFTR (cystic fibrosis [CF] transmembrane conductance regulator) is required for precision medicine therapies for CF. However, a full characterization of CFTR expression in normal human airway epithelia is missing. Objectives: To identify the cell types that contribute to CFTR expression and function within the proximal-distal axis of the normal human lung. Methods: Single-cell RNA (scRNA) sequencing (scRNA-seq) was performed on freshly isolated human large and small airway epithelial cells. scRNA in situ hybridization (ISH) and single-cell qRT-PCR were performed for validation. In vitro culture systems correlated CFTR function with cell types. Lentiviruses were used for cell type-specific transduction of wild-type CFTR in CF cells. Measurements and Main Results: scRNA-seq identified secretory cells as dominating CFTR expression in normal human large and, particularly, small airway superficial epithelia, followed by basal cells. Ionocytes expressed the highest CFTR levels but were rare, whereas the expression in ciliated cells was infrequent and low. scRNA ISH and single-cell qRT-PCR confirmed the scRNA-seq findings. CF lungs exhibited distributions of CFTR and ionocytes similar to those of normal control subjects. CFTR mediated Cl- secretion in cultures tracked secretory cell, but not ionocyte, densities. Furthermore, the nucleotide-purinergic regulatory system that controls CFTR-mediated hydration was associated with secretory cells and not with ionocytes. Lentiviral transduction of wild-type CFTR produced CFTR-mediated Cl- secretion in CF airway secretory cells but not in ciliated cells. Conclusions: Secretory cells dominate CFTR expression and function in human airway superficial epithelia. CFTR therapies may need to restore CFTR function to multiple cell types, with a focus on secretory cells.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Hong Dang
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Yoshihiko Kobayashi
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Satoko Nakano
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Gang Chen
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Takafumi Kato
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | - Lisa C Morton
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | - Rhianna E Lee
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | - Wei-Ning Yin
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | | | - Michael Chua
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | | | - Carlton W Anderson
- Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew Ghio
- Clinical Research Branch, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina
| | - Hirotoshi Matsui
- Center for Respiratory Disease, National Hospital Organization Tokyo Hospital, Kiyose, Tokyo, Japan; and
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | - John C Olsen
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Purushothama Rao Tata
- Department of Cell Biology, School of Medicine, Duke University, Durham, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/Cystic Fibrosis Research Center and
| | | |
Collapse
|
27
|
Kipnis PA, Kadam SD. Novel Concepts for the Role of Chloride Cotransporters in Refractory Seizures. Aging Dis 2021; 12:1056-1069. [PMID: 34221549 PMCID: PMC8219493 DOI: 10.14336/ad.2021.0129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is associated with a multitude of acquired or genetic neurological disorders characterized by a predisposition to spontaneous recurrent seizures. An estimated 15 million patients worldwide have ongoing seizures despite optimal management and are classified as having refractory epilepsy. Early-life seizures like those caused by perinatal hypoxic ischemic encephalopathy (HIE) remain a clinical challenge because although transient, they are difficult to treat and associated with poor neurological outcomes. Pediatric epilepsy syndromes are consistently associated with intellectual disability and neurocognitive comorbidities. HIE and arterial ischemic stroke are the most common causes of seizures in term neonates and account for 7.5-20% of neonatal seizures. Standard first-line treatments such as phenobarbital (PB) and phenytoin fail to curb seizures in ~50% of neonates. In the long-term, HIE can result in hippocampal sclerosis and temporal lobe epilepsy (TLE), which is the most common adult epilepsy, ~30% of which is associated with refractory seizures. For patients with refractory TLE seizures, a viable option is the surgical resection of the epileptic foci. Novel insights gained from investigating the developmental role of Cl- cotransporter function have helped to elucidate some of the mechanisms underlying the emergence of refractory seizures in both HIE and TLE. KCC2 as the chief Cl- extruder in neurons is critical for enabling strong hyperpolarizing synaptic inhibition in the brain and has been implicated in the pathophysiology underlying both conditions. More recently, KCC2 function has become a novel therapeutic target to combat refractory seizures.
Collapse
Affiliation(s)
- Pavel A Kipnis
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Shilpa D Kadam
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
28
|
Bazard P, Frisina RD, Acosta AA, Dasgupta S, Bauer MA, Zhu X, Ding B. Roles of Key Ion Channels and Transport Proteins in Age-Related Hearing Loss. Int J Mol Sci 2021; 22:6158. [PMID: 34200434 PMCID: PMC8201059 DOI: 10.3390/ijms22116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory system is a fascinating sensory organ that overall, converts sound signals to electrical signals of the nervous system. Initially, sound energy is converted to mechanical energy via amplification processes in the middle ear, followed by transduction of mechanical movements of the oval window into electrochemical signals in the cochlear hair cells, and finally, neural signals travel to the central auditory system, via the auditory division of the 8th cranial nerve. The majority of people above 60 years have some form of age-related hearing loss, also known as presbycusis. However, the biological mechanisms of presbycusis are complex and not yet fully delineated. In the present article, we highlight ion channels and transport proteins, which are integral for the proper functioning of the auditory system, facilitating the diffusion of various ions across auditory structures for signal transduction and processing. Like most other physiological systems, hearing abilities decline with age, hence, it is imperative to fully understand inner ear aging changes, so ion channel functions should be further investigated in the aging cochlea. In this review article, we discuss key various ion channels in the auditory system and how their functions change with age. Understanding the roles of ion channels in auditory processing could enhance the development of potential biotherapies for age-related hearing loss.
Collapse
Affiliation(s)
- Parveen Bazard
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Robert D. Frisina
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
- Department Communication Sciences and Disorders, College of Behavioral & Communication Sciences, Tampa, FL 33620, USA
| | - Alejandro A. Acosta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Sneha Dasgupta
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Mark A. Bauer
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoxia Zhu
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Bo Ding
- Department of Medical Engineering, College of Engineering, University of South Florida, Tampa, FL 33620, USA; (P.B.); (A.A.A.); (S.D.); (M.A.B.); (X.Z.); (B.D.)
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
29
|
Delpire E. Advances in the development of novel compounds targeting cation-chloride cotransporter physiology. Am J Physiol Cell Physiol 2021; 320:C324-C340. [PMID: 33356948 PMCID: PMC8294628 DOI: 10.1152/ajpcell.00566.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023]
Abstract
For about half a century, the pharmacology of electroneutral cation-chloride cotransporters has been dominated by a few drugs that are widely used in clinical medicine. Because these diuretic drugs are so good at what they do, there has been little incentive in expanding their pharmacology. The increasing realization that cation-chloride cotransporters are involved in many other key physiological processes and the knowledge that different tissues express homologous proteins with matching transport functions have rekindled interest in drug discovery. This review summarizes the methods available to assess the function of these transporters and describe the multiple efforts that have made to identify new compounds. We describe multiple screens targeting KCC2 function and one screen designed to find compounds that discriminate between NKCC1 and NKCC2. Two of the KCC2 screens identified new inhibitors that are 3-4 orders of magnitude more potent than furosemide. Additional screens identified compounds that purportedly increase cell surface expression of the cotransporter, as well as several FDA-approved drugs that increase KCC2 transcription and expression. The technical details of each screen biased them toward specific processes in the life cycle of the transporter, making these efforts independent and complementary. In addition, each drug discovery effort contributes to our understanding of the biology of the cotransporters.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
30
|
Gagnon KB, Delpire E. Sodium Transporters in Human Health and Disease. Front Physiol 2021; 11:588664. [PMID: 33716756 PMCID: PMC7947867 DOI: 10.3389/fphys.2020.588664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sodium (Na+) electrochemical gradients established by Na+/K+ ATPase activity drives the transport of ions, minerals, and sugars in both excitable and non-excitable cells. Na+-dependent transporters can move these solutes in the same direction (cotransport) or in opposite directions (exchanger) across both the apical and basolateral plasma membranes of polarized epithelia. In addition to maintaining physiological homeostasis of these solutes, increases and decreases in sodium may also initiate, directly or indirectly, signaling cascades that regulate a variety of intracellular post-translational events. In this review, we will describe how the Na+/K+ ATPase maintains a Na+ gradient utilized by multiple sodium-dependent transport mechanisms to regulate glucose uptake, excitatory neurotransmitters, calcium signaling, acid-base balance, salt-wasting disorders, fluid volume, and magnesium transport. We will discuss how several Na+-dependent cotransporters and Na+-dependent exchangers have significant roles in human health and disease. Finally, we will discuss how each of these Na+-dependent transport mechanisms have either been shown or have the potential to use Na+ in a secondary role as a signaling molecule.
Collapse
Affiliation(s)
- Kenneth B. Gagnon
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
31
|
Hampel P, Johne M, Gailus B, Vogel A, Schidlitzki A, Gericke B, Töllner K, Theilmann W, Käufer C, Römermann K, Kaila K, Löscher W. Deletion of the Na-K-2Cl cotransporter NKCC1 results in a more severe epileptic phenotype in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Neurobiol Dis 2021; 152:105297. [PMID: 33581254 DOI: 10.1016/j.nbd.2021.105297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Increased neuronal expression of the Na-K-2Cl cotransporter NKCC1 has been implicated in the generation of seizures and epilepsy. However, conclusions from studies on the NKCC1-specific inhibitor, bumetanide, are equivocal, which is a consequence of the multiple potential cellular targets and poor brain penetration of this drug. Here, we used Nkcc1 knockout (KO) and wildtype (WT) littermate control mice to study the ictogenic and epileptogenic effects of intrahippocampal injection of kainate. Kainate (0.23 μg in 50 nl) induced limbic status epilepticus (SE) in both KO and WT mice with similar incidence, latency to SE onset, and SE duration, but the number of intermittent generalized convulsive seizures during SE was significantly higher in Nkcc1 KO mice, indicating increased SE severity. Following SE, spontaneous recurrent seizures (SRS) were recorded by continuous (24/7) video/EEG monitoring at 0-1, 4-5, and 12-13 weeks after kainate, using depth electrodes in the ipsilateral hippocampus. Latency to onset of electrographic SRS and the incidence of electrographic SRS were similar in WT and KO mice. However, the frequency of electrographic seizures was lower whereas the frequency of electroclinical seizures was higher in Nkcc1 KO mice, indicating a facilitated progression from electrographic to electroclinical seizures during chronic epilepsy, and a more severe epileptic phenotype, in the absence of NKCC1. The present findings suggest that NKCC1 is dispensable for the induction, progression and manifestation of epilepsy, and they do not support the widely held notion that inhibition of NKCC1 in the brain is a useful strategy for preventing or modifying epilepsy.
Collapse
Affiliation(s)
- Philip Hampel
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Neurona Therapeutics, San Francisco, CA, USA
| | - Marie Johne
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Björn Gailus
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Alexandra Vogel
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Alina Schidlitzki
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Birthe Gericke
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | - Kathrin Töllner
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Wiebke Theilmann
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Christopher Käufer
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kerstin Römermann
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
| | - Kai Kaila
- Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, Finland
| | - Wolfgang Löscher
- Dept. of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
32
|
Baasch Christensen I, Cheng L, Brewer JR, Bartsch U, Fenton RA, Damkier HH, Praetorius J. Multiple Na,K-ATPase Subunits Colocalize in the Brush Border of Mouse Choroid Plexus Epithelial Cells. Int J Mol Sci 2021; 22:ijms22041569. [PMID: 33557294 PMCID: PMC7915972 DOI: 10.3390/ijms22041569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 01/24/2023] Open
Abstract
(1) Background: The unusual accumulation of Na,K-ATPase complexes in the brush border membrane of choroid plexus epithelial cells have intrigued researchers for decades. However, the full range of the expressed Na,K-ATPase subunits and their relation to the microvillus cytoskeleton remains unknown. (2) Methods: RT-PCR analysis, co-immunoprecipitation, native PAGE, mass spectrometry, and differential centrifugation were combined with high-resolution immunofluorescence histochemistry, proximity ligase assays, and stimulated emission depletion (STED) microscopy on mouse choroid plexus cells or tissues in order to resolve these issues. (3) Results: The choroid plexus epithelium expresses Na,K-ATPase subunits α1, α2, β1, β2, β3, and phospholemman. The α1, α2, β1, and β2, subunits are all localized to the brush border membrane, where they appear to form a complex. The ATPase complexes may stabilize in the brush border membrane via anchoring to microvillar actin indirectly through ankyrin-3 or directly via other co-precipitated proteins. Aquaporin 1 (AQP1) may form part of the proposed multi-protein complexes in contrast to another membrane protein, the Na-K-2Cl cotransporter 1 (NKCC1). NKCC1 expression seems necessary for full brush border membrane accumulation of the Na,K-ATPase in the choroid plexus. (4) Conclusion: A multitude of Na,K-ATPase subunits form molecular complexes in the choroid plexus brush border, which may bind to the cytoskeleton by various alternative actin binding proteins.
Collapse
Affiliation(s)
- Inga Baasch Christensen
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Lei Cheng
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Southern Denmark, 5230 Odense, Denmark;
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Robert A. Fenton
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Helle H. Damkier
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
| | - Jeppe Praetorius
- Department of Biomedicine, Faculty of Health Science, Aarhus University, 8000 Aarhus, Denmark; (I.B.C.); (L.C.); (R.A.F.); (H.H.D.)
- Correspondence: ; Tel.: +45-61820576
| |
Collapse
|
33
|
Bilal Shamsi M, Saleh M, Almuntashri M, Alharby E, Samman M, Peake RWA, Al-Fadhli FM, Alasmari A, Faqeih EA, Almontashiri NAM. Clinical characterization and further confirmation of the autosomal recessive SLC12A2 disease. J Hum Genet 2021; 66:689-695. [PMID: 33500540 DOI: 10.1038/s10038-021-00904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Heterozygous pathogenic variants in SLC12A2 are reported in patients with nonsyndromic hearing loss. Recently, homozygous loss-of-function variants have been reported in two patients with syndromic intellectual disability, with or without hearing loss. However, the clinical and molecular spectrum of SLC12A2 disease has yet to be characterized and confirmed. Using whole-exome sequencing, we detected a homozygous splicing variant in four patients from two independent families with severe developmental delay, microcephaly, respiratory abnormalities, and subtle dysmorphic features, with or without congenital hearing loss. We also reviewed the reported cases with pathogenic variants associated with autosomal dominant and recessive forms of the SLC12A2 disease. About 50% of the cases have syndromic and nonsyndromic congenital hearing loss. All patients harboring the recessive forms of the disease presented with severe global developmental delay. Interestingly, all reported variants are located in the c-terminal domain, suggesting a critical role of this domain for the proper function of the encoded co-transporter protein. In conclusion, our study provides an additional confirmation of the autosomal recessive SLC12A2 disease.
Collapse
Affiliation(s)
- Monis Bilal Shamsi
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mohamed Saleh
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Makki Almuntashri
- Department of Medical Imaging, King Abdulaziz Medical City, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Manar Samman
- Molecular Pathology, Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Roy W A Peake
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fatima M Al-Fadhli
- Unit of Genetic Diseases, Department of Pediatrics, Maternity and Children's Hospital, Almadinah Almunwarah, Saudi Arabia
| | - Ali Alasmari
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Eissa A Faqeih
- Section of Medical Genetics, Children's Specialist Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, Almadinah Almunwarah, Saudi Arabia. .,Faculty of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia.
| |
Collapse
|
34
|
Further confirmation of the association of SLC12A2 with non-syndromic autosomal-dominant hearing impairment. J Hum Genet 2021; 66:1169-1175. [PMID: 34226616 PMCID: PMC8612923 DOI: 10.1038/s10038-021-00954-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023]
Abstract
Congenital hearing impairment (HI) is genetically heterogeneous making its genetic diagnosis challenging. Investigation of novel HI genes and variants will enhance our understanding of the molecular mechanisms and to aid genetic diagnosis. We performed exome sequencing and analysis using DNA samples from affected members of two large families from Ghana and Pakistan, segregating autosomal-dominant (AD) non-syndromic HI (NSHI). Using in silico approaches, we modeled and evaluated the effect of the likely pathogenic variants on protein structure and function. We identified two likely pathogenic variants in SLC12A2, c.2935G>A:p.(E979K) and c.2939A>T:p.(E980V), which segregate with NSHI in a Ghanaian and Pakistani family, respectively. SLC12A2 encodes an ion transporter crucial in the homeostasis of the inner ear endolymph and has recently been reported to be implicated in syndromic and non-syndromic HI. Both variants were mapped to alternatively spliced exon 21 of the SLC12A2 gene. Exon 21 encodes for 17 residues in the cytoplasmatic tail of SLC12A2, is highly conserved between species, and preferentially expressed in cochlear tissues. A review of previous studies and our current data showed that out of ten families with either AD non-syndromic or syndromic HI, eight (80%) had variants within the 17 amino acid residue region of exon 21 (48 bp), suggesting that this alternate domain is critical to the transporter activity in the inner ear. The genotypic spectrum of SLC12A2 was expanded and the involvement of SLC12A2 in ADNSHI was confirmed. These results also demonstrate the role that SLC12A2 plays in ADNSHI in diverse populations including sub-Saharan Africans.
Collapse
|
35
|
Virtanen MA, Uvarov P, Hübner CA, Kaila K. NKCC1, an Elusive Molecular Target in Brain Development: Making Sense of the Existing Data. Cells 2020; 9:cells9122607. [PMID: 33291778 PMCID: PMC7761970 DOI: 10.3390/cells9122607] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Ionotropic GABA transmission is mediated by anion (mainly Cl−)-permeable GABAA receptors (GABAARs). In immature neurons, GABA exerts depolarizing and sometimes functionally excitatory actions, based on active uptake of Cl− by the Na-K-2Cl cotransporter NKCC1. While functional evidence firmly shows NKCC1-mediated ion transport in immature and diseased neurons, molecular detection of NKCC1 in the brain has turned out to be extremely difficult. In this review, we describe the highly inconsistent data that are available on the cell type-specific expression patterns of the NKCC1 mRNA and protein in the CNS. We discuss the major technical caveats, including a lack of knock-out-controlled immunohistochemistry in the forebrain, possible effects of alternative splicing on the binding of antibodies and RNA probes, and the wide expression of NKCC1 in different cell types, which make whole-tissue analyses of NKCC1 useless for studying its neuronal expression. We also review novel single-cell RNAseq data showing that most of the NKCC1 in the adult CNS may, in fact, be expressed in non-neuronal cells, especially in glia. As future directions, we suggest single-cell NKCC1 mRNA and protein analyses and the use of genetically tagged endogenous proteins or systematically designed novel antibodies, together with proper knock-out controls, for the visualization of endogenous NKCC1 in distinct brain cell types and their subcellular compartments.
Collapse
Affiliation(s)
- Mari A. Virtanen
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Pavel Uvarov
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller Universität, 07747 Jena, Germany;
| | - Kai Kaila
- Molecular and Integrative Biosciences, University of Helsinki, 00014 Helsinki, Finland; (M.A.V.); (P.U.)
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-407256759
| |
Collapse
|
36
|
|
37
|
Koumangoye R, Bastarache L, Delpire E. NKCC1: Newly Found as a Human Disease-Causing Ion Transporter. FUNCTION 2020; 2:zqaa028. [PMID: 33345190 PMCID: PMC7727275 DOI: 10.1093/function/zqaa028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023] Open
Abstract
Among the electroneutral Na+-dependent chloride transporters, NKCC1 had until now evaded identification as a protein causing human diseases. The closely related SLC12A transporters, NKCC2 and NCC have been identified some 25 years ago as responsible for Bartter and Gitelman syndromes: two renal-dependent salt wasting disorders. Absence of disease was most surprising since the NKCC1 knockout mouse was shown in 1999 to be viable, albeit with a wide range of deleterious phenotypes. Here we summarize the work of the past 5 years that introduced us to clinical cases involving NKCC1. The most striking cases are of 3 children with inherited mutations, who have complete absence of NKCC1 expression. These cases establish that lack of NKCC1 causes deafness; CFTR-like secretory defects with mucus accumulation in lung and intestine; severe xerostomia, hypotonia, dysmorphic facial features, and severe neurodevelopmental disorder. Another intriguing case is of a patient with a dominant deleterious SLC12A2 allele. This de novo mutation introduced a premature stop codon leading to a truncated protein. This mutant transporter seems to exert dominant-negative effect on wild-type transporter only in epithelial cells. The patient who suffers from lung, bladder, intestine, pancreas, and multiple endocrine abnormalities has, however, normal hearing and cognition. Finally, new reports substantiate the haploinsufficiency prediction of the SLC12A2 gene. Cases with single allele mutations in SLC12A2 have been linked to hearing loss and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rainelli Koumangoye
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA,Corresponding author. E-mail:
| |
Collapse
|
38
|
Garneau AP, Slimani S, Fiola MJ, Tremblay LE, Isenring P. Multiple Facets and Roles of Na+-K+-Cl−Cotransport: Mechanisms and Therapeutic Implications. Physiology (Bethesda) 2020; 35:415-429. [DOI: 10.1152/physiol.00012.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Na+-K+-Cl−cotransporters play key physiological and pathophysiological roles by regulating the membrane potential of many cell types and the movement of fluid across a variety of epithelial or endothelial structures. As such, they should soon become invaluable targets for the treatment of various disorders including pain, epilepsy, brain edema, and hypertension. This review highlights the nature of these roles, the mechanisms at play, and the unresolved issues in the field.
Collapse
Affiliation(s)
- A. P. Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
- Cardiometabolic Axis, School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, Canada
| | - S. Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - M. J. Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - L. E. Tremblay
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| | - P. Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Québec, Canada; and
| |
Collapse
|
39
|
Murillo-de-Ozores AR, Chávez-Canales M, de los Heros P, Gamba G, Castañeda-Bueno M. Physiological Processes Modulated by the Chloride-Sensitive WNK-SPAK/OSR1 Kinase Signaling Pathway and the Cation-Coupled Chloride Cotransporters. Front Physiol 2020; 11:585907. [PMID: 33192599 PMCID: PMC7606576 DOI: 10.3389/fphys.2020.585907] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.
Collapse
Affiliation(s)
- Adrián Rafael Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Chávez-Canales
- Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez and Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de los Heros
- Unidad de Investigación UNAM-INC, Research Division, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
40
|
Köchl R, Vanes L, Llorian Sopena M, Chakravarty P, Hartweger H, Fountain K, White A, Cowan J, Anderson G, Tybulewicz VLJ. Critical role of WNK1 in MYC-dependent early mouse thymocyte development. eLife 2020; 9:e56934. [PMID: 33051000 PMCID: PMC7591260 DOI: 10.7554/elife.56934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the β-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases, and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.
Collapse
Affiliation(s)
- Robert Köchl
- The Francis Crick InstituteLondonUnited Kingdom
- Kings College LondonLondonUnited Kingdom
| | | | | | | | | | | | - Andrea White
- University of BirminghamBirminghamUnited Kingdom
| | | | | | - Victor LJ Tybulewicz
- The Francis Crick InstituteLondonUnited Kingdom
- Imperial CollegeLondonUnited Kingdom
| |
Collapse
|
41
|
Zhang L, Wu X, Lin X. Gene therapy for genetic mutations affecting non-sensory cells in the cochlea. Hear Res 2020; 394:107858. [PMID: 31791650 DOI: 10.1016/j.heares.2019.107858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/13/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Congenital hearing loss (HL) affects about 1 in every 500 infants. Among those affected more than half are caused by genetic mutations. According to the cellular sites affected by mutations in the cochlea, deafness genes could be classified into three major groups: those affecting the function of hair cells and synapses, cochlear supporting cells, and cells in the stria vascularis (SV) as well as in the lateral wall. The second and third groups account for more than half of all sensorineural hearing loss (SNHL) cases caused by genetic mutations. Current major treatment options for SNHL patients are hearing aids and cochlear implants (CIs). Hearing aids can only help patients with moderate to severe HL. Resolution of CIs is still improving and these devices are quite expensive especially when lifetime rehabilitation and maintenance costs are included. Tremendous efforts have been made to find novel treatments that are expected to restore hearing with higher-resolution and more natural quality, and to have a significantly lower cost over the lifetime of uses. Gene therapy studies have made impressive progresses in preclinical trials. This review focuses on deafness genes that affect supporting cells and cells in the SV of the cochlea. We will discuss recent progresses and remaining challenges for gene therapies targeting mutations in deafness genes belonging to this category.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xuewen Wu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA.
| |
Collapse
|
42
|
Differential expression of Na +/K +/Cl - cotransporter 1 in neurons and glial cells within the superficial spinal dorsal horn of rodents. Sci Rep 2020; 10:11715. [PMID: 32678166 PMCID: PMC7367302 DOI: 10.1038/s41598-020-68638-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
Although convincing experimental evidence indicates that Na+/K+/Cl- cotransporter 1 (NKCC1) is involved in spinal nociceptive information processing and in the generation of hyperalgesia and allodynia in chronic pain states, the cellular distribution of NKCC1 in the superficial spinal dorsal horn is still poorly understood. Because this important piece of knowledge is missing, the effect of NKCC1 on pain processing is still open to conflicting interpretations. In this study, to provide the missing experimental data, we investigated the cellular distribution of NKCC1 in the superficial spinal dorsal horn by immunohistochemical methods. We demonstrated for the first time that almost all spinal axon terminals of peptidergic nociceptive primary afferents express NKCC1. In contrast, virtually all spinal axon terminals of nonpeptidergic nociceptive primary afferents were negative for NKCC1. Data on the colocalization of NKCC1 with axonal and glial markers indicated that it is almost exclusively expressed by axon terminals and glial cells in laminae I-IIo. In lamina IIi, however, we observed a strong immunostaining for NKCC1 also in the dendrites and cell bodies of PV-containing inhibitory neurons and a weak staining in PKCγ-containing excitatory neurons. Our results facilitate further thinking about the role of NKCC1 in spinal pain processing.
Collapse
|
43
|
Marshall-Phelps KL, Kegel L, Baraban M, Ruhwedel T, Almeida RG, Rubio-Brotons M, Klingseisen A, Benito-Kwiecinski SK, Early JJ, Bin JM, Suminaite D, Livesey MR, Möbius W, Poole RJ, Lyons DA. Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b. J Cell Biol 2020; 219:e201909022. [PMID: 32364583 PMCID: PMC7337504 DOI: 10.1083/jcb.201909022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/09/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl- (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon-myelin interface. Cell-type-specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity-related solute homeostasis at the axon-myelin interface, and the integrity of myelinated axons.
Collapse
Affiliation(s)
| | - Linde Kegel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Marion Baraban
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Torben Ruhwedel
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Anna Klingseisen
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jason J. Early
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jenea M. Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daumante Suminaite
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew R. Livesey
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Richard J. Poole
- Department of Cell and Developmental Biology, University College London, London, UK
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
44
|
Stödberg T, Magnusson M, Lesko N, Wredenberg A, Martin Munoz D, Stranneheim H, Wedell A. SLC12A2 mutations cause NKCC1 deficiency with encephalopathy and impaired secretory epithelia. NEUROLOGY-GENETICS 2020; 6:e478. [PMID: 32754646 PMCID: PMC7357422 DOI: 10.1212/nxg.0000000000000478] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
Abstract
Objective To describe the phenotype in 2 sisters with a rare constellation of neurologic symptoms and secretory impairments and to identify the etiology by the use of whole-genome sequencing (WGS). Methods After an extensive workup failed to reveal the cause of disease, in a girl with a previously not reported phenotype, WGS of the proband, her diseased older sister, an older healthy brother, and their parents was performed, and potentially pathogenic variants were analyzed. Results The proband and her older sister both presented with neonatal Staphylococcus aureus parotitis, apneas, disappearance of the Moro reflex, and hypotonia. The proband survived. Her brain MRI showed white matter and basal ganglia abnormalities, and CSF damage biomarkers were increased. At age 8 years, she exhibits a constellation of symptoms including severe neurodevelopmental disorder, hearing impairment, gastrointestinal problems, and a striking lack of tear fluid, saliva, and sweat. Her respiratory mucosa is dry with potentially life-threatening mucus plugging. Through WGS, 2 loss-of-function variants in SLC12A2 were identified that follow an autosomal recessive inheritance pattern. Conclusions Taken together with a single previously reported case and the close resemblance to the phenotypes of corresponding mouse models, our study firmly establishes biallelic variants in SLC12A2 as causing human disease and adds data regarding the neurologic phenotype.
Collapse
Affiliation(s)
- Tommy Stödberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Måns Magnusson
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Lesko
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wredenberg
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Martin Munoz
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Henrik Stranneheim
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Women's and Children's Health (T.S.), Department of Molecular Medicine and Surgery (M.M., N.L., H.S., A. Wedell), Science for Life Laboratory (M.M., H.S., A. Wedell), Department of Medical Biochemistry and Biophysics (A. Wredenberg), and Department of Clinical Neuroscience (D.M.M.), Karolinska Institutet; and Department of Pediatric Neurology (T.S.), Centre for Inherited Metabolic Diseases (N.L., A. Wredenberg, H.S., A. Wedell), and Department of Neuroradiology (D.M.M.), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
45
|
Demian WL, Persaud A, Jiang C, Coyaud É, Liu S, Kapus A, Kafri R, Raught B, Rotin D. The Ion Transporter NKCC1 Links Cell Volume to Cell Mass Regulation by Suppressing mTORC1. Cell Rep 2020; 27:1886-1896.e6. [PMID: 31067471 DOI: 10.1016/j.celrep.2019.04.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Accepted: 04/05/2019] [Indexed: 01/08/2023] Open
Abstract
mTORC1 regulates cellular growth and is activated by growth factors and by essential amino acids such as Leu. Leu enters cells via the Leu transporter LAT1-4F2hc (LAT1). Here we show that the Na+/K+/2Cl- cotransporter NKCC1 (SLC12A2), a known regulator of cell volume, is present in complex with LAT1. We further show that NKCC1 depletion or deletion enhances LAT1 activity, as well as activation of Akt and Erk, leading to activation of mTORC1 in cells, colonic organoids, and mouse colon. Moreover, NKCC1 depletion reduces intracellular Na+ concentration and cell volume (size) and mass and stimulates cell proliferation. NKCC1, therefore, suppresses mTORC1 by inhibiting its key activating signaling pathways. Importantly, by linking ion transport and cell volume regulation to mTORC1 function, NKCC1 provides a long-sought link connecting cell volume (size) to cell mass regulation.
Collapse
Affiliation(s)
- Wael L Demian
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Avinash Persaud
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chong Jiang
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Shixuan Liu
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andras Kapus
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada; St. Michael Hospital Research Institute, Toronto, ON M5B 1W8, Canada
| | - Ran Kafri
- Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2C1, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Biochemistry Department, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
46
|
Macnamara EF, D’Souza P, Tifft CJ. The undiagnosed diseases program: Approach to diagnosis. TRANSLATIONAL SCIENCE OF RARE DISEASES 2020; 4:179-188. [PMID: 32477883 PMCID: PMC7250153 DOI: 10.3233/trd-190045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Undiagnosed and rare conditions are collectively common and affect millions of people worldwide. The NIH Undiagnosed Diseases Program (UDP) strives to achieve both a comprehensive diagnosis and a better understanding of the mechanisms of disease for many of these individuals. Through the careful review of records, a well-orchestrated inpatient evaluation, genomic sequencing and testing, and with the use of emerging strategies such as matchmaking programs, the UDP succeeds nearly 30 percent of the time for these highly selective cases. Although the UDP process is built on a unique set of resources, case examples demonstrate steps genetic professionals can take, in both clinical and research settings, to arrive at a diagnosis for their most challenging cases.
Collapse
Affiliation(s)
- Ellen F. Macnamara
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Precilla D’Souza
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
| | - Undiagnosed Diseases Network
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia J. Tifft
- National Institutes of Health, Undiagnosed Diseases Program, Common Fund, Office of the Director, Bethesda, MD, USA
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Mutai H, Wasano K, Momozawa Y, Kamatani Y, Miya F, Masuda S, Morimoto N, Nara K, Takahashi S, Tsunoda T, Homma K, Kubo M, Matsunaga T. Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 2020; 16:e1008643. [PMID: 32294086 PMCID: PMC7159186 DOI: 10.1371/journal.pgen.1008643] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
Hereditary hearing loss is challenging to diagnose because of the heterogeneity of the causative genes. Further, some genes involved in hereditary hearing loss have yet to be identified. Using whole-exome analysis of three families with congenital, severe-to-profound hearing loss, we identified a missense variant of SLC12A2 in five affected members of one family showing a dominant inheritance mode, along with de novo splice-site and missense variants of SLC12A2 in two sporadic cases, as promising candidates associated with hearing loss. Furthermore, we detected another de novo missense variant of SLC12A2 in a sporadic case. SLC12A2 encodes Na+, K+, 2Cl- cotransporter (NKCC) 1 and plays critical roles in the homeostasis of K+-enriched endolymph. Slc12a2-deficient mice have congenital, profound deafness; however, no human variant of SLC12A2 has been reported as associated with hearing loss. All identified SLC12A2 variants mapped to exon 21 or its 3'-splice site. In vitro analysis indicated that the splice-site variant generates an exon 21-skipped SLC12A2 mRNA transcript expressed at much lower levels than the exon 21-included transcript in the cochlea, suggesting a tissue-specific role for the exon 21-encoded region in the carboy-terminal domain. In vitro functional analysis demonstrated that Cl- influx was significantly decreased in all SLC12A2 variants studied. Immunohistochemistry revealed that SLC12A2 is located on the plasma membrane of several types of cells in the cochlea, including the strial marginal cells, which are critical for endolymph homeostasis. Overall, this study suggests that variants affecting exon 21 of the SLC12A2 transcript are responsible for hereditary hearing loss in humans.
Collapse
Affiliation(s)
- Hideki Mutai
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
| | - Koichiro Wasano
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Yoshidakonoecho, Kyoto, Japan
| | - Fuyuki Miya
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
| | - Sawako Masuda
- Department of Otorhinolaryngology, National Hospital Organization Mie National Hospital, Tsu, Mie, Japan
| | - Noriko Morimoto
- Department of Otorhinolaryngology, National Center for Child Health and Development, Setagaya, Tokyo, Japan
| | - Kiyomitsu Nara
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
| | - Satoe Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Tatsuhiko Tsunoda
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kazuaki Homma
- Department of Otolaryngology-Head and Neck Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- The Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, Illinois, United States of America
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tatsuo Matsunaga
- Division of Hearing and Balance Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
- Medical Genetics Center, National Hospital Organization Tokyo Medical Center, Meguro, Tokyo, Japan
| |
Collapse
|
48
|
Felker GM, Ellison DH, Mullens W, Cox ZL, Testani JM. Diuretic Therapy for Patients With Heart Failure. J Am Coll Cardiol 2020; 75:1178-1195. [DOI: 10.1016/j.jacc.2019.12.059] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022]
|
49
|
Li Q, Aalling NN, Förstera B, Ertürk A, Nedergaard M, Møllgård K, Xavier ALR. Aquaporin 1 and the Na +/K +/2Cl - cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS 2020; 17:15. [PMID: 32046744 PMCID: PMC7014736 DOI: 10.1186/s12987-020-0176-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The classical view of cerebrospinal fluid (CSF) production posits the choroid plexus as its major source. Although previous studies indicate that part of CSF production occurs in the subarachnoid space (SAS), the mechanisms underlying extra-choroidal CSF production remain elusive. We here investigated the distributions of aquaporin 1 (AQP1) and Na+/K+/2Cl− cotransporter 1 (NKCC1), key proteins for choroidal CSF production, in the adult rodent brain and spinal cord. Methods We have accessed AQP1 distribution in the intact brain using uDISCO tissue clearing technique and by Western blot. AQP1 and NKCC1 cellular localization were accessed by immunohistochemistry in brain and spinal cord obtained from adult rodents. Imaging was performed using light-sheet, confocal and bright field light microscopy. Results We determined that AQP1 is widely distributed in the leptomeningeal vasculature of the intact brain and that its glycosylated isoform is the most prominent in different brain regions. Moreover, AQP1 and NKCC1 show specific distributions in the smooth muscle cell layer of penetrating arterioles and veins in the brain and spinal cord, and in the endothelia of capillaries and venules, restricted to the SAS vasculature. Conclusions Our results shed light on the molecular framework that may underlie extra-choroidal CSF production and we propose that AQP1 and NKCC1 within the leptomeningeal vasculature, specifically at the capillary level, are poised to play a role in CSF production throughout the central nervous system.
Collapse
Affiliation(s)
- Qianliang Li
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nadia N Aalling
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Benjamin Förstera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich (LMU), 81377, Munich, Germany
| | - Ali Ertürk
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians University of Munich (LMU), 81377, Munich, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark.,Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anna L R Xavier
- Center for Translational Neuromedicine, Division of Glial Disease and Therapeutics, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
50
|
Delpire E, Guo J. Cryo-EM structures of DrNKCC1 and hKCC1: a new milestone in the physiology of cation-chloride cotransporters. Am J Physiol Cell Physiol 2020; 318:C225-C237. [PMID: 31747317 PMCID: PMC7052613 DOI: 10.1152/ajpcell.00465.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023]
Abstract
New milestones have been reached in the field of cation-Cl- cotransporters with the recently released cryo-electron microscopy (EM) structures of the Danio rerio (zebrafish) Na+-K+-2Cl- cotransporter (DrNKCC1) and the human K+-Cl- cotransporter (hKCC1). In this review we provide a brief timeline that identifies the multiple breakthroughs in the field of solute carrier 12 transporters that led to the structure resolution of two of its key members. While cation-Cl- cotransporters share the overall architecture of carriers belonging to the amino acid-polyamine-organocation (APC) superfamily and some of their substrate binding sites, several new insights are gained from the two individual structures. A first major feature relates to the largest extracellular domain between transmembrane domain (TMD) 5 and TMD6 of KCC1, which stabilizes the dimer and forms a cap that likely participates in extracellular gating. A second feature is the conservation of the K+ and Cl- binding sites in both structures and evidence of an unexpected second Cl- coordination site in the KCC1 structure. Structural data are discussed in the context of previously published studies that examined the basic and kinetics properties of these cotransport mechanisms. A third characteristic is the evidence of an extracellular gate formed by conserved salt bridges between charged residues located toward the end of TMD3 and TMD4 in both transporters and the existence of an additional neighboring bridge in the hKCC1 structure. A fourth feature of these newly solved structures relates to the multiple points of contacts between the monomer forming the cotransporter homodimer units. These involve the TMDs, the COOH-terminal domains, and the large extracellular loop for hKCC1.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jiangtao Guo
- Department of Biophysics, Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|