1
|
Hu AJ, Li W, Dinh C, Zhang Y, Hu JK, Daniele SG, Hou X, Yang Z, Asara JM, Hu GF, Farmer SR, Hu MG. CDK6 inhibits de novo lipogenesis in white adipose tissues but not in the liver. Nat Commun 2024; 15:1091. [PMID: 38316780 PMCID: PMC10844593 DOI: 10.1038/s41467-024-45294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
Increased de novo lipogenesis (DNL) in white adipose tissue is associated with insulin sensitivity. Under both Normal-Chow-Diet and High-Fat-Diet, mice expressing a kinase inactive Cyclin-dependent kinase 6 (Cdk6) allele (K43M) display an increase in DNL in visceral white adipose tissues (VAT) as compared to wild type mice (WT), accompanied by markedly increased lipogenic transcriptional factor Carbohydrate-responsive element-binding proteins (CHREBP) and lipogenic enzymes in VAT but not in the liver. Treatment of WT mice under HFD with a CDK6 inhibitor recapitulates the phenotypes observed in K43M mice. Mechanistically, CDK6 phosphorylates AMP-activated protein kinase, leading to phosphorylation and inactivation of acetyl-CoA carboxylase, a key enzyme in DNL. CDK6 also phosphorylates CHREBP thus preventing its entry into the nucleus. Ablation of runt related transcription factor 1 in K43M mature adipocytes reverses most of the phenotypes observed in K43M mice. These results demonstrate a role of CDK6 in DNL and a strategy to alleviate metabolic syndromes.
Collapse
Affiliation(s)
- Alexander J Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Wei Li
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Calvin Dinh
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Yongzhao Zhang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Jamie K Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- University of Miami Miller School of Medicine, Dermatology. 1295 NW 14th St. University of Miami Hospital South Bldg. Suites K-M, Miami, FL, USA
| | - Stefano G Daniele
- Yale School of Medicine, MD-PhD program, 333 Cedar St, New Haven, CT, USA
| | - Xiaoli Hou
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, PR China
| | - Zixuan Yang
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
- TUFTS University Friedman School of Nutrition Science and Policy, TUFTS University, 150 Harrison Avenue, MA, Boston, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Guo-Fu Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Stephen R Farmer
- Boston University School of Medicine, Department of Biochemistry, 72E Concord St, Boston, MA, USA
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
2
|
Hu AJ, Li W, Pathak A, Hu GF, Hou X, Farmer SR, Hu MG. CDK6 is essential for mesenchymal stem cell proliferation and adipocyte differentiation. Front Mol Biosci 2023; 10:1146047. [PMID: 37664186 PMCID: PMC10469316 DOI: 10.3389/fmolb.2023.1146047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Overweight or obesity poses a significant risk of many obesity-related metabolic diseases. Among all the potential new therapies, stem cell-based treatments hold great promise for treating many obesity-related metabolic diseases. However, the mechanisms regulating adipocyte stem cells/progenitors (precursors) are unknown. The aim of this study is to investigate if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Methods: Cyclin-dependent kinase 6 (Cdk6) mouse models together with stem cells derived from stromal vascular fraction (SVF) or mouse embryonic fibroblasts (MEFs) of Cdk6 mutant mice were used to determine if CDK6 is required for mesenchymal stem cell proliferation and adipocyte differentiation. Results: We found that mice with a kinase inactive CDK6 mutants (K43M) had fewer precursor residents in the SVF of adult white adipose tissue (WAT). Stem cells from the SVF or MEFs of K43M mice had defects in proliferation and differentiation into the functional fat cells. In contrast, mice with a constitutively active kinase CDK6 mutant (R31C) had the opposite traits. Ablation of RUNX1 in both mature and precursor K43M cells, reversed the phenotypes. Conclusion: These results represent a novel role of CDK6 in regulating precursor numbers, proliferation, and differentiation, suggesting a potential pharmacological intervention for using CDK6 inhibitors in the treatment of obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Alexander J. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Department of Surgery, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Wei Li
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Apana Pathak
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Assay Research and Development Department, GRAIL LLC, Menlo Park, CA, United States
| | - Guo-Fu Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| | - Xiaoli Hou
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
- Center for Analysis and Testing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Stephen R. Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Miaofen G. Hu
- Division of Hematology and Oncology, Tufts Medical Center, Department of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Wang N, Li Z, Li S, Li Y, Gao L, Bao X, Wang K, Liu C, Xue P, Liu S. Curculigoside Ameliorates Bone Loss by Influencing Mesenchymal Stem Cell Fate in Aging Mice. Front Cell Dev Biol 2021; 9:767006. [PMID: 34926455 PMCID: PMC8678408 DOI: 10.3389/fcell.2021.767006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Senile osteoporosis is characterized by increased bone loss and fat accumulation in marrow. Curculigoside (CCG) is the major bioactive component of Curculigo orchioides, which has been used as anti-osteoporosis therapy for elder patients since antiquity. We aimed to investigate the underlying mechanisms by which CCG regulated the bone-fat balance in marrow of aging mice. In our study, CCG treatment was identified to interfere with the stem cell lineage commitment both in vivo and in vitro. In vivo, CCG promoted the transcriptional co-activator with PDZ-binding motif (TAZ) expression to reverse age-related bone loss and marrow adiposity. In vitro, proper concentration of CCG upregulated TAZ expression to increase osteogenesis and decrease adipogenesis of bone marrow mesenchymal stem cells (BMSCs). This regulating effect was discounted by TAZ knockdown or the use of MEK-ERK pathway inhibitor, UO126. Above all, our study confirmed the rescuing effects of CCG on the differential shift from adipogenesis to osteogenesis of BMSCs in aging mice and provided a scientific basis for the clinical use of CCG in senile osteoporosis.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Shilun Li
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Ke Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Chang Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, China
| | - Sijing Liu
- Editorial Department of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Lacroix M, Linares LK, Rueda-Rincon N, Bloch K, Di Michele M, De Blasio C, Fau C, Gayte L, Blanchet E, Mairal A, Derua R, Cardona F, Beuzelin D, Annicotte JS, Pirot N, Torro A, Tinahones FJ, Bernex F, Bertrand-Michel J, Langin D, Fajas L, Swinnen JV, Le Cam L. The multifunctional protein E4F1 links P53 to lipid metabolism in adipocytes. Nat Commun 2021; 12:7037. [PMID: 34857760 PMCID: PMC8639890 DOI: 10.1038/s41467-021-27307-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/12/2021] [Indexed: 01/20/2023] Open
Abstract
Growing evidence supports the importance of the p53 tumor suppressor in metabolism but the mechanisms underlying p53-mediated control of metabolism remain poorly understood. Here, we identify the multifunctional E4F1 protein as a key regulator of p53 metabolic functions in adipocytes. While E4F1 expression is upregulated during obesity, E4f1 inactivation in mouse adipose tissue results in a lean phenotype associated with insulin resistance and protection against induced obesity. Adipocytes lacking E4F1 activate a p53-dependent transcriptional program involved in lipid metabolism. The direct interaction between E4F1 and p53 and their co-recruitment to the Steaoryl-CoA Desaturase-1 locus play an important role to regulate monounsaturated fatty acids synthesis in adipocytes. Consistent with the role of this E4F1-p53-Steaoryl-CoA Desaturase-1 axis in adipocytes, p53 inactivation or diet complementation with oleate partly restore adiposity and improve insulin sensitivity in E4F1-deficient mice. Altogether, our findings identify a crosstalk between E4F1 and p53 in the control of lipid metabolism in adipocytes that is relevant to obesity and insulin resistance.
Collapse
Affiliation(s)
- Matthieu Lacroix
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Natalia Rueda-Rincon
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Katarzyna Bloch
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Michela Di Michele
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Carlo De Blasio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Caroline Fau
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,Equipe labélisée Ligue Contre le Cancer, Paris, France
| | - Emilie Blanchet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Aline Mairal
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Rita Derua
- KU Leuven-University of Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Fernando Cardona
- Department of Surgical Specialties, Biochemistry and Immunology School of Medicine, University of Malaga, Malaga, Spain
| | - Diane Beuzelin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jean-Sebastien Annicotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, CNRS, U1283 - UMR 8199 - EGID, Lille, France
| | - Nelly Pirot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Adeline Torro
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Francisco J Tinahones
- CIBER of Physiopathology, Obesity and Nutrition (CIBEROBN), Málaga, Spain; Unidad de Gestion Clinica de Endocrinologia y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clinico Virgen de la Victoria, Málaga, Spain
| | - Florence Bernex
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.,BioCampus, RHEM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Justine Bertrand-Michel
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Dominique Langin
- I2MC, Institute of Metabolic and Cardiovascular Diseases, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France.,Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Johannes V Swinnen
- KU Leuven-University of Leuven, Department of Oncology, Laboratory of Lipid Metabolism and Cancer, Leuven, Belgium
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Univ Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France. .,Equipe labélisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
5
|
Decreased PGC1β expression results in disrupted human erythroid differentiation, impaired hemoglobinization and cell cycle exit. Sci Rep 2021; 11:17129. [PMID: 34429458 PMCID: PMC8385110 DOI: 10.1038/s41598-021-96585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/10/2021] [Indexed: 11/08/2022] Open
Abstract
Production of red blood cells relies on proper mitochondrial function, both for their increased energy demands during differentiation and for proper heme and iron homeostasis. Mutations in genes regulating mitochondrial function have been reported in patients with anemia, yet their pathophysiological role often remains unclear. PGC1β is a critical coactivator of mitochondrial biogenesis, with increased expression during terminal erythroid differentiation. The role of PGC1β has however mainly been studied in skeletal muscle, adipose and hepatic tissues, and its function in erythropoiesis remains largely unknown. Here we show that perturbed PGC1β expression in human hematopoietic stem/progenitor cells from both bone marrow and cord blood results in impaired formation of early erythroid progenitors and delayed terminal erythroid differentiation in vitro, with accumulations of polychromatic erythroblasts, similar to MDS-related refractory anemia. Reduced levels of PGC1β resulted in deregulated expression of iron, heme and globin related genes in polychromatic erythroblasts, and reduced hemoglobin content in the more mature bone marrow derived reticulocytes. Furthermore, PGC1β knock-down resulted in disturbed cell cycle exit with accumulation of erythroblasts in S-phase and enhanced expression of G1-S regulating genes, with smaller reticulocytes as a result. Taken together, we demonstrate that PGC1β is directly involved in production of hemoglobin and regulation of G1-S transition and is ultimately required for proper terminal erythroid differentiation.
Collapse
|
6
|
The autocrine role of FGF21 in cultured adipocytes. Biochem J 2020; 477:2477-2487. [PMID: 32648929 DOI: 10.1042/bcj20200220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Exposure to cold alters glucose and lipid metabolism of white and brown adipose tissue via activation of β-adrenergic receptor (ADRB). Fibroblast growth factor 21 (FGF21) has been shown to be locally released from adipose tissue upon activation of ADRBs and FGF21 increases glucose uptake in adipocytes. Therefore, FGF21 may play an autocrine role in inducing glucose uptake after β-adrenergic stimulation. To determine the putative autocrine role of FGF21, we stimulated three different types of adipocytes in vitro with Isoprenaline (Iso), an ADRB agonist, in the presence or absence of the FGF receptor (FGFR) inhibitor PD 173074. The three cell lines represent white (3T3-L1), beige (ME3) and brown (WT-1) adipocyte phenotypes, respectively. All three cells systems expressed β-klotho (KLB) and FGFR1 after differentiation and treatment with recombinant FGF21 increased glucose uptake in 3T3-L1 and WT-1 adipocytes, while no significant effect was observed in ME3. Oppositely, all three cell lines responded to Iso treatment and an increase in glucose uptake and lipolysis were observed. Interestingly, in response to the Iso treatment only the WT-1 adipocytes showed an increase in FGF21 in the medium. This was consistent with the observation that PD 173074 decreased Iso-induced glucose uptake in the WT-1 adipocytes. This suggests that FGF21 plays an autocrine role and increases glucose uptake after β-adrenergic stimulation of cultured brown WT-1 adipocytes.
Collapse
|
7
|
Yang H, Shen H, Li J, Stanford KI, Guo LW. Sigma-1 receptor ablation impedes adipocyte-like differentiation of mouse embryonic fibroblasts. Cell Signal 2020; 75:109732. [PMID: 32750415 PMCID: PMC7530065 DOI: 10.1016/j.cellsig.2020.109732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/12/2023]
Abstract
The sigma-1 receptor (Sig1R) is a unique ligand-operated endoplasmic reticulum (ER) protein without any mammalian homolog. It has long been a pharmacological target for intervention of psychiatric disorders, and recently garnered refreshed interest for its neuroprotective potential. Though reported to modulate various intracellular events, its influence on cell identity is little known. We explored a role for Sig1R in adipocyte differentiation. We induced adipogenic differentiation of mouse embryonic fibroblasts (MEFs) with a differentiation medium. MEFs were isolated from Sigmar1-/- and Sigmar1+/+ mice. The induced adipocyte-like phenotype was detected through Western blots of master transcription factors (PPARγ, CEBPA, SREBP1, SREBP2), lipogenic proteins (FABP4, ACC1, ACAT2), and Oil-Red-O staining of lipids. We found that the induced upregulation of these proteins and lipid accumulation were severely mitigated in Sigmar1-/- (vs Sigmar1+/+) MEFs. Sig1R activation with a selective agonist (PRE084) increased Sig1R protein and further enhanced the induced adipocyte-like phenotype in Sigmar1+/+ MEFs. We also determined mouse body weight gain induced by high-fat diet for 6 months, which was impeded in Sigmar1-/- (vs Sigmar1+/+) male mice. In summary, genetic ablation of Sig1R impairs, and agonist activation of Sig1R enhances adipocyte-like phenotype of induced MEFs. In vivo, Sig1R ablation impedes the body weight gain of male mice on high-fat diet. This study warrants further investigation of a previously unrecognized role for Sig1R in adipocyte differentiation.
Collapse
Affiliation(s)
- Huan Yang
- Department of Surgery, University of Wisconsin, Madison, WI 53705, USA
| | - Hongtao Shen
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristin I Stanford
- Departments of Physiology & Cell Biology, College of Medicine; Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
8
|
Sen T, Jain M, Gram M, Mattebo A, Soneji S, Walkley CR, Singbrant S. Enhancing mitochondrial function in vivo rescues MDS-like anemia induced by pRb deficiency. Exp Hematol 2020; 88:28-41. [PMID: 32629063 DOI: 10.1016/j.exphem.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Erythropoiesis is intimately coupled to cell division, and deletion of the cell cycle regulator retinoblastoma protein (pRb) causes anemia in mice. Erythroid-specific deletion of pRb has been found to result in inefficient erythropoiesis because of deregulated coordination of cell cycle exit and mitochondrial biogenesis. However, the pathophysiology remains to be fully described, and further characterization of the link between cell cycle regulation and mitochondrial function is needed. To this end we further assessed conditional erythroid-specific deletion of pRb. This resulted in macrocytic anemia, despite elevated levels of erythropoietin (Epo), and an accumulation of erythroid progenitors in the bone marrow, a phenotype strongly resembling refractory anemia associated with myelodysplastic syndromes (MDS). Using high-fractionation fluorescence-activated cell sorting analysis for improved phenotypic characterization, we illustrate that erythroid differentiation was disrupted at the orthochromatic stage. Transcriptional profiling of sequential purified populations revealed failure to upregulate genes critical for mitochondrial function such as Pgc1β, Alas2, and Abcb7 specifically at the block, together with disturbed heme production and iron transport. Notably, deregulated ABCB7 causes ring sideroblastic anemia in MDS patients, and the mitochondrial co-activator PGC1β is heterozygously lost in del5q MDS. Importantly, the anemia could be rescued through enhanced PPAR signaling in vivo via either overexpression of Pgc1β or bezafibrate administration. In conclusion, lack of pRb results in MDS-like anemia with disrupted differentiation and impaired mitochondrial function at the orthochromatic erythroblast stage. Our findings reveal for the first time a role for pRb in heme and iron regulation, and indicate that pRb-induced anemia can be rescued in vivo through therapeutic enhancement of PPAR signaling.
Collapse
Affiliation(s)
- Taha Sen
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Mayur Jain
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Magnus Gram
- Department of Clinical Sciences Lund, Pediatrics, Lund University, Skane University Hospital Lund, Lund, Sweden
| | - Alexander Mattebo
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Fitzroy, VIC, Australia
| | - Sofie Singbrant
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Al Haj G, Rey F, Giallongo T, Colli M, Marzani B, Giuliani G, Gorio A, Zuccotti GV, Di Giulio AM, Carelli S. A New Selective PPARγ Modulator Inhibits Triglycerides Accumulation during Murine Adipocytes' and Human Adipose-Derived Mesenchymal Stem Cells Differentiation. Int J Mol Sci 2020; 21:ijms21124415. [PMID: 32575918 PMCID: PMC7352648 DOI: 10.3390/ijms21124415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding the molecular basis of adipogenesis is vital to identify new therapeutic targets to improve anti-obesity drugs. The adipogenic process could be a new target in the management of this disease. Our aim was to evaluate the effect of GMG-43AC, a selective peroxisome proliferator-activated receptor γ (PPARγ) modulator, during adipose differentiation of murine pre-adipocytes and human Adipose Derived Stem Cells (hADSCs). We differentiated 3T3-L1 cells and primary hADSCs in the presence of various doses of GMG-43AC and evaluated the differentiation efficiency measuring lipid accumulation, the expression of specific differentiation markers and the quantification of accumulated triglycerides. The treatment with GMG-43AC is not toxic as shown by cell viability assessments after the treatments. Our findings demonstrate the inhibition of lipid accumulation and the significant decrease in the expression of adipocyte-specific genes, such as PPARγ, FABP-4, and leptin. This effect was long lasting, as the removal of GMG-43AC from culture medium did not allow the restoration of adipogenic process. The above actions were confirmed in hADSCs exposed to adipogenic stimuli. Together, these results indicate that GMG-43AC efficiently inhibits adipocytes differentiation in murine and human cells, suggesting its possible function in the reversal of adipogenesis and modulation of lipolysis.
Collapse
Affiliation(s)
- Ghina Al Haj
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (G.A.H.); (F.R.); (T.G.); (M.C.); (A.G.)
| | - Federica Rey
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (G.A.H.); (F.R.); (T.G.); (M.C.); (A.G.)
| | - Toniella Giallongo
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (G.A.H.); (F.R.); (T.G.); (M.C.); (A.G.)
| | - Mattia Colli
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (G.A.H.); (F.R.); (T.G.); (M.C.); (A.G.)
| | - Barbara Marzani
- Research and Development, Giuliani SpA, Via Pelagio Palagi, 2, 20129 Milan, Italy; (B.M.); (G.G.)
| | - Giammaria Giuliani
- Research and Development, Giuliani SpA, Via Pelagio Palagi, 2, 20129 Milan, Italy; (B.M.); (G.G.)
| | - Alfredo Gorio
- Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy; (G.A.H.); (F.R.); (T.G.); (M.C.); (A.G.)
| | - Gian Vicenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy;
- Pediatric Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
| | - Anna Maria Di Giulio
- Pediatric Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
- Correspondence: (A.M.D.G.); (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy;
- Pediatric Research Center “Romeo ed Enrica Invernizzi”, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy
- Correspondence: (A.M.D.G.); (S.C.)
| |
Collapse
|
10
|
Isidor MS, Winther S, Markussen LK, Basse AL, Quistorff B, Nedergaard J, Emanuelli B, Hansen JB. Pyruvate kinase M2 represses thermogenic gene expression in brown adipocytes. FEBS Lett 2019; 594:1218-1225. [PMID: 31823361 DOI: 10.1002/1873-3468.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 12/30/2022]
Abstract
Utilizing the thermogenic capacity of brown adipose tissue is a potential anti-obesity strategy; therefore, the mechanisms controlling expression of thermogenesis-related genes are of interest. Pyruvate kinase (PK) catalyzes the last step of glycolysis and exists as four isoenzymes: PK, liver, PK, red blood cell, PK, muscle (PKM1 and PKM2). PKM2 has both glycolytic and nuclear functions. Here, we report that PKM2 is enriched in brown adipose compared with white adipose tissue. Specific knockdown of PKM2 in mature brown adipocytes demonstrates that silencing of PKM2 does not lead to a decrease in PK activity, but causes a robust upregulation of thermogenic uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21) gene expression. This increase is not mediated by any of the known mechanisms for PKM2-regulated gene expression, thus implying the existence of a novel mechanism for PKM2-dependent effects on gene expression.
Collapse
Affiliation(s)
- Marie S Isidor
- Department of Biology, University of Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Denmark.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, Denmark
| | | | - Astrid L Basse
- Department of Biology, University of Copenhagen, Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Denmark
| |
Collapse
|
11
|
Wu LY, Chen CW, Chen LK, Chou HY, Chang CL, Juan CC. Curcumin Attenuates Adipogenesis by Inducing Preadipocyte Apoptosis and Inhibiting Adipocyte Differentiation. Nutrients 2019; 11:nu11102307. [PMID: 31569380 PMCID: PMC6836120 DOI: 10.3390/nu11102307] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 12/23/2022] Open
Abstract
Patients with metabolic syndrome are at an increased risk of developing type 2 diabetes and cardiovascular diseases. The principal risk factor for development of metabolic syndrome is obesity, defined as a state of pathological hyperplasia or/and hypertrophy of adipose tissue. The number of mature adipocytes is determined by adipocyte differentiation from preadipocytes. The purpose of the present study is to investigate the effects of curcumin on adipogenesis and the underlying mechanism. To examine cell toxicity of curcumin, 3T3-L1 preadipocytes were treated with 0–50 µM curcumin for 24, 48, or 72 h, then cell viability was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The effect of curcumin on the cell cycle was determined by flow cytometry. Curcumin-induced cell apoptosis was determined by the TUNEL assay and curcumin-induced caspase activation was measured by immunoblotting. The effect of curcumin on adipocyte differentiation was determined by measuring mitotic clonal expansion (MCE), expression of adipogenic transcription factors, and lipid accumulation. Results showed the viability of preadipocytes was significantly decreased by treatment with 30 µM curcumin, a concentration that caused apoptosis in preadipocytes, as assessed by the TUNEL assay, and caused activation of caspases 8, 9, and 3. A non-cytotoxic dose of curcumin (15 µM) inhibited MCE, downregulated the expression of PPARγ and C/EBPα, prevented differentiation medium-induced β-catenin downregulation, and decreased the lipid accumulation in 3T3-L1 adipocytes. In conclusion, our data show that curcumin can induce preadipocyte apoptosis and inhibit adipocyte differentiation, leading to suppression of adipogenesis.
Collapse
Affiliation(s)
- Liang-Yi Wu
- Department of Bioscience Technology, College of Science, Chung-Yuan Christian University, Chung Li 32023, Taiwan.
| | - Chien-Wei Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan.
| | - Luen-Kui Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Hsiang-Yun Chou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Ling Chang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
12
|
Banhos Danneskiold-Samsøe N, Sonne SB, Larsen JM, Hansen AN, Fjære E, Isidor MS, Petersen S, Henningsen J, Severi I, Sartini L, Schober Y, Wolf J, Nockher WA, Wolfrum C, Cinti S, Sina C, Hansen JB, Madsen L, Brix S, Kristiansen K. Overexpression of cyclooxygenase-2 in adipocytes reduces fat accumulation in inguinal white adipose tissue and hepatic steatosis in high-fat fed mice. Sci Rep 2019; 9:8979. [PMID: 31222118 PMCID: PMC6586826 DOI: 10.1038/s41598-019-45062-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenases are known as important regulators of metabolism and immune processes via conversion of C20 fatty acids into various regulatory lipid mediators, and cyclooxygenase activity has been implicated in browning of white adipose tissues. We generated transgenic (TG) C57BL/6 mice expressing the Ptgs2 gene encoding cyclooxygenase-2 (COX-2) in mature adipocytes. TG mice fed a high-fat diet displayed marginally lower weight gain with less hepatic steatosis and a slight improvement in insulin sensitivity, but no difference in glucose tolerance. Compared to littermate wildtype mice, TG mice selectively reduced inguinal white adipose tissue (iWAT) mass and fat cell size, whereas the epididymal (eWAT) fat depot remained unchanged. The changes in iWAT were accompanied by increased levels of specific COX-derived lipid mediators and increased mRNA levels of interleukin-33, interleukin-4 and arginase-1, but not increased expression of uncoupling protein 1 or increased energy expenditure. Epididymal WAT (eWAT) in TG mice exhibited few changes except from increased infiltration with eosinophils. Our findings suggest a role for COX-2-derived lipid mediators from adipocytes in mediating type 2 immunity cues in subcutaneous WAT associated with decreased hepatic steatosis, but with no accompanying induction of browning and increased energy expenditure.
Collapse
Affiliation(s)
- Niels Banhos Danneskiold-Samsøe
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Si Brask Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, DK-2800 Kgs., Lyngby, Denmark
| | - Ann Normann Hansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Even Fjære
- Institute of Marine Research, P.O. Box 7800, 5020, Bergen, Norway
| | - Marie Sophie Isidor
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Sidsel Petersen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Jeanette Henningsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Ilenia Severi
- School of Medicine, Department of Experimental and Clinical Medicine, Division of Neuroscience and Cell Biology, Università Politecnica delle Marche, via Tronto 10/A, 60020, Ancona, Italy
| | - Loris Sartini
- School of Medicine, Department of Experimental and Clinical Medicine, Division of Neuroscience and Cell Biology, Università Politecnica delle Marche, via Tronto 10/A, 60020, Ancona, Italy
| | - Yvonne Schober
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Jacqueline Wolf
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - W Andreas Nockher
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg, Campus Marburg, Baldingerstrasse, 35043, Marburg, Germany
| | - Christian Wolfrum
- Institute of Food Nutrition and Health, ETH Zürich, SLA C94, Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland
| | - Saverio Cinti
- School of Medicine, Department of Experimental and Clinical Medicine, Division of Neuroscience and Cell Biology, Università Politecnica delle Marche, via Tronto 10/A, 60020, Ancona, Italy
| | - Christian Sina
- Institute of Nutritional Medicine, Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Jacob B Hansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark. .,Institute of Marine Research, P.O. Box 7800, 5020, Bergen, Norway.
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark. .,Institute of Metagenomics, BGI-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China.
| |
Collapse
|
13
|
Affiliation(s)
- Saverio Cinti
- Professor of Human Anatomy, Director, Center of Obesity, University of Ancona (Politecnica delle Marche), Ancona, Italy
| |
Collapse
|
14
|
Hou X, Zhang Y, Li W, Hu AJ, Luo C, Zhou W, Hu JK, Daniele SG, Wang J, Sheng J, Fan Y, Greenberg AS, Farmer SR, Hu MG. CDK6 inhibits white to beige fat transition by suppressing RUNX1. Nat Commun 2018. [PMID: 29523786 PMCID: PMC5845007 DOI: 10.1038/s41467-018-03451-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit significant increases beige cell formation, enhanced energy expenditure, better glucose tolerance, and improved insulin sensitivity, and are more resistant to high-fat diet-induced obesity. Re-expression of CDK6 in Cdk6−/− mature or precursor cells, or ablation of RUNX1 in K43M mature or precursor cells, reverses these phenotypes. Furthermore, RUNX1 positively regulates the expression of Ucp-1 and Pgc1α by binding to proximal promoter regions. Our findings indicate that CDK6 kinase activity negatively regulates the conversion of fat-storing cells into fat-burning cells by suppressing RUNX1, and suggest that CDK6 may be a therapeutic target for the treatment of obesity and related metabolic diseases. Beige adipocytes can arise from transdifferentiation of mature white adipocytes. Here the authors identify CDK6 as a key molecule involved in the white-to-beige adipocyte transdifferentiation and, therefore, as a regulator of organismal energy homeostasis in mice.
Collapse
Affiliation(s)
- Xiaoli Hou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, 310053, P. R. China
| | - Yongzhao Zhang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Wei Li
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, P. R. China
| | - Alexander J Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Chi Luo
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenhui Zhou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Jamie K Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Yale School of Medicine, MD program for Jamie K. Hu, MD-PhD Program for Stefano G. Daniele, 333 Cedar St, New Haven, CT, 06510, USA
| | - Stefano G Daniele
- Yale School of Medicine, MD program for Jamie K. Hu, MD-PhD Program for Stefano G. Daniele, 333 Cedar St, New Haven, CT, 06510, USA
| | - Jinfeng Wang
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Department of Clinical Laboratory, Linyi People's Hospital, 27 jiefang road, Linyi, Shandong Province, 276003, China
| | - Jinghao Sheng
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.,Institute of Environmental Health, School of Public Health, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yongsheng Fan
- Zhejiang Chinese Medical University, Center for Analysis and Testing, 548 Bin-Wen Road, Hangzhou, 310053, P. R. China
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, JM-USDA Human Nutrition Research Center, 711 Washington Street, Boston, MA, 02111, USA
| | - Stephen R Farmer
- Boston University School of Medicine, Department of Biochemistry, 72E Concord St, Boston, MA, 02118, USA
| | - Miaofen G Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA.
| |
Collapse
|
15
|
Winther S, Isidor MS, Basse AL, Skjoldborg N, Cheung A, Quistorff B, Hansen JB. Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption. Am J Physiol Endocrinol Metab 2018; 314:E214-E223. [PMID: 29118013 DOI: 10.1152/ajpendo.00218.2017] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated knockdown in mature adipocytes, we explored the effect of glucose transporters and glycolytic enzymes on brown adipocyte functions such as consumption of glucose and oxygen. Basal oxygen consumption in brown adipocytes was equally dependent on glucose and fatty acid oxidation, whereas isoproterenol (ISO)-stimulated respiration was fueled mainly by fatty acids, with a significant contribution from glucose oxidation. Knockdown of glucose transporters in brown adipocytes not only impaired ISO-stimulated glycolytic flux but also oxygen consumption. Diminishing glycolytic flux by knockdown of the first and final enzyme of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways.
Collapse
Affiliation(s)
- Sally Winther
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Marie S Isidor
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen , Copenhagen , Denmark
| | - Astrid L Basse
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Nina Skjoldborg
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Amanda Cheung
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
| | - Bjørn Quistorff
- Department of Biomedical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
16
|
Markussen LK, Winther S, Wicksteed B, Hansen JB. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep 2018; 8:3469. [PMID: 29472592 PMCID: PMC5823915 DOI: 10.1038/s41598-018-21795-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/09/2018] [Indexed: 01/23/2023] Open
Abstract
Brown adipose tissue is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. β-Adrenergic stimulation of brown adipocytes leads to an increase in oxygen consumption and induction of a thermogenic gene program that includes uncoupling protein 1 (Ucp1) and fibroblast growth factor 21 (Fgf21). In kinase inhibitor screens, we have identified glycogen synthase kinase 3 (GSK3) as a negative regulator of basal and β-adrenergically stimulated Fgf21 expression in cultured brown adipocytes. In addition, inhibition of GSK3 also caused increased Ucp1 expression and oxygen consumption. β-Adrenergic stimulation triggered an inhibitory phosphorylation of GSK3 in a protein kinase A (PKA)-dependent manner. Mechanistically, inhibition of GSK3 activated the mitogen activated protein kinase (MAPK) kinase 3/6-p38 MAPK-activating transcription factor 2 signaling module. In summary, our data describe GSK3 as a novel negative regulator of β-adrenergic signaling in brown adipocytes.
Collapse
Affiliation(s)
- Lasse K Markussen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Barton Wicksteed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
17
|
Markussen LK, Isidor MS, Breining P, Andersen ES, Rasmussen NE, Petersen LI, Pedersen SB, Richelsen B, Hansen JB. Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor. PLoS One 2017; 12:e0185624. [PMID: 28957413 PMCID: PMC5619805 DOI: 10.1371/journal.pone.0185624] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 09/15/2017] [Indexed: 12/22/2022] Open
Abstract
Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to β-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced ‘browning’, as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes.
Collapse
Affiliation(s)
| | - Marie S. Isidor
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Breining
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Elise S. Andersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Steen B. Pedersen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bjørn Richelsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
18
|
Abstract
Brown adipose tissue takes up large amounts of glucose during cold exposure in mice and humans. Here we report an induction of glucose transporter 1 expression and increased expression of several glycolytic enzymes in brown adipose tissue from cold-exposed mice. Accordingly, these genes were also induced after β-adrenergic activation of cultured brown adipocytes, concomitant with accumulation of hypoxia inducible factor-1α (HIF-1α) protein levels. HIF-1α accumulation was dependent on uncoupling protein 1 and generation of mitochondrial reactive oxygen species. Expression of key glycolytic enzymes was reduced after knockdown of HIF-1α in mature brown adipocytes. Glucose consumption, lactate export and glycolytic capacity were reduced in brown adipocytes depleted of Hif-1α. Finally, we observed a decreased β-adrenergically induced oxygen consumption in Hif-1α knockdown adipocytes cultured in medium with glucose as the only exogenously added fuel. These data suggest that HIF-1α-dependent regulation of glycolysis is necessary for maximum glucose metabolism in brown adipocytes.
Collapse
|
19
|
Critical role of the peroxisomal protein PEX16 in white adipocyte development and lipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:358-368. [PMID: 28017862 PMCID: PMC7116240 DOI: 10.1016/j.bbalip.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 11/20/2022]
Abstract
The importance of peroxisomes for adipocyte function is poorly understood. Herein, we provide insights into the critical role of peroxin 16 (PEX16)-mediated peroxisome biogenesis in adipocyte development and lipid metabolism. Pex16 is highly expressed in adipose tissues and upregulated during adipogenesis of murine and human cells. We demonstrate that Pex16 is a target gene of the adipogenesis “master-regulator” PPARγ. Stable silencing of Pex16 in 3T3-L1 cells strongly reduced the number of peroxisomes while mitochondrial number was unaffected. Concomitantly, peroxisomal fatty acid (FA) oxidation was reduced, thereby causing accumulation of long-and very long-chain (polyunsaturated) FAs and reduction of odd-chain FAs. Further, Pex16-silencing decreased cellular oxygen consumption and increased FA release. Additionally, silencing of Pex16 impaired adipocyte differentiation, lipogenic and adipogenic marker gene expression, and cellular triglyceride stores. Addition of PPARγ agonist rosiglitazone and peroxisome-related lipid species to Pex16-silenced 3T3-L1 cells rescued adipogenesis. These data provide evidence that PEX16 is required for peroxisome biogenesis and highlights the relevance of peroxisomes for adipogenesis and adipocyte lipid metabolism.
Collapse
|
20
|
Liisberg U, Myrmel LS, Fjære E, Rønnevik AK, Bjelland S, Fauske KR, Holm JB, Basse AL, Hansen JB, Liaset B, Kristiansen K, Madsen L. The protein source determines the potential of high protein diets to attenuate obesity development in C57BL/6J mice. Adipocyte 2016; 5:196-211. [PMID: 27386160 DOI: 10.1080/21623945.2015.1122855] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/28/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The notion that the obesogenic potential of high fat diets in rodents is attenuated when the protein:carbohydrate ratio is increased is largely based on studies using casein or whey as the protein source. We fed C57BL/6J mice high fat-high protein diets using casein, soy, cod, beef, chicken or pork as protein sources. Casein stood out as the most efficient in preventing weight gain and accretion of adipose mass. By contrast, mice fed diets based on pork or chicken, and to a lesser extent mice fed cod or beef protein, had increased adipose tissue mass gain relative to casein fed mice. Decreasing the protein:carbohydrate ratio in diets with casein or pork as protein sources led to accentuated fat mass accumulation. Pork fed mice were more obese than casein fed mice, and relative to casein, the pork-based feed induced substantial accumulation of fat in classic interscapular brown adipose tissue accompanied by decreased UCP1 expression. Furthermore, intake of a low fat diet with casein, but not pork, as a protein source reversed diet-induced obesity. Compared to pork, casein seems unique in maintaining the classical brown morphology in interscapular brown adipose tissue with high UCP1 expression. This was accompanied by increased expression of genes involved in a futile cycling of fatty acids. Our results demonstrate that intake of high protein diets based on other protein sources may not have similar effects, and hence, the obesity protective effect of high protein diets is clearly modulated by protein source.
Collapse
Affiliation(s)
- Ulrike Liisberg
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Secher Myrmel
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander K. Rønnevik
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Susanne Bjelland
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Jacob Bak Holm
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Lise Madsen
- National Institute of Nutrition and Seafood Research, Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Isidor MS, Winther S, Basse AL, Petersen MCH, Cannon B, Nedergaard J, Hansen JB. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes. Adipocyte 2016; 5:175-85. [PMID: 27386153 PMCID: PMC4916873 DOI: 10.1080/21623945.2015.1111972] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022] Open
Abstract
Brown adipose tissue is a promising therapeutic target for opposing obesity, glucose intolerance and insulin resistance. The ability to modulate gene expression in mature brown adipocytes is important to understand brown adipocyte function and delineate novel regulatory mechanisms of non-shivering thermogenesis. The aim of this study was to optimize a lipofection-based small interfering RNA (siRNA) transfection protocol for efficient silencing of gene expression in mature brown adipocytes. We determined that a critical parameter was to deliver the siRNA to mature adipocytes by reverse transfection, i.e. transfection of non-adherent cells. Using this protocol, we effectively knocked down both high- and low-abundance transcripts in a model of mature brown adipocytes (WT-1) as well as in primary mature mouse brown adipocytes. A functional consequence of the knockdown was confirmed by an attenuated increase in uncoupled respiration (thermogenesis) in response to β-adrenergic stimulation of mature WT-1 brown adipocytes transfected with uncoupling protein 1 siRNA. Efficient gene silencing was also obtained in various mouse and human white adipocyte models (3T3-L1, primary mouse white adipocytes, hMADS) with the ability to undergo “browning.” In summary, we report an easy and versatile reverse siRNA transfection protocol to achieve specific silencing of gene expression in various models of mature brown and browning-competent white adipocytes, including primary cells.
Collapse
Affiliation(s)
- Marie S. Isidor
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sally Winther
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L. Basse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Jacob B. Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Vargas D, Shimokawa N, Kaneko R, Rosales W, Parra A, Castellanos Á, Koibuchi N, Lizcano F. Regulation of human subcutaneous adipocyte differentiation by EID1. J Mol Endocrinol 2016; 56:113-22. [PMID: 26643909 DOI: 10.1530/jme-15-0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue.
Collapse
Affiliation(s)
- Diana Vargas
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Noriaki Shimokawa
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Ryosuke Kaneko
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Wendy Rosales
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Adriana Parra
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Ángela Castellanos
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Noriyuki Koibuchi
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Fernando Lizcano
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| |
Collapse
|
23
|
Hallenborg P, Fjære E, Liaset B, Petersen RK, Murano I, Sonne SB, Falkerslev M, Winther S, Jensen BAH, Ma T, Hansen JB, Cinti S, Blagoev B, Madsen L, Kristiansen K. p53 regulates expression of uncoupling protein 1 through binding and repression of PPARγ coactivator-1α. Am J Physiol Endocrinol Metab 2016; 310:E116-28. [PMID: 26578713 DOI: 10.1152/ajpendo.00119.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/15/2015] [Indexed: 12/25/2022]
Abstract
The tumor suppressor p53 (TRP53 in mice) is known for its involvement in carcinogenesis, but work during recent years has underscored the importance of p53 in the regulation of whole body metabolism. A general notion is that p53 is necessary for efficient oxidative metabolism. The importance of UCP1-dependent uncoupled respiration and increased oxidation of glucose and fatty acids in brown or brown-like adipocytes, termed brite or beige, in relation to energy balance and homeostasis has been highlighted recently. UCP1-dependent uncoupled respiration in classic interscapular brown adipose tissue is central to cold-induced thermogenesis, whereas brite/beige adipocytes are of special importance in relation to diet-induced thermogenesis, where the importance of UCP1 is only clearly manifested in mice kept at thermoneutrality. We challenged wild-type and TRP53-deficient mice by high-fat feeding under thermoneutral conditions. Interestingly, mice lacking TRP53 gained less weight compared with their wild-type counterparts. This was related to an increased expression of Ucp1 and other PPARGC1a and PPARGC1b target genes but not Ppargc1a or Ppargc1b in inguinal white adipose tissue of mice lacking TRP53. We show that TRP53, independently of its ability to bind DNA, inhibits the activity of PPARGC1a and PPARGC1b. Collectively, our data show that TRP53 has the ability to regulate the thermogenic capacity of adipocytes through modulation of PPARGC1 activity.
Collapse
Affiliation(s)
- Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Even Fjære
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway; and
| | - Bjørn Liaset
- National Institute of Nutrition and Seafood Research, Bergen, Norway; and
| | - Rasmus Koefoed Petersen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Incoronata Murano
- Department of Experimental and Clinical Medicine, Center of Obesity Università Politecnica della Marche, Ancona, Italy
| | - Si Brask Sonne
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Falkerslev
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sally Winther
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Tao Ma
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob B Hansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Center of Obesity Università Politecnica della Marche, Ancona, Italy
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway; and
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
24
|
Hallenborg P, Petersen RK, Kouskoumvekaki I, Newman JW, Madsen L, Kristiansen K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog Lipid Res 2016; 61:149-62. [DOI: 10.1016/j.plipres.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 02/07/2023]
|
25
|
Shyni GL, Sasidharan K, Francis SK, Das AA, Nair MS, Raghu KG. Licarin B from Myristica fragrans improves insulin sensitivity via PPARγ and activation of GLUT4 in the IRS-1/PI3K/AKT pathway in 3T3-L1 adipocytes. RSC Adv 2016. [DOI: 10.1039/c6ra13055k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Licarin B, a major bioactive compound isolated fromMyristica fragransmace improves glucose uptakeviaPPARγ and GLUT4 translocation in IRS-1/PI3K/AKT pathway in adipocytes
Collapse
Affiliation(s)
- G. L. Shyni
- Agroprocessing and Natural Products Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Kavitha Sasidharan
- Agroprocessing and Natural Products Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Sajin K. Francis
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Arya A. Das
- Computational Modeling and Simulation Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - Mangalam S. Nair
- Chemical Sciences and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| | - K. G. Raghu
- Agroprocessing and Natural Products Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Thiruvananthapuram
- India
| |
Collapse
|
26
|
Popov BV, Shilo PS, Zhidkova OV, Zaichik AM, Petrov NS. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation. Bull Exp Biol Med 2015; 159:289-92. [PMID: 26085367 DOI: 10.1007/s10517-015-2944-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Indexed: 11/29/2022]
Abstract
Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.
Collapse
Affiliation(s)
- B V Popov
- Institute of Cytology, Russian Academy of Science, St. Petersburg, Russia,
| | | | | | | | | |
Collapse
|
27
|
Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, Zhu Q, Lu Z, Wang J, Audouze K, Gupta R, Madsen L, Kristiansen K, Hansen JB. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab 2015; 308:E380-92. [PMID: 25516548 DOI: 10.1152/ajpendo.00277.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen metabolism, and the pentose phosphate pathway was observed in BAT from cold-exposed animals. In addition, glycerol-3-phosphate dehydrogenase 1 expression was induced in BAT from cold-challenged mice, suggesting increased synthesis of glycerol from glucose. Similarly, expression of lactate dehydrogenases was induced by cold in BAT. Pyruvate dehydrogenase kinase 2 (Pdk2) and Pdk4 were expressed at significantly higher levels in BAT than in WAT, and Pdk2 was induced in BAT by cold. Of notice, only a subset of the changes detected in BAT was observed in WAT. Based on changes in gene expression during cold exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating triacylglycerol synthesis/fatty acid re-esterification; 3) glycogen turnover and lactate production are increased; and 4) entry of glucose carbon into the tricarboxylic acid cycle is restricted by PDK2 and PDK4. In summary, our results demonstrate extensive and diverse gene expression changes related to glucose handling in activated BAT.
Collapse
Affiliation(s)
- Qin Hao
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rachita Yadav
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Astrid L Basse
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sidsel Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Si B Sonne
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Qianhua Zhu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Zhike Lu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jun Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China; Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia; Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China; Department of Medicine, University of Hong Kong, Hong Kong
| | - Karine Audouze
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Université Paris Diderot, Inserm UMR-S973, Paris, France; and
| | - Ramneek Gupta
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Nordnes, Bergen, Norway
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
28
|
De Sousa M, Porras DP, Perry CGR, Seale P, Scimè A. p107 is a crucial regulator for determining the adipocyte lineage fate choices of stem cells. Stem Cells 2014; 32:1323-36. [PMID: 24449206 DOI: 10.1002/stem.1637] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Thermogenic (beige and brown) adipocytes protect animals against obesity and metabolic disease. However, little is known about the mechanisms that commit stem cells toward different adipocyte lineages. We show here that p107 is a master regulator of adipocyte lineage fates, its suppression required for commitment of stem cells to the brown-type fate. p107 is strictly expressed in the stem cell compartment of white adipose tissue depots and completely absent in brown adipose tissue. Remarkably, p107-deficient stem cells uniformly give rise to brown-type adipocytes in vitro and in vivo. Furthermore, brown fat programming of mesenchymal stem cells by PRDM-BF1-RIZ1 homologous domain containing 16 (Prdm16) was associated with a dramatic reduction of p107 levels. Indeed, Prdm16 directly suppressed p107 transcription via promoter binding. Notably, the sustained expression of p107 blocked the ability of Prdm16 to induce brown fat genes. These findings demonstrate that p107 expression in stem cells commits cells to the white versus brown adipose lineage.
Collapse
Affiliation(s)
- Martina De Sousa
- Stem Cell Research Group, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Popov B, Petrov N. pRb-E2F signaling in life of mesenchymal stem cells: Cell cycle, cell fate, and cell differentiation. Genes Dis 2014; 1:174-187. [PMID: 30258863 PMCID: PMC6150080 DOI: 10.1016/j.gendis.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/14/2014] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various mesodermal lines forming fat, muscle, bone, and other lineages of connective tissue. MSCs possess plasticity and under special metabolic conditions may transform into cells of unusual phenotypes originating from ecto- and endoderm. After transplantation, MSCs release the humoral factors promoting regeneration of the damaged tissue. During last five years, the numbers of registered clinical trials of MSCs have increased about 10 folds. This gives evidence that MSCs present a new promising resource for cell therapy of the most dangerous diseases. The efficacy of the MSCs therapy is limited by low possibilities to regulate their conversion into cells of damaged tissues that is implemented by the pRb-E2F signaling. The widely accepted viewpoint addresses pRb as ubiquitous regulator of cell cycle and tumor suppressor. However, current publications suggest that basic function of the pRb-E2F signaling in development is to regulate cell fate and differentiation. Through facultative and constitutive chromatin modifications, pRb-E2F signaling promotes transient and stable cells quiescence, cell fate choice to differentiate, to senesce, or to die. Loss of pRb is associated with cancer cell fate. pRb regulates cell fate by retaining quiescence of one cell population in favor of commitment of another or by suppression of genes of different cell phenotype. pRb is the founder member of the "pocket protein" family possessing functional redundancy. Critical increase in the efficacy of the MSCs based cell therapy will depend on precise understanding of various aspects of the pRb-E2F signaling.
Collapse
Affiliation(s)
- Boris Popov
- Institute of Cytology, Russian Academy of Sciences, St.Petersburg, 4, Tikhoretsky Av., 194064, Russia
| | | |
Collapse
|
30
|
Shyni GL, Kavitha S, Indu S, Arya AD, Anusree SS, Vineetha VP, Vandana S, Sundaresan A, Raghu KG. Chebulagic acid from Terminalia chebula enhances insulin mediated glucose uptake in 3T3-L1 adipocytes via PPARγ signaling pathway. Biofactors 2014; 40:646-57. [PMID: 25529897 DOI: 10.1002/biof.1193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/08/2014] [Indexed: 01/03/2023]
Abstract
The thiazolidinedione (TZDs) class of drugs are very effective for the treatment of type 2 diabetes mellitus (T2DM). But due to the adverse effects of synthetic TZDs, their use is strictly regulated. The therapeutic actions of TZDs are mediated via modulation of peroxisome proliferator-activated receptor gamma (PPARγ). Naturally occurring PPARγ modulators are more desirable as they lack the serious adverse effects caused by TZDs. This has prompted the exploitation of medicinal plants used in traditional medicine, for their potential PPARγ activity. In the present work, we studied chebulagic acid (CHA) isolated from fruits of Terminalia chebula with respect to its effect on adipogenesis, glucose transport, and endocrine function of adipocyte. The mRNA expression profile of PPARγ target gene CCAAT/enhancer-binding protein alpha (C/EBP-α) was analyzed by qRT-PCR. The putative binding mode and the potential ligand-target interactions of CHA, with PPARγ was analyzed using docking software (Autodock and iGEMDOCKv2). The results showed that CHA enhances PPARγ signaling and adipogenesis dose dependently but in a moderate way, less than rosiglitazone. GLUT4 expression and adiponectin secretion was increased by CHA treatment. The mRNA expression of PPARγ target gene C/EBP-α was increased in CHA -treated adipocytes. The comparison of results of various parameters of adipogenesis, insulin sensitivity, endocrine function and molecular docking experiments of roziglitazone and chebulagic acid indicate that the latter behaves like partial PPARγ agonist which could be exploited for phytoceutical development against T2DM.
Collapse
Affiliation(s)
- Gangadharan Leela Shyni
- Biochemistry and Cell Culture Laboratory, Agroprocessing and Natural Products Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hallenborg P, Petersen RK, Feddersen S, Sundekilde U, Hansen JB, Blagoev B, Madsen L, Kristiansen K. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation. J Lipid Res 2014; 55:2491-500. [PMID: 25312885 DOI: 10.1194/jlr.m050658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation.
Collapse
Affiliation(s)
- Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Søren Feddersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulrik Sundekilde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | |
Collapse
|
32
|
Aksanov O, Green P, Birk RZ. BBS4 directly affects proliferation and differentiation of adipocytes. Cell Mol Life Sci 2014; 71:3381-92. [PMID: 24500759 PMCID: PMC11113930 DOI: 10.1007/s00018-014-1571-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/23/2022]
Abstract
BBS4 is one of several proteins whose defects cause Bardet-Biedl syndrome (BBS), a multi-systemic disorder, manifesting with marked obesity. BBS4 polymorphisms have been associated with common non-syndromic morbid obesity. BBS4 obesity molecular mechanisms, and the role of the BBS4 gene in adipocyte differentiation and function are not entirely known. We now show that Bbs4 plays a direct and essential role in proliferation and adipogenesis: silencing of Bbs4 in 3T3F442A preadipocytes induced accelerated cell division and aberrant differentiation, evident through morphologic studies (light, scanning and transmission electron microscopy), metabolic analyses (fat accumulation, fatty acid profile and lipolysis) and adipogenic markers transcripts (Cebpα, Pparγ, aP2, ADRP, Perilipin). Throughout adipogenesis and when challenged with fat load, Bbs4 silenced cells accumulate significantly more triglycerides than control adipocytes, albeit in smaller (yet greater in number) droplets containing modified fatty acid profiles. Thus, greater fat accumulation in the silenced cells is a consequence of both a higher rate of adipocyte proliferation and of aberrant differentiation leading to augmented aberrant accumulation of fat per cell. Our findings suggest that the BBS obesity might be partly due to a direct role of BBS4 in physiological and pathophysiological mechanisms that underlie adipose tissue formation relevant to obesity.
Collapse
Affiliation(s)
- Olga Aksanov
- National Institute for Biotechnology in the Negev, Ben Gurion University, Beer-Sheva, Israel
| | - Pnina Green
- Laboratory for the Study of Fatty Acids, Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Z. Birk
- Department of Nutrition, Faculty of Health Science, Ariel University, Ariel, Israel
| |
Collapse
|
33
|
Screening for bioactive metabolites in plant extracts modulating glucose uptake and fat accumulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:156398. [PMID: 25254050 PMCID: PMC4164421 DOI: 10.1155/2014/156398] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 01/19/2023]
Abstract
Dichloromethane and methanol extracts of seven different food and medicinal plants were tested in a screening platform for identification of extracts with potential bioactivity related to insulin-dependent glucose uptake and fat accumulation. The screening platform included a series of in vitro bioassays, peroxisome proliferator-activated receptor (PPAR) γ-mediated transactivation, adipocyte differentiation of 3T3-L1 cell cultures, and glucose uptake in both 3T3-L1 adipocytes and primary porcine myotubes, as well as one in vivo bioassay, fat accumulation in the nematode Caenorhabditis elegans. We found that dichloromethane extracts of aerial parts of golden root (Rhodiola rosea) and common elder (Sambucus nigra) as well as the dichloromethane extracts of thyme (Thymus vulgaris) and carrot (Daucus carota) were able to stimulate insulin-dependent glucose uptake in both adipocytes and myotubes while weekly activating PPARγ without promoting adipocyte differentiation. In addition, these extracts were able to decrease fat accumulation in C. elegans. Methanol extracts of summer savory (Satureja hortensis), common elder, and broccoli (Brassica oleracea) enhanced glucose uptake in myotubes but were not able to activate PPARγ, indicating a PPARγ-independent effect on glucose uptake.
Collapse
|
34
|
Borkowski K, Wrzesinski K, Rogowska-Wrzesinska A, Audouze K, Bakke J, Petersen RK, Haj FG, Madsen L, Kristiansen K. Proteomic analysis of cAMP-mediated signaling during differentiation of 3 T3-L1 preadipocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2096-107. [PMID: 25152230 DOI: 10.1016/j.bbapap.2014.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 01/06/2023]
Abstract
Initiation of adipocyte differentiation is promoted by the synergistic action of insulin/insulin-like growth factor, glucocorticoids, and agents activating cAMP-dependent signaling. The action of cAMP is mediated via PKA and Epac, where at least part of the PKA function relates to strong repression of Rho kinase activity, whereas Epac counteracts the reduction in insulin/insulin-like growth factor signaling associated with complete repression of Rho kinase activity. However, detailed knowledge of the Epac-dependent branch and the interplay with PKA is still limited. In the present study, we present a comprehensive evaluation of Epac-mediated processes and their interplay with PKA during the initiation of 3 T3-L1 preadipocyte differentiation using a combination of proteomics, molecular approaches, and bioinformatics. Proteomic analyses revealed 7 proteins specifically regulated in response to Epac activation, 4 in response to PKA activation, and 11 in response to the combined activation of Epac and PKA during the initial phase of differentiation. Network analyses indicated that the identified proteins are involved in pathways of importance for glucose metabolism, inositol metabolism, and calcium-dependent signaling thereby adding a novel facet to our understanding of cAMP-mediated potentiation of adipocyte differentiation.
Collapse
Affiliation(s)
- Kamil Borkowski
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Krzysztow Wrzesinski
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark
| | - Karine Audouze
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Jesse Bakke
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA
| | - Rasmus Koefoed Petersen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark; National Institute of Nutrition and Seafood Research (NIFES), Bergen N-5817, Norway.
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen DK-2200, Denmark.
| |
Collapse
|
35
|
Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol Cell Biol 2013; 34:939-54. [PMID: 24379442 DOI: 10.1128/mcb.01344-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) are key activators of adipogenesis. They mutually induce the expression of each other and have been reported to cooperate in activation of a few adipocyte genes. Recently, genome-wide profiling revealed a high degree of overlap between PPARγ and C/EBPα binding in adipocytes, suggesting that cooperativeness could be mediated through common binding sites. To directly investigate the interplay between PPARγ and C/EBPα at shared binding sites, we established a fibroblastic model system in which PPARγ and C/EBPα can be independently expressed. Using RNA sequencing, we demonstrate that coexpression of PPARγ and C/EBPα leads to synergistic activation of many key metabolic adipocyte genes. This is associated with extensive C/EBPα-mediated reprogramming of PPARγ binding and vice versa in the vicinity of these genes, as determined by chromatin immunoprecipitation combined with deep sequencing. Our results indicate that this is at least partly mediated by assisted loading involving chromatin remodeling directed by the leading factor. In conclusion, we report a novel mechanism by which the key adipogenic transcription factors, PPARγ and C/EBPα, cooperate in activation of the adipocyte gene program.
Collapse
|
36
|
Walenta E, Pessentheiner AR, Pelzmann HJ, Deutsch A, Goeritzer M, Kratky D, Hackl H, Oh DY, Prokesch A, Bogner-Strauss JG. α/β-hydrolase domain containing protein 15 (ABHD15)--an adipogenic protein protecting from apoptosis. PLoS One 2013; 8:e79134. [PMID: 24236098 PMCID: PMC3827343 DOI: 10.1371/journal.pone.0079134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/18/2013] [Indexed: 12/27/2022] Open
Abstract
Our knowledge about adipocyte metabolism and development is steadily growing, yet many players are still undefined. Here, we show that α/β-hydrolase domain containing protein 15 (Abhd15) is a direct and functional target gene of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipogenesis. In line, Abhd15 is mainly expressed in brown and white adipose tissue and strongly upregulated during adipogenesis in various murine and human cell lines. Stable knockdown of Abhd15 in 3T3-L1 cells evokes a striking differentiation defect, as evidenced by low lipid accumulation and decreased expression of adipocyte marker genes. In preconfluent cells, knockdown of Abhd15 leads to impaired proliferation, which is caused by apoptosis, as we see an increased SubG1 peak, caspase 3/7 activity, and BAX protein expression as well as a reduction in anti-apoptotic BCL-2 protein. Furthermore, apoptosis-inducing amounts of palmitic acid evoke a massive increase of Abhd15 expression, proposing an apoptosis-protecting role for ABHD15. On the other hand, in mature adipocytes physiological (i.e. non-apoptotic) concentrations of palmitic acid down-regulate Abhd15 expression. Accordingly, we found that the expression of Abhd15 in adipose tissue is reduced in physiological situations with high free fatty acid levels, like high-fat diet, fasting, and aging as well as in genetically obese mice. Collectively, our results position ABHD15 as an essential component in the development of adipocytes as well as in apoptosis, thereby connecting two substantial factors in the regulation of adipocyte number and size. Together with its intricate regulation by free fatty acids, ABHD15 might be an intriguing new target in obesity and diabetes research.
Collapse
Affiliation(s)
- Evelyn Walenta
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Ariane R. Pessentheiner
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Helmut J. Pelzmann
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | | | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Hubert Hackl
- Division of Bioinformatics, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Da Young Oh
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Andreas Prokesch
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Juliane G. Bogner-Strauss
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| |
Collapse
|
37
|
Singh J, Kakkar P. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats. Food Chem Toxicol 2013; 62:722-31. [PMID: 24140466 DOI: 10.1016/j.fct.2013.09.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 12/13/2022]
Abstract
A decoction of stem bark of Oroxylum indicum Vent. (OI) is taken (2-3 times/day) by the tribal people of Sikkim, India to treat diabetes but scientific validation of its overall potential is lacking. Present study was aimed to assess in vitro antihyperglycemic activity of standardized OI extract using inhibition of α-glucosidase, BSA glycation and enhancement of insulin sensitivity. Antidiabetic and antioxidant modulatory effects of OI extract along with the blood biomarkers of toxic response were studied in streptozotocin (STZ) induced diabetic rats. In vitro analysis showed strong antioxidant capacity of OI -and potential to inhibit BSA glycation and α-glucosidase activity which was comparable to standard counterparts. Extract also improved insulin sensitivity in mature 3T3-L1 adipocytes. In vivo effects of OI extract (oral 250 mg/kg b.wt.) on STZ induced type II diabetic rats normalized the antioxidant status (p≤0.01). Analysis of blood biomarkers of toxic response indicated its safety. Lowering of total cholesterol and HDL levels (p≤0.05) and restoration of glycated Hb (p≤0.01) were also found in OI treated diabetic rats. HOMA-IR, QUICKI analysis along with area under the curve analysis showed the capacity of OI extract to enhance the insulin sensitivity significantly (p≤0.01) which was confirmed by increased GLUT-4 translocation in skeletal muscles.
Collapse
Affiliation(s)
- Jyotsna Singh
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | | |
Collapse
|
38
|
Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J, Nielsen MM, Hansen AS, Quistorff B, Hansen JB. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. BMC Cell Biol 2013; 14:41. [PMID: 24059847 PMCID: PMC3849012 DOI: 10.1186/1471-2121-14-41] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/18/2013] [Indexed: 01/09/2023] Open
Abstract
Background Increased adipose thermogenesis is being considered as a strategy aimed at preventing or reversing obesity. Thus, regulation of the uncoupling protein 1 (UCP1) gene in human adipocytes is of significant interest. Retinoic acid (RA), the carboxylic acid form of vitamin A, displays agonist activity toward several nuclear hormone receptors, including RA receptors (RARs) and peroxisome proliferator-activated receptor δ (PPARδ). Moreover, RA is a potent positive regulator of UCP1 expression in mouse adipocytes. Results The effects of all-trans RA (ATRA) on UCP1 gene expression in models of mouse and human adipocyte differentiation were investigated. ATRA induced UCP1 expression in all mouse white and brown adipocytes, but inhibited or had no effect on UCP1 expression in human adipocyte cell lines and primary human white adipocytes. Experiments with various RAR agonists and a RAR antagonist in mouse cells demonstrated that the stimulatory effect of ATRA on UCP1 gene expression was indeed mediated by RARs. Consistently, a PPARδ agonist was without effect. Moreover, the ATRA-mediated induction of UCP1 expression in mouse adipocytes was independent of PPARγ coactivator-1α. Conclusions UCP1 expression is differently affected by ATRA in mouse and human adipocytes. ATRA induces UCP1 expression in mouse adipocytes through activation of RARs, whereas expression of UCP1 in human adipocytes is not increased by exposure to ATRA.
Collapse
Affiliation(s)
- Maria Murholm
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Haakonsson AK, Stahl Madsen M, Nielsen R, Sandelin A, Mandrup S. Acute genome-wide effects of rosiglitazone on PPARγ transcriptional networks in adipocytes. Mol Endocrinol 2013; 27:1536-49. [PMID: 23885096 DOI: 10.1210/me.2013-1080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription of nearby genes, indicating that rosiglitazone, in addition to activating the receptor, also promotes its association with DNA, and that this is causally linked to recruitment of mediator and activation of genes. Notably, both rosiglitazone-activated and -repressed genes are induced during adipogenesis. However, rosiglitazone-activated genes are markedly more associated with PPARγ than repressed genes and are highly dependent on PPARγ for expression in adipocytes. By contrast, repressed genes are associated with the other key adipocyte transcription factor CCAAT-enhancer binding proteinα (C/EBPα), and their expression is more dependent on C/EBPα. This suggests that the relative occupancies of PPARγ and C/EBPα are critical for whether genes will be induced or repressed by PPARγ agonist.
Collapse
Affiliation(s)
- Anders Kristian Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
40
|
Kang ES, Ham SA, Hwang JS, Lee CK, Seo HG. Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity. Korean J Food Sci Anim Resour 2013. [DOI: 10.5851/kosfa.2013.33.3.411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Moreno-Navarrete JM, Petrov P, Serrano M, Ortega F, García-Ruiz E, Oliver P, Ribot J, Ricart W, Palou A, Bonet ML, Fernández-Real JM. Decreased RB1 mRNA, protein, and activity reflect obesity-induced altered adipogenic capacity in human adipose tissue. Diabetes 2013; 62:1923-31. [PMID: 23315497 PMCID: PMC3661645 DOI: 10.2337/db12-0977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/30/2012] [Indexed: 01/04/2023]
Abstract
Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Service of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| | - Petar Petrov
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - Marta Serrano
- Service of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| | - Francisco Ortega
- Service of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| | - Estefanía García-Ruiz
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - Paula Oliver
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - Wifredo Ricart
- Service of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - Mª Luisa Bonet
- Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears, and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/060, Palma de Mallorca, Spain
| | - José Manuel Fernández-Real
- Service of Diabetes, Endocrinology and Nutrition, Institut d’Investigació Biomèdica de Girona and CIBER Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Spain
| |
Collapse
|
42
|
Alvheim AR, Malde MK, Osei-Hyiaman D, Hong Lin Y, Pawlosky RJ, Madsen L, Kristiansen K, Frøyland L, Hibbeln JR. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity (Silver Spring) 2012; 20:1984-94. [PMID: 22334255 PMCID: PMC3458187 DOI: 10.1038/oby.2012.38] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Suppressing hyperactive endocannabinoid tone is a critical target for reducing obesity. The backbone of both endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) is the ω-6 fatty acid arachidonic acid (AA). Here we posited that excessive dietary intake of linoleic acid (LA), the precursor of AA, would induce endocannabinoid hyperactivity and promote obesity. LA was isolated as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% occurring in the United States during the 20th century. Mice were fed diets containing 1 en% LA, 8 en% LA, and 8 en% LA + 1 en% eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) in medium-fat diets (35 en% fat) and high-fat diets (60 en%) for 14 weeks from weaning. Increasing LA from 1 en% to 8 en% elevated AA-phospholipids (PL) in liver and erythrocytes, tripled 2-AG + 1-AG and AEA associated with increased food intake, feed efficiency, and adiposity in mice. Reducing AA-PL by adding 1 en% long-chain ω-3 fats to 8 en% LA diets resulted in metabolic patterns resembling 1 en% LA diets. Selectively reducing LA to 1 en% reversed the obesogenic properties of a 60 en% fat diet. These animal diets modeled 20th century increases of human LA consumption, changes that closely correlate with increasing prevalence rates of obesity. In summary, dietary LA increased tissue AA, and subsequently elevated 2-AG + 1-AG and AEA resulting in the development of diet-induced obesity. The adipogenic effect of LA can be prevented by consuming sufficient EPA and DHA to reduce the AA-PL pool and normalize endocannabinoid tone.
Collapse
Affiliation(s)
- Anita R. Alvheim
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marian K. Malde
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Douglas Osei-Hyiaman
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- CardioMetabolic Disease Research, Department of Molecular & Cellular Biology, Nippon Boehringer-Ingelheim, Kobe, Japan
- RIKEN Center for Molecular Imaging Sciences, Kobe, Japan
| | - Yu Hong Lin
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Robert J. Pawlosky
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
| | - Lise Madsen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Joseph R. Hibbeln
- National Institute on Alcohol Abuse & Alcoholism, NIH, Bethesda, Maryland, USA
- ()
| |
Collapse
|
43
|
Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. Mol Cell Biol 2012; 32:3452-63. [PMID: 22733994 DOI: 10.1128/mcb.00526-12] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and function. We and others have previously mapped PPARγ binding at a genome-wide level in murine and human adipocyte cell lines and in primary human adipocytes. However, little is known about how binding patterns of PPARγ differ between brown and white adipocytes and among different types of white adipocytes. Here we have employed chromatin immunoprecipitation combined with deep sequencing to map and compare PPARγ binding in in vitro differentiated primary mouse adipocytes isolated from epididymal, inguinal, and brown adipose tissues. While these PPARγ binding profiles are overall similar, there are clear depot-selective binding sites. Most PPARγ binding sites previously mapped in 3T3-L1 adipocytes can also be detected in primary adipocytes, but there are a large number of PPARγ binding sites that are specific to the primary cells, and these tend to be located in closed chromatin regions in 3T3-L1 adipocytes. The depot-selective binding of PPARγ is associated with highly depot-specific gene expression. This indicates that PPARγ plays a role in the induction of genes characteristic of different adipocyte lineages and that preadipocytes from different depots are differentially preprogrammed to permit PPARγ lineage-specific recruitment even when differentiated in vitro.
Collapse
|
44
|
Suarez PE, Rodriguez EG, Soundararajan R, Mérillat AM, Stehle JC, Rotman S, Roger T, Voirol MJ, Wang J, Gross O, Pétrilli V, Nadra K, Wilson A, Beermann F, Pralong FP, Maillard M, Pearce D, Chrast R, Rossier BC, Hummler E. The glucocorticoid-induced leucine zipper (gilz/Tsc22d3-2) gene locus plays a crucial role in male fertility. Mol Endocrinol 2012; 26:1000-13. [PMID: 22556341 DOI: 10.1210/me.2011-1249] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (Tsc22d3-2) is a widely expressed dexamethasone-induced transcript that has been proposed to be important in immunity, adipogenesis, and renal sodium handling based on in vitro studies. To address its function in vivo, we have used Cre/loxP technology to generate mice deficient for Tsc22d3-2. Male knockout mice were viable but surprisingly did not show any major deficiencies in immunological processes or inflammatory responses. Tsc22d3-2 knockout mice adapted to a sodium-deprived diet and to water deprivation conditions but developed a subtle deficiency in renal sodium and water handling. Moreover, the affected animals developed a mild metabolic phenotype evident by a reduction in weight from 6 months of age, mild hyperinsulinemia, and resistance to a high-fat diet. Tsc22d3-2-deficient males were infertile and exhibited severe testis dysplasia from postnatal d 10 onward with increases in apoptotic cells within seminiferous tubules, an increased number of Leydig cells, and significantly elevated FSH and testosterone levels. Thus, our analysis of the Tsc22d3-2-deficient mice demonstrated a previously uncharacterized function of glucocorticoid-induced leucine zipper protein in testis development.
Collapse
Affiliation(s)
- Philippe Emmanuel Suarez
- Departments of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Xu ZF, Pan AZ, Yong F, Shen CY, Chen YW, Wu RH. Human umbilical mesenchymal stem cell and its adipogenic differentiation: Profiling by nuclear magnetic resonance spectroscopy. World J Stem Cells 2012; 4:21-7. [PMID: 22577495 PMCID: PMC3348957 DOI: 10.4252/wjsc.v4.i4.21] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 02/21/2012] [Accepted: 03/03/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To study the metabolic profile of human umbilical mesenchymal stem cells (HUMSC) and adipogenic differentiation by nuclear magnetic resonance (NMR) spectroscopy. METHODS HUMSC isolated from human umbilical cord stroma were induced to adipocytes over 2 wk by adding dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin, and insulin to the culture medium. Adipogenic differentiation was confirmed by Red O staining and transcription-polymerase chain reaction. Perchloric acid extracts of the HUMSCs and adipocytes (about 7 × 10(6)) were characterized for metabolites by using in vitro high resolution 9.4T NMR spectroscopy. RESULTS Several major metabolites, such as: choline, creatine, glutamate and myo-inositol, acetate, and some fatty acids/triglycerides, were observed in the MR spectroscopic pattern of HUMSCs and their adipogenic differentiation. HUMSCs are characterized by an unusually low number of NMR-detectable metabolites, high choline, acetate, glutamate and creatine content. However, the metabolic profiles of adipogenic differentiation demonstrated considerably higher methionine and fatty acids, and non-detectable creatine. CONCLUSION The biomarkers of HUMSCS and adipocytes were obtained and assigned. NMR spectroscopy will be a promising tool for monitoring stem cell differentiation.
Collapse
Affiliation(s)
- Zhi-Feng Xu
- Zhi-Feng Xu, Yao-Wen Chen, Ren-Hua Wu, Department of Medical Imaging, the 2nd Affiliated Hospital, Medical College of Shantou University, Shantou 515041, Guangdong Province, China
| | | | | | | | | | | |
Collapse
|
46
|
Langaa S, Bloksgaard M, Bek S, Neess D, Nørregaard R, Hansen PBL, Marcher AB, Frøkiær J, Mandrup S, Jensen BL. Mice with targeted disruption of the acyl-CoA binding protein display attenuated urine concentrating ability and diminished renal aquaporin-3 abundance. Am J Physiol Renal Physiol 2012; 302:F1034-44. [DOI: 10.1152/ajprenal.00371.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP−/−) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na+ and K+ did not differ between ACBP−/− and +/+ mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP−/− mice compared with that of +/+ mice. Subsequent to 20-h water deprivation, ACBP−/− mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with +/+ mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na+, K+, and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived +/+ and ACBP−/− mice; however, ACBP−/− mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP−/− mice than in +/+ control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP−/− may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.
Collapse
Affiliation(s)
- Stine Langaa
- Departments of 1Cardiovascular and Renal Research and
| | - Maria Bloksgaard
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense; and
| | - Signe Bek
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense; and
| | - Ditte Neess
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense; and
| | - Rikke Nørregaard
- The Water and Salt Research Center, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Ann Britt Marcher
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense; and
| | - Jørgen Frøkiær
- The Water and Salt Research Center, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Mandrup
- Biochemistry and Molecular Biology, University of Southern Denmark, Odense; and
| | | |
Collapse
|
47
|
Jia B, Madsen L, Petersen RK, Techer N, Kopperud R, Ma T, Døskeland SO, Ailhaud G, Wang J, Amri EZ, Kristiansen K. Activation of protein kinase A and exchange protein directly activated by cAMP promotes adipocyte differentiation of human mesenchymal stem cells. PLoS One 2012; 7:e34114. [PMID: 22479536 PMCID: PMC3313974 DOI: 10.1371/journal.pone.0034114] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 02/21/2012] [Indexed: 12/23/2022] Open
Abstract
Human mesenchymal stem cells are primary multipotent cells capable of differentiating into several cell types including adipocytes when cultured under defined in vitro conditions. In the present study we investigated the role of cAMP signaling and its downstream effectors, protein kinase A (PKA) and exchange protein directly activated by cAMP (Epac) in adipocyte conversion of human mesenchymal stem cells derived from adipose tissue (hMADS). We show that cAMP signaling involving the simultaneous activation of both PKA- and Epac-dependent signaling is critical for this process even in the presence of the strong adipogenic inducers insulin, dexamethasone, and rosiglitazone, thereby clearly distinguishing the hMADS cells from murine preadipocytes cell lines, where rosiglitazone together with dexamethasone and insulin strongly promotes adipocyte differentiation. We further show that prostaglandin I2 (PGI2) may fully substitute for the cAMP-elevating agent isobutylmethylxanthine (IBMX). Moreover, selective activation of Epac-dependent signaling promoted adipocyte differentiation when the Rho-associated kinase (ROCK) was inhibited. Unlike the case for murine preadipocytes cell lines, long-chain fatty acids, like arachidonic acid, did not promote adipocyte differentiation of hMADS cells in the absence of a PPARγ agonist. However, prolonged treatment with the synthetic PPARδ agonist L165041 promoted adipocyte differentiation of hMADS cells in the presence of IBMX. Taken together our results emphasize the need for cAMP signaling in concert with treatment with a PPARγ or PPARδ agonist to secure efficient adipocyte differentiation of human hMADS mesenchymal stem cells.
Collapse
Affiliation(s)
- Bingbing Jia
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | - Nathalie Techer
- IBV, Université de Nice Sophia-Antipolis, UMR7277 CNRS - UMR1091 INSERM, Faculté de Médecine, Nice, France
| | - Reidun Kopperud
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Tao Ma
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Gérard Ailhaud
- IBV, Université de Nice Sophia-Antipolis, UMR7277 CNRS - UMR1091 INSERM, Faculté de Médecine, Nice, France
| | - Jinfu Wang
- Institute of Cell Biology and Genetics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- * E-mail: (JW); (KK)
| | - Ez-Zoubir Amri
- IBV, Université de Nice Sophia-Antipolis, UMR7277 CNRS - UMR1091 INSERM, Faculté de Médecine, Nice, France
| | - Karsten Kristiansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JW); (KK)
| |
Collapse
|
48
|
Rosell M, Hondares E, Iwamoto S, Gonzalez FJ, Wabitsch M, Staels B, Olmos Y, Monsalve M, Giralt M, Iglesias R, Villarroya F. Peroxisome proliferator-activated receptors-α and -γ, and cAMP-mediated pathways, control retinol-binding protein-4 gene expression in brown adipose tissue. Endocrinology 2012; 153:1162-73. [PMID: 22253419 DOI: 10.1210/en.2011-1367] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Retinol binding protein-4 (RBP4) is a serum protein involved in the transport of vitamin A. It is known to be produced by the liver and white adipose tissue. RBP4 release by white fat has been proposed to induce insulin resistance. We analyzed the regulation and production of RBP4 in brown adipose tissue. RBP4 gene expression is induced in brown fat from mice exposed to cold or treated with peroxisome proliferator-activated receptor (PPAR) agonists. In brown adipocytes in culture, norepinephrine, cAMP, and activators of PPARγ and PPARα induced RBP4 gene expression and RBP4 protein release. The induction of RBP4 gene expression by norepinephrine required intact PPAR-dependent pathways, as evidenced by impaired response of the RBP4 gene expression to norepinephrine in PPARα-null brown adipocytes or in the presence of inhibitors of PPARγ and PPARα. PPARγ and norepinephrine can also induce the RBP4 gene in white adipocytes, and overexpression of PPARα confers regulation by this PPAR subtype to white adipocytes. The RBP4 gene promoter transcription is activated by cAMP, PPARα, and PPARγ. This is mediated by a PPAR-responsive element capable of binding PPARα and PPARγ and required also for activation by cAMP. The induction of the RBP4 gene expression by norepinephrine in brown adipocytes is protein synthesis dependent and requires PPARγ-coactivator-1-α, which acts as a norepinephine-induced coactivator of PPAR on the RBP4 gene. We conclude that PPARγ- and PPARα-mediated signaling controls RBP4 gene expression and releases in brown adipose tissue, and thermogenic activation induces RBP4 gene expression in brown fat through mechanisms involving PPARγ-coactivator-1-α coactivation of PPAR signaling.
Collapse
Affiliation(s)
- Meritxell Rosell
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Avinguda Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ravanan P, Singh SK, Rao GS, Kondaiah P. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J Biosci 2011; 36:297-307. [PMID: 21654084 DOI: 10.1007/s12038-011-9056-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triterpenoids are pentacyclic secondary metabolites present in many terrestrial plants. Natural triterpenoids have been reported to exhibit anti-inflammatory and anti-carcinogenic activities. Here, we show that modifications of ring A of boswellic acid (2 cyano, 3 enone) resulted in a highly active growth inhibitory, anti-inflammatory, prodifferentiative and anti-tumour triterpenoid compound called cyano enone of methyl boswellates (CEMB). This compound showed cytotoxic activity on a number of cancer cell lines with IC₅₀ ranging from 0.2 to 0.6 μM. CEMB inhibits DNA synthesis and induces apoptosis in A549 cell line at 0.25 μM and 1 μM concentrations, respectively. CEMB induces adipogenic differentiation in 3T3-L1 cells at a concentration of 0.1 μM. Finally, administration of CEMB intra-tumourally significantly inhibited the growth of C6 glioma tumour xenograft in immuno-compromised mice. Collectively, these results suggest that CEMB is a very potent anti-tumour compound.
Collapse
Affiliation(s)
- Palaniyandi Ravanan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
50
|
Munekata K, Sakamoto K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim 2011; 45:642-51. [PMID: 19585174 DOI: 10.1007/s11626-009-9230-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 06/26/2009] [Indexed: 01/04/2023]
Abstract
We analyzed the physiological role of forkhead box class O 1 (Foxo1) in adipocyte differentiation by suppressing Foxo1 mRNAwith siRNA specific for Foxo1.Mouse 3T3-L1 preadipocytes infected with an adenovirus expressing Foxo1-siRNA showed a marked decrease in lipid droplet formation when induced to differentiate into adipocytes. Adipocyte differentiation was most severely inhibited by exposing cells to Foxo1-siRNA before induction of differentiation. The incorporation of fluorescent-labeled glucose and fatty acid was significantly inhibited in cells deficient in Foxo1. RTPCR revealed that downregulation of Foxo1 decreased the expression of the transcription factors, PPAR-γ and C/EBP-α. By comparison, Foxo1-siRNA did not affect the expression of C/EBP-β or C/EBP-δ during the early period of adipocyte differentiation. These results indicate that Foxo1 plays an essential role in adipocyte differentiation, especially at the very early stage of terminal adipocyte differentiation.
Collapse
Affiliation(s)
- Keisuke Munekata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|