1
|
Hodeify R, Kreydiyyeh S, Zaid LMJ. Identified and potential internalization signals involved in trafficking and regulation of Na +/K + ATPase activity. Mol Cell Biochem 2024; 479:1583-1598. [PMID: 37634170 PMCID: PMC11254989 DOI: 10.1007/s11010-023-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The sodium-potassium pump (NKA) or Na+/K+ ATPase consumes around 30-40% of the total energy expenditure of the animal cell on the generation of the sodium and potassium electrochemical gradients that regulate various electrolyte and nutrient transport processes. The vital role of this protein entails proper spatial and temporal regulation of its activity through modulatory mechanisms involving its expression, localization, enzymatic activity, and protein-protein interactions. The residence of the NKA at the plasma membrane is compulsory for its action as an antiporter. Despite the huge body of literature reporting on its trafficking between the cell membrane and intracellular compartments, the mechanisms controlling the trafficking process are by far the least understood. Among the molecular determinants of the plasma membrane proteins trafficking are intrinsic sequence-based endocytic motifs. In this review, we (i) summarize previous reports linking the regulation of Na+/K+ ATPase trafficking and/or plasma membrane residence to its activity, with particular emphasis on the endocytic signals in the Na+/K+ ATPase alpha-subunit, (ii) map additional potential internalization signals within Na+/K+ ATPase catalytic alpha-subunit, based on canonical and noncanonical endocytic motifs reported in the literature, (iii) pinpoint known and potential phosphorylation sites associated with NKA trafficking, (iv) highlight our recent studies on Na+/K+ ATPase trafficking and PGE2-mediated Na+/K+ ATPase modulation in intestine, liver, and kidney cells.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates.
| | - Sawsan Kreydiyyeh
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Beirut, Lebanon
| | - Leen Mohammad Jamal Zaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
2
|
Dembla E, Becherer U. Biogenesis of large dense core vesicles in mouse chromaffin cells. Traffic 2021; 22:78-93. [PMID: 33369005 DOI: 10.1111/tra.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.
Collapse
Affiliation(s)
- Ekta Dembla
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Areal LB, Hamilton A, Martins-Silva C, Pires RGW, Ferguson SSG. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Mol Brain 2019; 12:15. [PMID: 30803445 PMCID: PMC6388481 DOI: 10.1186/s13041-019-0434-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/04/2019] [Indexed: 01/23/2023] Open
Abstract
Spinophilin is a scaffolding protein enriched in dendritic spines with integral roles in the regulation of spine density and morphology, and the modulation of synaptic plasticity. The ability of spinophilin to alter synaptic strength appears to involve its scaffolding of key synaptic proteins, including the important structural element F-actin, AMPA/NMDA modulator protein phosphatase 1, and neuromodulatory G-protein coupled receptors, including dopamine receptor D2 and metabotropic glutamate receptor 5. Additionally, spinophilin is highly expressed in the striatum, a brain region that is fundamentally involved in reward-processing and locomotor activity which receives both glutamatergic and dopaminergic inputs. Therefore, we aimed to investigate the role of spinophilin in behavioral responses to cocaine, evaluating wild-type and spinophilin knockout mice followed by the examination of underlying molecular alterations. Although acute locomotor response was not affected, deletion of spinophilin blocked the development and expression of behavioral sensitization to cocaine while maintaining normal conditioned place preference. This behavioral alteration in spinophilin knockout mice was accompanied by attenuated c-Fos and ∆FosB expression following cocaine administration and blunted cocaine-induced phosphorylation of ERK1/2 in the striatum, with no change in other relevant signaling molecules. Therefore, we suggest spinophilin fulfills an essential role in cocaine-induced behavioral sensitization, likely via ERK1/2 phosphorylation and induction of c-Fos and ∆FosB in the striatum, a mechanism that may underlie specific processes in cocaine addiction.
Collapse
Affiliation(s)
- Lorena Bianchine Areal
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.,Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Alison Hamilton
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Cristina Martins-Silva
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito, Santo, Vitoria, ES, 29043-910, Brazil
| | - Rita Gomes Wanderley Pires
- Graduate Program in Neuroscience, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.,Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito, Santo, Vitoria, ES, 29043-910, Brazil
| | - Stephen S G Ferguson
- Department of Cellular and Molecular Medicine and University of Ottawa Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Affiliation(s)
- Luke Tillman
- Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
5
|
Chen L, Ge ZJ, Wang ZB, Sun T, Ouyang YC, Sun QY, Sun YP. TGN38 is required for the metaphase I/anaphase I transition and asymmetric cell division during mouse oocyte meiotic maturation. Cell Cycle 2015; 13:2723-32. [PMID: 25486359 DOI: 10.4161/15384101.2015.945828] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cellular functions of the trans-Golgi network protein TGN38 remain unknown. In this research, we studied the expression, localization and functions of TGN38 in the meiotic maturation of mouse oocytes. TGN38 was expressed at every stage of oocyte meiotic maturation and colocalized with γ-tubulin at metaphase I and metaphase II. The spindle microtubule disturbing agents nocodazole and taxol did not affect the colocalization of TGN38 and γ-tubulin. Depletion of TGN38 with specific siRNAs resulted in increased metaphase I arrest, accompanied with spindle assembly checkpoint activation and decreased first polar extrusion (PB1). In the oocytes that had extruded the PB1 after the depletion of TGN38, symmetric division occurred, leading to the production of 2 similarly sized cells. Moreover, the peripheral migration of metaphase I spindle and actin cap formation were impaired in TGN38-depleted oocytes. Our data suggest that TGN38 may regulate the metaphase I/anaphase I transition and asymmetric cell division in mouse oocytes.
Collapse
Affiliation(s)
- Lei Chen
- a Reproductive Medicine Center ; First Affiliated Hospital of Zhengzhou University ; Zhengzhou , Henan Province , China
| | | | | | | | | | | | | |
Collapse
|
6
|
Rönnberg T, Jääskeläinen K, Blot G, Parviainen V, Vaheri A, Renkonen R, Bouloy M, Plyusnin A. Searching for cellular partners of hantaviral nonstructural protein NSs: Y2H screening of mouse cDNA library and analysis of cellular interactome. PLoS One 2012; 7:e34307. [PMID: 22506017 PMCID: PMC3323627 DOI: 10.1371/journal.pone.0034307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 02/27/2012] [Indexed: 12/29/2022] Open
Abstract
Hantaviruses (Bunyaviridae) are negative-strand RNA viruses with a tripartite genome. The small (S) segment encodes the nucleocapsid protein and, in some hantaviruses, also the nonstructural protein (NSs). The aim of this study was to find potential cellular partners for the hantaviral NSs protein. Toward this aim, yeast two-hybrid (Y2H) screening of mouse cDNA library was performed followed by a search for potential NSs protein counterparts via analyzing a cellular interactome. The resulting interaction network was shown to form logical, clustered structures. Furthermore, several potential binding partners for the NSs protein, for instance ACBD3, were identified and, to prove the principle, interaction between NSs and ACBD3 proteins was demonstrated biochemically.
Collapse
Affiliation(s)
- Tuomas Rönnberg
- Department of Virology, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Iwatsuki H, Suda M. Seven kinds of intermediate filament networks in the cytoplasm of polarized cells: structure and function. Acta Histochem Cytochem 2010; 43:19-31. [PMID: 20514289 PMCID: PMC2875862 DOI: 10.1267/ahc.10009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/15/2010] [Indexed: 02/01/2023] Open
Abstract
Intermediate filaments (IFs) are involved in many important physiological functions, such as the distribution of organelles, signal transduction, cell polarity and gene regulation. However, little information exists on the structure of the IF networks performing these functions. We have clarified the existence of seven kinds of IF networks in the cytoplasm of diverse polarized cells: an apex network just under the terminal web, a peripheral network lying just beneath the cell membrane, a granule-associated network surrounding a mass of secretory granules, a Golgi-associated network surrounding the Golgi apparatus, a radial network locating from the perinuclear region to the specific area of the cell membrane, a juxtanuclear network surrounding the nucleus, and an entire cytoplasmic network. In this review, we describe these seven kinds of IF networks and discuss their biological roles.
Collapse
Affiliation(s)
| | - Masumi Suda
- Department of Anatomy, Kawasaki Medical School
| |
Collapse
|
8
|
Cobbold C, Coventry J, Ponnambalam S, Monaco AP. Actin and microtubule regulation ofTrans-Golgi network architecture, and copper-dependent protein transport to the cell surface. Mol Membr Biol 2009; 21:59-66. [PMID: 14668139 DOI: 10.1080/096870310001607350] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Menkes disease ATPase (MNK) is a copper transporter that localizes to the mammalian trans-Golgi network (TGN) and shows substantial co-localization wih a ubiquitous TGN resident protein and marker, TGN46. We tested our hypothesis that these two TGN residents and integral membrane proteins are localized to biochemically distinct TGN sub-compartments using constitutively active mutant proteins and drugs that disrupt membrane traffic, lumenal pH and the cellular cytoskeleton. The pH-disrupting agent, monensin, causes MNK to be more diffusely distributed with partial separation of staining patterns for these two TGN residents. Expression of a constitutively active Rho-kinase (ROCK-KIN), which causes formation of juxta-nuclear astral actin arrays, also effects separation of MNK and TGN46 staining patterns. Treatment of ROCK-KIN expressing cells with latrunculin B, an actin-depolymerizing agent, causes complete overlap of MNK and TGN46 staining patterns with concomitant disappearance of polymerized actin. When microtubules are depolymerized in ROCK-KIN expressing cells by nocodazole, both MNK and TGN46 are found in puncate structures throughout the cell. However, a substantial proportion of MNK is still found in a juxta-nuclear location in contrast to TGN46. Actin distribution in these cells reveals that juxta-nuclear MNK is distinct to the astral actin clusters in ROCK-KIN expressing cells where the microtubules were depolymerized. The TGN to cell-surface transport of MNK requires both actin and microtubules networks, whilst the constitutive trafficking of proteins is independent of actin. Taken together, our findings indicate that at least two TGN sub-domains are regulated by separate cytoskeletal dynamics involving actin and tubulin.
Collapse
Affiliation(s)
- Christian Cobbold
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, 0X3 7BN Oxford, UK
| | | | | | | |
Collapse
|
9
|
Kimura T, Allen PB, Nairn AC, Caplan MJ. Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase. Mol Biol Cell 2007; 18:4508-18. [PMID: 17804821 PMCID: PMC2043564 DOI: 10.1091/mbc.e06-08-0711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 and 3, 14-3-3 epsilon, and spinophilin directly associate with the Na(+),K(+)-ATPase and that the associations with arrestins, GRKs, or 14-3-3 epsilon are blocked in the presence of spinophilin. In COS cells that overexpressed arrestin, the Na(+),K(+)-ATPase was redistributed to intracellular compartments. This effect was not seen in mock-transfected cells or in cells expressing spinophilin. Furthermore, expression of spinophilin appeared to slow, whereas overexpression of beta-arrestins accelerated internalization of the Na(+),K(+)-ATPase endocytosis. We also find that GRKs phosphorylate the Na(+),K(+)-ATPase in vitro on its large cytoplasmic loop. Taken together, it appears that association with arrestins, GRKs, 14-3-3 epsilon, and spinophilin may be important modulators of Na(+),K(+)-ATPase trafficking.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
10
|
Sarrouilhe D, di Tommaso A, Métayé T, Ladeveze V. Spinophilin: from partners to functions. Biochimie 2006; 88:1099-113. [PMID: 16737766 DOI: 10.1016/j.biochi.2006.04.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 04/21/2006] [Indexed: 01/14/2023]
Abstract
Spinophilin/neurabin 2 has been isolated independently by two laboratories as a protein interacting with protein phosphatase 1 (PP1) and F-actin. Gene analysis and biochemical approaches have contributed to define a number of distinct modular domains in spinophilin that govern protein-protein interactions such as two F-actin-, three potential Src homology 3 (SH3)-, a receptor- and a PP1-binding domains, a PSD95/DLG/zo-1 (PDZ) and three coiled-coil domains, and a potential leucine/isoleucine zipper (LIZ) motif. More than 30 partner proteins of spinophilin have been discovered, including cytoskeletal and cell adhesion molecules, enzymes, guanine nucleotide exchange factors (GEF) and regulator of G-protein signalling protein, membrane receptors, ion channels and others proteins like the tumour suppressor ARF. The physiological relevance of some of these interactions remains to be demonstrated. However, spinophilin structure suggests that the protein is a multifunctional protein scaffold that regulates both membrane and cytoskeletal functions. Spinophilin plays important functions in the nervous system where it is implicated in spine morphology and density regulation, synaptic plasticity and neuronal migration. Spinophilin regulates also seven-transmembrane receptor signalling and may provide a link between some of these receptors and intracellular mitogenic signalling events dependent on p70(S6) kinase and Rac G protein-GEF. Strikingly a role for spinophilin in cell growth was demonstrated and this effect was enhanced by its interaction with ARF. Here we review the current knowledge of the protein partners of spinophilin and present the available data that are contributing to the appreciation of spinophilin functions.
Collapse
Affiliation(s)
- D Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 34, rue du Jardin-des-Plantes, BP 199, 86005 Poitiers cedex, France.
| | | | | | | |
Collapse
|
11
|
Abstract
IPCEF1 has been reported to interact with ADP-ribosylation factor GTP exchange factors of the cytohesin family and function by modulating the cytohesin 2 activity. This article describes methods used to study the interaction and activation of cytohesin GEFs by IPCEF1. The experimental approaches described here include physical and functional interaction assays by which the association of IPCEF1 with cytohesin 2 is explored both in vitro and in vivo. The methods used to analyze the physical association include GST-pull down and coimmunoprecipitation approaches. We also used yeast two-hybrid and colocalization assays to study the interaction between IPCEF1 and cytohesins. The functional relationship between IPCEF1 and cytohesin 2 was assessed by studying the effect of IPCEF1 on the in vitro and in vivo stimulation of ADP-ribosylation factor 6 GTP formation by cytohesin 2.
Collapse
|
12
|
Orioli D, Colaluca IN, Stefanini M, Riva S, Dotti CG, Peverali FA. Rac3-induced neuritogenesis requires binding to Neurabin I. Mol Biol Cell 2006; 17:2391-400. [PMID: 16525025 PMCID: PMC1446074 DOI: 10.1091/mbc.e05-08-0753] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rac3, a neuronal GTP-binding protein of the Rho family, induces neuritogenesis in primary neurons. Using yeast two-hybrid analysis, we show that Neurabin I, the neuronal F-actin binding protein, is a direct Rac3-interacting molecule. Biochemical and light microscopy studies indicate that Neurabin I copartitions and colocalizes with Rac3 at the growth cones of neurites, inducing Neurabin I association to the cytoskeleton. Moreover, Neurabin I antisense oligonucleotides abolish Rac3-induced neuritogenesis, which in turn is rescued by exogenous Neurabin I but not by Neurabin I mutant lacking the Rac3-binding domain. These results show that Neurabin I mediates Rac3-induced neuritogenesis, possibly by anchoring Rac3 to growth cone F-actin.
Collapse
Affiliation(s)
- Donata Orioli
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, I-27100 Pavia, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Egea G, Lázaro-Diéguez F, Vilella M. Actin dynamics at the Golgi complex in mammalian cells. Curr Opin Cell Biol 2006; 18:168-78. [PMID: 16488588 DOI: 10.1016/j.ceb.2006.02.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 02/09/2006] [Indexed: 01/05/2023]
Abstract
Secretion and endocytosis are highly dynamic processes that are sensitive to external stimuli. Thus, in multicellular organisms, different cell types utilize specialised pathways of intracellular membrane traffic to facilitate specific physiological functions. In addition to the complex internal molecular factors that govern sorting functions and fission or fusion of transport carriers, the actin cytoskeleton plays an important role in both the endocytic and secretory pathways. The interaction between the actin cytoskeleton and membrane trafficking is not restricted to transport processes: it also appears to be directly involved in the biogenesis of Golgi-derived transport carriers (budding and fission processes) and in the maintenance of the unique flat shape of Golgi cisternae.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel.lular i Anatomia Patològica, Facultat de Medicina and Instituts de Nanociències i Nanotecnologia (IN(2)UB) and d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | |
Collapse
|
14
|
Zhong J, Zhang T, Bloch LM. Dendritic mRNAs encode diversified functionalities in hippocampal pyramidal neurons. BMC Neurosci 2006; 7:17. [PMID: 16503994 PMCID: PMC1386695 DOI: 10.1186/1471-2202-7-17] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 02/17/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeted transport of messenger RNA and local protein synthesis near the synapse are important for synaptic plasticity. In order to gain an overview of the composition of the dendritic mRNA pool, we dissected out stratum radiatum (dendritic lamina) from rat hippocampal CA1 region and compared its mRNA content with that of stratum pyramidale (cell body layer) using a set of cDNA microarrays. RNAs that have over-representation in the dendritic fraction were annotated and sorted into function groups. RESULTS We have identified 154 dendritic mRNA candidates, which can be arranged into the categories of receptors and channels, signaling molecules, cytoskeleton and adhesion molecules, and factors that are involved in membrane trafficking, in protein synthesis, in posttranslational protein modification, and in protein degradation. Previously known dendritic mRNAs such as MAP2, calmodulin, and G protein gamma subunit were identified from our screening, as were mRNAs that encode proteins known to be important for synaptic plasticity and memory, such as spinophilin, Pumilio, eEF1A, and MHC class I molecules. Furthermore, mRNAs coding for ribosomal proteins were also found in dendrites. CONCLUSION Our results suggest that neurons transport a variety of mRNAs to dendrites, not only those directly involved in modulating synaptic plasticity, but also others that play more common roles in cellular metabolism.
Collapse
Affiliation(s)
- Jun Zhong
- Department for Physiology and Pharmacology, State University of New York Health Science Center at Brooklyn, 450 Clarkson Avenue, Box 29, Brooklyn, NY 11203, USA
| | - Theresa Zhang
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Lisa M Bloch
- Agilent Technologies, Integrated Biology Systems, 1 Cragwood Road, South Plainfield, NJ 07080, USA
| |
Collapse
|
15
|
Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, Julien JP. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 2005; 9:108-18. [PMID: 16369483 DOI: 10.1038/nn1603] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 10/26/2005] [Indexed: 11/09/2022]
Abstract
Here we report that chromogranins, components of neurosecretory vesicles, interact with mutant forms of superoxide dismutase (SOD1) that are linked to amyotrophic lateral sclerosis (ALS), but not with wild-type SOD1. This interaction was confirmed by yeast two-hybrid screen and by co-immunoprecipitation assays using either lysates from Neuro2a cells coexpressing chromogranins and SOD1 mutants or lysates from spinal cord of ALS mice. Confocal and immunoelectron microscopy revealed a partial colocalization of mutant SOD1 with chromogranins in spinal cord of ALS mice. Mutant SOD1 was also found in immuno-isolated trans-Golgi network and in microsome preparations, suggesting that it can be secreted. Indeed we report evidence that chromogranins may act as chaperone-like proteins to promote secretion of SOD1 mutants. From these results, and our finding that extracellular mutant SOD1 can trigger microgliosis and neuronal death, we propose a new ALS pathogenic model based on the toxicity of secreted SOD1 mutants.
Collapse
Affiliation(s)
- Makoto Urushitani
- Department of Anatomy and Physiology, Laval University, Centre de Recherche du Centre Hospitalier de l' Université Laval, 2705 boulevard Laurier, Sainte-Foy, Quebec G1V 4G2, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Ciruela F, Canela L, Burgueño J, Soriguera A, Cabello N, Canela EI, Casadó V, Cortés A, Mallol J, Woods AS, Ferré S, Lluis C, Franco R. Heptaspanning membrane receptors and cytoskeletal/scaffolding proteins: focus on adenosine, dopamine, and metabotropic glutamate receptor function. J Mol Neurosci 2005; 26:277-92. [PMID: 16012201 DOI: 10.1385/jmn:26:2-3:277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most cellular functions are mediated by multiprotein complexes. In neurons, these complexes are directly involved in the proper neuronal transmission, which is responsible for phenomena like learning, memory, and development. In recent years studies based on two-hybrid screens and proteomic, biochemical, and cell biology approaches have shown that intracellular domains of G protein-coupled receptors (GPCRs) or heptaspanning membrane receptors (HSMRs) interact with intracellular proteins. These interactions are the basis of a protein network associated with these receptors, which includes scaffolding proteins containing one or several PDZ (postsynaptic-density-95/discs-large/zona occludens-1) domains, signaling proteins, and proteins of the cytoskeleton. The present article is focused on the emerging evidence for interactions of adenosine, dopamine, and metabotropic glutamate receptors, with scaffolding and cytoskeletal proteins that play a role in the targeting and anchoring of these receptors to the plasma membrane, thus contributing to neuronal development and plasticity. Finally, given the complexity of neurological disorders such as ischemic stroke, Alzheimer's disease, and epilepsy, exploitation of these HSMR-associated interactions might prove to be efficient in the treatment of such disorders.
Collapse
Affiliation(s)
- Francisco Ciruela
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, 08028 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Venkateswarlu K, Hanada T, Chishti AH. Centaurin-α1 interacts directly with kinesin motor protein KIF13B. J Cell Sci 2005; 118:2471-84. [PMID: 15923660 DOI: 10.1242/jcs.02369] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Centaurin-α1 is a phosphatidylinositol 3,4,5-trisphosphate binding protein as well as a GTPase activating protein (GAP) for the ADP-ribosylation factor (ARF) family of small GTPases. To further understand its cellular function, we screened a rat brain cDNA library using centaurin-α1 as bait to identify centaurin-α1 interacting proteins. The yeast two-hybrid screen identified a novel kinesin motor protein as a centaurin-α1 binding partner. The motor protein, termed KIF13B, encoded by a single ∼9.5-kb transcript, is widely expressed with high levels observed in brain and kidney. Yeast two-hybrid and GST pull-down assays showed that the interaction between centaurin-α1 and KIF13B is direct and mediated by the GAP domain of centaurin-α1 and the stalk domain of KIF13B. Centaurin-α1 and KIF13B form a complex in vivo and the KIF13B interaction appears to be specific to centaurin-α1 as other members of the ARF GAP family did not show any binding activity. We also show that KIF13B and centaurin-α1 colocalize at the leading edges of the cell periphery whereas a deletion mutant of centaurin-α1 that lacks the KIF13B binding site, failed to colocalize with KIF13B in vivo. Finally, we demonstrate that KIF13B binding suppresses the ARF6 GAP activity of centaurin-α1 in intact cells. Together, our data suggest a mechanism where direct binding between centaurin-α1 and KIF13B could concentrate centaurin-α1 at the leading edges of cells, thus modulating ARF6 function.
Collapse
Affiliation(s)
- Kanamarlapudi Venkateswarlu
- Department of Pharmacology, School of Medical Sciences, The University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| | | | | |
Collapse
|
18
|
Terry-Lorenzo RT, Roadcap DW, Otsuka T, Blanpied TA, Zamorano PL, Garner CC, Shenolikar S, Ehlers MD. Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol Biol Cell 2005; 16:2349-62. [PMID: 15743906 PMCID: PMC1087240 DOI: 10.1091/mbc.e04-12-1054] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The majority of excitatory synapses in the mammalian brain form on filopodia and spines, actin-rich membrane protrusions present on neuronal dendrites. The biochemical events that induce filopodia and remodel these structures into dendritic spines remain poorly understood. Here, we show that the neuronal actin- and protein phosphatase-1-binding protein, neurabin-I, promotes filopodia in neurons and nonneuronal cells. Neurabin-I actin-binding domain bundled F-actin, promoted filopodia, and delayed the maturation of dendritic spines in cultured hippocampal neurons. In contrast, dimerization of neurabin-I via C-terminal coiled-coil domains and association of protein phosphatase-1 (PP1) with neurabin-I through a canonical KIXF motif inhibited filopodia. Furthermore, the expression of a neurabin-I polypeptide unable to bind PP1 delayed the maturation of neuronal filopodia into spines, reduced the synaptic targeting of AMPA-type glutamate (GluR1) receptors, and decreased AMPA receptor-mediated synaptic transmission. Reduction of endogenous neurabin levels by interference RNA (RNAi)-mediated knockdown also inhibited the surface expression of GluR1 receptors. Together, our studies suggested that disrupting the functions of a cytoskeletal neurabin/PP1 complex enhanced filopodia and impaired surface GluR1 expression in hippocampal neurons, thereby hindering the morphological and functional maturation of dendritic spines.
Collapse
Affiliation(s)
- Ryan T Terry-Lorenzo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zito K, Knott G, Shepherd GMG, Shenolikar S, Svoboda K. Induction of spine growth and synapse formation by regulation of the spine actin cytoskeleton. Neuron 2004; 44:321-34. [PMID: 15473970 DOI: 10.1016/j.neuron.2004.09.022] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/31/2004] [Accepted: 09/16/2004] [Indexed: 10/26/2022]
Abstract
We explored the relationship between regulation of the spine actin cytoskeleton, spine morphogenesis, and synapse formation by manipulating expression of the actin binding protein NrbI and its deletion mutants. In pyramidal neurons of cultured rat hippocampal slices, NrbI is concentrated in dendritic spines by binding to the actin cytoskeleton. Expression of one NrbI deletion mutant, containing the actin binding domain, dramatically increased the density and length of dendritic spines with synapses. This hyperspinogenesis was accompanied by enhanced actin polymerization and spine motility. Synaptic strengths were reduced to compensate for extra synapses, keeping total synaptic input per neuron constant. Our data support a model in which synapse formation is promoted by actin-powered motility.
Collapse
Affiliation(s)
- Karen Zito
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
20
|
Triantafilou K, Triantafilou M. Lipid-raft-dependent Coxsackievirus B4 internalization and rapid targeting to the Golgi. Virology 2004; 326:6-19. [PMID: 15262490 DOI: 10.1016/j.virol.2004.04.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
Coxsackievirus B4 (CBV4), a member of the Picornavirus genus, has long been implicated in the development of insulin-dependent diabetes mellitus (IDDM), by viral-induced pancreatic cell damage. Although the pancreotropic nature of this virus is well documented, the early stages of CBV4 viral infection that involve the attachment of virions to the cell surface by binding to their cellular receptors followed by entry into the cell, are poorly understood. In this study, we show that the entry of CBV4 requires functional lipid rafts as the site of virus attack. In addition, we show that this virus is endocytosed independently of clathrin-associated machinery and is delivered to the Golgi via a lipid-raft-dependent mechanism.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | |
Collapse
|
21
|
Tsukada M, Prokscha A, Oldekamp J, Eichele G. Identification of neurabin II as a novel doublecortin interacting protein. Mech Dev 2004; 120:1033-43. [PMID: 14550532 DOI: 10.1016/s0925-4773(03)00177-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neuronal migration protein doublecortin (DCX) that associates with microtubules through a tandem DCX repeat, is required for the development of the complex architecture of the human cerebral cortex. Using a yeast two-hybrid screen with Dcx as bait, we have isolated neurabin II/spinophilin, an F-actin binding protein known to play a role in dendritic spine formation. The coiled-coil domain of neurabin II binds to a DCX region encompassing the C-terminal portion of the second DCX repeat and the N-terminal portion of the Ser/Pro-rich domain. Immunoprecipitation experiments with brain extracts show that neurabin II and Dcx interact in vivo. Several Dcx constructs that mimic human DCX mutant alleles failed to interact with neurabin II. Since Dcx and neurabin II colocalized in the developing and adult brain, a neurabin II-DCX heterodimer may be involved in neuronal migration and dendritic spine formation.
Collapse
Affiliation(s)
- Miki Tsukada
- Max Planck Institute for Experimental Endocrinology, Feodor-Lynen-Strasse 7, Hannover 30625, Germany
| | | | | | | |
Collapse
|
22
|
McNamara JO, Grigston JC, VanDongen HMA, VanDongen AMJ. Rapid dendritic transport of TGN38, a putative cargo receptor. ACTA ACUST UNITED AC 2004; 127:68-78. [PMID: 15306122 DOI: 10.1016/j.molbrainres.2004.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2004] [Indexed: 11/29/2022]
Abstract
Protein transport to and from the postsynaptic plasma membrane is thought to be of central importance for synaptic plasticity. However, the molecular details of such processes are poorly understood. One mechanism by which membrane and secretory proteins may be transported to and from postsynaptic membranes is via cargo receptors. We studied the dendritic transport of TGN38, a putative cargo receptor thought to mediate protein transport between the trans-Golgi network (TGN), endosomes, and the plasma membrane. With fluorescence time-lapse imaging of neurons expressing a TGN38-green fluorescent protein fusion protein (GFP-TGN38), we observed rapid bidirectional dynamics of the protein in dendritic shafts. In addition, the protein was present on the surface and on intracellular membranes of dendrites and dendritic spines. Finally, GFP-TGN38 was found to cycle rapidly between the plasma membrane and intracellular membranes within dendrites, including those of spines. Together, our results suggest a role for TGN38 in facilitating rapid changes in the protein composition of postsynaptic membranes.
Collapse
Affiliation(s)
- James O McNamara
- Department of Neurobiology, Duke University Medical Center, P.O. Box 3209, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
23
|
Ortegren U, Karlsson M, Blazic N, Blomqvist M, Nystrom FH, Gustavsson J, Fredman P, Strålfors P. Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. ACTA ACUST UNITED AC 2004; 271:2028-36. [PMID: 15128312 DOI: 10.1111/j.1432-1033.2004.04117.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have made a comprehensive and quantitative analysis of the lipid composition of caveolae from primary rat fat cells and compared the composition of plasma membrane inside and outside caveolae. We isolated caveolae from purified plasma membranes using ultrasonication in carbonate buffer to disrupt the membrane, or extraction with nonionic detergent, followed by density gradient ultracentrifugation. The carbonate-isolated caveolae fraction was further immunopurified using caveolin antibodies. Carbonate-isolated caveolae were enriched in cholesterol and sphingomyelin, and the concentration was three- and twofold higher, respectively, in caveolae compared to the surrounding plasma membrane. The concentration of glycerophospholipids was similar suggesting that glycerophospholipids constitute a constant core throughout the plasma membrane. The composition of detergent-insoluble fractions of the plasma membrane was very variable between preparations, but strongly enriched in sphingomyelin and depleted of glycerophospholipids compared to carbonate-isolated caveolae; indicating that detergent extraction is not a suitable technique for caveolae preparation. An average adipocyte caveola contained about 22 x 10(3) molecules of cholesterol, 7.5 x 10(3) of sphingomyelin and 23 x 10(3) of glycerophospholipid. The glycosphingolipid GD3 was highly enriched in caveolae, whereas GM3, GM1 and GD1a were present inside as well as outside the caveolae membrane. GD1b, GT1b, GM2, GQ1b, sulfatide and lactosylceramide sulfate were not detected in caveolae.
Collapse
Affiliation(s)
- Unn Ortegren
- Department of Cell Biology and Diabetes Research Centre, Linköping University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
G protein-coupled receptors (GPCRs) modulate diverse physiological and behavioral signaling pathways by virtue of changes in receptor activation and inactivation states. Functional changes in receptor properties include dynamic interactions with regulatory molecules and trafficking to various cellular compartments at various stages of the life cycle of a GPCR. This review focuses on trafficking of GPCRs to the cell surface, stabilization there, and agonist-regulated turnover. GPCR interactions with a variety of newly revealed partners also are reviewed with the intention of provoking further analysis of the relevance of these interactions in GPCR trafficking, signaling, or both. The disease consequences of mislocalization of GPCRs also are described.
Collapse
Affiliation(s)
- Christopher M Tan
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
25
|
Barnes AP, Smith FD, VanDongen HM, VanDongen AMJ, Milgram SL. The identification of a second actin-binding region in spinophilin/neurabin II. ACTA ACUST UNITED AC 2004; 124:105-13. [PMID: 15135218 DOI: 10.1016/j.molbrainres.2003.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2003] [Indexed: 11/28/2022]
Abstract
Spinophilin/neurabin II is an actin-associated scaffolding protein enriched in the dendritic spines of neurons. Previously, the actin-binding domain (ABD) of spinophilin was localized to a domain between amino acids (aa) 1 and 154. In a mass spectrometry screen for spinophilin-binding proteins, we have identified an additional actin-binding region between aa 151 and 282. F-actin co-sedimentation and GST affinity chromotography experiments further substantiate this result. Phalloidin staining of Rat2 fibroblasts transiently expressing GFP-spinophilin deletion constructs indicates co-localization with a subset of actin. Regions of spinophilin that lack the revised ABD (aa 1-230) do not co-localize with phalloidin-labeled actin, suggesting that the actin-binding domain contributes to directing the subcellular distribution of spinophilin. Targeting experiments using primary hippocampal cultures indicate that only the first actin-binding site contributes to dendritic spine localization. The second ABD targets to spines inefficiently and thus may interact with and affect actin filaments in a different manner than the first ABD.
Collapse
Affiliation(s)
- Anthony P Barnes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27707, USA.
| | | | | | | | | |
Collapse
|
26
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
27
|
Venkateswarlu K. Interaction protein for cytohesin exchange factors 1 (IPCEF1) binds cytohesin 2 and modifies its activity. J Biol Chem 2003; 278:43460-9. [PMID: 12920129 DOI: 10.1074/jbc.m304078200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ADP-ribosylation factor 6 (ARF6) small GTPase functions as a GDP/GTP-regulated switch in the pathways that stimulate actin reorganization and membrane ruffling. The formation of active ARF6GTP is stimulated by guanine nucleotide exchange factors (GEFs) such as cytohesins, which translocate to the plasma membrane in agonist-stimulated cells by binding the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate through the pleckstrin homology domain with subsequent ARF6 activation. Using cytohesin 2 as bait in yeast two-hybrid screening, we have isolated a cDNA encoding a protein termed interaction protein for cytohesin exchange factors 1 (IPCEF1). Using yeast two-hybrid and glutathione S-transferase pull-down assays coupled with deletion mutational analysis, the specific domains required for the cytohesin 2-IPCEF1 interaction were mapped to the coiled-coil domain of cytohesin 2 and the C-terminal 121 amino acids of IPCEF1. IPCEF1 also interacts with the other members of the cytohesin family of ARF GEFs, suggesting that the interaction with IPCEF1 is highly conserved among the cytohesin family of ARF GEFs. The interaction of cytohesin 2 and IPCEF1 in mammalian cells was demonstrated by immunoprecipitation. Immunofluorescence analysis revealed that IPCEF1 co-localizes with cytohesin 2 to the cytosol in unstimulated cells and translocates to the plasma membrane via binding to cytohesin 2 in epidermal growth factor-stimulated cells. However, a deletion mutant of IPCEF1 that lacks the cytohesin 2 binding site failed to co-migrate with cytohesin 2 to the membrane in stimulated cells. The functional significance of the IPCEF1-cytohesin 2 interaction is demonstrated by showing that IPCEF1 increases the in vitro and in vivo stimulation of ARFGTP formation by cytohesin 2.
Collapse
|
28
|
Buchsbaum RJ, Connolly BA, Feig LA. Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. J Biol Chem 2003; 278:18833-41. [PMID: 12531897 DOI: 10.1074/jbc.m207876200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tiam1 is a ubiquitous guanine nucleotide exchange factor (GEF) that activates the Rac GTPase. We have shown previously that the N terminus of Tiam1 contributes to the signaling specificity of its downstream target Rac via association with IB2, a scaffold that promotes Rac activation of a p38 kinase cascade. Here we show that the N terminus of Tiam1 can influence Rac signaling specificity in a different way by interaction with spinophilin, a scaffold that binds to p70 S6 kinase, another protein regulated by Rac. In particular, spinophilin binding promotes the plasma membrane localization of Tiam1 and enhances the ability of Tiam1 to activate p70 S6 kinase. In contrast, spinophilin binding suppresses the ability of Tiam to activate Pak1, a different Rac effector. Finally, a mutant spinophilin that cannot bind to Tiam1 suppresses serum-induced p70 S6 kinase activation in cells, suggesting that a Tiam1/spinophilin complex contributes to p70 S6 kinase regulation by extracellular signals. These findings add to a growing body of evidence supporting the concept that some Rac-GEFs not only activate Rac GTPases but also participate in the selection of Rac effector by binding to particular scaffolds that complex with components of specific Rac effector pathways.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachussetts 02111, USA
| | | | | |
Collapse
|
29
|
Terry-Lorenzo RT, Carmody LC, Voltz JW, Connor JH, Li S, Smith FD, Milgram SL, Colbran RJ, Shenolikar S. The neuronal actin-binding proteins, neurabin I and neurabin II, recruit specific isoforms of protein phosphatase-1 catalytic subunits. J Biol Chem 2002; 277:27716-24. [PMID: 12016225 DOI: 10.1074/jbc.m203365200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurabins are protein phosphatase-1 (PP1) targeting subunits that are highly concentrated in dendritic spines and post-synaptic densities. Immunoprecipitation of neurabin I and neurabin II/spinophilin from rat brain extracts sedimented PP1gamma1 and PP1alpha but not PP1beta. In vitro studies showed that recombinant peptides representing central regions of neurabins also preferentially bound PP1gamma1 and PP1alpha from brain extracts and associated poorly with PP1beta. Analysis of PP1 binding to chimeric neurabins suggested that sequences flanking a conserved PP1-binding motif altered their selectivity for PP1beta and their activity as regulators of PP1 in vitro. Assays using recombinant PP1 catalytic subunits and a chimera of PP1 and protein phosphatase-2A indicated that the C-terminal sequences unique to the PP1 isoforms contributed to their recognition by neurabins. Collectively, the results from several different in vitro assays established the rank order of PP1 isoform selection by neurabins to be PP1gamma1 > PP1alpha > PP1beta. This PP1 isoform selectivity was confirmed by immunoprecipitation of neurabin I and II from brain extracts from wild type and mutant PP1gamma null mice. In the absence of PP1gamma1, both neurabins showed enhanced association with PP1alpha but not PP1beta. These studies identified some of the structural determinants in PP1 and neurabins that together contribute to preferential targeting of PP1gamma1 and PP1alpha to the mammalian synapse.
Collapse
Affiliation(s)
- Ryan T Terry-Lorenzo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oliver CJ, Terry-Lorenzo RT, Elliott E, Bloomer WAC, Li S, Brautigan DL, Colbran RJ, Shenolikar S. Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol Cell Biol 2002; 22:4690-701. [PMID: 12052877 PMCID: PMC133892 DOI: 10.1128/mcb.22.13.4690-4701.2002] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurabin I, a neuronal actin-binding protein, binds protein phosphatase 1 (PP1) and p70 ribosomal S6 protein kinase (p70S6K), both proteins implicated in cytoskeletal dynamics. We expressed wild-type and mutant neurabins fused to green fluorescent protein in Cos7, HEK293, and hippocampal neurons. Biochemical and cellular studies showed that an N-terminal F-actin-binding domain dictated neurabin I localization at actin cytoskeleton and promoted disassembly of stress fibers. Deletion of the C-terminal coiled-coil and sterile alpha motif domains abolished neurabin I dimerization and induced filopodium extension. Immune complex assays showed that neurabin I recruited an active PP1 via a PP1-docking sequence,(457)KIKF(460). Mutation of the PP1-binding motif or PP1 inhibition by okadaic acid and calyculin A abolished filopodia and restored stress fibers in cells expressing neurabin I. In vitro and in vivo studies suggested that the actin-binding domain attenuated protein kinase A (PKA) phosphorylation of neurabin I. Modification of a major PKA site, serine-461, impaired PP1 binding. Finally, p70S6K was excluded from neurabin I/PP1 complexes and required the displacement of PP1 for recruitment to neurabin I. These studies provided new insights into the assembly and regulation of a neurabin I/PP1 complex that controls actin rearrangement to promote spine development in mammalian neurons.
Collapse
Affiliation(s)
- Carey J Oliver
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ceulemans H, Stalmans W, Bollen M. Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. Bioessays 2002; 24:371-81. [PMID: 11948623 DOI: 10.1002/bies.10069] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have used the (nearly) completed eukaryotic genome sequences to trace the evolution of thirteen families of established vertebrate regulators of type-1 protein phosphatases (PP1). Two of these families are present in all lineages of the eukaryotic crown and therefore qualify as candidate primordial regulators that determined the surface of PP1. The set of regulators of PP1 has continued to expand ever since, often in response to functional innovations in different eukaryotic lineages. In particular, the development of metazoan multicellularity was accompanied by an explosive increase in the number of regulators of PP1. The further increase in the functional diversity of PP1 in the vertebrate lineage was mainly achieved by the duplication of genes for regulatory subunits and by the conversion of already existing proteins into regulators of PP1. Unexpectedly, our analysis has also enabled us to classify nine poorly characterized proteins as likely regulators of PP1.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
32
|
Vivo M, Calogero RA, Sansone F, Calabrò V, Parisi T, Borrelli L, Saviozzi S, La Mantia G. The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. J Biol Chem 2001; 276:14161-9. [PMID: 11278317 DOI: 10.1074/jbc.m006845200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The INK4a gene, one of the most often disrupted loci in human cancer, encodes two unrelated proteins, p16(INK4a) and p14(ARF) (ARF) both capable of inducing cell cycle arrest. Although it has been clearly demonstrated that ARF inhibits cell cycle via p53 stabilization, very little is known about the involvement of ARF in other cell cycle regulatory pathways, as well as on the mechanisms responsible for activating ARF following oncoproliferative stimuli. In search of factors that might associate with ARF to control its activity or its specificity, we performed a yeast two-hybrid screen. We report here that the human homologue of spinophilin/neurabin II, a regulatory subunit of protein phosphatase 1 catalytic subunit specifically interacts with ARF, both in yeast and in mammalian cells. We also show that ectopic expression of spinophilin/neurabin II inhibits the formation of G418-resistant colonies when transfected into human and mouse cell lines, regardless of p53 and ARF status. Moreover, spinophilin/ARF coexpression in Saos-2 cells, where ARF ectopic expression is ineffective, somehow results in a synergic effect. These data demonstrate a role for spinophilin in cell growth and suggest that ARF and spinophilin could act in partially overlapping pathways.
Collapse
Affiliation(s)
- M Vivo
- Department of Genetics, General and Molecular Biology, University of Naples "Federico II," via Mezzocannone 8, Napoli 80134, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Dendritic spines undergo several types of transformations, ranging from growth to collapse, and from elongation to shortening, and they experience dynamic morphological activity on a rapid time scale. Changes in spine number and morphology occur under pathological conditions like excitotoxicity, but also during normal central nervous system development, during hormonal fluctuations, and in response to neural activity under physiological circumstances. We briefly review evidence for various types of alterations in spines, and discuss the possible molecular basis for changes in spine stability. Filamentous actin appears to be the most important cytoskeletal component of spines, and a growing list of actin-associated and actin-regulatory proteins has been reported to reside within spines. We conclude that spines contain two distinct pools of actin filaments (one stable, the other unstable) that provide the spine with both a stable core structure and a dynamic, complex shape. Finally, we review the current state of knowledge of actin filament regulation, based on studies in nonneuronal cells.
Collapse
Affiliation(s)
- F M Smart
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
34
|
Ravkov EV, Compans RW. Hantavirus nucleocapsid protein is expressed as a membrane-associated protein in the perinuclear region. J Virol 2001; 75:1808-15. [PMID: 11160679 PMCID: PMC114090 DOI: 10.1128/jvi.75.4.1808-1815.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Accepted: 11/14/2000] [Indexed: 11/20/2022] Open
Abstract
Black Creek Canal virus (BCCV) is a New World hantavirus which is associated with hantavirus pulmonary syndrome. We have examined the site of expression of the BCCV nucleocapsid protein (NBCCV) in the absence of BCCV glycoproteins and found that the majority of the protein is localized to the Golgi region. Immunofluorescence analysis of BHK21 cells expressing the NBCCV and La Crosse virus nucleocapsid protein (NLACV) showed different intracellular localization patterns of these proteins within the same cell: NLACV is cytoplasmic, whereas NBCCV is perinuclear. NBCCV was found to be colocalized with alpha-mannosidase II, a marker for the Golgi complex. Also, NBCCV was found to be associated with microsomal membranes following cell fractionation. Sedimentation analysis in density gradients revealed that the membrane association of NBCCV is sensitive to treatments with high-salt and high-pH solutions, which indicates that NBCCV is a peripheral membrane protein. Analysis of NBCCV truncation mutants revealed that the 141-amino-acid C-terminal portion of this protein was capable of targeting green fluorescent protein to the perinuclear region. The difference in the intracellular localization between the NBCCV and NLACV proteins suggests that the mechanisms involved in the morphogenesis of New World hantaviruses are distinct from that documented for other members of the Bunyaviridae family.
Collapse
Affiliation(s)
- E V Ravkov
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
35
|
Abstract
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
36
|
Stephens DJ, Banting G. The use of yeast two-hybrid screens in studies of protein:protein interactions involved in trafficking. Traffic 2000; 1:763-8. [PMID: 11208066 DOI: 10.1034/j.1600-0854.2000.011003.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The yeast two-hybrid system has provided a convenient means to both screen for proteins that interact with a protein of interest and to characterise the known interaction between two proteins. Several groups with an interest in the molecular mechanisms that underlie discrete steps along trafficking pathways have exploited the yeast two-hybrid system. Here, we provide a brief background to the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas (within the trafficking field) where yeast two-hybrid interaction assays have been particularly informative.
Collapse
Affiliation(s)
- D J Stephens
- Department of Cell Biology and Cell Biophysics, EMBL-Heidelberg, Germany
| | | |
Collapse
|
37
|
Wang ZH, Gershon MD, Lungu O, Zhu Z, Gershon AA. Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain. J Virol 2000; 74:6600-13. [PMID: 10864674 PMCID: PMC112170 DOI: 10.1128/jvi.74.14.6600-6613.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The trans-Golgi network (TGN) is putatively the site where varicella-zoster virus is enveloped. gE is targeted to the TGN by selective retrieval from the plasmalemma in response to signaling sequences in its endodomain. gI lacks these sequences but forms a complex with gE. We now find that gI is targeted to the TGN and plasma membrane when expressed in Cos-7 cells; nevertheless, surface labeling revealed that gI is not retrieved from the plasma membrane. TGN targeting of gI depended on the T(338) of its endodomain and was lost when T(338) was deleted or mutated to A, S, or D. The endodomain of gI was sufficient, if it contained T(338), to target a fusion protein containing the ectodomain of the human interleukin-2 receptor to the TGN. A truncated protein consisting only of the gI ectodomain was secreted and taken up by nontransfected cells. This uptake of the secreted gI ectodomain was blocked by mannose 6-phosphate. Following cotransfection, both gI and gE were retrieved to the TGN from the plasma membrane in 26.7% of cells, neither gI nor gE was internalized in 18.3%, and gE was retrieved to the TGN while gI remained at the plasma membrane in 55%. We suggest that the T(338) of its endodomain is necessary to retain gI in the TGN; moreover, because gI and gE interact, the signaling sequences of each glycoprotein reinforce one another in ensuring that both glycoproteins are concentrated in the TGN yet remain on the cell surface.
Collapse
Affiliation(s)
- Z H Wang
- Institute of Human Nutrition, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|