1
|
Shahi A, Kahle J, Hopkins C, Diakonova M. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. PLoS One 2022; 17:e0261098. [PMID: 35089929 PMCID: PMC8797172 DOI: 10.1371/journal.pone.0261098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
JAK2 is cytokine-activated non-receptor tyrosine kinase. Although JAK2 is mainly localized at the plasma membrane, it is also present on the centrosome. In this study, we demonstrated that JAK2 localization to the centrosome depends on the SH2 domain and intact kinase activity. We created JAK2 mutants deficient in centrosomal localization ΔSH2, K882E and (ΔSH2, K882E). We showed that JAK2 WT clone strongly enhances cell proliferation as compared to control cells while JAK2 clones ΔSH2, K882E and (ΔSH2, K882E) proliferate slower than JAK2 WT cells. These mutant clones also progress much slower through the cell cycle as compared to JAK2 WT clone and the enhanced proliferation of JAK2 WT cells is accompanied by increased S -> G2 progression. Both the SH2 domain and the kinase activity of JAK2 play a role in prolactin-dependent activation of JAK2 substrate STAT5. We showed that JAK2 is an important regulator of centrosome function as the SH2 domain of JAK2 regulates centrosome amplification. The cells overexpressing ΔSH2 and (ΔSH2, K-E) JAK2 have almost three-fold the amplified centrosomes of WT cells. In contrast, the kinase activity of JAK2 is dispensable for centrosome amplification. Our observations provide novel insight into the role of SH2 domain and kinase activity of JAK2 in centrosome localization of JAK2 and in the regulation of cell growth and centrosome biogenesis.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Jacob Kahle
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Chandler Hopkins
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
2
|
JAK out of the Box; The Rationale behind Janus Kinase Inhibitors in the COVID-19 setting, and their potential in obese and diabetic populations. Cardiovasc Endocrinol Metab 2020; 10:80-88. [PMID: 34109302 PMCID: PMC8103822 DOI: 10.1097/xce.0000000000000237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
The adaptive use of Janus kinase (JAK)-inhibitors has been suggested by rheumatology experts in the management of COVID-19. We recount the rationale behind their use in this setting, and the current evidence for and against their use in this review. JAK-inhibitors role in COVID-19 infection appears to be multifaceted, including preventing viral endocytosis and dampening the effect of excessive chemokines. This drug class may be able to achieve these effects at already preapproved dosages. Concerns arise regarding reactivation of latent viral infections and the feasibility of their use in those with severe disease. Most interestingly, JAK-Inhibitors may also have an additional advantage for diabetic and obese populations, where the dysregulation of JAK-signal transducer and activator of transcription pathway may be responsible for their increased risk of poor outcomes. Targeting this pathway may provide a therapeutic advantage for these patient groups.
Collapse
|
3
|
Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress. Basic Res Cardiol 2018; 113:42. [PMID: 30191336 PMCID: PMC6133069 DOI: 10.1007/s00395-018-0700-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Fibrosis is a hallmark of maladaptive cardiac remodelling. Here we report that genome-wide quantitative trait locus (QTL) analyses in recombinant inbred mouse lines of C57BL/6 J and DBA2/J strains identified Raf Kinase Inhibitor Protein (RKIP) as genetic marker of fibrosis progression. C57BL/6 N-RKIP−/− mice demonstrated diminished fibrosis induced by transverse aortic constriction (TAC) or CCl4 (carbon tetrachloride) treatment compared with wild-type controls. TAC-induced expression of collagen Iα2 mRNA, Ki67+ fibroblasts and marker of oxidative stress 8-hydroxyguanosine (8-dOHG)+ fibroblasts as well as the number of fibrocytes in the peripheral blood and bone marrow were markedly reduced in C57BL/6 N-RKIP−/− mice. RKIP-deficient cardiac fibroblasts demonstrated decreased migration and fibronectin production. This was accompanied by a two-fold increase of the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2), the main transcriptional activator of antioxidative proteins, and reduced expression of its inactivators. To test the importance of oxidative stress for this signaling, C57BL/6 J mice were studied. C57BL/6 J, but not the C57BL/6 N-strain, is protected from TAC-induced oxidative stress due to mutation of the nicotinamide nucleotide transhydrogenase gene (Nnt). After TAC surgery, the hearts of Nnt-deficient C57BL/6 J-RKIP−/− mice revealed diminished oxidative stress, increased left ventricular (LV) fibrosis and collagen Iα2 as well as enhanced basal nuclear expression of Nrf2. In human LV myocardium from both non-failing and failing hearts, RKIP-protein correlated negatively with the nuclear accumulation of Nrf2. In summary, under conditions of Nnt-dependent enhanced myocardial oxidative stress induced by TAC, RKIP plays a maladaptive role for fibrotic myocardial remodeling by suppressing the Nrf2-related beneficial effects.
Collapse
Affiliation(s)
- Andrey Kazakov
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany.
| | - Rabea A Hall
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christian Werner
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Timo Meier
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - André Trouvain
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Svetlana Rodionycheva
- Klinik für Thorax- und Herz-Gefäßchirurgie, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 57, 66421, Homburg, Germany
| | - Alexander Nickel
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Frank Lammert
- Klinik für Innere Medizin II, Gastroenterologie, Hepatologie, Endokrinologie, Diabetologie und Ernährungsmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 77, 66421, Homburg, Germany
| | - Christoph Maack
- Deutsches Zentrum für Herzinsuffizienz, Universitätsklinikum Würzburg, am Schwarzenberg 15, A15, 97078, Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Kardiologie, Angiologie und Internistische Intensivmedizin, Universität/Universitätsklinikum des Saarlandes, Kirrberger Strasse 100, IMED, 66421, Homburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstrasse 20, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Qin Q, Qu C, Niu T, Zang H, Qi L, Lyu L, Wang X, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T. Nrf2-Mediated Cardiac Maladaptive Remodeling and Dysfunction in a Setting of Autophagy Insufficiency. Hypertension 2015; 67:107-17. [PMID: 26573705 DOI: 10.1161/hypertensionaha.115.06062] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) appears to exert either a protective or detrimental effect on the heart; however, the underlying mechanism remains poorly understood. Herein, we uncovered a novel mechanism for turning off the Nrf2-mediated cardioprotection and switching on Nrf2-mediated cardiac dysfunction. In a murine model of pressure overload-induced cardiac remodeling and dysfunction via transverse aortic arch constriction, knockout of Nrf2 enhanced myocardial necrosis and death rate during an initial stage of cardiac adaptation when myocardial autophagy function is intact. However, knockout of Nrf2 turned out to be cardioprotective throughout the later stage of cardiac maladaptive remodeling when myocardial autophagy function became insufficient. Transverse aortic arch constriction -induced activation of Nrf2 was dramatically enhanced in the heart with impaired autophagy, which is induced by cardiomyocyte-specific knockout of autophagy-related gene (Atg)5. Notably, Nrf2 activation coincided with the upregulation of angiotensinogen (Agt) only in the autophagy-impaired heart after transverse aortic arch constriction. Agt5 and Nrf2 gene loss-of-function approaches in combination with Jak2 and Fyn kinase inhibitors revealed that suppression of autophagy inactivated Jak2 and Fyn and nuclear translocation of Fyn, while enhancing nuclear translocation of Nrf2 and Nrf2-driven Agt expression in cardiomyocytes. Taken together, these results indicate that the pathophysiological consequences of Nrf2 activation are closely linked with the functional integrity of myocardial autophagy during cardiac remodeling. When autophagy is intact, Nrf2 is required for cardiac adaptive responses; however, autophagy impairment most likely turns off Fyn-operated Nrf2 nuclear export thus activating Nrf2-driven Agt transcription, which exacerbates cardiac maladaptation leading to dysfunction.
Collapse
Affiliation(s)
- Qingyun Qin
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Chen Qu
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Ting Niu
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Huimei Zang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Lei Qi
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Linmao Lyu
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Xuejun Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Mitzi Nagarkatti
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Prakash Nagarkatti
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Joseph S Janicki
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia
| | - Xing Li Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia.
| | - Taixing Cui
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Shandong University Qilu Hospital Research Center for Cell Therapy, Qilu Hospital of Shandong University, Shandong University School of Medicine, Jinan, Shandong, China (Q.Q., C.Q., T.N., H.Z., L.Q., L.L., X.L.W., T.C.); Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion (X.W.); and Department of Pathology, Microbiology and Immunology (M.N., P.N.) and Department of Cell Biology and Anatomy (J.S.J., T.C.), University of South Carolina School of Medicine, Columbia.
| |
Collapse
|
5
|
Satou R, Gonzalez-Villalobos RA. JAK-STAT and the renin-angiotensin system: The role of the JAK-STAT pathway in blood pressure and intrarenal renin-angiotensin system regulation. JAKSTAT 2014; 1:250-6. [PMID: 24058780 PMCID: PMC3670281 DOI: 10.4161/jkst.22729] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The renin-angiotensin system (RAS) plays important roles in blood pressure control and tissue disease. An inappropriate local angiotensin II elevation in the kidneys leads to the development of hypertension, tissue damage and chronic injury. Studies have demonstrated that the JAK-STAT pathway mediates angiotensin II-triggered gene transcription. The JAK-STAT pathway in turn, acting as an amplifying system, contributes to further intrarenal RAS activation. These observations prompt the suggestion that the JAK-STAT pathway may be of importance in elucidating the mechanisms RAS-associated tissue injury. Accordingly, this review provides a brief overview of the interactions between the JAK-STAT pathway and the RAS, specifically the RAS expressed in the kidneys.
Collapse
Affiliation(s)
- Ryousuke Satou
- Department of Physiology and Hypertension and Renal Center of Excellence; Tulane University Health Sciences Center; New Orleans, LA USA
| | | |
Collapse
|
6
|
Duhé RJ. Redox regulation of Janus kinase: The elephant in the room. JAKSTAT 2013; 2:e26141. [PMID: 24416654 PMCID: PMC3876428 DOI: 10.4161/jkst.26141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/21/2022] Open
Abstract
The redox regulation of Janus kinases (JAKs) is a complex subject. Due to other redox-sensitive kinases in the kinome, redox-sensitive phosphatases, and cellular antioxidant systems and reactive oxygen species (ROS) production systems, the net biological outcomes of oxidative stress on JAK-dependent signal transduction vary according to the specific biological system examined. This review begins with a discussion of the biochemical evidence for a cysteine-based redox switch in the catalytic domain of JAKs, proceeds to consider direct and indirect regulatory mechanisms involved in biological experiments, and ends with a discussion of the role(s) of redox regulation of JAKs in various diseases.
Collapse
Affiliation(s)
- Roy J Duhé
- Department of Pharmacology and Toxicology and Department of Radiation Oncology; University of Mississippi Medical Center; Jackson, MS USA
| |
Collapse
|
7
|
Stump KL, Lu LD, Dobrzanski P, Serdikoff C, Gingrich DE, Dugan BJ, Angeles TS, Albom MS, Ator MA, Dorsey BD, Ruggeri BA, Seavey MM. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis. Arthritis Res Ther 2011; 13:R68. [PMID: 21510883 PMCID: PMC3132063 DOI: 10.1186/ar3329] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 03/10/2011] [Accepted: 04/21/2011] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. METHODS Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. RESULTS Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. CONCLUSIONS This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression.
Collapse
Affiliation(s)
- Kristine L Stump
- Cephalon, Inc., Research Drug Discovery, 145 Brandywine Parkway, Building 200, West Chester, PA 19380-4249, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kiyota T, Okuyama S, Swan RJ, Jacobsen MT, Gendelman HE, Ikezu T. CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer's disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J 2010; 24:3093-102. [PMID: 20371618 PMCID: PMC2909296 DOI: 10.1096/fj.10-155317] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/18/2010] [Indexed: 12/18/2022]
Abstract
Cytokines play an emerging role as neurotransmitters, neuromodulators, and neurohormones in the brain. This paradigm shift in cytokine function offers a new framework to understand their roles in ameliorating neurodegenerative disorders, such as Alzheimer's disease (AD). Molecular adjuvant therapy of AD animal models with glatiramer acetate induces anti-inflammatory responses and therapeutic effects. Although these effects are potentially mediated through anti-inflammatory cytokine signaling, the exact molecular identities and pathways are poorly understood. Here, we show that virus-mediated expression of the mouse interleukin (IL)-4 gene in beta-amyloid precursor protein + presenilin-1 (APP+PS1) bigenic mice attenuates AD pathogenesis. Introduction of an adeno-associated viral (AAV) vector encoding IL-4 into the hippocampus resulted in sustained expression of IL-4, reduced astro/microgliosis, amyloid-beta peptide (Abeta) oligomerization and deposition, and enhanced neurogenesis. Moreover, increased levels of IL-4 improved spatial learning, promoted phosphorylation of N-methyl-D-aspartate receptor subunit 2B at Tyr 1472, and enhanced its cell surface retention both in vivo and in vitro. Our data suggest that neuronal anti-inflammatory cytokine signaling may be a potential alternative target for non-Abeta-mediated treatment of AD.
Collapse
Affiliation(s)
- Tomomi Kiyota
- Center for Neurodegenerative Disorders
- Department of Pharmacology and Experimental Neuroscience
| | - Satoshi Okuyama
- Center for Neurodegenerative Disorders
- Department of Pathology and Microbiology, and
| | - Russell J. Swan
- Center for Neurodegenerative Disorders
- Department of Pharmacology and Experimental Neuroscience
| | - Michael T. Jacobsen
- Center for Neurodegenerative Disorders
- Department of Pharmacology and Experimental Neuroscience
| | - Howard E. Gendelman
- Center for Neurodegenerative Disorders
- Department of Pharmacology and Experimental Neuroscience
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tsuneya Ikezu
- Center for Neurodegenerative Disorders
- Department of Pharmacology and Experimental Neuroscience
- Department of Pathology and Microbiology, and
| |
Collapse
|
9
|
Ma X, Sayeski PP. Identification of tubulin as a substrate of Jak2 tyrosine kinase and its role in Jak2-dependent signaling. Biochemistry 2007; 46:7153-62. [PMID: 17530781 DOI: 10.1021/bi700101n] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Jak2 is a nonreceptor tyrosine kinase that acts in numerous cellular signal transduction systems. Here, large amounts of recombinant Jak2 protein were expressed in eukaryotic cells, and an unknown 55 kDa protein was copurified with it. Mass spectrometry and Western blot analysis identified the 55 kDa protein as the alpha- and beta-isoforms of tubulin. Biochemical experiments determined that Jak2 and tubulin specifically coassociate with one another, and the region of Jak2 that binds tubulin is the pseudokinase domain. Immunofluoresence indicated that Jak2 and tubulin (microtubules) colocalize within intact cells. The functional consequence of the coassociation between Jak2 and tubulin is that Jak2 phosphorylates tubulin on tyrosine residues. Specifically, in response to growth hormone, tubulin was phosphorylated in a Jak2-dependent manner. Tubulin was also found to interact with signal transducers and activators of transcription 1 (STAT1) and be involved in STAT1 nuclear transport. As such, this work suggests that tubulin is a substrate of Jak2 and facilitates Jak2/STAT1-dependent signaling.
Collapse
Affiliation(s)
- Xianyue Ma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, P.O. Box 100274, Gainesville, Florida 32610, USA
| | | |
Collapse
|
10
|
Wallace TA, Xia SL, Sayeski PP. Jak2 tyrosine kinase prevents angiotensin II-mediated inositol 1,4,5 trisphosphate receptor degradation. Vascul Pharmacol 2005; 43:336-45. [PMID: 16257270 DOI: 10.1016/j.vph.2005.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/01/2005] [Indexed: 11/28/2022]
Abstract
In addition to its role as a vasoconstrictor, angiotensin II also acts as a potent growth factor by activating several tyrosine kinases, including Jak2. Interestingly, Jak2 has been linked to similar cardiovascular pathologies as have been previously linked to the renin-angiotensin system. Identifying the downstream targets of Jak2 via the AT(1) receptor may therefore elucidate its role in the progression of various pathologies. Previously, microarray analysis from our laboratory identified the Type 1 inositol 1,4,5 trisphosphate (IP(3)) receptor as a potential target of Jak2 following chronic stimulation by angiotensin II. Therefore, we hypothesized that Jak2 regulates IP(3) receptor expression in response to angiotensin II. To test this hypothesis, rat aortic smooth muscle (RASM) cells over-expressing a dominant negative (DN) Jak2 protein were used. The Jak2-dependent signaling in these cells is reduced approximately 90% when compared to RASM control cells. Analysis of protein expression showed that the IP(3) receptor was degraded approximately 2-fold (P<0.05) in cells lacking functional Jak2 within 1 h of treatment by angiotensin II. Notably, degradation of the IP(3) receptor was reversible since protein levels were restored to normal following 2 h of recovery from angiotensin II. To eliminate the possibility of clonal artifact in the DN cells, wild type RASM cells were treated with the Jak2 pharmacological inhibitor, AG490. We found that angiotensin II treatment degraded IP(3) receptor in AG490-treated cells, but not in the vehicle controls. Treatment with lactacystin, a proteasome inhibitor, completely blocked angiotensin II-mediated degradation of IP(3) receptor, thereby suggesting that the degradation occurs through a proteasome-dependent mechanism. Moreover, the degradation of IP(3) receptor in DN cells correlated with a significant loss of intracellular calcium mobilization when treated with angiotensin II (DN 27.4+/-1.1% vs. WT 42.2+/-4.7%; n=5, P=0.002). We next examined through what mechanism Jak2 regulates the IP(3) receptor. When wild type RASM cells were treated with PP2, an Src-family inhibitor, IP(3) receptor expression was markedly reduced. Since previous data show that Fyn, a downstream target of Jak2, is able to phosphorylate the IP(3) receptor at Tyr 353, we believe our data suggest that Jak2 prevents the angiotensin II-mediated IP(3) receptor degradation through the activation of Fyn. In conclusion, these data suggest that Jak2 has a protective role in maintaining IP(3) receptor expression, potentially through activation of Fyn and subsequent phosphorylation of the IP(3) receptor.
Collapse
Affiliation(s)
- Tiffany A Wallace
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, P.O. Box 100274, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
11
|
Sandberg EM, Ma X, He K, Frank SJ, Ostrov DA, Sayeski PP. Identification of 1,2,3,4,5,6-hexabromocyclohexane as a small molecule inhibitor of jak2 tyrosine kinase autophosphorylation [correction of autophophorylation]. J Med Chem 2005; 48:2526-33. [PMID: 15801842 DOI: 10.1021/jm049470k] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The commercially available Jak2 inhibitor, alpha-cyano-3,4-dihydroxy-N-benzylcinnamide (AG490), has been used extensively to study Jak2 kinase function. While alpha-cyano-3,4-dihydroxy-N-benzylcinnamide is a potent Jak2 inhibitor, it can inhibit a number of other kinase signaling pathways as well. To circumvent this problem, we sought to identify novel small molecule inhibitors of Jak2 tyrosine kinase activity. For this, we constructed a homology model of the Jak2 kinase domain and identified solvent accessible pockets on the surface of the structure. Using the DOCK program, we tested 6451 compounds of known chemical structure in silico for their ability to interact with a pocket positioned adjacent to the activation loop. We attained the top seven scoring compounds from the National Cancer Institute and tested their ability to inhibit Jak2 autophosphorylation in vitro. Using Western blot analysis, we found that one of the compounds, 1,2,3,4,5,6-hexabromocyclohexane, was able to potently, and directly, inhibit Jak2 autophosphorylation. Characterization of this compound revealed that it inhibits Jak2 tyrosine autophosphorylation in both a time- and concentration-dependent manner. It greatly reduced growth hormone-mediated Jak2 autophosphorylation but did not block autophosphorylation of the epidermal growth factor receptor. Furthermore, doses as high as 100 muM were not toxic to cells as measured by their ability to exclude propidium iodide. As such, we believe that this compound could serve as a lead compound for a new generation of Jak2 inhibitors and, perhaps, be useful in elucidating the mechanisms of Jak2 kinase function.
Collapse
Affiliation(s)
- Eric M Sandberg
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ma X, Sayeski PP. Vaccinia virus-mediated high level expression and single step purification of recombinant Jak2 protein. Protein Expr Purif 2005; 35:181-9. [PMID: 15135391 DOI: 10.1016/j.pep.2004.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 01/16/2004] [Indexed: 11/21/2022]
Abstract
Jak2 functions as a non-receptor tyrosine kinase and has been linked to pathologies such as cancer and cardiovascular disease. Because of this, many studies have tried to better understand its function. Unfortunately, very little information is known about its catalytic or biochemical properties as purification of significant amounts of functional Jak2 protein has been exceedingly difficult. Here, Jak2 was expressed in BSC-40 cells using a vaccinia virus-mediated expression system. Significant amounts ( approximately 10microg) of Jak2 protein were expressed from a single 100-mm cell culture dish. The protein was first harvested using three different methods of extraction to determine the relative efficiency of each lysis method with respect to Jak2 protein yield and catalytic activity. We found that lysis methods utilizing detergents increased the efficiency of protein extraction about 3-fold when compared to a method lacking detergent. However, with respect to catalytic activity, Jak2 isolated from cells using detergent-containing lysis buffers had significantly less catalytic activity than when compared to the method that was detergent free. Expression was then scaled up and Jak2 protein was purified via a one step immunoaffinity purification scheme using both the detergent-free and a modified detergent-containing method of extraction that maintained catalytic activity. In vitro kinase assays demonstrated that the purified product was highly catalytic as measured by its ability to tyrosine phosphorylate Stat1. Collectively, the results show that (1) Jak2 can be expressed at very high levels in mammalian cells, (2) it can be purified to homogeneity via a single step purification scheme, and (3) the purified product is biologically active.
Collapse
Affiliation(s)
- Xianyue Ma
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, P.O. Box 100274, Gainesville, FL 32610, USA
| | | |
Collapse
|
13
|
Wallace TA, VonDerLinden D, He K, Frank SJ, Sayeski PP. Microarray analyses identify JAK2 tyrosine kinase as a key mediator of ligand-independent gene expression. Am J Physiol Cell Physiol 2004; 287:C981-91. [PMID: 15189810 DOI: 10.1152/ajpcell.00085.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice lacking a functional Janus kinase 2 (JAK2) allele die embryonically, indicating the mandatory role of JAK2 in basic developmental cellular transcription. Currently, however, the downstream target genes of JAK2 are largely unknown. Here, in vitro conditions were created using a cell line lacking JAK2 expression. Microarray analysis was then used to identify genes that are differentially expressed as a result of the presence, or absence, of JAK2. The data identified 621 JAK2-dependent genes as having at least a twofold change in expression. Surprisingly, these genes did not require ligand-dependent activation of JAK2 but merely its expression in the cell. Thirty-one of these genes were found to have a greater than sevenfold change in expression levels, and a subset of these were further characterized. These genes represent a diverse cluster of ontological functions including transcription factors, signaling molecules, and cell surface receptors. The expression levels of these genes were validated by Northern blot and/or quantitative RT-PCR analysis in both the JAK2 null cells and cells expressing a JAK2-dominant negative allele. As such, this work demonstrates for the first time that, in addition to being a key mediator of ligand-activated gene transcription, JAK2 can perhaps also be viewed as a critical mediator of basal level gene expression.
Collapse
Affiliation(s)
- Tiffany A Wallace
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, PO Box 100274, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
14
|
Sandberg EM, Sayeski PP. Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J Biol Chem 2004; 279:34547-52. [PMID: 15159394 DOI: 10.1074/jbc.m405045200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vascular smooth muscle cells, Jak2 tyrosine kinase becomes activated in response to oxidative stress in the form of hydrogen peroxide. Although it has been postulated that hydrogen peroxide-induced Jak2 activation promotes cell survival, this has never been tested. We therefore examined the role that Jak2 plays in vascular smooth muscle cell apoptosis following hydrogen peroxide treatment. Here, we report that Jak2 tyrosine kinase activation by hydrogen peroxide is required for apoptosis of vascular smooth muscle cells. Upon treatment of primary rat aortic smooth muscle cells with hydrogen peroxide, we observed laddering of genomic DNA and nuclear condensation, both hallmarks of apoptotic cells. However, apoptosis was prevented by either the expression of a dominant negative Jak2 protein or by the Jak2 pharmacological inhibitor AG490. Moreover, expression of the proapoptotic Bax protein was induced following hydrogen peroxide treatment. Again, expression of a dominant negative Jak2 protein or treatment of cells with AG490 prevented this Bax induction. Following Bax induction by hydrogen peroxide, mitochondrial membrane integrity was compromised, and caspase-9 became activated. In contrast, in cells expressing a Jak2 dominant negative we observed that mitochondrial membrane integrity was preserved, and no caspase-9 activation occurred. These data demonstrate that the activation of Jak2 tyrosine kinase by hydrogen peroxide is essential for apoptosis of vascular smooth muscle cells. Furthermore, this report identifies Jak2 as a potential therapeutic target in vascular diseases in which vascular smooth muscle cell apoptosis contributes to pathological progression.
Collapse
Affiliation(s)
- Eric M Sandberg
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | |
Collapse
|
15
|
Sandberg EM, Ma X, VonDerLinden D, Godeny MD, Sayeski PP. Jak2 Tyrosine Kinase Mediates Angiotensin II-dependent Inactivation of ERK2 via Induction of Mitogen-activated Protein Kinase Phosphatase 1. J Biol Chem 2004; 279:1956-67. [PMID: 14551204 DOI: 10.1074/jbc.m303540200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work has shown that inhibition of Jak2 via the pharmacological compound AG490 blocks the angiotensin II (Ang II)-dependent activation of ERK2, thereby suggesting an essential role of Jak2 in ERK activation. However, recent studies have thrown into question the specificity of AG490 and therefore the role of Jak2 in ERK activation. To address this, we reconstituted an Ang II signaling system in a Jak2-/-cell line and measured the ability of Ang II to activate ERK2 in these cells. Controls for this study were the same cells expressing Jak2 via the addition of a Jak2 expression plasmid. In the cells expressing Jak2, Ang II induced a marked increase in ERK2 activity as measured by Western blot analysis and in vitro kinase assays. ERK2 activity returned to basal levels within 30 min. However, in the cells lacking Jak2, Ang II treatment resulted in ERK2 activation that did not return to basal levels until 120 min after ligand addition. Analysis of phosphatase gene expression revealed that Ang II induced mitogen-activated protein kinase phosphatase 1 (MKP-1) expression in cells expressing Jak2 but failed to induce MKP-1 expression in cells lacking Jak2. Therefore, our results suggest that Jak2 is not required for Ang II-induced ERK2 activation. Rather Jak2 is required for Ang II-induced ERK2 inactivation via induction of MKP-1 gene expression.
Collapse
Affiliation(s)
- Eric M Sandberg
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
16
|
VonDerLinden D, Ma X, Sandberg EM, Gernert K, Bernstein KE, Sayeski PP. Mutation of glutamic acid residue 1046 abolishes Jak2 tyrosine kinase activity. Mol Cell Biochem 2002; 241:87-94. [PMID: 12482029 DOI: 10.1023/a:1020829617779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Jak2 is a member of the Janus family of tyrosine kinases and is known to be activated by a wide variety of ligands. Here, we sought to identify amino acid residues within Jak2 that are essential for its activation. We provide evidence that glutamic acid 1046 (E1046) is one such residue. Using molecular modeling algorithms of the Jak2 kinase domain, we identified a putative molecular interaction between E1046 and tryptophan 1020 (W1020). Conversion of E1046 to either arginine (E 1046R), alanine (E1046A), aspartic acid (E1046D) or glutamine (E1046Q) abolished Jak2 kinase activity as measured by autophosphorylation assays. Conversion of W1020 to glycine (W1020G) similarly abolished Jak2 kinase activity. Finally, we tested the ability of the E1046R mutant to activate the Jak/STAT signaling pathway in a ligand-dependent signaling system. The ability of angiotensin II to activate the Jak/STAT signaling pathway in cells expressing the E1046R mutant was severely compromised as measured by reduced (1) Jak2 autophosphorylation (2) Jak2 kinase activity (3) AT1/Jak2 co-association (4) Stat1 tyrosine phosphorylation and (5) angiotensin Il-mediated gene transcription. Thus, these studies demonstrate for the first time, the critical role of E1046 in mediating Jak2 activation and its subsequent downstream signaling events.
Collapse
Affiliation(s)
- Dannielle VonDerLinden
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
17
|
Nakao F, Kobayashi S, Mogami K, Mizukami Y, Shirao S, Miwa S, Todoroki-Ikeda N, Ito M, Matsuzaki M. Involvement of Src family protein tyrosine kinases in Ca(2+) sensitization of coronary artery contraction mediated by a sphingosylphosphorylcholine-Rho-kinase pathway. Circ Res 2002; 91:953-60. [PMID: 12433841 DOI: 10.1161/01.res.0000042702.04920.bf] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that sphingosylphosphorylcholine (SPC) is a novel messenger for Rho-kinase-mediated Ca(2+) sensitization of vascular smooth muscle (VSM) contraction. Subcellular localization and kinase activity of Src family protein kinases (SrcPTKs), except for c-Src, is controlled by a reversible S-palmitoylation, an event inhibited by eicosapentaenoic acid (EPA). We examined the possible involvement of SrcPTKs in SPC-induced Ca(2+) sensitization and effects of EPA. We used porcine coronary VSM and rat aortic VSM cells (VSMCs) in primary culture. An SrcPTKs inhibitor, PP1, and EPA inhibited SPC-induced contraction, concentration-dependently, without affecting [Ca(2+)](i) levels and the Ca(2+)-dependent contraction induced by high K(+) depolarization. A digitized immunocytochemical analysis in VSMCs revealed that SPC induced translocation of Fyn, but not of c-Src, from the cytosol to the cell membrane, an event abolished by EPA. Translocation of Rho-kinase from the cytosol to the cell membrane by SPC was also inhibited by EPA and PP1. The SPC-induced activation of SrcPTKs was blocked by EPA and PP1, but not by Y27632, an Rho-kinase inhibitor. Rho-kinase-dependent phosphorylation of myosin phosphatase induced by SPC was inhibited by EPA, PP1, and Y27632. Translocation and activation of SrcPTKs, including Fyn, play an important role in Ca(2+) sensitization of VSM contractions mediated by a SPC-Rho-kinase pathway.
Collapse
Affiliation(s)
- Fumiaki Nakao
- Department of Cardiovascular Medicine, Yamaguchi University School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ramana CV, Gil MP, Schreiber RD, Stark GR. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol 2002; 23:96-101. [PMID: 11929133 DOI: 10.1016/s1471-4906(01)02118-4] [Citation(s) in RCA: 446] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paradigm that emerged from studies during the past decade established a central role for Jak-Stat (signal transducer and activator of transcription) signaling pathways in promoting the diverse cellular responses induced by interferon gamma (IFN-gamma). However, recent studies have shown that the IFN-gamma receptor activates additional signaling pathways and can regulate gene expression by Stat1-independent pathways. The diversity of gene-expression patterns mediated by Stat1-dependent and -independent mechanisms and the balance between these two pathways play an important role in the biological response to IFN-gamma.
Collapse
|
19
|
Matter WF, Estridge T, Zhang C, Belagaje R, Stancato L, Dixon J, Johnson B, Bloem L, Pickard T, Donaghue M, Acton S, Jeyaseelan R, Kadambi V, Vlahos CJ. Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun 2001; 283:1061-8. [PMID: 11355880 DOI: 10.1006/bbrc.2001.4881] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Action of protein kinases and phosphatases contributes to myocardial hypertrophy. PRL-3, a protein tyrosine phosphatase, was identified in a cDNA library from an explanted human heart obtained from a patient with idiopathic cardiomyopathy. PRL-3 is expressed in heart and skeletal muscle, exhibiting approximately 76% identity to the ubiquitous tyrosine phosphatase PRL-1, which was reported to increase cell proliferation. PRL-3 was cloned into E. coli and purified using affinity chromatography. PRL-3 activity was determined using the substrate 6,8-difluoro-4-methylumbelliferyl phosphate, and was inhibited by vanadate and analogs. HEK293 cells expressing PRL-3 demonstrated increased growth rates versus nontransfected cells or cells transfected with the catalytically inactive C104S PRL-3 mutant. The tyrosine phosphatase inhibitor, potassium bisperoxo (bipyridine) oxovanadate V, normalizes the growth rate of PRL-3 expressing cells to that of parental HEK293 cells in a concentration-dependent manner. Using FLIPR analysis, parental HEK293 cells mobilize calcium when stimulated with angiotensin-II (AngII). However, calcium mobilization is inhibited in cells expressing wild-type PRL-3 when stimulated with AngII, while cells expressing the inactive mutant of PRL-3 mobilize calcium to the same extent as parental HEK293 cells. Western blots comparing PRL-3 transfected cells to parental HEK293 cells showed dephosphorylation of p130(cas) in response to AngII. These data suggest a role for PRL-3 in the modulation of intracellular calcium transients induced by AngII.
Collapse
Affiliation(s)
- W F Matter
- Cardiovascular Research, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sayeski PP, Ali MS, Bernstein KE. The role of Ca2+ mobilization and heterotrimeric G protein activation in mediating tyrosine phosphorylation signaling patterns in vascular smooth muscle cells. Mol Cell Biochem 2001. [PMID: 11108140 DOI: 10.1023/a:1007109008111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This work investigated the role of Ca2+ mobilization and heterotrimeric G protein activation in mediating angiotensin II-dependent tyrosine phosphorylation signaling patterns. We demonstrate that the predominant, angiotensin II-dependent, tyrosine phosphorylation signaling patterns seen in vascular smooth muscle cells are blocked by the intracellular Ca2+ chelator BAPTA-AM, but not by the Ca2+ channel blocker verapamil. Activation of heterotrimeric G proteins with NaF resulted in a divergent signaling effect; NaF treatment was sufficient to increase tyrosine phosphorylation levels of some proteins independent of angiotensin II treatment. In the same cells, NaF alone had no effect on other cellular proteins, but greatly potentiated the ability of angiotensin II to increase the tyrosine phosphorylation levels of these proteins. Two proteins identified in these studies were paxillin and Jak2. We found that NaF treatment alone, independent of angiotensin II stimulation, was sufficient to increase the tyrosine phosphorylation levels of paxillin. Furthermore, the ability of either NaF and/or angiotensin II to increase tyrosine phosphorylation levels of paxillin is critically dependent on intracellular Ca2+. In contrast, angiotensin II-mediated Jak2 tyrosine phosphorylation was independent of intracellular Ca2+ mobilization and extracellular Ca2+ entry. Thus, our data suggest that angiotensin II-dependent tyrosine phosphorylation signaling cascades are mediated through a diverse set of signaling pathways that are partially dependent on Ca2+ mobilization and heterotrimeric G protein activation.
Collapse
Affiliation(s)
- P P Sayeski
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
21
|
Sayeski PP, Ali MS, Frank SJ, Bernstein KE. The angiotensin II-dependent nuclear translocation of Stat1 is mediated by the Jak2 protein motif 231YRFRR. J Biol Chem 2001; 276:10556-63. [PMID: 11152457 DOI: 10.1074/jbc.m008856200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In response to angiotensin II, Jak2 autophosphorylates and binds the angiotensin II AT(1) receptor. By studying a variety of Jak2 deletion proteins, we now show that the Jak2 protein motif (231)YRFRR is required for the co-association of this kinase with the AT(1) receptor. We also used a full-length Jak2 protein containing a (231)FAAAA amino acid substitution. Although this protein still autophosphorylated in response to angiotensin II, it did not co-associate with the AT(1) receptor. This uncoupling indicates that AT(1)/Jak2 co-association is not necessary for angiotensin II-induced Jak2 autophosphorylation and that Jak2 autophosphorylation per se is insufficient for AT(1) receptor co-association. In response to angiotensin II, the Jak2-(231)FAAAA mutant will tyrosine phosphorylate Stat1. However, in the absence of AT(1)/Jak2 co-association, Stat1 did not translocate into the cell nucleus and failed to mediate gene transcription. This notable result indicates that Stat1 tyrosine phosphorylation alone is insufficient for Stat1 nuclear translocation. In summary, we now show that, although Jak2-mediated tyrosine phosphorylation of Stat1 is independent of receptor co-association, Jak2-mediated recruitment of Stat1 to the AT(1) receptor is critical for Stat1 nuclear translocation and subsequent gene transcription.
Collapse
Affiliation(s)
- P P Sayeski
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
22
|
Sayeski PP, Bernstein KE. Signal transduction mechanisms of the angiotensin II type AT(1)-receptor: looking beyond the heterotrimeric G protein paradigm. J Renin Angiotensin Aldosterone Syst 2001; 2:4-10. [PMID: 11881054 DOI: 10.3317/jraas.2001.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- P P Sayeski
- Department of Physiology, University of Florida, College of Medicine, Gainesville 32610, USA
| | | |
Collapse
|
23
|
Abstract
The application of surface plasmon resonance biosensors in life sciences and pharmaceutical research continues to increase. This review provides a comprehensive list of the commercial 1999 SPR biosensor literature and highlights emerging applications that are of general interest to users of the technology. Given the variability in the quality of published biosensor data, we present some general guidelines to help increase confidence in the results reported from biosensor analyses.
Collapse
Affiliation(s)
- R L Rich
- Center for Biomolecular Interaction Analysis, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
24
|
Abstract
Angiotensin II activates multiple signalling pathways in vascular smooth muscle. The precise pattern of signals and their relative importance to a particular functional response depends on both cell type and differentiation state. Although the contractile and trophic effects of Ang II are often thought of as distinct responses it is increasingly difficult to differentiate them in terms of signalling pathways. Since vasoconstriction and abnormal growth are both features of circulatory diseases such as hypertension and atherosclerosis a better understanding of the signalling pathways responsible for the vasoconstrictor and trophic actions of this peptide may help define novel therapeutic targets in cardiovascular disease.
Collapse
|