1
|
Berna-Erro A, Lopez JJ, Jardin I, Sanchez-Collado J, Salido GM, Rosado JA. Differential functional role of Orai1 variants in constitutive Ca 2+ entry and calcification in luminal breast cancer cells. J Biol Chem 2024; 300:107786. [PMID: 39303919 DOI: 10.1016/j.jbc.2024.107786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Resting cytosolic Ca2+ concentration is tightly regulated to fine-tune Ca2+-dependent cellular functions. Luminal breast cancer cells exhibit constitutive Ca2+ entry mediated by Orai1 and the secretory pathway Ca2+-ATPase, SPCA2, which result in mammary microcalcifications that constitute a prognostic marker of mammary lesions. Two Orai1 isoforms have been identified, the full-length Orai1α, consisting of 301 amino acids, and the short variant, Orai1β, lacking the 63 or 70 N-terminal amino acids comprising residues involved in channel inactivation and binding sites with Orai1 partners. We show that only the mammalian-specific Orai1α rescues SPCA2-dependent constitutive Ca2+ entry in Orai1-KO MCF7 cells, a widely used luminal breast cancer cell line. FRET analysis and immunoprecipitation revealed that Orai1α shows a greater ability to interact with SPCA2 than Orai1β. Deletion of the first 38 amino acids in Orai1α reduced the interaction with SPCA2 to a similar extent as Orai1β, thus suggesting that the N-terminal 38 amino acids play a relevant role in Orai1α-SPCA2 interaction. Finally, Orai1α, but not Orai1β, rescue the ability of Orai1-deficient cells to form in vitro microcalcifications. These findings provide compelling evidence for a functional role of Orai1α in constitutive Ca2+ entry in MCF7 cells, which might be a target to prevent the development of mammary microcalcifications in luminal breast cancer.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
| | - Jose Javier Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Jose Sanchez-Collado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain.
| |
Collapse
|
2
|
Sokolov RA, Mukhina IV. Spontaneous Ca 2+ events are linked to the development of neuronal firing during maturation in mice primary hippocampal culture cells. Arch Biochem Biophys 2022; 727:109330. [PMID: 35750097 DOI: 10.1016/j.abb.2022.109330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022]
Abstract
Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca2+-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca2+ events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%. The SCEs were fully dependent on extracellular Ca2+ and neuronal network activity and vanished in the Ca2+-free solution, 10 mM Mg2+-block, or in the presence of voltage-gated Na+-channel blocker, tetrodotoxin. Combined patch-clamp and Ca2+-imaging techniques revealed that microSCE match single action potential (AP), interSCE - burst of 3-12 APs, and macroSCE - 'superburst' of 10+ APs. MicroSCEs were blocked by a common α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid (KA) receptor antagonist, CNQX. The γ-aminobutyric acid (GABA) A-type receptor (GABAAR) picrotoxin blockade and L-type voltage-dependent Ca2+-channel inhibitor diltiazem significantly reduced microSCE frequency. InterSCEs were inhibited by CNQX, but picrotoxin treatment significantly increased its amplitude. The N-methyl-d-aspartate (NMDA) receptor antagonist, D-APV, voltage-gated K+-channel blocker, tetraethylammonium, noticeably suppressed interSCE amplitude. We also demonstrate that macroSCEs were AMPA/KA receptor-independent.
Collapse
Affiliation(s)
- Rostislav A Sokolov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; In Vivo Research Center, Sirius University of Science and Technology, Olympic Avenue, 1, Sochi, Russia.
| | - Irina V Mukhina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia; Institute of Fundamental Medicine, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
| |
Collapse
|
3
|
Intracellular Ca 2+ stores control in vivo neuronal hyperactivity in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2018; 115:E1279-E1288. [PMID: 29358403 DOI: 10.1073/pnas.1714409115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal hyperactivity is the emerging functional hallmark of Alzheimer's disease (AD) in both humans and different mouse models, mediating an impairment of memory and cognition. The mechanisms underlying neuronal hyperactivity remain, however, elusive. In vivo Ca2+ imaging of somatic, dendritic, and axonal activity patterns of cortical neurons revealed that both healthy aging and AD-related mutations augment neuronal hyperactivity. The AD-related enhancement occurred even without amyloid deposition and neuroinflammation, mainly due to presenilin-mediated dysfunction of intracellular Ca2+ stores in presynaptic boutons, likely causing more frequent activation of synaptic NMDA receptors. In mutant but not wild-type mice, store emptying reduced both the frequency and amplitude of presynaptic Ca2+ transients and, most importantly, normalized neuronal network activity. Postsynaptically, the store dysfunction was minor and largely restricted to hyperactive cells. These findings identify presynaptic Ca2+ stores as a key element controlling AD-related neuronal hyperactivity and as a target for disease-modifying treatments.
Collapse
|
4
|
Verkhratsky A, Rodríguez JJ, Parpura V. Calcium signalling in astroglia. Mol Cell Endocrinol 2012; 353:45-56. [PMID: 21945602 DOI: 10.1016/j.mce.2011.08.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/28/2011] [Accepted: 08/31/2011] [Indexed: 12/15/2022]
Abstract
Astroglia possess excitability based on movements of Ca(2+) ions between intracellular compartments and plasmalemmal Ca(2+) fluxes. This "Ca(2+) excitability" is controlled by several families of proteins located in the plasma membrane, within the cytosol and in the intracellular organelles, most notably in the endoplasmic reticulum (ER) and mitochondria. Accumulation of cytosolic Ca(2+) can be caused by the entry of Ca(2+) from the extracellular space through ionotropic receptors and store-operated channels expressed in astrocytes. Plasmalemmal Ca(2+) ATP-ase and sodium-calcium exchanger extrude cytosolic Ca(2+) to the extracellular space; the exchanger can also operate in reverse, depending of the intercellular Na(+) concentration, to deliver Ca(2+) to the cytosol. The ER internal store possesses inositol 1,4,5-trisphosphate receptors which can be activated upon stimulation of astrocytes through a multiple plasma membrane metabotropic G-protein coupled receptors. This leads to release of Ca(2+) from the ER and its elevation in the cytosol, the level of which can be modulated by mitochondria. The mitochondrial uniporter takes up Ca(2+) into the matrix, while free Ca(2+) exits the matrix through the mitochondrial Na(+)/Ca(2+) exchanger as well as via transient openings of the mitochondrial permeability transition pore. One of the prominent consequences of astroglial Ca(2+) excitability is gliotransmission, a release of transmitters from astroglia which can lead to signalling to adjacent neurones.
Collapse
|
5
|
Early calcium dysregulation in Alzheimer's disease: setting the stage for synaptic dysfunction. SCIENCE CHINA-LIFE SCIENCES 2011; 54:752-62. [PMID: 21786198 DOI: 10.1007/s11427-011-4205-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/30/2011] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder with no known cure or clear understanding of the mechanisms involved in the disease process. Amyloid plaques, neurofibrillary tangles and neuronal loss, though characteristic of AD, are late stage markers whose impact on the most devastating aspect of AD, namely memory loss and cognitive deficits, are still unclear. Recent studies demonstrate that structural and functional breakdown of synapses may be the underlying factor in AD-linked cognitive decline. One common element that presents with several features of AD is disrupted neuronal calcium signaling. Increased intracellular calcium levels are functionally linked to presenilin mutations, ApoE4 expression, amyloid plaques, tau tangles and synaptic dysfunction. In this review, we discuss the role of AD-linked calcium signaling alterations in neurons and how this may be linked to synaptic dysfunctions at both early and late stages of the disease.
Collapse
|
6
|
Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 2011; 63:700-27. [PMID: 21737534 DOI: 10.1124/pr.110.003814] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) is a morphologically and functionally diverse organelle capable of integrating multiple extracellular and internal signals and generating adaptive cellular responses. It plays fundamental roles in protein synthesis and folding and in cellular responses to metabolic and proteotoxic stress. In addition, the ER stores and releases Ca(2+) in sophisticated scenarios that regulate a range of processes in excitable cells throughout the body, including muscle contraction and relaxation, endocrine regulation of metabolism, learning and memory, and cell death. One or more Ca(2+) ATPases and two types of ER membrane Ca(2+) channels (inositol trisphosphate and ryanodine receptors) are the major proteins involved in ER Ca(2+) uptake and release, respectively. There are also direct and indirect interactions of ER Ca(2+) stores with plasma membrane and mitochondrial Ca(2+)-regulating systems. Pharmacological agents that selectively modify ER Ca(2+) release or uptake have enabled studies that revealed many different physiological roles for ER Ca(2+) signaling. Several inherited diseases are caused by mutations in ER Ca(2+)-regulating proteins, and perturbed ER Ca(2+) homeostasis is implicated in a range of acquired disorders. Preclinical investigations suggest a therapeutic potential for use of agents that target ER Ca(2+) handling systems of excitable cells in disorders ranging from cardiac arrhythmias and skeletal muscle myopathies to Alzheimer disease.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University/The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | |
Collapse
|
7
|
Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL. Atrial cardiomyocyte calcium signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:922-34. [DOI: 10.1016/j.bbamcr.2011.01.030] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/21/2011] [Accepted: 01/25/2011] [Indexed: 11/25/2022]
|
8
|
O'Connor RP, Madison SD, Leveque P, Roderick HL, Bootman MD. Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons. PLoS One 2010; 5:e11828. [PMID: 20676401 PMCID: PMC2910734 DOI: 10.1371/journal.pone.0011828] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/21/2010] [Indexed: 11/25/2022] Open
Abstract
In the course of modern daily life, individuals are exposed to numerous sources of electromagnetic radiation that are not present in the natural environment. The strength of the electromagnetic fields from sources such as hairdryers, computer display units and other electrical devices is modest. However, in many home and office environments, individuals can experience perpetual exposure to an “electromagnetic smog”, with occasional peaks of relatively high electromagnetic field intensity. This has led to concerns that such radiation can affect health. In particular, emissions from mobile phones or mobile phone masts have been invoked as a potential source of pathological electromagnetic radiation. Previous reports have suggested that cellular calcium (Ca2+) homeostasis is affected by the types of radiofrequency fields emitted by mobile phones. In the present study, we used a high-throughput imaging platform to monitor putative changes in cellular Ca2+ during exposure of cells to 900 MHz GSM fields of differing power (specific absorption rate 0.012–2 W/Kg), thus mimicking the type of radiation emitted by current mobile phone handsets. Data from cells experiencing the 900 Mhz GSM fields were compared with data obtained from paired experiments using continuous wave fields or no field. We employed three cell types (human endothelial cells, PC-12 neuroblastoma and primary hippocampal neurons) that have previously been suggested to be sensitive to radiofrequency fields. Experiments were designed to examine putative effects of radiofrequency fields on resting Ca2+, in addition to Ca2+ signals evoked by an InsP3-generating agonist. Furthermore, we examined putative effects of radiofrequency field exposure on Ca2+ store emptying and store-operated Ca2+ entry following application of the Ca2+ATPase inhibitor thapsigargin. Multiple parameters (e.g., peak amplitude, integrated Ca2+ signal, recovery rates) were analysed to explore potential impact of radiofrequency field exposure on Ca2+ signals. Our data indicate that 900 MHz GSM fields do not affect either basal Ca2+ homeostasis or provoked Ca2+ signals. Even at the highest field strengths applied, which exceed typical phone exposure levels, we did not observe any changes in cellular Ca2+ signals. We conclude that under the conditions employed in our experiments, and using a highly-sensitive assay, we could not detect any consequence of RF exposure.
Collapse
Affiliation(s)
- Rodney P. O'Connor
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, United Kingdom
| | - Steve D. Madison
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, United Kingdom
| | | | - H. Llewelyn Roderick
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Martin D. Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
10
|
Wu PC, Fann MJ, Kao LS. Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells. J Neurochem 2009; 112:1210-22. [PMID: 20002295 DOI: 10.1111/j.1471-4159.2009.06533.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study, we characterized the Ca2+ responses and secretions induced by various secretagogues in mouse chromaffin cells. Activation of the acetylcholine receptor (AChR) by carbachol induced a transient intracellular Ca2+ concentration ([Ca2+](i)) increase followed by two phases of [Ca2+](i) decay and a burst of exocytic events. The contribution of the subtypes of AChRs to carbachol-induced responses was examined. Based on the results obtained by stimulating the cells with the nicotinic receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, high K(+) and the effects of thapsigargin, it appears that activation of nAChRs induces an extracellular Ca2+ influx, which in turn activate Ca(2+)-induced Ca2+ release via the ryanodine receptors. Muscarine, a muscarinic receptor (mAChRs) agonist, was found to induce [Ca2+](i) oscillation and sustained catecholamine release, possibly by activation of both the receptor- and store-operated Ca2+ entry pathways. The RT-PCR results showed that mouse chromaffin cells are equipped with messages for multiple subtypes of AChRs, ryanodine receptors and all known components of the receptor- and store-operated Ca2+ entry. Furthermore, results obtained by directly monitoring endoplasmic reticulum (ER) and mitochondrial Ca2+ concentration and by disabling mitochondrial Ca2+ uptake suggest that the ER acts as a Ca2+ source, while the mitochondria acts as a Ca2+ sink. Our results show that both nAChRs and mAChRs contribute to the initial carbachol-induced [Ca2+](i) increase which is further enhanced by the Ca2+ released from the ER mediated by Ca(2+)-induced Ca2+ release and mAChR activation. This information on the Ca2+ signaling pathways should lay a good foundation for future studies using mouse chromaffin cells as a model system.
Collapse
Affiliation(s)
- Pei-Chun Wu
- Molecular Medicine Program, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
11
|
Cooper Z, Greenwood M, Mazzag B. A computational analysis of localized Ca2+-dynamics generated by heterogeneous release sites. Bull Math Biol 2009; 71:1543-79. [PMID: 19440797 DOI: 10.1007/s11538-009-9413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 02/10/2009] [Indexed: 11/30/2022]
Abstract
We investigate the role of heterogeneous expression of IP3R and RyR in generating diverse elementary Ca2+ signals. It has been shown empirically (Wojcikiewicz and Luo in Mol. Pharmacol. 53(4):656-662, 1998; Newton et al. in J. Biol. Chem. 269(46):28613-28619, 1994; Smedt et al. in Biochem. J. 322(Pt. 2):575-583, 1997) that tissues express various proportions of IP3 and RyR isoforms and this expression is dynamically regulated (Parrington et al. in Dev. Biol. 203(2):451-461, 1998; Fissore et al. in Biol. Reprod. 60(1):49-57, 1999; Tovey et al. in J. Cell Sci. 114(Pt. 22):3979-3989, 2001). Although many previous theoretical studies have investigated the dynamics of localized calcium release sites (Swillens et al. in Proc. Natl. Acad. Sci. U.S.A. 96(24):13750-13755, 1999; Shuai and Jung in Proc. Natl. Acad. Sci. U.S.A. 100(2):506-510, 2003a; Shuai and Jung in Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(3 Pt. 1):031905, 2003b; Thul and Falcke in Biophys. J. 86(5):2660-2673, 2004; DeRemigio and Smith in Cell Calcium 38(2):73-86, 2005; Nguyen et al. in Bull. Math. Biol. 67(3):393-432, 2005), so far all such studies focused on release sites consisting of identical channel types. We have extended an existing mathematical model (Nguyen et al. in Bull. Math. Biol. 67(3):393-432, 2005) to release sites with two (or more) receptor types, each with its distinct channel kinetics. Mathematically, the release site is represented by a transition probability matrix for a collection of nonidentical stochastically gating channels coupled through a shared Ca2+ domain. We demonstrate that under certain conditions a previously defined mean-field approximation of the coupling strength does not accurately reproduce the release site dynamics. We develop a novel approximation and establish that its performance in these instances is superior. We use this mathematical framework to study the effect of heterogeneity in the Ca2+-regulation of two colocalized channel types on the release site dynamics. We consider release sites consisting of channels with both Ca2+-activation and inactivation ("four-state channels") and channels with Ca2+-activation only ("two-state channels") and show that for the appropriate parameter values, synchronous channel openings within a release site with any proportion of two-state to four-state channels are possible, however, the larger the proportion of two-state channels, the more sensitive the dynamics are to the exact spatial positioning of the channels and the distance between channels. Specifically, the clustering of even a small number of two-state channels interferes with puff/spark termination and increases puff durations or leads to a tonic response.
Collapse
Affiliation(s)
- Zachary Cooper
- Department of Mathematics, Humboldt State University, Arcata, CA 95521, USA
| | | | | |
Collapse
|
12
|
Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 2008; 414:441-52. [PMID: 18518861 DOI: 10.1042/bj20080489] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caffeine has long been used as a pharmacological probe for studying RyR (ryanodine receptor)-mediated Ca(2+) release and cardiac arrhythmias. However, the precise mechanism by which caffeine activates RyRs is elusive. In the present study, we investigated the effects of caffeine on spontaneous Ca(2+) release and on the response of single RyR2 (cardiac RyR) channels to luminal or cytosolic Ca(2+). We found that HEK-293 cells (human embryonic kidney cells) expressing RyR2 displayed partial or 'quantal' Ca(2+) release in response to repetitive additions of submaximal concentrations of caffeine. This quantal Ca(2+) release was abolished by ryanodine. Monitoring of endoplasmic reticulum luminal Ca(2+) revealed that caffeine reduced the luminal Ca(2+) threshold at which spontaneous Ca(2+) release occurs. Interestingly, spontaneous Ca(2+) release in the form of Ca(2+) oscillations persisted in the presence of 10 mM caffeine, and was diminished by ryanodine, demonstrating that unlike ryanodine, caffeine, even at high concentrations, does not hold the channel open. At the single-channel level, caffeine markedly reduced the threshold for luminal Ca(2+) activation, but had little effect on the threshold for cytosolic Ca(2+) activation, indicating that the major action of caffeine is to reduce the luminal, but not the cytosolic, Ca(2+) activation threshold. Furthermore, as with caffeine, the clinically relevant, pro-arrhythmic methylxanthines aminophylline and theophylline potentiated luminal Ca(2+) activation of RyR2, and increased the propensity for spontaneous Ca(2+) release, mimicking the effects of disease-linked RyR2 mutations. Collectively, our results demonstrate that caffeine triggers Ca(2+) release by reducing the threshold for luminal Ca(2+) activation of RyR2, and suggest that disease-linked RyR2 mutations and RyR2-interacting pro-arrhythmic agents may share the same arrhythmogenic mechanism.
Collapse
|
13
|
Burdakov D, Petersen OH, Verkhratsky A. Intraluminal calcium as a primary regulator of endoplasmic reticulum function. Cell Calcium 2008; 38:303-10. [PMID: 16076486 DOI: 10.1016/j.ceca.2005.06.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The concentration of Ca2+ inside the lumen of endoplasmic reticulum (ER) regulates a vast array of spatiotemporally distinct cellular processes, from intracellular Ca2+ signals to intra-ER protein processing and cell death. This review summarises recent data on the mechanisms of luminal Ca2+-dependent regulation of Ca2+ release and uptake as well as ER regulation of cellular adaptive processes. In addition we discuss general biophysical properties of the ER membrane, as trans-endomembrane Ca2+ fluxes are subject to basic electrical forces, determined by factors such as the membrane potential of the ER and the ease with which Ca2+ fluxes are able to change this potential (i.e. the resistance of the ER membrane). Although these electrical forces undoubtedly play a fundamental role in shaping [Ca2+](ER) dynamics, at present there is very little direct experimental information about the biophysical properties of the ER membrane. Further studies of how intraluminal [Ca2+] is regulated, best carried out with direct measurements, are vital for understanding how Ca2+ orchestrates cell function. Direct monitoring of [Ca2+](ER) under conditions where the cytosolic [Ca2+] is known may also help to capture elusive biophysical information about the ER, such as the potential difference across the ER membrane.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
14
|
Mellström B, Savignac M, Gomez-Villafuertes R, Naranjo JR. Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models. Physiol Rev 2008; 88:421-49. [DOI: 10.1152/physrev.00041.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Calcium is the most universal signal used by living organisms to convey information to many different cellular processes. In this review we present well-known and recently identified proteins that sense and decode the calcium signal and are key elements in the nucleus to regulate the activity of various transcriptional networks. When possible, the review also presents in vivo models in which the genes encoding these calcium sensors-transducers have been modified, to emphasize the critical role of these Ca2+-operated mechanisms in many physiological functions.
Collapse
|
15
|
Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Ann N Y Acad Sci 2007; 1097:265-77. [PMID: 17413028 DOI: 10.1196/annals.1379.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intracellular Ca(2+) signaling involves Ca(2+) liberation through both inositol triphosphate and ryanodine receptors (IP(3)R and RyR). However, little is known of the functional interactions between these Ca(2+) sources in either neuronal physiology, or during Ca(2+) disruptions associated with Alzheimer's disease (AD). By the use of whole-cell recordings and 2-photon Ca(2+) imaging in cortical slices we distinguished between IP(3)R- and RyR-mediated Ca(2+) components in nontransgenic (non-Tg) and AD mouse models and demonstrate powerful signaling interactions between these channels. Ca(2+)-induced Ca(2+) release (CICR) through RyR contributed modestly to Ca(2+) signals evoked by photoreleased IP(3) in cortical neurons from non-Tg mice. In contrast, the exaggerated signals in 3xTg-AD and PS1(KI) mice resulted primarily from enhanced CICR through RyR, rather than through IP(3)R, and were associated with increased RyR expression levels. Moreover, membrane hyperpolarizations evoked by IP(3) in neurons from AD mouse models were even greater than expected simply from the exaggerated Ca(2+) signals, pointing to an increased coupling efficiency between cytosolic [Ca(2+)] and K(+) channel regulation. Our results highlight the critical roles of RyR-mediated Ca(2+) signaling in both neuronal physiology and pathophysiology, and point to presenilin-linked disruptions in RyR signaling as an important genetic factor in AD.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Savignac M, Mellström B, Naranjo JR. Calcium-dependent transcription of cytokine genes in T lymphocytes. Pflugers Arch 2007; 454:523-33. [PMID: 17334777 DOI: 10.1007/s00424-007-0238-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/14/2007] [Indexed: 12/12/2022]
Abstract
The increase in intracellular calcium ion concentration is a general signaling mechanism used in many biological systems. In T lymphocytes, calcium is essential for activation, differentiation, and effector functions. In this study, we will summarize recent developments of how intracellular calcium concentrations are modified in T cells to affect the activity of three major calcium-dependent transcriptional effectors, i.e., NFAT, MEF2, and DREAM, involved in cytokine gene expression.
Collapse
Affiliation(s)
- Magali Savignac
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | |
Collapse
|
17
|
Iyer V, Hajjar RJ, Armoundas AA. Mechanisms of abnormal calcium homeostasis in mutations responsible for catecholaminergic polymorphic ventricular tachycardia. Circ Res 2007; 100:e22-31. [PMID: 17234962 DOI: 10.1161/01.res.0000258468.31815.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Catecholaminergic polymorphic ventricular tachycardia is a heritable arrhythmia unmasked by exertion or stress and is characterized by triggered activity and sudden cardiac death. In this study, we simulated mutations in 2 genes linked to catecholaminergic polymorphic ventricular tachycardia, the first located in calsequestrin (CSQN2) and the second in the ryanodine receptor (RyR2). The aim of the study was to investigate the mechanistic basis for spontaneous Ca2+ release events that lead to delayed afterdepolarizations in affected patients. Sarcoplasmic reticulum (SR) luminal Ca2+ sensing was incorporated into a model of the human ventricular myocyte, and CSQN2 mutations were modeled by simulating disrupted RyR2 luminal Ca2+ sensing. In voltage-clamp mode, the mutant CSQN2 model recapitulated the smaller calcium transients, smaller time to peak calcium transient, and accelerated recovery from inactivation seen in experiments. In current clamp mode, in the presence of beta stimulation, we observed delayed afterdepolarizations, suggesting that accelerated recovery of RyR2 induced by impaired luminal Ca2+ sensing underlies the triggered activity observed in mutant CSQN2-expressing myocytes. In current-clamp mode, in a model of mutant RyR2 that is characterized by reduced FKBP12.6 binding to the RyR2 on beta stimulation, the impaired coupled gating characteristic of these mutations was modeled by reducing cooperativity of RyR2 activation. In current-clamp mode, the mutant RyR2 model exhibited increased diastolic RyR2 open probability that resulted in formation of delayed afterdepolarizations. In conclusion, these minimal order models of mutant CSQN2 and RyR2 provide plausible mechanisms by which defects in RyR2 gating may lead to the cellular triggers for arrhythmia, with implications for the development of targeted therapy.
Collapse
Affiliation(s)
- Vivek Iyer
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
18
|
Bootman MD, Higazi DR, Coombes S, Roderick HL. Calcium signalling during excitation-contraction coupling in mammalian atrial myocytes. J Cell Sci 2007; 119:3915-25. [PMID: 16988026 DOI: 10.1242/jcs.03223] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. We know much less about the calcium signals that link electrical depolarisation to contraction within atrial myocytes in comparison with ventricular myocytes. Nevertheless, recent work has shed new light on calcium signalling in atrial cells. At an ultrastructural level, atrial and ventricular myocytes have many similarities. However, a few key structural differences, in particular the lack of transverse tubules (;T-tubules') in atrial myocytes, make these two cell types display vastly different calcium patterns in response to depolarisation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that largely originate around the periphery of the cells. To engage the contractile machinery, the calcium signal must propagate centripetally deeper into the cells. This inward movement of calcium is ultimately controlled by hormones that can promote or decrease calcium release within the myocytes. Enhanced centripetal movement of calcium in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping. The calcium signalling paradigm within atrial cells applies to other cardiac cell types that also do not express T-tubules, such as neonatal ventricular myocytes, and Purkinje cells that aid in the spread of electrical depolarisation. Furthermore, during heart failure ventricular myocytes progressively lose their regular T-tubule expression, and their pattern of response resembles that of atrial cells.
Collapse
Affiliation(s)
- Martin D Bootman
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge, CB2 4AT, UK.
| | | | | | | |
Collapse
|
19
|
Yamashita M. ‘Quantal’ Ca2+release reassessed - a clue to oscillation and synchronization. FEBS Lett 2006; 580:4979-83. [PMID: 16938295 DOI: 10.1016/j.febslet.2006.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 08/14/2006] [Indexed: 11/26/2022]
Abstract
Ca(2+) release from intracellular Ca(2+) stores, a pivotal event in Ca(2+) signaling, is a 'quantal' process; it terminates after a rapid release of a fraction of stored Ca(2+). To explain the 'quantal' nature, 'all-or-none' model and 'steady-state' model were proposed. This article shortly reviews these hypotheses and considers a recently proposed mechanism, 'luminal potential' model, in which the membrane potential of Ca(2+) store regulates Ca(2+) efflux. By reassessing the 'quantal' nature, other important features of Ca(2+) signaling, oscillation and synchronization, are highlighted. The mechanism for 'quantal' Ca(2+) release may underlie the temporal and spatial control of Ca(2+) signaling.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Department of Physiology I, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan.
| |
Collapse
|
20
|
Yamashita M, Sugioka M, Ogawa Y. Voltage- and Ca2+-activated potassium channels in Ca2+ store control Ca2+ release. FEBS J 2006; 273:3585-97. [PMID: 16884498 DOI: 10.1111/j.1742-4658.2006.05365.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ release from Ca2+ stores is a 'quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a 'brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+-activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by approximately 45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+.
Collapse
|
21
|
Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I. Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 2006; 26:5180-9. [PMID: 16687509 PMCID: PMC6674246 DOI: 10.1523/jneurosci.0739-06.2006] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuronal Ca2+ signaling through inositol triphosphate receptors (IP3R) and ryanodine receptors (RyRs) must be tightly regulated to maintain cell viability, both acutely and over a lifetime. Exaggerated intracellular Ca2+ levels have been associated with expression of Alzheimer's disease (AD) mutations in young mice, but little is known of Ca2+ dysregulations during normal and pathological aging processes. Here, we used electrophysiological recordings with two-photon imaging to study Ca2+ signaling in nontransgenic (NonTg) and several AD mouse models (PS1KI, 3xTg-AD, and APPSweTauP301L) at young (6 week), adult (6 months), and old (18 months) ages. At all ages, the PS1KI and 3xTg-AD mice displayed exaggerated endoplasmic reticulum (ER) Ca2+ signals relative to NonTg mice. The PS1 mutation was the predominant "calciopathic" factor, because responses in 3xTg-AD mice were similar to PS1KI mice, and APPSweTauP301L mice were not different from controls. In addition, we uncovered powerful signaling interactions and differences between IP3R- and RyR-mediated Ca2+ components in NonTg and AD mice. In NonTg mice, RyR contributed modestly to IP3-evoked Ca2+, whereas the exaggerated signals in 3xTg-AD and PS1KI mice resulted primarily from enhanced RyR-Ca2+ release and were associated with increased RyR expression across all ages. Moreover, IP3-evoked membrane hyperpolarizations in AD mice were even greater than expected from exaggerated Ca2+ signals, suggesting increased coupling efficiency between cytosolic [Ca2+] and K+ channel regulation. We conclude that lifelong ER Ca2+ disruptions in AD are related to a modulation of RyR signaling associated with PS1 mutations and represent a discrete "calciumopathy," not merely an acceleration of normal aging.
Collapse
Affiliation(s)
- Grace E Stutzmann
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Yoshida I, Monji A, Tashiro KI, Nakamura KI, Inoue R, Kanba S. Depletion of intracellular Ca2+ store itself may be a major factor in thapsigargin-induced ER stress and apoptosis in PC12 cells. Neurochem Int 2006; 48:696-702. [PMID: 16481070 DOI: 10.1016/j.neuint.2005.12.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 11/24/2022]
Abstract
The mechanisms of intracellular calcium store depletion and store-related Ca(2+) dysregulation in relation to apoptotic cell death in PC12 cells were investigated at physiological temperatures with a leak-resistant fluorescent indicator dye Fura-PE3/AM by a cooled CCD imaging analysis system. Electron microscopic observations have shown thapsigargin (TG; 100 nM)-induced apoptosis in PC12 cells. Thorough starvation of stored Ca(2+) by BAPTA/AM (50 microM), or La(3+) (100 microM) enhanced while dantrolene (100 microM) attenuated the TG-induced apoptosis by preventing a calcium release from internal stores. An immunoblotting analysis revealed an enhanced expression of GRP78, the hallmark of endoplasmic reticulum (ER) stress when cells were treated by TG along with BAPTA/AM. These results indicate that the depletion of the intracellular Ca(2+) stores itself induces the ER stress and apoptosis in PC12 cells without any involvement of the capacitative calcium entry (CCE) or a sustained elevation of intracellular Ca(2+) concentrations ([Ca(2+)](i)).
Collapse
Affiliation(s)
- Ichiro Yoshida
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Burdakov D, Verkhratsky A. Biophysical re-equilibration of Ca2+ fluxes as a simple biologically plausible explanation for complex intracellular Ca2+ release patterns. FEBS Lett 2005; 580:463-8. [PMID: 16386246 DOI: 10.1016/j.febslet.2005.12.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 10/25/2022]
Abstract
Physiological regulation of Ca(2+) release from the endoplasmic reticulum (ER) is critical for cell function. Recent direct measurements of free [Ca(2+)] inside the ER ([Ca(2+)](ER)) revealed that [Ca(2+)](ER) itself is a key regulator of ER Ca(2+) handling. However, the role of this new regulatory process in generating various patterns of Ca(2+) release remains to be elucidated in detail. Here, we incorporate the recently quantified experimental correlations between [Ca(2+)](ER) and Ca(2+) movements across the ER membrane into a mathematical model ER Ca(2+) handling. The model reproduces basic experimental dynamics of [Ca(2+)](ER). Although this was not goal in model design, the model also exhibits mechanistically unclear experimental phenomena such as "quantal" Ca(2+) release, and "store charging" by increasing resting cytosolic [Ca(2+)]. While more complex explanations cannot be ruled out, on the basis of our data we propose that "quantal release" and "store charging" could be simple re-equilibration phenomena, predicted by the recently quantified biophysical dynamics of Ca(2+) movements across the ER membrane.
Collapse
Affiliation(s)
- Denis Burdakov
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | | |
Collapse
|
24
|
Shmygol A, Wray S. Modulation of agonist-induced Ca2+ release by SR Ca2+ load: direct SR and cytosolic Ca2+ measurements in rat uterine myocytes. Cell Calcium 2005; 37:215-23. [PMID: 15670868 DOI: 10.1016/j.ceca.2004.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 10/02/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Release of Ca2+ from sarcoplasmic reticulum (SR) is one of the most important mechanisms of smooth muscle stimulation by a variety of physiologically active substances. Agonist-induced Ca2+ release is considered to be dependent on the Ca2+ content of the SR, although the mechanism underlying this dependence is unclear. In the present study, the effect of SR Ca2+ load on the amplitude of [Ca2+]i transients elicited by application of the purinergic agonist ATP was examined in uterine smooth muscle cells isolated from pregnant rats. Measurement of intraluminal Ca2+ level ([Ca2+]L) using a low affinity Ca indicator, mag-fluo-4, revealed that incubation of cells in a high-Ca2+ (10 mM) extracellular solution leads to a substantial increase in [Ca2+]L (SR overload). However, despite increased SR Ca2+ content this did not potentiate ATP-induced [Ca2+]i transients. Repetitive applications of ATP in the absence of extracellular Ca2+, as well as prolonged incubation in Ca2+-free solution without agonist, depleted the [Ca2+]L (SR overload). In contrast to overload, partial depletion of the SR substantially reduced the amplitude of Ca2+ release. ATP-induced [Ca2+]i transients were completely abolished when SR Ca2+ content was decreased below 80% of its normal value indicating a steep dependence of the IP3-mediated Ca2+ release on the Ca2+ load of the store. Our results suggest that in uterine smooth muscle cells decrease in the SR Ca2+ load below its normal resting level substantially reduces the IP3-mediated Ca2+ release, while Ca2+ overload of the SR has no impact on such release.
Collapse
Affiliation(s)
- Anatoly Shmygol
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | |
Collapse
|
25
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 561] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
26
|
Mackenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD. The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction. J Cell Sci 2004; 117:6327-37. [PMID: 15561771 DOI: 10.1242/jcs.01559] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We examined the regulation of calcium signalling in atrial cardiomyocytes during excitation-contraction coupling, and how changes in the distribution of calcium impacts on contractility. Under control conditions, calcium transients originated in subsarcolemmal locations and showed local regeneration through activation of calcium-induced calcium release from ryanodine receptors. Despite functional ryanodine receptors being expressed at regular (∼2 μm) intervals throughout atrial myocytes, the subsarcolemmal calcium signal did not spread in a fully regenerative manner through the interior of a cell. Rather, there was a diminishing centripetal propagation of calcium. The lack of regeneration was due to mitochondria and SERCA pumps preventing the inward movement of calcium. Inhibiting these calcium buffering mechanisms allowed the globalisation of action potential-evoked responses. In addition, physiological positive inotropic agents, such as endothelin-1 and β-adrenergic agonists, as well as enhanced calcium current, calcium store loading and inositol 1,4,5-trisphosphate infusion also led to regenerative global responses. The consequence of globalising calcium signals was a significant increase in cellular contraction. These data indicate how calcium signals and their consequences are determined by the interplay of multiple subcellular calcium management systems.
Collapse
Affiliation(s)
- Lauren Mackenzie
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB2 4AT, UK
| | | | | | | | | |
Collapse
|
27
|
Zhu X, Zamudio FZ, Olbinski BA, Possani LD, Valdivia HH. Activation of Skeletal Ryanodine Receptors by Two Novel Scorpion Toxins from Buthotus judaicus. J Biol Chem 2004; 279:26588-96. [PMID: 15067003 DOI: 10.1074/jbc.m403284200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Buthotus judaicus toxin 1 (BjTx-1) and toxin 2 (BjTx-2), two novel peptide activators of ryanodine receptors (RyR), were purified from the venom of the scorpion B. judaicus. Their amino acid sequences differ only in 1 residue out of 28 (residue 16 corresponds to Lys in BjTx-1 and Ile in BjTx-2). Despite a slight difference in EC(50), both toxins increased binding of [(3)H]ryanodine to skeletal sarcoplasmic reticulum at micromolar concentrations but had no effect on cardiac or liver microsomes. Their activating effect was Ca(2+)-dependent and was synergized by caffeine. B. judaicus toxins also increased binding of [(3)H]ryanodine to the purified RyR1, suggesting that a direct protein-protein interaction mediates the effect of the peptides. BjTx-1 and BjTx-2 induced Ca(2+) release from Ca(2+)-loaded sarcoplasmic reticulum vesicles in a dose-dependent manner and induced the appearance of long lived subconductance states in skeletal RyRs reconstituted into lipid bilayers. Three-dimensional structural modeling reveals that a cluster of positively charged residues (Lys(11) to Lys(16)) is a prominent structural motif of both toxins. A similar structural motif is believed to be important for activation of RyRs by imperatoxin A (IpTx(a)), another RyR-activating peptide (Gurrola, G. B., Arevalo, C., Sreekumar, R., Lokuta, A. J., Walker, J. W., and Valdivia, H. H. (1999) J. Biol. Chem. 274, 7879-7886). Thus, it is likely that B. judaicus toxins and imperatoxin A bind to RyRs by means of electrostatic interactions that lead to massive conformational changes in the channel protein. The different affinity and structural diversity of this family of scorpion peptides makes them excellent peptide probes to identify RyR domains that trigger the channel to open.
Collapse
Affiliation(s)
- Xinsheng Zhu
- Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA.
| | | | | | | | | |
Collapse
|
28
|
Mäthger LM, Collins TFT, Lima PA. The role of muscarinic receptors and intracellular Ca2+ in the spectral reflectivity changes of squid iridophores. J Exp Biol 2004; 207:1759-69. [PMID: 15107431 DOI: 10.1242/jeb.00955] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn this paper we describe changes in spectral reflectivity of the light reflectors (iridophores) of the squid Alloteuthis subulata. The spectral changes that can be seen in living squid, can also be brought about by superfusing whole skin preparations with acetylcholine (ACh) (20 μmol l-1) and muscarine (30 μmol l-1) but not nicotine (up to 50 mmol l-1), suggesting that cholinergic muscarinic receptors are involved. Changing the osmolarity of the external solution had no effect on spectral reflectivity. To study the iridophores at the cellular level,iridophores were isolated enzymatically. Lucifer Yellow filled the iridophores uniformly, showing cellular individuality. Isolated iridophore cells were loaded with Fura-2 AM and cytoplasmic Ca2+ was recorded ratiometrically. Intracellular Ca2+ (resting concentration at 66.16 nmol l-1) increased transiently after addition of ACh (50 μmol l-1), muscarine (25 μmol l-1), but not nicotine (up to 5 mmol l-1). Ca2+ also increased when superfused with potassium chloride (10 mmol l-1) and caffeine (2.5 mmol l-1). Hypo- and hyperosmotic solutions had no effects on the cytoplasmic Ca2+. By presenting direct evidence that iridophores are polarised cellular structures containing Ca2+ stores and that they are activated via cholinergic muscarinic receptors, we demonstrate that Ca2+ is involved in the reflectivity changes of the iridophores of A. subulata. Specimens were prepared for transmission electron microscopy. It was found that the orientations of the plates with respect to the skin surface are in good agreement with the expected orientations based on the prediction that the iridophores act as multilayer reflectors.
Collapse
Affiliation(s)
- Lydia M Mäthger
- The Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK.
| | | | | |
Collapse
|
29
|
Yoneda T, Hiroi T, Osada M, Asada A, Funae Y. Non-genomic modulation of dopamine release by bisphenol-A in PC12 cells. J Neurochem 2004; 87:1499-508. [PMID: 14713305 DOI: 10.1046/j.1471-4159.2003.02131.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An endocrine disruptor chemical, bisphenol-A (BPA), is reported to have several short-term actions in various tissues and/or cells; however, the mechanisms of these actions have not been fully elucidated. We investigated short-term actions evoked by BPA in pheochromocytoma PC12 cells. BPA elicited dopamine release in PC12 cells in a dose-dependent manner. A selective N-type calcium channel antagonist (omega-conotoxin GVIA) and a ryanodine receptor blocker (ryanodine) inhibited the BPA-induced dopamine release. The expression of ryanodine receptor mRNA was detected by RT-PCR in PC12 cells. Subsequently, in order to prove whether membrane receptors participate in BPA-evoked dopamine release, a guanine nucleotide-binding protein inhibitor [guanosine 5'-(beta-thio) diphosphate], cyclic AMP antagonist (Rp-cAMPS) or protein kinase A inhibitor (H7 or H89) was added to PC12 cells prior to BPA-treatment. All of these agents suppressed BPA-evoked dopamine release, indicating that multiple signaling pathways may be involved in BPA-evoked dopamine release in PC12 cells. In conclusion, we demonstrated that BPA induced dopamine release in a non-genomic manner through guanine nucleotide-binding protein and N-type calcium channels. These findings illustrate a novel function of BPA and suggest that exposure to BPA influences the function of dopaminergic neurons.
Collapse
Affiliation(s)
- Takashi Yoneda
- Department of Chemical Biology, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | |
Collapse
|
30
|
George CH, Higgs GV, Mackrill JJ, Lai FA. Dysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6. J Biol Chem 2003; 278:28856-64. [PMID: 12754204 DOI: 10.1074/jbc.m212440200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chinese hamster ovary cells, CHOhRyR2) had similar resting cytoplasmic Ca2+ levels ([Ca2+]c) to wild-type CHO cells (CHOWT) but exhibited increased cytoplasmic Ca2+ flux associated with decreased cell viability and proliferation. Intracellular Ca2+ flux increased with human RyR2 (hRyR2) expression levels and determined the extent of phenotypic modulation. Co-expression of FKBP12.6, but not FKBP12, or incubation of cells with ryanodine suppressed intracellular Ca2+ flux and restored normal cell viability and proliferation. Restoration of normal phenotype was independent of the status of resting [Ca2+]c or ER Ca2+ load. Heparin inhibition of endogenous inositol trisphosphate receptors (IP3R) had little effect on intracellular Ca2+ handling or viability. However, purinergic stimulation of endogenous IP3R resulted in apoptotic cell death mediated by hRyR2 suggesting functional interaction occurred between IP3R and hRyR2 Ca2+ release channels. These data demonstrate that defective regulation of RyR causes altered cellular phenotype via profound perturbations in intracellular Ca2+ signaling and highlight a key modulatory role of FKBP12.6 in hRyR2 Ca2+ channel function.
Collapse
Affiliation(s)
- Christopher H George
- Department of Cardiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4:517-29. [PMID: 12838335 DOI: 10.1038/nrm1155] [Citation(s) in RCA: 3968] [Impact Index Per Article: 189.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is a highly versatile intracellular signal that operates over a wide temporal range to regulate many different cellular processes. An extensive Ca2+-signalling toolkit is used to assemble signalling systems with very different spatial and temporal dynamics. Rapid highly localized Ca2+ spikes regulate fast responses, whereas slower responses are controlled by repetitive global Ca2+ transients or intracellular Ca2+ waves. Ca2+ has a direct role in controlling the expression patterns of its signalling systems that are constantly being remodelled in both health and disease.
Collapse
Affiliation(s)
- Michael J Berridge
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | | | |
Collapse
|
32
|
Bouchard R, Pattarini R, Geiger JD. Presence and functional significance of presynaptic ryanodine receptors. Prog Neurobiol 2003; 69:391-418. [PMID: 12880633 DOI: 10.1016/s0301-0082(03)00053-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ca(2+)-induced Ca(2+) release (CICR) mediated by sarcoplasmic reticulum resident ryanodine receptors (RyRs) has been well described in cardiac, skeletal and smooth muscle. In brain, RyRs are localised primarily to endoplasmic reticulum (ER) and have been demonstrated in postsynaptic entities, astrocytes and oligodendrocytes where they regulate intracellular Ca(2+) concentration ([Ca(2+)](i)), membrane potential and the activity of a variety of second messenger systems. Recently, the contribution of presynaptic RyRs and CICR to functions of central and peripheral presynaptic terminals, including neurotransmitter release, has received increased attention. However, there is no general agreement that RyRs are localised to presynaptic terminals, nor is it clear that RyRs regulate a large enough pool of intracellular Ca(2+) to be physiologically significant. Here, we review direct and indirect evidence that on balance favours the notion that ER and RyRs are found in presynaptic terminals and are physiologically significant. In so doing, it became obvious that some of the controversy originates from issues related to (i) the ability to demonstrate conclusively the physical presence of ER and RyRs, (ii) whether the biophysical properties of RyRs are such that they can contribute physiologically to regulation of presynaptic [Ca(2+)](i), (iii) how ER Ca(2+) load and feedback gain of CICR contributes to the ability to detect functionally relevant RyRs, (iv) the distance that Ca(2+) diffuses from plasma membranes to RyRs to trigger CICR and from RyRs to the Active Zone to enhance vesicle release, and (v) the experimental conditions used. The recognition that ER Ca(2+) stores are able to modulate local Ca(2+) levels and neurotransmitter release in presynaptic terminals will aid in the understanding of the cellular mechanisms controlling neuronal function.
Collapse
Affiliation(s)
- Ron Bouchard
- Division of Neuroscience Research, St. Boniface Research Centre, Winnipeg, Canada R2H 2A6
| | | | | |
Collapse
|
33
|
Koizumi S, Saito Y, Nakazawa K, Nakajima K, Sawada JI, Kohsaka S, Illes P, Inoue K. Spatial and temporal aspects of Ca2+ signaling mediated by P2Y receptors in cultured rat hippocampal astrocytes. Life Sci 2002; 72:431-42. [PMID: 12467884 DOI: 10.1016/s0024-3205(02)02273-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, 158, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The endoplasmic reticulum (ER) is a multifunctional signalling organelle regulating a wide range of neuronal functional responses. The ER is intimately involved in intracellular Ca(2+) signalling, producing local or global cytosolic calcium fluctuations via Ca(2+)-induced Ca(2+) release (CICR) or inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). The CICR and IICR are controlled by two subsets of Ca(2+) release channels residing in the ER membrane, the Ca(2+)-gated Ca(2+) release channels, generally known as ryanodine receptors (RyRs) and InsP(3)-gated Ca(2+) release channels, referred to as InsP(3)-receptors (InsP(3)Rs). Both types of Ca(2+) release channels are expressed abundantly in nerve cells and their activation triggers cytoplasmic Ca(2+) signals important for synaptic transmission and plasticity. The RyRs and InsP(3)Rs show heterogeneous localisation in distinct cellular sub-compartments, conferring thus specificity in local Ca(2+) signals. At the same time, the ER Ca(2+) store emerges as a single interconnected pool fenced by the endomembrane. The continuity of the ER Ca(2+) store could play an important role in various aspects of neuronal signalling. For example, Ca(2+) ions may diffuse within the ER lumen with comparative ease, endowing this organelle with the capacity for "Ca(2+) tunnelling". Thus, continuous intra-ER Ca(2+) highways may be very important for the rapid replenishment of parts of the pool subjected to excessive stimulation (e.g. in small compartments within dendritic spines), the facilitated removal of localised Ca(2+) loads, and finally in conveying Ca(2+) signals from the site of entry towards the cell interior and nucleus.
Collapse
Affiliation(s)
- A Verkhratsky
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| |
Collapse
|
35
|
Higure Y, Nohmi M. Repetitive application of caffeine sensitizes caffeine-induced Ca2+ release in bullfrog sympathetic ganglion neurons. Brain Res 2002; 954:141-50. [PMID: 12393242 DOI: 10.1016/s0006-8993(02)03397-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytosolic free calcium concentration ([Ca(2+)](i)) was recorded from cultured bullfrog sympathetic ganglion cells loaded with the Ca(2+)-indicator Fura-2 or Fura-6F. Repetitive application of caffeine at a low concentration, which either failed to produce any [Ca(2+)](i) elevation or induced a small gradual increase in [Ca(2+)](i) at first challenge, produced a drastic increase in the amplitude of Ca(2+) release (caffeine response). The caffeine response eventually reached peak amplitude and then remained constant even if caffeine application were continued. This augmentation was maintained for up to 2 h, and was achieved not only by repetitive application but also by a long exposure of caffeine. However, this augmentation was neither achieved by repetitive administration of high K(+)-solution, nor caused by inhibition of phosphodiesterase by caffeine. The repetitive or sustained application of caffeine is suggested to increase the caffeine sensitivity of the calcium release channel to calcium, thus causing the potentiation of the caffeine response.
Collapse
Affiliation(s)
- Yoko Higure
- Central Laboratories for Medical Study and Research Equipment, Saga Medical School, Nabeshima, Saga 849-8501, Japan
| | | |
Collapse
|
36
|
Terentyev D, Viatchenko-Karpinski S, Valdivia HH, Escobar AL, Györke S. Luminal Ca2+ controls termination and refractory behavior of Ca2+-induced Ca2+ release in cardiac myocytes. Circ Res 2002; 91:414-20. [PMID: 12215490 DOI: 10.1161/01.res.0000032490.04207.bd] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite extensive research, the mechanisms responsible for the graded nature and early termination of Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) in cardiac muscle remain poorly understood. Suggested mechanisms include cytosolic Ca2+-dependent inactivation/adaptation and luminal Ca2+-dependent deactivation of the SR Ca2+ release channels/ryanodine receptors (RyRs). To explore the importance of cytosolic versus luminal Ca2+ regulatory mechanisms in controlling CICR, we assessed the impact of intra-SR Ca2+ buffering on global and local Ca2+ release properties of patch-clamped or permeabilized rat ventricular myocytes. Exogenous, low-affinity Ca2+ buffers (5 to 20 mmol/L ADA, citrate or maleate) were introduced into the SR by exposing the cells to "internal" solutions containing the buffers. Enhanced Ca2+ buffering in the SR was confirmed by an increase in the total SR Ca2+ content, as revealed by application of caffeine. At the whole-cell level, intra-SR [Ca2+] buffering dramatically increased the magnitude of Ca2+ transients induced by I(Ca) and deranged the smoothly graded I(Ca)-SR Ca2+ release relationship. The amplitude and time-to-peak of local Ca2+ release events, Ca2+ sparks, as well as the duration of local Ca2+ release fluxes underlying sparks were increased up to 2- to 3-fold. The exogenous Ca2+ buffers in the SR also reduced the frequency of repetitive activity observed at individual release sites in the presence of the RyR activator Imperatoxin A. We conclude that regulation of RyR openings by local intra-SR [Ca2+] is responsible for termination of CICR and for the subsequent restitution behavior of Ca2+ release sites in cardiac muscle.
Collapse
|
37
|
Koizumi S, Rosa P, Willars GB, Challiss RAJ, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 2002; 277:30315-24. [PMID: 12034721 DOI: 10.1074/jbc.m201132200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal calcium sensor-1 (NCS-1) or the originally identified homologue frequenin belongs to a superfamily of EF-hand calcium binding proteins. Although NCS-1 is thought to enhance synaptic efficacy or exocytosis mainly by activating ion channel function, the detailed molecular basis for the enhancement is still a matter of debate. Here, mechanisms underlying the NCS-1-evoked enhancement of exocytosis were investigated using PC12 cells overexpressing NCS-1. NCS-1 was found to have a broad distribution in the cells being partially distributed in the cytosol and associated to vesicles and tubular-like structures. Biochemical and immunohistochemical studies indicated that NCS-1 partially colocalized with the light synaptic vesicle marker synaptophysin. When stimulated with UTP or bradykinin, agonists to phospholipase C-linked receptors, NCS-1 enhanced the agonist-mediated elementary and global Ca2+ signaling and increased the levels of downstream signals of phosphatidylinositol 4-kinase. NCS-1 enhanced the UTP-evoked exocytosis but not the depolarization-evoked Ca2+ responses or exocytosis, suggesting that the enhancement by NCS-1 should involve phospholipase C-linked receptor-mediated signals rather than the Ca2+ channels or exocytotic machinery per se. Taken together, NCS-1 enhances phosphoinositide turnover, resulting in enhancement of Ca2+ signaling and exocytosis. This is a novel regulatory mechanism of exocytosis that might involve the activation of phosphatidylinositol 4-kinase.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Section of Neuropharmacology, Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lovett JL, Marchesini N, Moreno SNJ, Sibley LD. Toxoplasma gondii microneme secretion involves intracellular Ca(2+) release from inositol 1,4,5-triphosphate (IP(3))/ryanodine-sensitive stores. J Biol Chem 2002; 277:25870-6. [PMID: 12011085 DOI: 10.1074/jbc.m202553200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-mediated microneme secretion in Toxoplasma gondii is stimulated by contact with host cells, resulting in the discharge of adhesins that mediate attachment. The intracellular source of calcium and the signaling pathway(s) triggering release have not been characterized, prompting our search for mediators of calcium signaling and microneme secretion in T. gondii. We identified two stimuli of microneme secretion, ryanodine and caffeine, which enhanced release of calcium from parasite intracellular stores. Ethanol, a previously characterized trigger of microneme secretion, stimulated an increase in parasite inositol 1,4,5-triphosphate, implying that this second messenger may mediate intracellular calcium release. Consistent with this observation, xestospongin C, an inositol 1,4,5-triphosphate receptor antagonist, inhibited microneme secretion and blocked parasite attachment and invasion of host cells. Collectively, these results suggest that T. gondii possess an intracellular calcium release channel with properties of the inositol 1,4,5-triphosphate/ryanodine receptor superfamily. Intracellular calcium channels, previously studied almost exclusively in multicellular animals, appear to also be critical to the control of parasite calcium during the initial steps of host cell entry.
Collapse
Affiliation(s)
- Jennie L Lovett
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
39
|
Choisy S, Divet A, Huchet-Cadiou C, Léoty C. Sarcoplasmic reticulum Ca(2+) content affects 4-CmC and caffeine contractures of rat skinned skeletal muscle fibers. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:661-9. [PMID: 11846956 DOI: 10.2170/jjphysiol.51.661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study investigated whether the sarcoplasmic reticulum Ca(2+) content of rat skeletal muscle fibers affected contractile responses obtained by an application of 4-chloro-m-cresol (4-CmC) and caffeine. Contractures were elicited on saponin-skinned fibers under different Ca(2+) loading conditions. The amplitude of 4-CmC and caffeine contractures of fast-twitch muscle fibers (edl, extensor digitorum longus) differed between the different loading conditions, and this is associated with a greater change in sensitivity to 4-CmC. When the sarcoplasmic reticulum was loaded with a low Ca(2+) concentration for a short period, the 4-CmC concentration providing half-maximal response was tenfold higher than with a larger sarcoplasmic reticulum Ca(2+) loading for a longer period, whereas for caffeine this concentration was only twofold higher in the same conditions. These findings indicate that 4-CmC contractile responses of edl muscle fibers are more dependent on luminal Ca(2+) activity than those of caffeine are. Thus 4-CmC would appear to be of greater interest than caffeine for the study of muscle contractile responses where variations in intracellular Ca(2+) activity exist.
Collapse
Affiliation(s)
- S Choisy
- Laboratoire de Physiologie Générale, CNRS UMR 6018, Faculté des Sciences et des Techniques de Nantes, 2 rue de la Houssinière, 44322 Nantes, France. stchoisyyahoo.com
| | | | | | | |
Collapse
|
40
|
Shin DM, Luo X, Wilkie TM, Miller LJ, Peck AB, Humphreys-Beher MG, Muallem S. Polarized expression of G protein-coupled receptors and an all-or-none discharge of Ca2+ pools at initiation sites of [Ca2+]i waves in polarized exocrine cells. J Biol Chem 2001; 276:44146-56. [PMID: 11553617 DOI: 10.1074/jbc.m105203200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present work we examined localization and behavior of G protein-coupled receptors (GPCR) in polarized exocrine cells to address the questions of how luminal to basal Ca(2+) waves can be generated in a receptor-specific manner and whether quantal Ca(2+) release reflects partial release from a continuous pool or an all-or-none release from a compartmentalized pool. Immunolocalization revealed that expression of GPCRs in polarized cells is not uniform, with high levels of GPCR expression at or near the tight junctions. Measurement of phospholipase Cbeta activity and receptor-dependent recruitment and trapping of the box domain of RGS4 in GPCRs complexes indicated autonomous functioning of G(q)-coupled receptors in acinar cells. These findings explain the generation of receptor-specific Ca(2+) waves and why the waves are always initiated at the apical pole. The initiation site of Ca(2+) wave at the apical pole and the pattern of wave propagation were independent of inositol 1,4,5-trisphosphate concentration. Furthermore, a second Ca(2+) wave with the same initiation site and pattern was launched by inhibition of sarco/endoplasmic reticulum Ca(2+)-ATPase pumps of cells continuously stimulated with sub-maximal agonist concentration. By contrast, rapid sequential application of sub-maximal and maximal agonist concentrations to the same cell triggered Ca(2+) waves with different initiation sites. These findings indicate that signaling specificity in pancreatic acinar cells is aided by polarized expression and autonomous functioning of GPCRs and that quantal Ca(2+) release is not due to a partial Ca(2+) release from a continuous pool, but rather, it is due to an all-or-none Ca(2+) release from a compartmentalized Ca(2+) pool.
Collapse
Affiliation(s)
- D M Shin
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 2001; 65:309-38. [PMID: 11473791 DOI: 10.1016/s0301-0082(01)00004-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Meldolesi
- DIBIT, Scientific Institute S. Raffaele, Vita-Salute University, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
42
|
Kawanishi T, Kiuchi T, Asoh H, Shibayama R, Kawai H, Ohata H, Momose K, Hayakawa T. Effect of tributyltin chloride on the release of calcium ion from intracellular calcium stores in rat hepatocytes. Biochem Pharmacol 2001; 62:863-72. [PMID: 11543721 DOI: 10.1016/s0006-2952(01)00740-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of tri-n-butyltin chloride (TBT), an environmental pollutant, on the release of Ca(2+) from intracellular stores were investigated in isolated rat hepatocytes. Isolated hepatocytes permeabilized with digitonin were suspended in solution, and the concentration of extracellular Ca(2+) was measured, using a fluorescent Ca(2+) dye, fura-2. In the solution containing permeabilized hepatocytes that had been preincubated with 4.0 microM TBT for 30 min, the extracellular Ca(2+) concentration was high, but the inositol 1,4,5-trisphosphate (InsP(3))-induced increase in Ca(2+) concentration was suppressed, suggesting that the extracellular release of Ca(2+) in response to TBT treatment was from intracellular stores. Images of the Ca(2+) concentration in the intracellular stores of primary cultured hepatocytes loaded with fura-2 were obtained after digitonin-permeabilization, using digitalized fluorescence microscopy. The permeabilized hepatocytes that had been preincubated with 4.0 microM TBT for 30 min had a very low fura-2 fluorescence ratio (340/380 nm), suggesting that stored Ca(2+) was released. When the hepatocytes were treated with 4.0 microM TBT after digitonin-permeabilization, the decrease in the fura-2 fluorescence ratio was very small. However, when the permeabilized hepatocytes were incubated with 4.0 microM TBT and 2.0 microM NADPH, the decrease was enhanced, raising the possibility that TBT might be metabolized to the active form(s), thus releasing Ca(2+) from intracellular stores. When the hepatocytes were preincubated with 0.1 microM TBT for 30 min and then were permeabilized, the fura-2 fluorescence ratio was almost the same as that in the control permeabilized hepatocytes. However, the InsP(3)-induced decrease in the fluorescence ratio was suppressed significantly in the permeabilized hepatocytes. These results suggest that TBT released Ca(2+) from the intracellular stores at high concentrations, and suppressed the InsP(3)-induced Ca(2+) release at non-toxic low concentrations. It is probable that the latter effect was responsible for the previously reported suppression of Ca(2+) response induced by hormonal stimulations (Kawanish et al., Toxicol Appl Pharmacol 1999;155:54-61).
Collapse
Affiliation(s)
- T Kawanishi
- Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Messutat S, Heine M, Wicher D. Calcium-induced calcium release in neurosecretory insect neurons: fast and slow responses. Cell Calcium 2001; 30:199-211. [PMID: 11508999 DOI: 10.1054/ceca.2001.0227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.
Collapse
Affiliation(s)
- S Messutat
- Sächsische Akademie der Wissenschaften zu Leipzig, Erbertstrasse 1, 07743 Jena, Germany
| | | | | |
Collapse
|
44
|
Abstract
In many neurons, Ca(2+) signaling depends on efflux of Ca(2+) from intracellular stores into the cytoplasm via caffeine-sensitive ryanodine receptors (RyRs) of the endoplasmic reticulum. We have used high-speed confocal microscopy to image depolarization- and caffeine-evoked increases in cytoplasmic Ca(2+) levels in individual cultured frog sympathetic neurons. Although caffeine-evoked Ca(2+) wave fronts propagated throughout the cell, in most cells the initial Ca(2+) release was from one or more discrete sites that were several micrometers wide and located at the cell edge, even in Ca(2+)-free external solution. During cell-wide cytoplasmic [Ca(2+)] oscillations triggered by continual caffeine application, the initial Ca(2+) release that began each Ca(2+) peak was from the same subcellular site or sites. The Ca(2+) wave fronts propagated with constant amplitude; the spread was mostly via calcium-induced calcium release. Propagation was faster around the cell periphery than radially inward. Local Ca(2+) levels within the cell body could increase or decrease independently of neighboring regions, suggesting independent action of spatially separate Ca(2+) stores. Confocal imaging of fluorescent analogs of ryanodine and thapsigargin, and of MitoTracker, showed potential structural correlates to the patterns of Ca(2+) release and propagation. High densities of RyRs were found in a ring around the cell periphery, mitochondria in a broader ring just inside the RyRs, and sarco-endoplasmic reticulum Ca(2+) ATPase pumps in hot spots at the cell edge. Discrete sites at the cell edge primed to release Ca(2+) from intracellular stores might preferentially convert Ca(2+) influx through a local area of plasma membrane into a cell-wide Ca(2+) increase.
Collapse
|
45
|
Emptage NJ, Reid CA, Fine A. Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release. Neuron 2001; 29:197-208. [PMID: 11182091 DOI: 10.1016/s0896-6273(01)00190-8] [Citation(s) in RCA: 422] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Evoked transmitter release depends upon calcium influx into synaptic boutons, but mechanisms regulating bouton calcium levels and spontaneous transmitter release are obscure. To understand these processes better, we monitored calcium transients in axons and presynaptic terminals of pyramidal neurons in hippocampal slice cultures. Action potentials reliably evoke calcium transients in axons and boutons. Calcium-induced calcium release (CICR) from internal stores contributes to the transients in boutons and to paired-pulse facilitation of EPSPs. Store depletion activates store-operated calcium channels, influencing the frequency of spontaneous transmitter release. Boutons display spontaneous Ca2+ transients; blocking CICR reduces the frequency of these transients and of spontaneous miniature synaptic events. Thus, spontaneous transmitter release is largely calcium mediated, driven by Ca2+ release from internal stores. Bouton store release is important for short-term synaptic plasticity and may also contribute to long-term plasticity.
Collapse
Affiliation(s)
- N J Emptage
- Division of Neurophysiology, National Institute for Medical Research, NW7 1AA, London, United Kingdom
| | | | | |
Collapse
|
46
|
Affiliation(s)
- G D Lamb
- Department of Zoology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | | | | |
Collapse
|
47
|
Taniguchi N, Taniura H, Niinobe M, Takayama C, Tominaga-Yoshino K, Ogura A, Yoshikawa K. The postmitotic growth suppressor necdin interacts with a calcium-binding protein (NEFA) in neuronal cytoplasm. J Biol Chem 2000; 275:31674-81. [PMID: 10915798 DOI: 10.1074/jbc.m005103200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Necdin, a growth suppressor expressed predominantly in postmitotic neurons, interacts with viral oncoproteins and cellular transcription factors E2F1 and p53. In search of other cellular targets of necdin, we screened cDNA libraries from neurally differentiated murine embryonal carcinoma P19 cells and adult rat brain by the yeast two-hybrid assay. We isolated cDNAs encoding partial sequences of mouse NEFA and rat nucleobindin (CALNUC), which are Ca(2+)-binding proteins possessing similar domain structures. Necdin interacted with NEFA via a domain encompassing two EF hand motifs, which had Ca(2+) binding activity as determined by (45)Ca(2+) overlay. NEFA was widely distributed in mouse organs, whereas necdin was expressed predominantly in the brain and skeletal muscle. In mouse brain in vivo, NEFA was localized in neuronal perikarya and dendrites. By immunoelectron microscopy, NEFA was localized to the cisternae of the endoplasmic reticulum and nuclear envelope in brain neurons. NEFA-green fluorescent protein (GFP) fusion protein expressed in neuroblastoma N1E-115 cells was retained in the cytoplasm and partly secreted into the culture medium. Necdin enhanced the cytoplasmic retention of NEFA-GFP and potentiated the effect of NEFA-GFP on caffeine-evoked elevation of cytosolic Ca(2+) levels. Thus, necdin and NEFA might be involved in Ca(2+) homeostasis in neuronal cytoplasm.
Collapse
Affiliation(s)
- N Taniguchi
- Division of Regulation of Macromolecular Functions, Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Callamaras N, Parker I. Phasic characteristic of elementary Ca(2+) release sites underlies quantal responses to IP(3). EMBO J 2000; 19:3608-17. [PMID: 10899115 PMCID: PMC313983 DOI: 10.1093/emboj/19.14.3608] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ca(2+) liberation by inositol 1,4,5-trisphosphate (IP(3)) is 'quantal', in that low [IP(3)] causes only partial Ca(2+) release, but further increasing [IP(3)] evokes more release. This characteristic allows cells to generate graded Ca(2+) signals, but is unexpected, given the regenerative nature of Ca(2+)-induced Ca(2+) release through IP(3) receptors. Two models have been proposed to resolve this paradox: (i) all-or-none Ca(2+) release from heterogeneous stores that empty at varying [IP(3)]; and (ii) phasic liberation from homogeneously sensitive stores. To discriminate between these hypotheses, we imaged subcellular Ca(2+) puffs evoked by IP(3) in Xenopus oocytes where release sites were functionally uncoupled using EGTA. Puffs were little changed by 300 microM intracellular EGTA, but sites operated autonomously and did not propagate waves. Photoreleased IP(3) generated flurries of puffs-different to the prolonged Ca(2+) elevation following waves in control cells-and individual sites responded repeatedly to successive increments of [IP(3)]. These data support the second hypothesis while refuting the first, and suggest that local Ca(2+) signals exhibit rapid adaptation, different to the slower inhibition following global Ca(2+) waves.
Collapse
Affiliation(s)
- N Callamaras
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California Irvine, CA 92697-4550, USA
| | | |
Collapse
|
49
|
Ward SM, Ordog T, Koh SD, Baker SA, Jun JY, Amberg G, Monaghan K, Sanders KM. Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J Physiol 2000; 525 Pt 2:355-61. [PMID: 10835039 PMCID: PMC2269944 DOI: 10.1111/j.1469-7793.2000.t01-1-00355.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pacemaker cells, known as interstitial cells of Cajal (ICC), generate electrical rhythmicity in the gastrointestinal tract. Pacemaker currents in ICC result from the activation of a voltage-independent, non-selective cation conductance, but the timing mechanism responsible for periodic activation of the pacemaker current is unknown. Previous studies suggest that pacemaking in ICC is dependent upon metabolic activity 1y1yand1 Ca2+ release from intracellular stores. We tested the hypothesis that mitochondrial Ca2+ handling may underlie the dependence of gastrointestinal pacemaking on oxidative metabolism. Pacemaker currents occurred spontaneously in cultured ICC and were associated with mitochondrial Ca2+ transients. Inhibition of the electrochemical gradient across the inner mitochondrial membrane blocked Ca2+ uptake and pacemaker currents in cultured ICC and blocked slow wave activity in intact gastrointestinal muscles from mouse, dog and guinea-pig. Pacemaker currents and rhythmic mitochondrial Ca2+ uptake in ICC were also blocked by inhibitors of IP3-dependent release of Ca2+ from the endoplasmic reticulum and by inhibitors of endoplasmic reticulum Ca2+ reuptake. Our data suggest that integrated Ca2+ handling by endoplasmic reticulum and mitochondria is a prerequisite of electrical pacemaking in the gastrointestinal tract.
Collapse
Affiliation(s)
- S M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|