1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Xu K, Zhao S, Ren Y, Zhong Q, Feng J, Tu D, Wu W, Wang J, Chen J, Xie P. Elevated SCN11A concentrations associated with lower serum lipid levels in patients with major depressive disorder. Transl Psychiatry 2024; 14:202. [PMID: 38734669 PMCID: PMC11088647 DOI: 10.1038/s41398-024-02916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The pathogenesis of major depressive disorder (MDD) involves lipid metabolism. Our earlier research also revealed that MDD patients had much lower total cholesterol (TC) concentrations than healthy controls (HCs). However, it is still unclear why TC decreased in MDD. Here, based on the Ingenuity Knowledge Base's ingenuity pathway analysis, we found that sodium voltage-gated channel alpha subunit 11A (SCN11A) might serve as a link between low lipid levels and MDD. We analyzed the TC levels and used ELISA kits to measure the levels of SCN11A in the serum from 139 MDD patients, and 65 HCs to confirm this theory and explore the potential involvement of SCN11A in MDD. The findings revealed that TC levels were considerably lower and SCN11A levels were remarkably increased in MDD patients than those in HCs, while they were significantly reversed in drug-treatment MDD patients than in drug-naïve MDD patients. There was no significant difference in SCN11A levels among MDD patients who used single or multiple antidepressants, and selective serotonin reuptake inhibitors or other antidepressants. Pearson correlation analysis showed that the levels of TC and SCN11A were linked with the Hamilton Depression Rating Scales score. A substantial association was also found between TC and SCN11A. Moreover, a discriminative model made up of SCN11A was discovered, which produced an area under a curve of 0.9571 in the training set and 0.9357 in the testing set. Taken together, our findings indicated that SCN11A may serve as a link between low lipid levels and MDD, and showed promise as a candidate biomarker for MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Zhao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
| | - Yi Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wentao Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jiaolin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Tada H, Kaneko H, Suzuki Y, Okada A, Takeda N, Fujiu K, Morita H, Ako J, Node K, Takeji Y, Takamura M, Yasunaga H, Komuro I. Association between remnant cholesterol and incident atherosclerotic cardiovascular disease, heart failure, and atrial fibrillation. J Clin Lipidol 2024; 18:3-10. [PMID: 38061922 DOI: 10.1016/j.jacl.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 03/23/2024]
Abstract
BACKGROUND It remains unclear if remnant cholesterol is associated with atherosclerotic cardiovascular disease (ASCVD) (myocardial infarction, angina pectoris and stroke), heart failure (HF), and atrial fibrillation (AF) under primary prevention settings. OBJECTIVE We aimed to clarify this issue among a general population without a history of ASCVD, HF or AF. METHODS Analyses were conducted with a nationwide health claims database collected in the JMDC Claims Database between 2005 and 2022 (n = 1,313,722; median age, 42 years; 54.6% men). We assessed the associations between remnant cholesterol calculated as total cholesterol minus HDL cholesterol minus LDL cholesterol and composite CVD outcomes, including, ASCVD, HF, and AF using Cox proportional hazard model, dividing the individuals into tertiles of remnant cholesterol (T1-T3). RESULTS The mean follow-up duration was 3.0 years. In total, 43,755 events were recorded. Remnant cholesterol was significantly associated with composite CVD outcomes after adjustments (T3 vs T1: hazard ratio [HR]; 1.07, 95% confidence interval [CI]: 1.04-1.10, p-trend<0.001). Remnant cholesterol was associated with myocardial infarction (T3 vs T1:HR: 1.20, 95% CI: 1.06-1.34, p-trend=0.002), angina pectoris (T3 vs T1:HR: 1.09, 95% CI: 1.05-1.14, p-trend<0.001), stroke (T3 vs T1:HR: 1.08, 95% CI: 1.02-1.14, p-trend=0.007), and HF (T3 vs T1:HR: 1.08, 95% CI: 1.04-1.12, p-trend<0.001), while we found a marginal inverse association between remnant cholesterol and AF (T3 vs T1:HR: 0.92, 95% CI: 0.86-1.00, p-trend=0.054). CONCLUSION Remnant cholesterol was positively associated with ASCVD and HF, while we found a marginal inverse association between remnant cholesterol and AF.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Takeji, Takamura)
| | - Hidehiro Kaneko
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro); The Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Fujiu).
| | - Yuta Suzuki
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro); Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health, Saitama, Japan (Dr Suzuki)
| | - Akira Okada
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (Dr Okada)
| | - Norifumi Takeda
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro)
| | - Katsuhito Fujiu
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro); The Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Fujiu)
| | - Hiroyuki Morita
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro)
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, Kanagawa, Japan (Dr Ako)
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan (Dr Node)
| | - Yasuaki Takeji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Takeji, Takamura)
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan (Drs Tada, Takeji, Takamura)
| | - Hideo Yasunaga
- The Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan (Dr Yasunaga)
| | - Issei Komuro
- The Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (Drs Kaneko, Suzuki, Takeda, Fujiu, Morita, Komuro); International University of Health and Welfare, Tokyo, Japan (Dr Komuro)
| |
Collapse
|
4
|
Markandeya YS, Gregorich ZR, Feng L, Ramchandran V, O' Hara T, Vaidyanathan R, Mansfield C, Keefe AM, Beglinger CJ, Best JM, Kalscheur MM, Lea MR, Hacker TA, Gorelik J, Trayanova NA, Eckhardt LL, Makielski JC, Balijepalli RC, Kamp TJ. Caveolin-3 and Caveolae regulate ventricular repolarization. J Mol Cell Cardiol 2023; 177:38-49. [PMID: 36842733 PMCID: PMC10065933 DOI: 10.1016/j.yjmcc.2023.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
RATIONALE Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.
Collapse
Affiliation(s)
- Yogananda S Markandeya
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA; National Institute of Mental Health and Neuroscience, Bengaluru, India
| | - Zachery R Gregorich
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Li Feng
- Department of Cardiology, Beijing Anzhen Hospital, Captial Medical University, National Clinical Research Center for Cardiovascular Diseases, Beijing, China
| | - Vignesh Ramchandran
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas O' Hara
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ravi Vaidyanathan
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Catherine Mansfield
- National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Alexis M Keefe
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Carl J Beglinger
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Jabe M Best
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Matthew M Kalscheur
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Martin R Lea
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Timothy A Hacker
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, ICTEM, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Jonathan C Makielski
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Ravi C Balijepalli
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA
| | - Timothy J Kamp
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin Madison, WI, USA.
| |
Collapse
|
5
|
Dickson EJ. Role of Lysosomal Cholesterol in Regulating PI(4,5)P 2-Dependent Ion Channel Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:193-215. [PMID: 36988882 DOI: 10.1007/978-3-031-21547-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Lysosomes are central regulators of cellular growth and signaling. Once considered the acidic garbage can of the cell, their ever-expanding repertoire of functions include the regulation of cell growth, gene regulation, metabolic signaling, cell migration, and cell death. In this chapter, we detail how another of the lysosome's crucial roles, cholesterol transport, plays a vital role in the control of ion channel function and neuronal excitability through its ability to influence the abundance of the plasma membrane signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This chapter will introduce the biosynthetic pathways of cholesterol and PI(4,5)P2, discuss the molecular mechanisms through which each lipid distinctly regulates ion channels, and consider the interdependence of these lipids in the control of ion channel function.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
6
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
7
|
A Direct Interaction between Cyclodextrins and TASK Channels Decreases the Leak Current in Cerebellar Granule Neurons. BIOLOGY 2022; 11:biology11081097. [PMID: 35892953 PMCID: PMC9331813 DOI: 10.3390/biology11081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Cyclodextrins are cyclic oligosaccharides used to deplete cholesterol from cellular membranes. The effects of methyl-β-cyclodextrin (MβCD) on cellular functions originate principally from reductions in cholesterol levels. In this study, using immunocytochemistry, heterologous expression of K2P channels, and cholesterol-depleting maneuvers, we provide evidence of expression in cultured rat cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels and their association with lipid rafts using the specific lipids raft markers. In addition, we show a direct blocking with MβCD of TASK-1 and TASK-3 channels as well as for the covalently concatenated heterodimer TASK-1/TASK-3. Abstract Two pore domain potassium channels (K2P) are strongly expressed in the nervous system (CNS), where they play a central role in excitability. These channels give rise to background K+ currents, also known as IKSO (standing-outward potassium current). We detected the expression in primary cultured cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels by immunocytochemistry and their association with lipid rafts using the specific lipids raft markers flotillin-2 and caveolin-1. At the functional level, methyl-β-cyclodextrin (MβCD, 5 mM) reduced IKSO currents by ~40% in CGN cells. To dissect out this effect, we heterologously expressed the human TWIK-1, TASK-1, TASK-3, and TRESK channels in HEK-293 cells. MβCD directly blocked TASK-1 and TASK-3 channels and the covalently concatenated heterodimer TASK-1/TASK-3 currents. Conversely, MβCD did not affect TWIK-1- and TRESK-mediated K+ currents. On the other hand, the cholesterol-depleting agent filipin III did not affect TASK-1/TASK-3 channels. Together, the results suggest that neuronal background K+ channels are associated to lipid raft environments whilst the functional activity is independent of the cholesterol membrane organization.
Collapse
|
8
|
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, Cardozo T, Delmar M, Shyng SL, Coetzee WA. Subcellular trafficking and endocytic recycling of K ATP channels. Am J Physiol Cell Physiol 2022; 322:C1230-C1247. [PMID: 35508187 PMCID: PMC9169827 DOI: 10.1152/ajpcell.00099.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022]
Abstract
Sarcolemmal/plasmalemmal ATP-sensitive K+ (KATP) channels have key roles in many cell types and tissues. Hundreds of studies have described how the KATP channel activity and ATP sensitivity can be regulated by changes in the cellular metabolic state, by receptor signaling pathways and by pharmacological interventions. These alterations in channel activity directly translate to alterations in cell or tissue function, that can range from modulating secretory responses, such as insulin release from pancreatic β-cells or neurotransmitters from neurons, to modulating contractile behavior of smooth muscle or cardiac cells to elicit alterations in blood flow or cardiac contractility. It is increasingly becoming apparent, however, that KATP channels are regulated beyond changes in their activity. Recent studies have highlighted that KATP channel surface expression is a tightly regulated process with similar implications in health and disease. The surface expression of KATP channels is finely balanced by several trafficking steps including synthesis, assembly, anterograde trafficking, membrane anchoring, endocytosis, endocytic recycling, and degradation. This review aims to summarize the physiological and pathophysiological implications of KATP channel trafficking and mechanisms that regulate KATP channel trafficking. A better understanding of this topic has potential to identify new approaches to develop therapeutically useful drugs to treat KATP channel-related diseases.
Collapse
Affiliation(s)
- Hua-Qian Yang
- Cyrus Tang Hematology Center, Soochow University, Suzhou, People's Republic of China
| | | | - Assmaa ElSheikh
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
- Department of Medical Biochemistry, Tanta University, Tanta, Egypt
| | - Ivan Gando
- Department of Pathology, NYU School of Medicine, New York, New York
| | | | - Natalie Samper
- Department of Pathology, NYU School of Medicine, New York, New York
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - Mario Delmar
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
- Department of Medicine, NYU School of Medicine, New York, New York
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon
| | - William A Coetzee
- Department of Pathology, NYU School of Medicine, New York, New York
- Department of Neuroscience & Physiology, NYU School of Medicine, New York, New York
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
9
|
Li Y, Duan H, Yi J, Wang G, Cheng W, Feng L, Liu J. Kv4.2 phosphorylation by PKA drives Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization. Am J Physiol Cell Physiol 2022; 323:C190-C201. [PMID: 35508186 DOI: 10.1152/ajpcell.00307.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathetic regulation of the Kv4.2 transient outward potassium current is critical for the acute electrical and contractile response of the myocardium under physiological and pathological conditions. Previous studies have suggested that KChIP2, the key auxiliary subunit of Kv4 channels, is required for the sympathetic regulation of Kv4.2 current densities. Of interest, Kv4.2 and KChIP2, and key components mediating acute sympathetic signaling transduction are present in lipid rafts, which are profoundly involved in regulation of Ito densities in rat ventricular myocytes. However, little is known about the mechanisms of Kv4.2-raft association and its connection with acute sympathetic regulation. With the aid of high-resolution fluorescent microscope, we demonstrate that KChIP2 assists Kv4.2 localization in lipid rafts in HEK293 cells. Moreover, PKA-mediated Kv4.2 phosphorylation, the downstream signaling event of acute sympathetic stimulation, induced dissociation between Kv4.2 and KChIP2, resulting in Kv4.2 shifting out of lipid rafts in KChIP2-expressed HEK293.The mutation that mimics Kv4.2 phosphorylation by PKA similarly disrupted Kv4.2 interaction with KChIP2 and also decreased the surface stability of Kv4.2. The attenuated Kv4.2-KChIP2 interaction was also observed in native neonatal rat ventricular myocytes (NRVMs) upon acute adrenergic stimulation with phenylephrine (PE). Furthermore, PE accelerated internalization of Kv4.2 in native NRVMs, but disruption of lipid rafts dampens this reaction. In conclusion, KChIP2 contributes to targeting Kv4.2 to lipid rafts. Acute adrenergic stimulation induces Kv4.2 - KChIP2 dissociation, leading to Kv4.2 out of lipid rafts and internalization, reinforcing the critical role of Kv4.2-lipid raft association in the essential physiological response of Ito to acute sympathetic regulation.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Duan
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jing Yi
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Gang Wang
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Wanwen Cheng
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong, China
| | - Jie Liu
- School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Igarashi Y, Nochioka K, Sakata Y, Tamai T, Ohkouchi S, Irokawa T, Ogawa H, Hayashi H, Fujihashi T, Yamanaka S, Shiroto T, Miyata S, Hata J, Yamada S, Ninomiya T, Yasuda S, Kurosawa H, Shimokawa H. Risk prediction for new-onset atrial fibrillation using the Minnesota code electrocardiography classification system. IJC HEART & VASCULATURE 2021; 34:100762. [PMID: 33889712 PMCID: PMC8050367 DOI: 10.1016/j.ijcha.2021.100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 11/28/2022]
Abstract
Background Few risk models are available to predict future onset of atrial fibrillation (AF) in workers. We aimed to develop risk prediction models for new-onset AF, using annual health checkup (HC) data with electrocardiogram findings. Methods and Results We retrospectively included 56,288 factory or office workers (mean age = 51.5 years, 33.0% women) who underwent a HC at a medical center and fulfilled the following criteria; age ≥ 40 years, no history of AF, and greater than 1 annual follow-up HC in 2013–2016. Using Cox models with the Akaike information criterion, we developed and compared prediction models for new-onset AF with and without the Minnesota code information. We externally validated the discrimination accuracy of the models in a general Japanese population cohort, the Hisayama cohort. During the median 3.0-year follow-up, 209 (0.37%) workers developed AF. Age, sex, waist circumference, blood pressure, LDL cholesterol, and γ-GTP were associated with new-onset of AF. Using the Minnesota code information, the AUC significantly improved from 0.82 to 0.84 in the derivation cohort and numerically improved from 0.78 to 0.79 in the validation cohort, and from 0.77 to 0.79 in the Hisayama cohort. The NRI and IDI significantly improved in all and male subjects in both the derivation and validation cohorts, and in female subjects in both the validation and the Hisayama cohorts. Conclusions We developed useful risk model with Minnesota code information for predicting new-onset AF from large worker population validated in the original and external cohorts, although study interpretation is limited by small improvement of AUC.
Collapse
Affiliation(s)
- Yu Igarashi
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kotaro Nochioka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tokiwa Tamai
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinya Ohkouchi
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshiya Irokawa
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiromasa Ogawa
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideka Hayashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takahide Fujihashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinsuke Yamanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Department of Evidence-based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Hata
- Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Shogo Yamada
- Morinomiyako Occupational Health Center, Sendai, Japan
| | | | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hajime Kurosawa
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Evidence-based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Song MY, Hwang JY, Bae EJ, Kim S, Kang HM, Kim YJ, Park C, Park KS. Tyrosine Phosphorylation of the K v2.1 Channel Contributes to Injury in Brain Ischemia. Int J Mol Sci 2020; 21:ijms21249538. [PMID: 33333928 PMCID: PMC7765428 DOI: 10.3390/ijms21249538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/23/2022] Open
Abstract
In brain ischemia, oxidative stress induces neuronal apoptosis, which is mediated by increased activity of the voltage-gated K+ channel Kv2.1 and results in an efflux of intracellular K+. The molecular mechanisms underlying the regulation of Kv2.1 and its activity during brain ischemia are not yet fully understood. Here this study provides evidence that oxidant-induced apoptosis resulting from brain ischemia promotes rapid tyrosine phosphorylation of Kv2.1. When the tyrosine phosphorylation sites Y124, Y686, and Y810 on the Kv2.1 channel are mutated to non-phosphorylatable residues, PARP-1 cleavage levels decrease, indicating suppression of neuronal cell death. The tyrosine residue Y810 on Kv2.1 was a major phosphorylation site. In fact, cells mutated Y810 were more viable in our study than were wild-type cells, suggesting an important role for this site during ischemic neuronal injury. In an animal model, tyrosine phosphorylation of Kv2.1 increased after ischemic brain injury, with an observable sustained increase for at least 2 h after reperfusion. These results demonstrate that tyrosine phosphorylation of the Kv2.1 channel in the brain may play a critical role in regulating neuronal ischemia and is therefore a potential therapeutic target in patients with brain ischemia.
Collapse
Affiliation(s)
- Min-Young Song
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Ji Yeon Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Eun Ji Bae
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Saesbyeol Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
| | - Hye-Min Kang
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Yong Jun Kim
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Chan Park
- Department of Anatomy & Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.-M.K.); (C.P.)
| | - Kang-Sik Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea; (M.-Y.S.); (J.Y.H.); (E.J.B.); (S.K.)
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0292; Fax: +82-2-964-2195
| |
Collapse
|
12
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
13
|
Callahan KM, Mondou B, Sasseville L, Schwartz JL, D'Avanzo N. The influence of membrane bilayer thickness on KcsA channel activity. Channels (Austin) 2020; 13:424-439. [PMID: 31608774 PMCID: PMC6802934 DOI: 10.1080/19336950.2019.1676367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Atomic resolution structures have provided significant insight into the gating and permeation mechanisms of various ion channels, including potassium channels. However, ion channels may also be regulated by numerous factors, including the physiochemical properties of the membrane in which they are embedded. For example, the matching of the bilayer's hydrophobic region to the hydrophobic external surface of the ion channel is thought to minimize the energetic penalty needed to solvate hydrophobic residues or exposed lipid tails. To understand the molecular basis of such regulation by hydrophobic matching requires examining channels in the presence of the lipid membrane. Here we examine the role of hydrophobic matching in regulating the activity of the model potassium channel, KcsA. 86Rb+ influx assays and single-channel recordings indicate that the non-inactivating E71A KcsA channel is most active in thin bilayers (<diC18:1PC). Bilayer thickness affects the open probability of KcsA and not its unitary conductance. Molecular dynamics simulations indicate that the bilayer can sufficiently modify its dimensions to accommodate KcsA channels without major perturbations in the protein helical packing within the nanosecond timescale. Based on experimental results and MD simulations, we present a model in which bilayer thickness influences the stability of the open and closed conformations of the intracellular gate of KcsA, with minimal impact on the stability of the selectivity filter of the non-inactivating mutant, E71A.
Collapse
Affiliation(s)
- Karen M Callahan
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada
| | - Benoit Mondou
- Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada
| | - Louis Sasseville
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada
| | - Jean-Louis Schwartz
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada.,Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada.,Centre SÈVE, Université de Sherbrooke , Sherbrooke , Canada
| | - Nazzareno D'Avanzo
- From the Département de pharmacologie et physiologie, Faculté de médecine, Université de Montréal , Montréal , Canada.,Département de biochimie et médecine moléculaire, Université de Montréal , Montréal , Canada
| |
Collapse
|
14
|
Meza U, Delgado-Ramírez M, Romero-Méndez C, Sánchez-Armass S, Rodríguez-Menchaca AA. Functional marriage in plasma membrane: Critical cholesterol level-optimal protein activity. Br J Pharmacol 2020; 177:2456-2465. [PMID: 32060896 DOI: 10.1111/bph.15027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.
Collapse
Affiliation(s)
- Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
15
|
Farhat E, Turenne ED, Choi K, Weber JM. Hypoxia-induced remodelling of goldfish membranes. Comp Biochem Physiol B Biochem Mol Biol 2019; 237:110326. [PMID: 31465877 DOI: 10.1016/j.cbpb.2019.110326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Hypoxia-tolerant animals use metabolic suppression as an essential strategy to survive low oxygen. Ectotherms can alter membrane lipid composition in response to changes in environmental temperature, but it is currently unknown whether chronic hypoxia can also elicit membrane restructuring. The goal of this study was to investigate a possible physiological link between membrane remodelling and metabolic suppression in goldfish exposed to prolonged hypoxia (4 weeks at 10% air saturation). We have tested the hypothesis that chronic hypoxia would modulate membrane lipid composition in ways that are consistent with known mechanisms of ion pump inhibition. Because homeoviscous membrane restructuring could interfere with the response to hypoxia, measurements were made at 2 temperatures. Results show that hypoxic goldfish suppress metabolic rate by 74% (at 13 °C) and 63% (at 20 °C). This study is the first to reveal that cold-acclimated animals undergo extensive, tissue-specific restructuring of membrane lipids as they reach minimal metabolic rates. However, hypoxia does not affect membrane composition in fish acclimated to 20 °C. The strong membrane response of cold-acclimated fish involves increases in cholesterol abundance (in white muscle and gills) and in fatty acid saturation, mainly caused by a reduction in %22:6 (docosahexaenoic acid in gills and liver). Major ion pumps like Na+/K+-ATPase are known to be inhibited by cholesterol and activated by 22:6. Because ion pumping by membrane-bound ATPases accounts for a large fraction of basal cellular energy use, we propose that the membrane responses reported here could be a novel mechanism to promote metabolic suppression in cold-acclimated animals.
Collapse
Affiliation(s)
- Elie Farhat
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric D Turenne
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin Choi
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
16
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
17
|
Zakany F, Pap P, Papp F, Kovacs T, Nagy P, Peter M, Szente L, Panyi G, Varga Z. Determining the target of membrane sterols on voltage-gated potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:312-325. [PMID: 30553843 DOI: 10.1016/j.bbalip.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Cholesterol, an essential lipid component of cellular plasma membranes, regulates fluidity, mechanical integrity, raft structure and may specifically interact with membrane proteins. Numerous effects on ion channels by cholesterol, including changes in current amplitude, voltage dependence and gating kinetics, have been reported. We have previously described such changes in the voltage-gated potassium channel Kv1.3 of lymphocytes by cholesterol and its analog 7-dehydrocholesterol (7DHC). In voltage-gated channels membrane depolarization induces movement of the voltage sensor domains (VSD), which is transmitted by a coupling mechanism to the pore domain (PD) to open the channel. Here, we investigated whether cholesterol effects were mediated by the VSD to the pore or the PD was the direct target. Specificity was tested by comparing Kv1.3 and Kv10.1 channels having different VSD-PD coupling mechanisms. Current recordings were performed with two-electrode voltage-clamp fluorometry, where movement of the VSDs was monitored by attaching fluorophores to external cysteine residues introduced in the channel sequence. Loading the membrane with cholesterol or 7DHC using methyl-β-cyclodextrin induced changes in the steady-state and kinetic parameters of the ionic currents while leaving fluorescence parameters mostly unaffected in both channels. Non-stationary noise analysis revealed that reduction of single channel conductance rather than that of open probability caused the observed current decrease. Furthermore, confocal laser scanning and stimulated emission depletion microscopy demonstrated significant changes in the distribution of these ion channels in response to sterol loading. Our results indicate that sterol-induced effects on ion channel gating directly target the pore and do not act via the VSD.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Pal Pap
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Ferenc Papp
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged H-6726, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., Illatos u. 7, Budapest H-1097, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary.
| |
Collapse
|
18
|
Lefoulon C, Waghmare S, Karnik R, Blatt MR. Gating control and K + uptake by the KAT1 K + channel leaveraged through membrane anchoring of the trafficking protein SYP121. PLANT, CELL & ENVIRONMENT 2018; 41:2668-2677. [PMID: 29940699 PMCID: PMC6220998 DOI: 10.1111/pce.13392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 05/20/2023]
Abstract
Vesicle traffic is tightly coordinated with ion transport for plant cell expansion through physical interactions between subsets of vesicle-trafficking (so-called SNARE) proteins and plasma membrane Kv channels, including the archetypal inward-rectifying K+ channel, KAT1 of Arabidopsis. Ion channels open and close rapidly over milliseconds, whereas vesicle fusion events require many seconds. Binding has been mapped to conserved motifs of both the Kv channels and the SNAREs, but knowledge of the temporal kinetics of their interactions, especially as it might relate to channel gating and its coordination with vesicle fusion remains unclear. Here, we report that the SNARE SYP121 promotes KAT1 gating through a persistent interaction that alters the stability of the channel, both in its open and closed states. We show, too, that SYP121 action on the channel open state requires SNARE anchoring in the plasma membrane. Our findings indicate that SNARE binding confers a conformational bias that encompasses the microscopic kinetics of channel gating, with leverage applied through the SNARE anchor in favour of the open channel.
Collapse
Affiliation(s)
- Cécile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Sakharam Waghmare
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Rucha Karnik
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Bower BuildingUniversity of GlasgowGlasgowUK
| |
Collapse
|
19
|
Qu C, Sun J, Liu Y, Wang X, Wang L, Han C, Chen Q, Guan T, Li H, Zhang Y, Wang Y, Liu J, Zou W, Liu J. Caveolin-1 facilitated KCNA5 expression, promoting breast cancer viability. Oncol Lett 2018; 16:4829-4838. [PMID: 30250548 PMCID: PMC6144920 DOI: 10.3892/ol.2018.9261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
Potassium voltage-gated channel subfamily A member 5 (KCNA5) is a voltage-gated potassium channel protein encoded by the KCNA5 gene. A large number of studies have shown that KCNA5 is associated with the survival of malignant tumors, including breast cancer, but the detailed mechanism remains inconclusive. Our previous study found that KCNA5 is co-expressed with a scaffolding protein, caveolin-1 in MCF-10A-neoT non-tumorigenic epithelial cell. In the present study, KCNA5 and caveolin-1 were expressed in breast cancer tissues and cell lines. Exposing MCF-10A-neoT to 2 mM of methyl-β-cyclodextrin, an agent to disrupt caveolae and lipid rafts led to a downregulation of caveolin-1 that reduced the expression of KCNA5. Furthermore, following caveolin-1 knockdown, the expression of KCNA5 was decreased in MDA-MB-231 human breast cancer and MCF-10A-neoT non-tumorigenic epithelial cell lines. In subsequent experiments, the MTT assay showed that increased caveolin-1 and KCNA5 expression promoted the survival of MCF-7 human breast cancer cells, but cell survival was not affected following KCNA5 overexpression alone. Using small interfering RNA technology, KCNA5-silenced MCF-10A-neoT cells were established and a decreased level of phosphorylated-AKT serine/threonine kinase (AKT) was observed in the cells compared with the parental cells. Overall, these results suggested that caveolin-1 facilitated KCNA5 expression and may be associated with AKT activation.
Collapse
Affiliation(s)
- Chao Qu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China.,No. 210 Hospital of Chinese People's Liberation Army, Dalian, Liaoning 116021, P.R. China
| | - Jia Sun
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Ying Liu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266021, P.R. China
| | - Xiaobo Wang
- No. 210 Hospital of Chinese People's Liberation Army, Dalian, Liaoning 116021, P.R. China
| | - Lifen Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Chao Han
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China
| | - Qian Chen
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Tianhui Guan
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yang Wang
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China.,Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jia Liu
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Wei Zou
- College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Jing Liu
- Centre for Regenerative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116085, P.R. China
| |
Collapse
|
20
|
Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1242-1251. [PMID: 29474891 DOI: 10.1016/j.bbamem.2018.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| |
Collapse
|
21
|
Amsalem M, Poilbout C, Ferracci G, Delmas P, Padilla F. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J 2018; 37:embj.201797349. [PMID: 29459435 DOI: 10.15252/embj.201797349] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
Cholesterol is a major lipid component of the mammalian plasma membrane. While much is known about its metabolism, its transport, and its role in atherosclerotic vascular disease, less is known about its role in neuronal pathophysiology. This study reveals an unexpected function of cholesterol in controlling pain transmission. We show that inflammation lowers cholesterol content in skin tissue and sensory DRG culture. Pharmacological depletion of cellular cholesterol entails sensitization of nociceptive neurons and promotes mechanical and thermal hyperalgesia through the activation of voltage-gated Nav1.9 channels. Inflammatory mediators enhance the production of reactive oxygen species and induce partitioning of Nav1.9 channels from cholesterol-rich lipid rafts to cholesterol-poor non-raft regions of the membrane. Low-cholesterol environment enhances voltage-dependent activation of Nav1.9 channels leading to enhanced neuronal excitability, whereas cholesterol replenishment reversed these effects. Consistently, we show that transcutaneous delivery of cholesterol alleviates hypersensitivity in animal models of acute and chronic inflammatory pain. In conclusion, our data establish that membrane cholesterol is a modulator of pain transmission and shed a new light on the relationship between cholesterol homeostasis, inflammation, and pain.
Collapse
Affiliation(s)
- Muriel Amsalem
- CNRS, Laboratoire de Neuroscience Cognitive (LNC) UMR 7291, Aix-Marseille-Université, Marseille Cedex 3, France
| | - Corinne Poilbout
- CNRS, Laboratoire de Neuroscience Cognitive (LNC) UMR 7291, Aix-Marseille-Université, Marseille Cedex 3, France
| | - Géraldine Ferracci
- CNRS, Laboratoire de Neuroscience Cognitive (LNC) UMR 7291, Aix-Marseille-Université, Marseille Cedex 3, France
| | - Patrick Delmas
- CNRS, Laboratoire de Neuroscience Cognitive (LNC) UMR 7291, Aix-Marseille-Université, Marseille Cedex 3, France
| | - Francoise Padilla
- CNRS, Laboratoire de Neuroscience Cognitive (LNC) UMR 7291, Aix-Marseille-Université, Marseille Cedex 3, France
| |
Collapse
|
22
|
Kang M, Lee B, Leal C. Three-Dimensional Microphase Separation and Synergistic Permeability in Stacked Lipid-Polymer Hybrid Membranes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:9120-9132. [PMID: 31097879 PMCID: PMC6516788 DOI: 10.1021/acs.chemmater.7b02845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We present new structures of soft-material thin films that augment the functionality of substrate-mediated delivery systems. A hybrid material composed of phospholipids and block copolymers adopts a multilayered membrane structure supported on a solid surface. The hybrid films comprise intentional intramembrane heterogeneities that register across multilayers. These stacked domains convey unprecedented enhancement and control of permeability of solutes across micrometer-thick films. Using grazing incidence X-ray scattering, phase contrast atomic force microscopy, and confocal microscopy, we observed that in each lamella, lipid and polymers partition unevenly within the membrane plane segregating into lipid- or polymer-rich domains. Interestingly, we found evidence that like-domains align in registry across multilayers, thereby making phase separation three-dimensional. Phase boundaries exist over extended length scales to compensate the height mismatch between lipid and polymer molecules. We show that microphase separation in hybrid films can be exploited to augment the capability of drug-eluting substrates. Lipid-polymer hybrid films loaded with paclitaxel show synergistic permeability of drug compared to single-component counterparts. We present a thorough structural study of stacked lipid-polymer hybrid membranes and propose that the presence of registered domains and domain boundaries impart enhanced drug release functionality. This work offers new perspectives in designing thin films for controlled delivery applications.
Collapse
Affiliation(s)
- Minjee Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Alcohol Regulates BK Surface Expression via Wnt/β-Catenin Signaling. J Neurosci 2017; 36:10625-10639. [PMID: 27733613 DOI: 10.1523/jneurosci.0491-16.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/27/2016] [Indexed: 12/26/2022] Open
Abstract
It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify β-catenin as a primary necessary protein. Alcohol increases β-catenin, and blocking accumulation of β-catenin blocks alcohol-induced internalization in these neurons. In transfected HEK293 cells, suppression of Wnt/β-catenin signaling blocks ethanol-induced internalization. Conversely, activation of Wnt/β-catenin reduces BK current density. A point mutation in a putative glycogen synthase kinase phosophorylation site within the S10 region of BK blocks internalization, suggesting that Wnt/β-catenin directly regulates alcohol-induced BK internalization via glycogen synthase kinase phosphorylation. These findings establish de novo protein synthesis and Wnt/β-catenin signaling as critical in mediating a persistent form of BK molecular alcohol tolerance establishing a commonality with other forms of long-term plasticity. SIGNIFICANCE STATEMENT Alcohol tolerance is a key step toward escalating alcohol consumption and subsequent dependence. Our research aims to make significant contributions toward novel, therapeutic approaches to prevent and treat alcohol misuse by understanding the molecular mechanisms of alcohol tolerance. In our current study, we identify the role of a key regulatory pathway in alcohol-induced persistent molecular changes within the hippocampus. The canonical Wnt/β-catenin pathway regulates BK channel surface expression in a protein synthesis-dependent manner reminiscent of other forms of long-term hippocampal neuronal adaptations. This unique insight opens the possibility of using clinically tested drugs, targeting the Wnt/β-catenin pathway, for the novel use of preventing and treating alcohol dependency.
Collapse
|
24
|
Dinoff A, Herrmann N, Lanctôt KL. Ceramides and depression: A systematic review. J Affect Disord 2017; 213:35-43. [PMID: 28189963 DOI: 10.1016/j.jad.2017.02.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Major depressive disorder is a significant contributor to global disability and mortality. The mechanisms of depression are vast and not fully understood, and as a result current treatment of depression is suboptimal. Aberrant sphingolipid metabolism has been observed in some cases of depression, specifically alterations in ceramide concentrations. The role of ceramides and other sphingolipids in depression is a novel concept. This review summarizes and evaluates the current state of evidence for a role of ceramides in depression pathophysiology and the potential for novel depression pharmacotherapies targeting ceramide metabolism. METHODS Medline, Embase, and PsycINFO databases were searched through October 2016 for English-language studies using combinations of the search terms: ceramide, depression, sphingolipid, and depressive symptoms. RESULTS Of the 489 articles screened, 14 were included in the qualitative synthesis of this review article. Pre-clinical and clinical evidence suggest that ceramide species may contribute to depression pathophysiology. In human studies, ceramides C18:0 and C20:0 are the species most strongly linked to depression. Evidence for altered ceramide metabolism in depression is present, but data for a causal role of ceramides in depression are lacking. LIMITATIONS This review was limited by potential reporting bias. Furthermore, a lack of specificity of which ceramides were altered in depression was common. CONCLUSIONS Pharmacotherapy targeting ceramide metabolism may be a novel treatment option for depression. A number of pharmacological targets exists for ceramide reduction and a number of currently approved medications inhibit ceramide production. More evidence, pre-clinical and clinical, is warranted to determine the extent and consistency of the role of ceramides in depression.
Collapse
Affiliation(s)
- Adam Dinoff
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
|
26
|
Benson M, Iñiguez-Lluhí JA, Martens J. Sumo Modification of Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:127-141. [PMID: 28197910 DOI: 10.1007/978-3-319-50044-7_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, a role for SUMO modification outside of the nucleus has emerged. Although the number of extranuclear proteins known to be sumoylated is comparatively small, ion channels represent one important new class of these proteins. Ion channels are responsible for the control of membrane excitability and therefore are critical for fundamental physiological processes such as muscle contraction, neuronal firing, and cellular homeostasis. As such, these ion-conducting proteins are subject to precise regulation. Recently, several studies have identified sumoylation as a novel mechanism of modulating ion channel function. These studies expand the list of known functions of sumoylation and reveal that, in addition to its more established role in the regulation of nuclear proteins, this modification plays important roles at the cytoplasmic face of membranes.
Collapse
Affiliation(s)
- Mark Benson
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jeffrey Martens
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Zheng H, Lee S, Llaguno MC, Jiang QX. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. ACTA ACUST UNITED AC 2016; 147:77-93. [PMID: 26712851 PMCID: PMC4692488 DOI: 10.1085/jgp.201511448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
KvAP conjugated to beads via a C-terminal His-tag seeds formation of a supported bilayer with unidirectional channel orientation for functional studies. Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sungsoo Lee
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marc C Llaguno
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Qiu-Xing Jiang
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
28
|
Borroni MV, Vallés AS, Barrantes FJ. The lipid habitats of neurotransmitter receptors in brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2662-2670. [PMID: 27424801 DOI: 10.1016/j.bbamem.2016.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/05/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
Neurotransmitter receptors, the macromolecules specialized in decoding the chemical signals encrypted in the chemical signaling mechanism in the nervous system, occur either at the somatic cell surface of chemically excitable cells or at specialized subcellular structures, the synapses. Synapses have lipid compositions distinct from the rest of the cell membrane, suggesting that neurotransmitter receptors and their scaffolding and adaptor protein partners require specific lipid habitats for optimal operation. In this review we discuss some paradigmatic cases of neurotransmitter receptor-lipid interactions, highlighting the chemical nature of the intervening lipid species and providing examples of the receptor mechanisms affected by interaction with lipids. The focus is on the effects of cholesterol, glycerophospholipids and covalent fatty acid acylation on neurotransmitter receptors. We also briefly discuss the role of lipid phase states involving lateral heterogeneities of the host membrane known to modulate membrane transport, protein sorting and signaling. Modulation of neurotransmitter receptors by lipids occurs at multiple levels, affecting a wide span of activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, and recycling, among other important functional properties at the synapse.
Collapse
Affiliation(s)
- María Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN) Av. Las Heras 2214 C1127AAQ Buenos Aires Argentina
| | - Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, B8000FWB Bahía Blanca, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute, UCA-CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina.
| |
Collapse
|
29
|
Fürst O, Nichols CG, Lamoureux G, D'Avanzo N. Identification of a cholesterol-binding pocket in inward rectifier K(+) (Kir) channels. Biophys J 2016; 107:2786-2796. [PMID: 25517146 DOI: 10.1016/j.bpj.2014.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/24/2014] [Accepted: 10/08/2014] [Indexed: 11/28/2022] Open
Abstract
Cholesterol is the major sterol component of all mammalian plasma membranes. Recent studies have shown that cholesterol inhibits both bacterial (KirBac1.1 and KirBac3.1) and eukaryotic (Kir2.1) inward rectifier K(+) (Kir) channels. Lipid-sterol interactions are not enantioselective, and the enantiomer of cholesterol (ent-cholesterol) does not inhibit Kir channel activity, suggesting that inhibition results from direct enantiospecific binding to the channel, and not indirect effects of changes to the bilayer. Furthermore, conservation of the effect of cholesterol among prokaryotic and eukaryotic Kir channels suggests an evolutionary conserved cholesterol-binding pocket, which we aimed to identify. Computational experiments were performed by docking cholesterol to the atomic structures of Kir2.2 (PDB: 3SPI) and KirBac1.1 (PDB: 2WLL) using Autodock 4.2. Poses were assessed to ensure biologically relevant orientation and then clustered according to location and orientation. The stability of cholesterol in each of these poses was then confirmed by molecular dynamics simulations. Finally, mutation of key residues (S95H and I171L) in this putative binding pocket found within the transmembrane domain of Kir2.1 channels were shown to lead to a loss of inhibition by cholesterol. Together, these data provide support for this location as a biologically relevant pocket.
Collapse
Affiliation(s)
- Oliver Fürst
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada
| | - Colin G Nichols
- Department of Cell Biology and Physiology and Center for Investigation of Membrane Excitabiltiy Diseases, Washington University School of Medicine, St. Louis, Missouri
| | - Guillaume Lamoureux
- Department of Chemistry and Biochemistry, Centre for Research in Molecular Modeling (CERMM), Groupe d'Étude des Protéines Membranaires (GÉPROM), Concordia University, Montreal, Quebec, Canada
| | - Nazzareno D'Avanzo
- Département de Physiologie Moléculaire et Intégrative and Groupe d'Étude des Protéines Membranaires (GÉPROM), Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
30
|
Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1. J Membr Biol 2016; 249:449-57. [DOI: 10.1007/s00232-016-9885-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/06/2016] [Indexed: 11/24/2022]
|
31
|
Behera B, Mukherjee D, Agarwal T, Das J, Ghosh SK, Maiti TK. Cell penetrating peptides from agglutinin protein of Abrus precatorius facilitate the uptake of Imatinib mesylate. Colloids Surf B Biointerfaces 2016; 140:169-175. [DOI: 10.1016/j.colsurfb.2015.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
|
32
|
Zhu W, Varga Z, Silva JR. Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:3-17. [PMID: 26724572 DOI: 10.1016/j.pbiomolbio.2015.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/11/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7.1. This development is significant, because VCF enables simultaneous observation of ionic current kinetics with conformational changes occurring within specific channel domains. The ability gained from VCF, to connect nanoscale molecular movement to ion channel function has revealed how the voltage-sensing domains (VSDs) control ion flux through channel pores, mechanisms of post-translational regulation and the molecular pathology of inherited mutations. In the future, we expect that this data will be of great use for the creation of multi-scale computational AP models that explicitly represent ion channel conformations, connecting molecular, cell and tissue electrophysiology. Here, we review the VCF protocol, recent results, and discuss potential future developments, including potential use of these experimental findings to create novel computational models.
Collapse
Affiliation(s)
- Wandi Zhu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zoltan Varga
- MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Hungary
| | - Jonathan R Silva
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
33
|
Delgado-Ramírez M, Morán-Zendejas R, Aréchiga-Figueroa IA, Toro-Castillo C, Ramírez-Martínez JF, Rodríguez-Menchaca AA. Modulation of the voltage-gated potassium channel Kv2.1 by the anti-tumor alkylphospholipid perifosine. Pharmacol Rep 2015; 68:457-61. [PMID: 26922553 DOI: 10.1016/j.pharep.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of the present study was to assess the effects of perifosine-a third generation alkylphospholipid analog with anti-tumor properties-on the activity of Kv2.1 channels. METHODS The whole-cell patch clamp technique was applied to follow the modulatory effect of perifosine on Kv2.1 channels expressed in HEK293 cells. RESULTS Obtained data provide evidence that perifosine application decreases the whole cell Kv2.1 currents in a concentration-independent manner. Perifosine induces a hyperpolarizing shift in the voltage dependence of Kv2.1 channels inactivation without altering the voltage dependence of channels activation. The kinetics of Kv2.1 closed-state inactivation was accelerated by perifosine, with no significant effects on the recovery rate from inactivation. CONCLUSIONS Taken together, these results show that perifosine modified the Kv2.1 inactivation gating resulting in a decrease of the current amplitude. These data will help to elucidate the mechanism of action of this promising anti-cancer drug on ion channels and their possible implications.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Ivan A Aréchiga-Figueroa
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Carmen Toro-Castillo
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Jalisco, México
| | - Juan F Ramírez-Martínez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
34
|
Cobb MM, Austin DC, Sack JT, Trimmer JS. Cell Cycle-dependent Changes in Localization and Phosphorylation of the Plasma Membrane Kv2.1 K+ Channel Impact Endoplasmic Reticulum Membrane Contact Sites in COS-1 Cells. J Biol Chem 2015; 290:29189-201. [PMID: 26442584 DOI: 10.1074/jbc.m115.690198] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
The plasma membrane (PM) comprises distinct subcellular domains with diverse functions that need to be dynamically coordinated with intracellular events, one of the most impactful being mitosis. The Kv2.1 voltage-gated potassium channel is conditionally localized to large PM clusters that represent specialized PM:endoplasmic reticulum membrane contact sites (PM:ER MCS), and overexpression of Kv2.1 induces more exuberant PM:ER MCS in neurons and in certain heterologous cell types. Localization of Kv2.1 at these contact sites is dynamically regulated by changes in phosphorylation at one or more sites located on its large cytoplasmic C terminus. Here, we show that Kv2.1 expressed in COS-1 cells undergoes dramatic cell cycle-dependent changes in its PM localization, having diffuse localization in interphase cells, and robust clustering during M phase. The mitosis-specific clusters of Kv2.1 are localized to PM:ER MCS, and M phase clustering of Kv2.1 induces more extensive PM:ER MCS. These cell cycle-dependent changes in Kv2.1 localization and the induction of PM:ER MCS are accompanied by increased mitotic Kv2.1 phosphorylation at several C-terminal phosphorylation sites. Phosphorylation of exogenously expressed Kv2.1 is significantly increased upon metaphase arrest in COS-1 and CHO cells, and in a pancreatic β cell line that express endogenous Kv2.1. The M phase clustering of Kv2.1 at PM:ER MCS in COS-1 cells requires the same C-terminal targeting motif needed for conditional Kv2.1 clustering in neurons. The cell cycle-dependent changes in localization and phosphorylation of Kv2.1 were not accompanied by changes in the electrophysiological properties of Kv2.1 expressed in CHO cells. Together, these results provide novel insights into the cell cycle-dependent changes in PM protein localization and phosphorylation.
Collapse
Affiliation(s)
- Melanie M Cobb
- From the Departments of Neurobiology, Physiology, and Behavior
| | | | - Jon T Sack
- Physiology and Membrane Biology, and Anesthesiology and Pain Medicine, University of California Davis School of Medicine, Davis, California 95616
| | - James S Trimmer
- From the Departments of Neurobiology, Physiology, and Behavior, Physiology and Membrane Biology, and
| |
Collapse
|
35
|
Isoform dependent regulation of human HCN channels by cholesterol. Sci Rep 2015; 5:14270. [PMID: 26404789 PMCID: PMC4585891 DOI: 10.1038/srep14270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/21/2015] [Indexed: 11/15/2022] Open
Abstract
Cholesterol has been shown to regulate numerous ion channels. HCN channels represent the molecular correlate of If or Ih in sinoatrial node (SAN) and neuronal cells. Previous studies have implicated a role for cholesterol in the regulation of rabbit HCN4 channels with effects on pacing in the rabbit SAN. Using electrophysiological and biochemical approaches, we examined the effect of cholesterol modulation on human HCN1, HCN2 and HCN4 isoforms. Patch-clamp experiments uncovered isoform specific differences in the effect of cholesterol on gating kinetics upon depletion by MβCD or mevastatin or enrichment using MβCD/cholesterol. Most dramatically cholesterol had isoform specific effects on mode-shifting, which has been suggested to play a key role in stabilizing firing rate and preventing arrhythmic firing in SAN cells and neurons. Mode-shifting in HCN1 channels was insensitive to cholesterol manipulation, while HCN2 and HCN4 were strongly affected. Trafficking of each isoform to the plasma membrane was also affected by cholesterol modulation differentially between isoforms, however, each isoform remained localized in lipid raft domains after cholesterol depletion. These effects may contribute to the side effects of cholesterol reducing therapies including disrupted heart rhythm and neuropathic pain, as well as the susceptibility of sinus dysfunction in patients with elevated cholesterol.
Collapse
|
36
|
van Gestel RA, Brouwers JF, Ultee A, Helms JB, Gadella BM. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res 2015; 363:129-145. [PMID: 26378009 PMCID: PMC4700079 DOI: 10.1007/s00441-015-2272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
Abstract
Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein–cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Anton Ultee
- Department of Pathology, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Trafficking of β-Adrenergic Receptors: Implications in Intracellular Receptor Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:151-88. [PMID: 26055058 DOI: 10.1016/bs.pmbts.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
β-Adrenergic receptors (βARs), prototypical G-protein-coupled receptors, play a pivotal role in regulating neuronal and cardiovascular responses to catecholamines during stress. Agonist-induced receptor endocytosis is traditionally considered as a primary mechanism to turn off the receptor signaling (or receptor desensitization). However, recent progress suggests that intracellular trafficking of βAR presents a mean to translocate receptor signaling machinery to intracellular organelles/compartments while terminating the signaling at the cell surface. Moreover, the apparent multidimensionality of ligand efficacy in space and time in a cell has forecasted exciting pathophysiological implications, which are just beginning to be explored. As we begin to understand how these pathways impact downstream cellular programs, this will have significant implications for a number of pathophysiological conditions in heart and other systems, that in turn open up new therapeutic opportunities.
Collapse
|
38
|
Suwattanasophon C, Wolschann P, Faller R. Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane. J Biomol Struct Dyn 2015; 34:318-26. [DOI: 10.1080/07391102.2015.1030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Ryland KE, Svoboda LK, Vesely ED, McIntyre JC, Zhang L, Martens JR, Lawlor ER. Polycomb-dependent repression of the potassium channel-encoding gene KCNA5 promotes cancer cell survival under conditions of stress. Oncogene 2014; 34:4591-600. [PMID: 25435365 PMCID: PMC4451446 DOI: 10.1038/onc.2014.384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 02/08/2023]
Abstract
Relapse after clinical remission remains a leading cause of cancer-associated death. Although the mechanisms of tumor relapse are complex, the ability of cancer cells to survive physiological stress is a prerequisite for recurrence. Ewing sarcoma (ES) and neuroblastoma (NB) are aggressive cancers that frequently relapse after initial remission. In addition, both tumors overexpress the polycomb group (PcG) proteins BMI-1 and EZH2, which contribute to tumorigenicity. We have discovered that ES and NB resist hypoxic stress-induced death and that survival depends on PcG function. Epigenetic repression of developmental programs is the most well-established cancer-associated function of PcG proteins. However, we noted that voltage-gated potassium (Kv) channel genes are also targets of PcG regulation in stem cells. Given the role of potassium in regulating apoptosis, we reasoned that repression of Kv channel genes might have a role in cancer cell survival. Here we describe our novel finding that PcG-dependent repression of the Kv1.5 channel gene KCNA5 contributes to cancer cell survival under conditions of stress. We show that survival of cancer cells in stress is dependent upon suppression of Kv1.5 channel function. The KCNA5 promoter is marked in cancer cells with PcG-dependent chromatin repressive modifications that increase in hypoxia. Genetic and pharmacological inhibition of BMI-1 and EZH2, respectively, restore KCNA5 expression, which sensitizes cells to stress-induced death. In addition, ectopic expression of the Kv1.5 channel induces apoptotic cell death under conditions of hypoxia. These findings identify a novel role for PcG proteins in promoting cancer cell survival via repression of KCNA5.
Collapse
Affiliation(s)
- K E Ryland
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA.,Translational Oncology Program, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - L K Svoboda
- Translational Oncology Program, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - E D Vesely
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - J C McIntyre
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L Zhang
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - J R Martens
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - E R Lawlor
- Translational Oncology Program, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Mora S, Akinkuolie AO, Sandhu RK, Conen D, Albert CM. Paradoxical association of lipoprotein measures with incident atrial fibrillation. Circ Arrhythm Electrophysiol 2014; 7:612-9. [PMID: 24860180 PMCID: PMC4591535 DOI: 10.1161/circep.113.001378] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/22/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Low-density lipoprotein (LDL) cholesterol is a strong risk factor for atherosclerosis but has an inverse association with atrial fibrillation (AF). We aimed to provide insight into the paradoxical association of LDL cholesterol with AF by evaluating the relationship of various lipoprotein measures and incident AF. METHODS AND RESULTS We prospectively evaluated lipoprotein measures among 23 738 healthy middle-aged and older women (median follow-up 16.4 years; N=795 incident AF events). Baseline LDL cholesterol was directly measured, lipoprotein particle concentrations and size were measured by nuclear magnetic resonance spectroscopy, and apolipoproteins were measured by immunoassay. Cox regression models were adjusted for age, AF risk factors, inflammatory, and dysglycemic biomarkers. After multivariable adjustment, inverse associations with AF were observed (hazard ratio, 95% confidence interval for top versus bottom quintile, P value) for LDL cholesterol (0.72, 0.56-0.92, P=0.009), the total number of LDL particles (0.77, 0.60-0.99, P=0.045), and very-low-density lipoprotein particles (0.78, 0.61-0.99, P=0.04), which was driven by the number of cholesterol-poor small LDL (0.78, 0.61-1.00, P=0.05) and small very-low-density lipoprotein particles (0.78, 0.62-0.99, P=0.04). By contrast, the larger cholesterol-rich LDL particles and all high-density lipoprotein measures were not associated with AF in multivariable models. Adjustment for inflammatory and dysglycemic biomarkers had minimal impact on these associations. CONCLUSIONS In this prospective study, the inverse association between LDL cholesterol and AF extended to several other atherogenic lipoproteins, and these associations are unlikely to be mediated by direct cholesterol effects. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov; Unique Identifier: NCT00000479.
Collapse
Affiliation(s)
- Samia Mora
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.).
| | - Akintunde O Akinkuolie
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - Roopinder K Sandhu
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - David Conen
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| | - Christine M Albert
- From the Division of Preventive Medicine (S.M., A.O.A., C.M.A.) and Division of Cardiovascular Medicine (S.M., C.M.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada (R.K.S.); and Department of Medicine, University Hospital, Basel, Switzerland (D.C.)
| |
Collapse
|
41
|
Localization of Kv4.2 and KChIP2 in lipid rafts and modulation of outward K+ currents by membrane cholesterol content in rat left ventricular myocytes. Pflugers Arch 2014; 467:299-309. [DOI: 10.1007/s00424-014-1521-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
|
42
|
Jiménez-Garduño AM, Mitkovski M, Alexopoulos IK, Sánchez A, Stühmer W, Pardo LA, Ortega A. KV10.1 K+-channel plasma membrane discrete domain partitioning and its functional correlation in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:921-31. [DOI: 10.1016/j.bbamem.2013.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 10/27/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
|
43
|
Schumacher-Bass SM, Vesely ED, Zhang L, Ryland KE, McEwen DP, Chan PJ, Frasier CR, McIntyre JC, Shaw RM, Martens JR. Role for myosin-V motor proteins in the selective delivery of Kv channel isoforms to the membrane surface of cardiac myocytes. Circ Res 2014; 114:982-92. [PMID: 24508725 DOI: 10.1161/circresaha.114.302711] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.
Collapse
Affiliation(s)
- Sarah M Schumacher-Bass
- From the Department of Pharmacology, University of Michigan, Ann Arbor (S.M.S.-B., E.D.V., L.Z., K.E.R., D.P.M., C.R.F., J.C.M., J.R.M.); Cardiovascular Research Institute Robin Shaw, Department of Medicine, University of California, San Francisco (P.J.C.); and Cedars-Sinai Medical Center, Los Angeles, CA (R.M.S.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gallego M, Alday A, Alonso H, Casis O. Adrenergic regulation of cardiac ionic channels: role of membrane microdomains in the regulation of kv4 channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:692-9. [PMID: 23811359 DOI: 10.1016/j.bbamem.2013.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022]
Abstract
The heart must constantly adapt its activity to the needs of the body. In any potentially dangerous or physically demanding situation the activated sympathetic nervous system leads a very fast cardiac response. Under these circumstances, α1-adrenergic receptors activate intracellular signaling pathways that finally phosphorylate the caveolae-located subpopulation of Kv4 channels and reduce the transient outward K(+) current (Ito) amplitude. This reduction changes the shape of the cardiac action potential and makes the plateau phase to start at higher voltages. This means that there are more calcium ions entering the myocyte and the result is an increase in the strength of the contraction. However, an excessive reduction of Ito could dangerously prolong action potential duration and this could cause arrhythmias when the heart rate is high. This excessive current reduction does not occur because there is a second population of Ito channels located in non-caveolar membrane rafts that are not accessible for α1-AR mediated regulation. Thus, the location of the components of a given transduction signaling pathway in membrane domains determines the correct and safe behavior of the heart. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mónica Gallego
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Aintzane Alday
- Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Hiart Alonso
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| | - Oscar Casis
- Lascaray Research Center, University of the Basque Country (UPV/EHU), Av. Miguel de Unamuno 3, 01006 Vitoria, Spain; Departamento de Fisiología, Facultad de Farmacia, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria, Spain.
| |
Collapse
|
45
|
Zhang YH, Khanna R, Nicol GD. Nerve growth factor/p75 neurotrophin receptor-mediated sensitization of rat sensory neurons depends on membrane cholesterol. Neuroscience 2013; 248:562-70. [PMID: 23811397 DOI: 10.1016/j.neuroscience.2013.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022]
Abstract
Nerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response and NGF via activation of the p75 neurotrophin receptor (p75(NTR)) and downstream sphingomyelin signaling leads to significant enhancement of the excitability of small-diameter sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether neuronal NGF-induced sensitization via p75(NTR) was dependent on the integrity of membrane rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory neurons may result from the interaction of p75(NTR) with its downstream signaling partner(s) in membrane rafts. Two agents known to disrupt membrane rafts, edelfosine and methyl-β-cyclodextrin (MβCD), block the increase in excitability produced by NGF. In contrast, treatment with MβCD containing saturated amounts of cholesterol does not alter the capacity of NGF to augment excitability. In addition, adding back MβCD with cholesterol restored the NGF-induced sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the structural integrity of rafts are key to promoting NGF-mediated sensitization. Using established protocols to isolate detergent-resistant membranes, both p75(NTR) and the neuronal membrane raft marker, flotillin, localize to raft fractions. These results suggest that downstream signaling partners interacting with p75(NTR) in sensory neurons are associated with membrane raft signaling platforms.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - R Khanna
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - G D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
46
|
Abstract
How mechanical forces are sensed remains largely mysterious. The forces that gate prokaryotic and several eukaryotic channels were found to come from the lipid membrane. Our survey of animal cells found that membrane force foci all have cholesterol-gathering proteins and are reinforced with cholesterol. This result is evident in overt force sensors at the tips of stereocilia for vertebrate hearing and the touch receptor of Caenorhabditis elegans and mammalian neurons. For less specialized cells, cadherins sustain the force between neighboring cells and integrins between cells and matrix. These tension bearers also pass through and bind to a cholesterol-enriched platform before anchoring to cytoskeleton through other proteins. Cholesterol, in alliance with sphingomyelin and specialized proteins, enforces a more ordered structure in the bilayer. Such a stiffened platform can suppress mechanical noise, redirect, rescale, and confine force. We speculate that such platforms may be dynamic. The applied force may allow disordered-phase lipids to enter the platform-staging channel opening in the thinner mobile neighborhood. The platform may also contain specialized protein/lipid subdomains enclosing mechanosensitive channels to open with localized tension. Such a dynamic stage can mechanically operate structurally disparate channels or enzymes without having to tie them directly to cadherin, integrin, or other protein tethers.
Collapse
|
47
|
Wu X, Hernandez-Enriquez B, Banas M, Xu R, Sesti F. Molecular mechanisms underlying the apoptotic effect of KCNB1 K+ channel oxidation. J Biol Chem 2013; 288:4128-34. [PMID: 23275378 PMCID: PMC3567663 DOI: 10.1074/jbc.m112.440933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/18/2012] [Indexed: 11/06/2022] Open
Abstract
Potassium (K(+)) channels are targets of reactive oxygen species in the aging nervous system. KCNB1 (formerly Kv2.1), a voltage-gated K(+) channel abundantly expressed in the cortex and hippocampus, is oxidized in the brains of aging mice and of the triple transgenic 3xTg-AD mouse model of Alzheimer's disease. KCNB1 oxidation acts to enhance apoptosis in mammalian cell lines, whereas a KCNB1 variant resistant to oxidative modification, C73A-KCNB1, is cytoprotective. Here we investigated the molecular mechanisms through which oxidized KCNB1 channels promote apoptosis. Biochemical evidence showed that oxidized KCNB1 channels, which form oligomers held together by disulfide bridges involving Cys-73, accumulated in the plasma membrane as a result of defective endocytosis. In contrast, C73A-mutant channels, which do not oligomerize, were normally internalized. KCNB1 channels localize in lipid rafts, and their internalization was dynamin 2-dependent. Accordingly, cholesterol supplementation reduced apoptosis promoted by oxidation of KCNB1. In contrast, cholesterol depletion exacerbated apoptotic death in a KCNB1-independent fashion. Inhibition of raft-associating c-Src tyrosine kinase and downstream JNK kinase by pharmacological and molecular means suppressed the pro-apoptotic effect of KCNB1 oxidation. Together, these data suggest that the accumulation of KCNB1 oligomers in the membrane disrupts planar lipid raft integrity and causes apoptosis via activating the c-Src/JNK signaling pathway.
Collapse
Affiliation(s)
- Xilong Wu
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Berenice Hernandez-Enriquez
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Michelle Banas
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Robin Xu
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| | - Federico Sesti
- From the University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Department of Neuroscience and Cell Biology, 683 Hoes Ln. W., Piscataway, New Jersey 08854
| |
Collapse
|
48
|
Reigada R. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia. PLoS One 2013; 8:e52631. [PMID: 23300982 PMCID: PMC3534722 DOI: 10.1371/journal.pone.0052631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/20/2012] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic) and carbon tetrachloride (non-anesthetic). Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.
Collapse
Affiliation(s)
- Ramon Reigada
- Departament de Química Física and Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
49
|
Tayebi L, Ma Y, Vashaee D, Chen G, Sinha SK, Parikh AN. Long-range interlayer alignment of intralayer domains in stacked lipid bilayers. NATURE MATERIALS 2012; 11:1074-1080. [PMID: 23085566 DOI: 10.1038/nmat3451] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 09/11/2012] [Indexed: 05/28/2023]
Abstract
Liquid-crystalline phases of stacked lipid bilayers represent a pervasive motif in biomolecular assemblies. Here we report that, in addition to the usual smectic order, multicomponent multilayer membranes can exhibit columnar order arising from the coupling of two-dimensional intralayer phase separation and interlayer smectic ordering. This coupling propagates across hundreds of membrane lamellae, producing long-range alignment of phase-separated domains. Quantitative analysis of real-time dynamical experiments reveals that there is an interplay between intralayer domain growth and interlayer coupling, suggesting the existence of cooperative multilayer epitaxy. We postulate that such long-range epitaxy is solvent-assisted, and that it originates from the surface tension associated with differences in the network of hydrogen-bonded water molecules at the hydrated interfaces between the domains and the surrounding phase. Our findings might inspire the development of self-assembly-based strategies for the long-range alignment of functional lipid domains.
Collapse
Affiliation(s)
- Lobat Tayebi
- Department of Applied Science, University of California, Davis, California 95616, USA
| | | | | | | | | | | |
Collapse
|
50
|
Rosenhouse-Dantsker A, Noskov S, Han H, Adney SK, Tang QY, Rodríguez-Menchaca AA, Kowalsky GB, Petrou VI, Osborn CV, Logothetis DE, Levitan I. Distant cytosolic residues mediate a two-way molecular switch that controls the modulation of inwardly rectifying potassium (Kir) channels by cholesterol and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). J Biol Chem 2012; 287:40266-78. [PMID: 22995912 DOI: 10.1074/jbc.m111.336339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cholesterol modulates inwardly rectifying potassium (Kir) channels. RESULTS A two-way molecular cytosolic switch controls channel modulation by cholesterol and PI(4,5)P(2). CONCLUSION Cholesterol and PI(4,5)P(2) induce a common gating pathway of Kir2.1 despite their opposite impact on channel function. SIGNIFICANCE These findings provide insights into structure-function relationship of ion channels and contribute to understanding of the mechanisms underlying their regulation by lipids. Inwardly rectifying potassium (Kir) channels play an important role in setting the resting membrane potential and modulating membrane excitability. An emerging feature of several Kir channels is that they are regulated by cholesterol. However, the mechanism by which cholesterol affects channel function is unclear. Here we show that mutations of two distant Kir2.1 cytosolic residues, Leu-222 and Asn-251, form a two-way molecular switch that controls channel modulation by cholesterol and affects critical hydrogen bonding. Notably, these two residues are linked by a residue chain that continues from Asn-251 to connect adjacent subunits. Furthermore, our data indicate that the same switch also regulates the sensitivity of the channels to phosphatidylinositol 4,5-bisphosphate, a phosphoinositide that is required for activation of Kir channels. Thus, although cholesterol and phosphatidylinositol 4,5-bisphosphate do not interact with the same region of Kir2.1, these different modulators induce a common gating pathway of the channel.
Collapse
|