1
|
Özden C, MacManus S, Adafia R, Samkutty A, Torres‐Ocampo AP, Garman SC, Stratton MM. Ca2+/CaM dependent protein kinase II (CaMKII)α and CaMKIIβ hub domains adopt distinct oligomeric states and stabilities. Protein Sci 2024; 33:e4960. [PMID: 38501502 PMCID: PMC10962473 DOI: 10.1002/pro.4960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/05/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a multidomain serine/threonine kinase that plays important roles in the brain, heart, muscle tissue, and eggs/sperm. The N-terminal kinase and regulatory domain is connected by a flexible linker to the C-terminal hub domain. The hub domain drives the oligomeric organization of CaMKII, assembling the kinase domains into high local concentration. Previous structural studies have shown multiple stoichiometries of the holoenzyme as well as the hub domain alone. Here, we report a comprehensive study of the hub domain stoichiometry and stability in solution. We solved two crystal structures of the CaMKIIβ hub domain that show 14-mer (3.1 Å) and 16-mer (3.4 Å) assemblies. Both crystal structures were determined from crystals grown in the same drop, which suggests that CaMKII oligomers with different stoichiometries likely coexist. To further interrogate hub stability, we employed mass photometry and temperature denaturation studies of CaMKIIβ and CaMKIIα hubs, which highlight major differences between these highly similar domains. We created a dimeric CaMKIIβ hub unit using rational mutagenesis, which is significantly less stable than the oligomer. Both hub domains populate an intermediate during unfolding. We found that multiple CaMKIIβ hub stoichiometries are present in solution and that larger oligomers are more stable. CaMKIIα had a narrower distribution of molecular weight and was distinctly more stable than CaMKIIβ.
Collapse
Affiliation(s)
- Can Özden
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Sara MacManus
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ruth Adafia
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Alfred Samkutty
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Ana P. Torres‐Ocampo
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
- Molecular and Cellular Biology Graduate ProgramUniversity of MassachusettsAmherstMassachusettsUSA
| | - Scott C. Garman
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Margaret M. Stratton
- Department of Biochemistry and Molecular BiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
2
|
Bolton SC, Thompson DH, Kinzer-Ursem TL. Methods optimization for the expression and purification of human calcium calmodulin-dependent protein kinase II alpha. PLoS One 2024; 19:e0285651. [PMID: 38180986 PMCID: PMC10769071 DOI: 10.1371/journal.pone.0285651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/18/2023] [Indexed: 01/07/2024] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a complex multifunctional kinase that is highly expressed in central nervous tissues and plays a key regulatory role in the calcium signaling pathway. Despite over 30 years of recombinant expression and characterization studies, CaMKII continues to be investigated for its impact on signaling cooperativity and its ability to bind multiple substrates through its multimeric hub domain. Here we compare and optimize protocols for the generation of full-length wild-type human calcium/calmodulin-dependent protein kinase II alpha (CaMKIIα). Side-by-side comparison of expression and purification in both insect and bacterial systems shows that the insect expression method provides superior yields of the desired autoinhibited CaMKIIα holoenzymes. Utilizing baculovirus insect expression system tools, our results demonstrate a high yield method to produce homogenous, monodisperse CaMKII in its autoinhibited state suitable for biophysical analysis. Advantages and disadvantages of these two expression systems (baculovirus insect cell versus Escherichia coli expression) are discussed, as well as purification optimizations to maximize the enrichment of full-length CaMKII.
Collapse
Affiliation(s)
- Scott C. Bolton
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - David H. Thompson
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Tsujioka S, Sumino A, Nagasawa Y, Sumikama T, Flechsig H, Puppulin L, Tomita T, Baba Y, Kakuta T, Ogoshi T, Umeda K, Kodera N, Murakoshi H, Shibata M. Imaging single CaMKII holoenzymes at work by high-speed atomic force microscopy. SCIENCE ADVANCES 2023; 9:eadh1069. [PMID: 37390213 PMCID: PMC10313165 DOI: 10.1126/sciadv.adh1069] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 07/02/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a pivotal role in synaptic plasticity. It is a dodecameric serine/threonine kinase that has been highly conserved across metazoans for over a million years. Despite the extensive knowledge of the mechanisms underlying CaMKII activation, its behavior at the molecular level has remained unobserved. In this study, we used high-speed atomic force microscopy to visualize the activity-dependent structural dynamics of rat/hydra/C. elegans CaMKII with nanometer resolution. Our imaging results revealed that the dynamic behavior is dependent on CaM binding and subsequent pT286 phosphorylation. Among the species studies, only rat CaMKIIα with pT286/pT305/pT306 exhibited kinase domain oligomerization. Furthermore, we revealed that the sensitivity of CaMKII to PP2A in the three species differs, with rat, C. elegans, and hydra being less dephosphorylated in that order. The evolutionarily acquired features of mammalian CaMKIIα-specific structural arrangement and phosphatase tolerance may differentiate neuronal function between mammals and other species.
Collapse
Affiliation(s)
- Shotaro Tsujioka
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yutaro Nagasawa
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Leonardo Puppulin
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takuya Tomita
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Yudai Baba
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 615-8510, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideji Murakoshi
- Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
4
|
Palmelund LB, van Woerden GM, Bräuner-Osborne H, Wellendorph P. Development of a medium throughput whole-cell microtiter plate Thr286 autophosphorylation assay for CaMKIIα using ELISA. J Pharmacol Toxicol Methods 2022; 118:107226. [PMID: 36174932 DOI: 10.1016/j.vascn.2022.107226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/11/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a multifunctional Ser/Thr kinase involved in several neuronal signaling pathways including synaptic plasticity. CaMKIIα autonomous activity is highly dependent on Thr286 autophosphorylation (pThr286), which is widely used as a readout for its enzymatic activity. To readily characterise compounds and potential drug candidates targeting CaMKIIα, a simple, generic cell-based assay for quantification of pThr286 levels is needed. In this study, we present a cell-based assay using an adapted ELISA as a suitable and higher throughput alternative to Western blotting. In this 96-well plate-based assay, we use whole HEK293T cells recombinantly expressing CaMKIIα and apply a phospho-specific antibody to detect pThr286 levels by chemiluminescence. In parallel, total CaMKIIα expression levels are detected by fluorescence using an Alexa488-conjugated anti-myc antibody targeting a C-terminal myc-tag. By multiplexing chemiluminescence and fluorescence, phosphorylation levels are normalised to CaMKIIα total expression within each well. The specificity of the assay was confirmed using a phosphodead mutant (T286A) of CaMKIIα. By applying Ca2+ or known CaMKIIα inhibitors (KN93, tatCN21 and AS100105) and obtaining concentration-response curves, we demonstrate high sensitivity and validity of the assay. Lastly, we demonstrate the versatility of the assay by determining autophosphorylation levels in CaMKIIα patient-related mutations, known to possess altered pThr286 responses (E109D, E183V and H282R). The established assay for CaMKIIα is a reproducible, easily implemented, and facile ELISA-based assay that allows for reliable quantification of pThr286 levels.
Collapse
Affiliation(s)
- Line B Palmelund
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Geeske M van Woerden
- Erasmus University Medical Center, Department of Neuroscience and Department of Clinical Genetics, 3015, CN, Rotterdam, the Netherlands
| | - Hans Bräuner-Osborne
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
5
|
Proietti Onori M, van Woerden GM. Role of calcium/calmodulin-dependent kinase 2 in neurodevelopmental disorders. Brain Res Bull 2021; 171:209-220. [PMID: 33774142 DOI: 10.1016/j.brainresbull.2021.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/28/2023]
Abstract
Neurodevelopmental disorders are a complex and heterogeneous group of neurological disorders characterized by their early-onset and estimated to affect more than 3% of children worldwide. The rapid advancement of sequencing technologies in the past years allowed the identification of hundreds of variants in several different genes causing neurodevelopmental disorders. Between those, new variants in the Calcium/calmodulin dependent protein kinase II (CAMK2) genes were recently linked to intellectual disability. Despite many years of research on CAMK2, this proves for the first time that this well-known and highly conserved molecule plays an important role in the human brain. In this review, we give an overview of the identified CAMK2 variants, and we speculate on potential mechanisms through which dysfunctions in CAMK2 result in neurodevelopmental disorders. Additionally, we discuss how the identification of CAMK2 variants might result in new exciting discoveries regarding the function of CAMK2 in the human brain.
Collapse
Affiliation(s)
- Martina Proietti Onori
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC, Rotterdam, 3015 GD, the Netherlands; The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, 3015 GD, the Netherlands.
| |
Collapse
|
6
|
Duran J, Nickel L, Estrada M, Backs J, van den Hoogenhof MMG. CaMKIIδ Splice Variants in the Healthy and Diseased Heart. Front Cell Dev Biol 2021; 9:644630. [PMID: 33777949 PMCID: PMC7991079 DOI: 10.3389/fcell.2021.644630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/22/2021] [Indexed: 01/16/2023] Open
Abstract
RNA splicing has been recognized in recent years as a pivotal player in heart development and disease. The Ca2+/calmodulin dependent protein kinase II delta (CaMKIIδ) is a multifunctional Ser/Thr kinase family and generates at least 11 different splice variants through alternative splicing. This enzyme, which belongs to the CaMKII family, is the predominant family member in the heart and functions as a messenger toward adaptive or detrimental signaling in cardiomyocytes. Classically, the nuclear CaMKIIδB and cytoplasmic CaMKIIδC splice variants are described as mediators of arrhythmias, contractile function, Ca2+ handling, and gene transcription. Recent findings also put CaMKIIδA and CaMKIIδ9 as cardinal players in the global CaMKII response in the heart. In this review, we discuss and summarize the new insights into CaMKIIδ splice variants and their (proposed) functions, as well as CaMKII-engineered mouse phenotypes and cardiac dysfunction related to CaMKIIδ missplicing. We also discuss RNA splicing factors affecting CaMKII splicing. Finally, we discuss the translational perspective derived from these insights and future directions on CaMKIIδ splicing research in the healthy and diseased heart.
Collapse
Affiliation(s)
- Javier Duran
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lennart Nickel
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel Estrada
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Maarten M G van den Hoogenhof
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
7
|
Liput DJ, Nguyen TA, Augustin SM, Lee JO, Vogel SS. A Guide to Fluorescence Lifetime Microscopy and Förster's Resonance Energy Transfer in Neuroscience. CURRENT PROTOCOLS IN NEUROSCIENCE 2020; 94:e108. [PMID: 33232577 PMCID: PMC8274369 DOI: 10.1002/cpns.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fluorescence lifetime microscopy (FLIM) and Förster's resonance energy transfer (FRET) are advanced optical tools that neuroscientists can employ to interrogate the structure and function of complex biological systems in vitro and in vivo using light. In neurobiology they are primarily used to study protein-protein interactions, to study conformational changes in protein complexes, and to monitor genetically encoded FRET-based biosensors. These methods are ideally suited to optically monitor changes in neurons that are triggered optogenetically. Utilization of this technique by neuroscientists has been limited, since a broad understanding of FLIM and FRET requires familiarity with the interactions of light and matter on a quantum mechanical level, and because the ultra-fast instrumentation used to measure fluorescent lifetimes and resonance energy transfer are more at home in a physics lab than in a biology lab. In this overview, we aim to help neuroscientists overcome these obstacles and thus feel more comfortable with the FLIM-FRET method. Our goal is to aid researchers in the neuroscience community to achieve a better understanding of the fundamentals of FLIM-FRET and encourage them to fully leverage its powerful ability as a research tool. Published 2020. U.S. Government.
Collapse
Affiliation(s)
- Daniel J. Liput
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Tuan A. Nguyen
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Shana M. Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jeong Oen Lee
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S. Vogel
- Laboratory of Biophotonics and Quantum Biology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
- Corresponding author:
| |
Collapse
|
8
|
Sloutsky R, Dziedzic N, Dunn MJ, Bates RM, Torres-Ocampo AP, Boopathy S, Page B, Weeks JG, Chao LH, Stratton MM. Heterogeneity in human hippocampal CaMKII transcripts reveals allosteric hub-dependent regulation. Sci Signal 2020; 13:eaaz0240. [PMID: 32694170 PMCID: PMC7654443 DOI: 10.1126/scisignal.aaz0240] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in Ca2+ signaling throughout the body. In the hippocampus, CaMKII is required for learning and memory. Vertebrate genomes encode four CaMKII homologs: CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ. All CaMKIIs consist of a kinase domain, a regulatory segment, a variable linker region, and a hub domain, which is responsible for oligomerization. The four proteins differ primarily in linker length and composition because of extensive alternative splicing. Here, we report the heterogeneity of CaMKII transcripts in three complex samples of human hippocampus using deep sequencing. We showed that hippocampal cells contain a diverse collection of over 70 CaMKII transcripts from all four CaMKII-encoding genes. We characterized the Ca2+/CaM sensitivity of hippocampal CaMKII variants spanning a broad range of linker lengths and compositions. The effect of the variable linker on Ca2+/CaM sensitivity depended on the kinase and hub domains. Moreover, we revealed a previously uncharacterized role for the hub domain as an allosteric regulator of kinase activity, which may provide a pharmacological target for modulating CaMKII activity. Using small-angle x-ray scattering and single-particle cryo-electron microscopy (cryo-EM), we present evidence for extensive interactions between the kinase and the hub domains, even in the presence of a 30-residue linker. Together, these data suggest that Ca2+/CaM sensitivity in CaMKII is homolog dependent and includes substantial contributions from the hub domain. Our sequencing approach, combined with biochemistry, provides insights into understanding the complex pool of endogenous CaMKII splice variants.
Collapse
Affiliation(s)
- Roman Sloutsky
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Noelle Dziedzic
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Matthew J Dunn
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Rachel M Bates
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Ana P Torres-Ocampo
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Sivakumar Boopathy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brendan Page
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - John G Weeks
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Luke H Chao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Department of Genetics Harvard Medical School, Boston, MA 02115, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
9
|
Bhattacharyya M, Karandur D, Kuriyan J. Structural Insights into the Regulation of Ca 2+/Calmodulin-Dependent Protein Kinase II (CaMKII). Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035147. [PMID: 31653643 DOI: 10.1101/cshperspect.a035147] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a highly conserved serine/threonine kinase that is ubiquitously expressed throughout the human body. Specialized isoforms of CaMKII play key roles in neuronal and cardiac signaling. The distinctive holoenzyme architecture of CaMKII, with 12-14 kinase domains attached by flexible linkers to a central hub, poses formidable challenges for structural characterization. Nevertheless, progress in determining the structural mechanisms underlying CaMKII functions has come from studying the kinase domain and the hub separately, as well as from a recent electron microscopic investigation of the intact holoenzyme. In this review, we discuss our current understanding of the structure of CaMKII. We also discuss the intriguing finding that the CaMKII holoenzyme can undergo activation-triggered subunit exchange, a process that has implications for the potentiation and perpetuation of CaMKII activity.
Collapse
Affiliation(s)
- Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720.,Department of Chemistry, University of California, Berkeley, California 94720.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
10
|
Sloutsky R, Stratton MM. Functional implications of CaMKII alternative splicing. Eur J Neurosci 2020; 54:6780-6794. [PMID: 32343011 DOI: 10.1111/ejn.14761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is known to be a crucial regulator in the post-synapse during long-term potentiation. This important protein has been the subject of many studies centered on understanding memory at the molecular, cellular, and organismic level. CaMKII is encoded by four genes in humans, all of which undergo alternative splicing at the RNA level, leading to an enormous diversity of expressed proteins. Advances in sequencing technologies have facilitated the discovery of many new CaMKII transcripts. To date, newly discovered CaMKII transcripts have been incorporated into an ambiguous naming scheme. Herein, we review the initial experiments leading to the discovery of CaMKII and its subsequent variants. We propose the adoption of a new, unambiguous naming scheme for CaMKII variants. Finally, we discuss biological implications for CaMKII splice variants.
Collapse
Affiliation(s)
- Roman Sloutsky
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Takla M, Huang CLH, Jeevaratnam K. The cardiac CaMKII-Na v1.5 relationship: From physiology to pathology. J Mol Cell Cardiol 2020; 139:190-200. [PMID: 31958466 DOI: 10.1016/j.yjmcc.2019.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/20/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Abstract
The SCN5A gene encodes Nav1.5, which, as the cardiac voltage-gated Na+ channel's pore-forming α subunit, is crucial for the initiation and propagation of atrial and ventricular action potentials. The arrhythmogenic propensity of inherited SCN5A mutations implicates the Na+ channel in determining cardiomyocyte excitability under normal conditions. Cytosolic kinases have long been known to alter the kinetic profile of Nav1.5 inactivation via phosphorylation of specific residues. Recent substantiation of both the role of calmodulin-dependent kinase II (CaMKII) in modulating the properties of the Nav1.5 inactivation gate and the significant rise in oxidation-dependent autonomous CaMKII activity in structural heart disease has raised the possibility of a novel pathway for acquired arrhythmias - the CaMKII-Nav1.5 relationship. The aim of this review is to: (1) outline the relationship's translation from physiological adaptation to pathological vicious circle; and (2) discuss the relative merits of each of its components as pharmacological targets.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom
| | - Christopher L-H Huang
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, United Kingdom; Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom.
| |
Collapse
|
12
|
Pharris MC, Patel NM, VanDyk TG, Bartol TM, Sejnowski TJ, Kennedy MB, Stefan MI, Kinzer-Ursem TL. A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation. PLoS Comput Biol 2019; 15:e1006941. [PMID: 31869343 PMCID: PMC6957207 DOI: 10.1371/journal.pcbi.1006941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/13/2020] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) accounts for up to 2 percent of all brain protein and is essential to memory function. CaMKII activity is known to regulate dynamic shifts in the size and signaling strength of neuronal connections, a process known as synaptic plasticity. Increasingly, computational models are used to explore synaptic plasticity and the mechanisms regulating CaMKII activity. Conventional modeling approaches may exclude biophysical detail due to the impractical number of state combinations that arise when explicitly monitoring the conformational changes, ligand binding, and phosphorylation events that occur on each of the CaMKII holoenzyme's subunits. To manage the combinatorial explosion without necessitating bias or loss in biological accuracy, we use a specialized syntax in the software MCell to create a rule-based model of a twelve-subunit CaMKII holoenzyme. Here we validate the rule-based model against previous experimental measures of CaMKII activity and investigate molecular mechanisms of CaMKII regulation. Specifically, we explore how Ca2+/CaM-binding may both stabilize CaMKII subunit activation and regulate maintenance of CaMKII autophosphorylation. Noting that Ca2+/CaM and protein phosphatases bind CaMKII at nearby or overlapping sites, we compare model scenarios in which Ca2+/CaM and protein phosphatase do or do not structurally exclude each other's binding to CaMKII. Our results suggest a functional mechanism for the so-called "CaM trapping" phenomenon, wherein Ca2+/CaM may structurally exclude phosphatase binding and thereby prolong CaMKII autophosphorylation. We conclude that structural protection of autophosphorylated CaMKII by Ca2+/CaM may be an important mechanism for regulation of synaptic plasticity.
Collapse
Affiliation(s)
- Matthew C. Pharris
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Neal M. Patel
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Tyler G. VanDyk
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas M. Bartol
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Terrence J. Sejnowski
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- Institute for Neural Computation, University of California San Diego, La Jolla, California, United States of America
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Mary B. Kennedy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Melanie I. Stefan
- Salk Institute for Biological Studies, La Jolla, California, United States of America
- EMBL-European Bioinformatics Institute, Hinxton, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
- * E-mail: (MIS); (TLKU)
| | - Tamara L. Kinzer-Ursem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (MIS); (TLKU)
| |
Collapse
|
13
|
The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity by Binding to Ca 2+/CaM. J Mol Biol 2019; 431:1440-1459. [PMID: 30753871 DOI: 10.1016/j.jmb.2019.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/14/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine/threonine protein kinase that transmits calcium signals in various cellular processes. CaMKII is activated by calcium-bound calmodulin (Ca2+/CaM) through a direct binding mechanism involving a regulatory C-terminal α-helix in CaMKII. The Ca2+/CaM binding triggers transphosphorylation of critical threonine residues proximal to the CaM-binding site leading to the autoactivated state of CaMKII. The demonstration of its critical roles in pathophysiological processes has elevated CaMKII to a key target in the management of numerous diseases. The molecule KN-93 is the most widely used inhibitor for studying the cellular and in vivo functions of CaMKII. It is widely believed that KN-93 binds directly to CaMKII, thus preventing kinase activation by competing with Ca2+/CaM. Herein, we employed surface plasmon resonance, NMR, and isothermal titration calorimetry to characterize this presumed interaction. Our results revealed that KN-93 binds directly to Ca2+/CaM and not to CaMKII. This binding would disrupt the ability of Ca2+/CaM to interact with CaMKII, effectively inhibiting CaMKII activation. Our findings also indicated that KN-93 can specifically compete with a CaMKIIδ-derived peptide for binding to Ca2+/CaM. As indicated by the surface plasmon resonance and isothermal titration calorimetry data, apparently at least two KN-93 molecules can bind to Ca2+/CaM. Our findings provide new insight into how in vitro and in vivo data obtained with KN-93 should be interpreted. They further suggest that other Ca2+/CaM-dependent, non-CaMKII activities should be considered in KN-93-based mechanism-of-action studies and drug discovery efforts.
Collapse
|
14
|
Wood BM, Simon M, Galice S, Alim CC, Ferrero M, Pinna NN, Bers DM, Bossuyt J. Cardiac CaMKII activation promotes rapid translocation to its extra-dyadic targets. J Mol Cell Cardiol 2018; 125:18-28. [PMID: 30321537 PMCID: PMC6279589 DOI: 10.1016/j.yjmcc.2018.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Calcium-calmodulin dependent protein kinase IIδ (CaMKIIδ) is an important regulator of cardiac electrophysiology, calcium (Ca) balance, contraction, transcription, arrhythmias and progression to heart failure. CaMKII is readily activated at mouths of dyadic cleft Ca channels, but because of its low Ca-calmodulin affinity and presumed immobility it is less clear how CaMKII gets activated near other known, extra-dyad targets. CaMKII is typically considered to be anchored in cardiomyocytes, but while untested, mobility of active CaMKII could provide a mechanism for broader target phosphorylation in cardiomyocytes. We therefore tested CaMKII mobility and how this is affected by kinase activation in adult rabbit cardiomyocytes. We measured translocation of both endogenous and fluorescence-tagged CaMKII using immunocytochemistry, fluorescence recovery after photobleach (FRAP) and photoactivation of fluorescence. In contrast to the prevailing view that CaMKII is anchored near its myocyte targets, we found CaMKII to be highly mobile in resting myocytes, which was slowed by Ca chelation and accelerated by pacing. At low [Ca], CaMKII was concentrated at Z-lines near the dyad but spread throughout the sarcomere upon pacing. Nuclear exchange of CaMKII was also enhanced upon pacing- and heart failure-induced chronic activation. This mobilization of active CaMKII and its intrinsic memory may allow CaMKII to be activated in high [Ca] regions and then move towards more distant myocyte target sites.
Collapse
Affiliation(s)
- Brent M Wood
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Mitchell Simon
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Samuel Galice
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Chidera C Alim
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Maura Ferrero
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Natalie N Pinna
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
15
|
The Interaction between the Drosophila EAG Potassium Channel and the Protein Kinase CaMKII Involves an Extensive Interface at the Active Site of the Kinase. J Mol Biol 2018; 430:5029-5049. [PMID: 30381148 DOI: 10.1016/j.jmb.2018.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
The Drosophila EAG (dEAG) potassium channel is the founding member of the superfamily of KNCH channels, which are involved in cardiac repolarization, neuronal excitability and cellular proliferation. In flies, dEAG is involved in regulation of neuron firing and assembles with CaMKII to form a complex implicated in memory formation. We have characterized the interaction between the kinase domain of CaMKII and a 53-residue fragment of the dEAG channel that includes a canonical CaMKII recognition sequence. Crystal structures together with biochemical/biophysical analysis show a substrate-kinase complex with an unusually tight and extensive interface that appears to be strengthened by phosphorylation of the channel fragment. Electrophysiological recordings show that catalytically active CaMKII is required to observe active dEAG channels. A previously identified phosphorylation site in the recognition sequence is not the substrate for this crucial kinase activity, but rather contributes importantly to the tight interaction of the kinase with the channel. The available data suggest that the dEAG channel is a docking platform for the kinase and that phosphorylation of the channel's kinase recognition sequence modulates the strength of the interaction between the channel and the kinase.
Collapse
|
16
|
Vigil FA, Giese KP. Calcium/calmodulin-dependent kinase II and memory destabilization: a new role in memory maintenance. J Neurochem 2018; 147:12-23. [PMID: 29704430 PMCID: PMC6221169 DOI: 10.1111/jnc.14454] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 02/03/2023]
Abstract
In this review, we discuss the poorly explored role of calcium/calmodulin-dependent protein kinase II (CaMKII) in memory maintenance, and its influence on memory destabilization. After a brief review on CaMKII and memory destabilization, we present critical pieces of evidence suggesting that CaMKII activity increases retrieval-induced memory destabilization. We then proceed to propose two potential molecular pathways to explain the association between CaMKII activation and increased memory destabilization. This review will pinpoint gaps in our knowledge and discuss some 'controversial' observations, establishing the basis for new experiments on the role of CaMKII in memory reconsolidation. The role of CaMKII in memory destabilization is of great clinical relevance. Still, because of the lack of scientific literature on the subject, more basic science research is necessary to pursue this pathway as a clinical tool.
Collapse
Affiliation(s)
- Fabio Antonio Vigil
- Department of Cell and Integrative PhysiologyThe University of Texas Health San Antonio8403, Floyd Curl DriveSan AntonioTX 78229USA
| | - Karl Peter Giese
- Department of Basic and Clinical NeuroscienceKing's College London125 Coldharbour LaneLondonSE5 9NUUK
| |
Collapse
|
17
|
Penny CJ, Gold MG. Mechanisms for localising calcineurin and CaMKII in dendritic spines. Cell Signal 2018; 49:46-58. [DOI: 10.1016/j.cellsig.2018.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
|
18
|
Feng Z, Zeng M, Chen X, Zhang M. Neuronal Synapses: Microscale Signal Processing Machineries Formed by Phase Separation? Biochemistry 2018; 57:2530-2539. [DOI: 10.1021/acs.biochem.8b00313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhe Feng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xudong Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Heidarinejad M, Nakamura H, Inoue T. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neurosci Res 2018; 136:13-32. [PMID: 29395358 DOI: 10.1016/j.neures.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments. The diffusion of CaM in neurons was slower than that in HEK293 cells at rest, while the diffusion in stimulated neurons was accelerated and indistinguishable from that in HEK293 cells. This implied that activity-dependent binding partners of CaM exist in neurons, which slow down the diffusion at rest. Diffusion properties of CaMKIIα and β proteins implied that major populations of these proteins exist as holoenzymatic forms. Upon stimulation of neurons, the diffusion of CaMKIIα and β proteins became faster with reduced particle brightness, indicating drastic structural changes of the proteins such as dismissal from holoenzyme structure and further fragmentation.
Collapse
Affiliation(s)
- Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
20
|
Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain. Int J Mol Sci 2017; 19:ijms19010020. [PMID: 29271887 PMCID: PMC5795971 DOI: 10.3390/ijms19010020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII), a multifunctional serine (Ser)/threonine (Thr) protein kinase, regulates diverse activities related to Ca2+-mediated neuronal plasticity in the brain, including synaptic activity and gene expression. Among its regulators, protein phosphatase-1 (PP1), a Ser/Thr phosphatase, appears to be critical in controlling CaMKII-dependent neuronal signaling. In postsynaptic densities (PSDs), CaMKII is required for hippocampal long-term potentiation (LTP), a cellular process correlated with learning and memory. In response to Ca2+ elevation during hippocampal LTP induction, CaMKIIα, an isoform that translocates from the cytosol to PSDs, is activated through autophosphorylation at Thr286, generating autonomous kinase activity and a prolonged Ca2+/CaM-bound state. Moreover, PP1 inhibition enhances Thr286 autophosphorylation of CaMKIIα during LTP induction. By contrast, CaMKII nuclear import is regulated by Ser332 phosphorylation state. CaMKIIδ3, a nuclear isoform, is dephosphorylated at Ser332 by PP1, promoting its nuclear translocation, where it regulates transcription. In this review, we summarize physio-pathological roles of CaMKII/PP1 signaling in neurons. CaMKII and PP1 crosstalk and regulation of gene expression is important for neuronal plasticity as well as survival and/or differentiation.
Collapse
|
21
|
The CaMKII holoenzyme structure in activation-competent conformations. Nat Commun 2017; 8:15742. [PMID: 28589927 PMCID: PMC5467236 DOI: 10.1038/ncomms15742] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15–35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions. Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a 12 subunit holoenzyme central to synaptic plasticity. Here the authors report a 3D structure of the CaMKII holoenzyme in an activation-competent state obtained by single particle EM, and suggest a role for the intrinsically disordered linker domain in facilitating cooperative activation.
Collapse
|
22
|
Hoffman L, Li L, Alexov E, Sanabria H, Waxham MN. Cytoskeletal-like Filaments of Ca 2+-Calmodulin-Dependent Protein Kinase II Are Formed in a Regulated and Zn 2+-Dependent Manner. Biochemistry 2017; 56:2149-2160. [PMID: 28318265 DOI: 10.1021/acs.biochem.7b00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ca2+-calmodulin-dependent protein kinase II (CaMKII) is highly abundant in neurons, where its concentration reaches that typically found for cytoskeletal proteins. Functional reasons for such a high concentration are not known, but given the multitude of known binding partners for CaMKII, a role as a scaffolding molecule has been proposed. In this report, we provide experimental evidence that demonstrates a novel structural role for CaMKII. We discovered that CaMKII forms filaments that can extend for several micrometers in the presence of certain divalent cations (Zn2+, Cd2+, and Cu2+) but not with others (Ca2+, Mg2+, Co2+, and Ni2+). Once formed, depleting the divalent ion concentration with chelators completely dissociated the filaments, and this process could be repeated by cyclic addition and removal of divalent ions. Using the crystal structure of the CaMKII holoenzyme, we computed an electrostatic potential map of the dodecameric complex to predict divalent ion binding sites. This analysis revealed a potential surface-exposed divalent ion binding site involving amino acids that also participate in calmodulin (CaM) binding and suggested CaM binding might inhibit formation of the filaments. As predicted, Ca2+/CaM binding both inhibited divalent ion-induced filament formation and could disassemble preformed filaments. Interestingly, CaMKII within the filaments retains the capacity to autophosphorylate; however, activity toward exogenous substrates is significantly decreased. Activity is restored upon filament disassembly. We compile our results with structural and mechanistic data from the literature to propose a model of Zn2+-mediated CaMKII filament formation, in which assembly and activity are further regulated by Ca2+/CaM.
Collapse
Affiliation(s)
- Laurel Hoffman
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| | - Lin Li
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University , Clemson, South Carolina 29634-0978, United States
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston , 6431 Fannin, Room 7.254, MSB, Houston, Texas 77030, United States
| |
Collapse
|
23
|
Bhattacharyya M, Stratton MM, Going CC, McSpadden ED, Huang Y, Susa AC, Elleman A, Cao YM, Pappireddi N, Burkhardt P, Gee CL, Barros T, Schulman H, Williams ER, Kuriyan J. Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II. eLife 2016; 5. [PMID: 26949248 PMCID: PMC4859805 DOI: 10.7554/elife.13405] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/03/2016] [Indexed: 12/04/2022] Open
Abstract
Activation triggers the exchange of subunits in Ca2+/calmodulin-dependent protein kinase II (CaMKII), an oligomeric enzyme that is critical for learning, memory, and cardiac function. The mechanism by which subunit exchange occurs remains elusive. We show that the human CaMKII holoenzyme exists in dodecameric and tetradecameric forms, and that the calmodulin (CaM)-binding element of CaMKII can bind to the hub of the holoenzyme and destabilize it to release dimers. The structures of CaMKII from two distantly diverged organisms suggest that the CaM-binding element of activated CaMKII acts as a wedge by docking at intersubunit interfaces in the hub. This converts the hub into a spiral form that can release or gain CaMKII dimers. Our data reveal a three-way competition for the CaM-binding element, whereby phosphorylation biases it towards the hub interface, away from the kinase domain and calmodulin, thus unlocking the ability of activated CaMKII holoenzymes to exchange dimers with unactivated ones. DOI:http://dx.doi.org/10.7554/eLife.13405.001 How does memory outlast the lifetime of the molecules that encode it? One enzyme that is found in neurons and has been suggested to help long-term memories to form is called CaMKII. Each CaMKII assembly is typically composed of 12 to 14 protein subunits associated in a ring and can exist in either an “unactivated” or “activated” state. In 2014, researchers showed that CaMKII assemblies can exchange subunits with each other. Importantly, an active CaMKII can mix with an unactivated CaMKII and share its activation state. CaMKII may use this mechanism to spread information to the next generation of proteins – thereby allowing activation to outlast the lifespan of the initially activated proteins. However the molecular mechanism that underlies this process was not clear. Now, Bhattacharyya et al. – including some of the researchers involved in the 2014 work – address two questions about this mechanism. How do subunits exchange between CaMKII assemblies? And how does the activation of CaMKII initiate subunit exchange? A closed-ring hub ties the subunits of CaMKII together, similar to the organization of the segments in an orange. To undergo subunit exchange, the hub must open up to release and accept subunits. Bhattacharyya et al. have now uncovered an intrinsic flexibility in the hub that is triggered by a short peptide segment in CaMKII. This segment, which is exposed in activated CaMKII but not in the unactivated form, can crack open the hub ring by binding between the hub subunits, like a finger separating the segments of an orange. This allows the hub to flex and expand, and once open, the hub’s flexibility allows room for subunits to be released or accepted. Although this subunit exchange mechanism could be a powerful means for spreading the activated state throughout signaling pathways, the biological relevance of this phenomenon has not been clarified. However, the mechanistic framework provided by Bhattacharyya et al. may allow new experiments to be performed that test the consequences of subunit exchange in live cells and organisms. It could also enable investigations into the importance of subunit exchange in long-term memory. DOI:http://dx.doi.org/10.7554/eLife.13405.002
Collapse
Affiliation(s)
- Moitrayee Bhattacharyya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Catherine C Going
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Ethan D McSpadden
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yongjian Huang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - Anna C Susa
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Anna Elleman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Yumeng Melody Cao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nishant Pappireddi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Pawel Burkhardt
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Tiago Barros
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | | | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
24
|
Nguyen TA, Sarkar P, Veetil JV, Davis KA, Puhl HL, Vogel SS. Covert Changes in CaMKII Holoenzyme Structure Identified for Activation and Subsequent Interactions. Biophys J 2016; 108:2158-70. [PMID: 25954874 DOI: 10.1016/j.bpj.2015.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 11/29/2022] Open
Abstract
Between 8 to 14 calcium-calmodulin (Ca(2+)/CaM) dependent protein kinase-II (CaMKII) subunits form a complex that modulates synaptic activity. In living cells, the autoinhibited holoenzyme is organized as catalytic-domain pairs distributed around a central oligomerization-domain core. The functional significance of catalytic-domain pairing is not known. In a provocative model, catalytic-domain pairing was hypothesized to prevent ATP access to catalytic sites. If correct, kinase-activity would require catalytic-domain pair separation. Simultaneous homo-FRET and fluorescence correlation spectroscopy was used to detect structural changes correlated with kinase activation under physiological conditions. Saturating Ca(2+)/CaM triggered Threonine-286 autophosphorylation and a large increase in CaMKII holoenzyme hydrodynamic volume without any appreciable change in catalytic-domain pair proximity or subunit stoichiometry. An alternative hypothesis is that two appropriately positioned Threonine-286 interaction-sites (T-sites), each located on the catalytic-domain of a pair, are required for holoenzyme interactions with target proteins. Addition of a T-site ligand, in the presence of Ca(2+)/CaM, elicited a large decrease in catalytic-domain homo-FRET, which was blocked by mutating the T-site (I205K). Apparently catalytic-domain pairing is altered to allow T-site interactions.
Collapse
Affiliation(s)
- Tuan A Nguyen
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Pabak Sarkar
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Jithesh V Veetil
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Kaitlin A Davis
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Henry L Puhl
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland
| | - Steven S Vogel
- Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
25
|
Conformational signaling required for synaptic plasticity by the NMDA receptor complex. Proc Natl Acad Sci U S A 2015; 112:14711-6. [PMID: 26553983 DOI: 10.1073/pnas.1520029112] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor (NMDAR) is known to transmit important information by conducting calcium ions. However, some recent studies suggest that activation of NMDARs can trigger synaptic plasticity in the absence of ion flow. Does ligand binding transmit information to signaling molecules that mediate synaptic plasticity? Using Förster resonance energy transfer (FRET) imaging of fluorescently tagged proteins expressed in neurons, conformational signaling is identified within the NMDAR complex that is essential for downstream actions. Ligand binding transiently reduces FRET between the NMDAR cytoplasmic domain (cd) and the associated protein phosphatase 1 (PP1), requiring NMDARcd movement, and persistently reduces FRET between the NMDARcd and calcium/calmodulin-dependent protein kinase II (CaMKII), a process requiring PP1 activity. These studies directly monitor agonist-driven conformational signaling at the NMDAR complex required for synaptic plasticity.
Collapse
|
26
|
Simon B, Huart AS, Wilmanns M. Molecular mechanisms of protein kinase regulation by calcium/calmodulin. Bioorg Med Chem 2015; 23:2749-60. [PMID: 25963826 DOI: 10.1016/j.bmc.2015.04.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 01/02/2023]
Abstract
Many human protein kinases are regulated by the calcium-sensor protein calmodulin, which binds to a short flexible segment C-terminal to the enzyme's catalytic kinase domain. Our understanding of the molecular mechanism of kinase activity regulation by calcium/calmodulin has been advanced by the structures of two protein kinases-calmodulin kinase II and death-associated protein kinase 1-bound to calcium/calmodulin. Comparison of these two structures reveals a surprising level of diversity in the overall kinase-calcium/calmodulin arrangement and functional readout of activity, as well as complementary mechanisms of kinase regulation such as phosphorylation.
Collapse
Affiliation(s)
- Bertrand Simon
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Anne-Sophie Huart
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany
| | - Matthias Wilmanns
- EMBL Hamburg, c/o DESY, Building 25A, Notkestraße 85, 22603 Hamburg, Germany.
| |
Collapse
|
27
|
In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. Biophys J 2014; 106:1414-20. [PMID: 24655517 DOI: 10.1016/j.bpj.2014.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022] Open
Abstract
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) has been shown to play a major role in establishing memories through complex molecular interactions including phosphorylation of multiple synaptic targets. However, it is still controversial whether CaMKII itself serves as a molecular memory because of a lack of direct evidence. Here, we show that a single holoenzyme of CaMKII per se serves as an erasable molecular memory switch. We reconstituted Ca(2+)/Calmodulin-dependent CaMKII autophosphorylation in the presence of protein phosphatase 1 in vitro, and found that CaMKII phosphorylation shows a switch-like response with history dependence (hysteresis) only in the presence of an N-methyl-D-aspartate receptor-derived peptide. This hysteresis is Ca(2+) and protein phosphatase 1 concentration-dependent, indicating that the CaMKII memory switch is not simply caused by an N-methyl-D-aspartate receptor-derived peptide lock of CaMKII in an active conformation. Mutation of a phosphorylation site of the peptide shifted the Ca(2+) range of hysteresis. These functions may be crucial for induction and maintenance of long-term synaptic plasticity at hippocampal synapses.
Collapse
|
28
|
Huang B, Yang CS, Wojton J, Huang NJ, Chen C, Soderblom EJ, Zhang L, Kornbluth S. Metabolic control of Ca2+/calmodulin-dependent protein kinase II (CaMKII)-mediated caspase-2 suppression by the B55β/protein phosphatase 2A (PP2A). J Biol Chem 2014; 289:35882-90. [PMID: 25378403 DOI: 10.1074/jbc.m114.585844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
High levels of metabolic activity confer resistance to apoptosis. Caspase-2, an apoptotic initiator, can be suppressed by high levels of nutrient flux through the pentose phosphate pathway. This metabolic control is exerted via inhibitory phosphorylation of the caspase-2 prodomain by activated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). We show here that this activation of CaMKII depends, in part, on dephosphorylation of CaMKII at novel sites (Thr(393)/Ser(395)) and that this is mediated by metabolic activation of protein phosphatase 2A in complex with the B55β targeting subunit. This represents a novel locus of CaMKII control and also provides a mechanism contributing to metabolic control of apoptosis. These findings may have implications for metabolic control of the many CaMKII-controlled and protein phosphatase 2A-regulated physiological processes, because both enzymes appear to be responsive to alterations in glucose metabolized via the pentose phosphate pathway.
Collapse
Affiliation(s)
- Bofu Huang
- From the Department of Pharmacology and Cancer Biology
| | | | | | - Nai-Jia Huang
- From the Department of Pharmacology and Cancer Biology
| | - Chen Chen
- From the Department of Pharmacology and Cancer Biology
| | | | - Liguo Zhang
- the Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27705
| | | |
Collapse
|
29
|
Michalski PJ. The delicate bistability of CaMKII. Biophys J 2014; 105:794-806. [PMID: 23931327 DOI: 10.1016/j.bpj.2013.06.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a synaptic, autophosphorylating kinase that is essential for learning and memory. Previous models have suggested that CaMKII functions as a bistable switch that could be the molecular correlate of long-term memory, but experiments have failed to validate these predictions. These models involved significant approximations to overcome the combinatorial complexity inherent in a multisubunit, multistate system. Here, we develop a stochastic particle-based model of CaMKII activation and dynamics that overcomes combinatorial complexity without significant approximations. We report four major findings. First, the CaMKII model system is never bistable at resting calcium concentrations, which suggests that CaMKII activity does not function as the biochemical switch underlying long-term memory. Second, the steady-state activation curves are either laserlike or steplike. Both are characterized by a well-defined threshold for activation, which suggests that thresholding is a robust feature of this system. Third, transiently activated CaMKII can maintain its activity over the time course of many experiments, and such slow deactivation may account for the few reports of bistability in the literature. And fourth, under in vivo conditions, increases in phosphatase activity can increase CaMKII activity. This is a surprising and counterintuitive effect, as dephosphorylation is generally associated with CaMKII deactivation.
Collapse
Affiliation(s)
- P J Michalski
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
30
|
Pellicena P, Schulman H. CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol 2014; 5:21. [PMID: 24600394 PMCID: PMC3929941 DOI: 10.3389/fphar.2014.00021] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022] Open
Abstract
The cardiac field has benefited from the availability of several CaMKII inhibitors serving as research tools to test putative CaMKII pathways associated with cardiovascular physiology and pathophysiology. Successful demonstrations of its critical pathophysiological roles have elevated CaMKII as a key target in heart failure, arrhythmia, and other forms of heart disease. This has caught the attention of the pharmaceutical industry, which is now racing to develop CaMKII inhibitors as safe and effective therapeutic agents. While the first generation of CaMKII inhibitor development is focused on blocking its activity based on ATP binding to its catalytic site, future inhibitors can also target sites affecting its regulation by Ca2+/CaM or translocation to some of its protein substrates. The recent availability of crystal structures of the kinase in the autoinhibited and activated state, and of the dodecameric holoenzyme, provides insights into the mechanism of action of existing inhibitors. It is also accelerating the design and development of better pharmacological inhibitors. This review examines the structure of the kinase and suggests possible sites for its inhibition. It also analyzes the uses and limitations of current research tools. Development of new inhibitors will enable preclinical proof of concept tests and clinical development of successful lead compounds, as well as improved research tools to more accurately examine and extend knowledge of the role of CaMKII in cardiac health and disease.
Collapse
|
31
|
Onal B, Unudurthi SD, Hund TJ. Modeling CaMKII in cardiac physiology: from molecule to tissue. Front Pharmacol 2014; 5:9. [PMID: 24550832 PMCID: PMC3912431 DOI: 10.3389/fphar.2014.00009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/16/2014] [Indexed: 12/02/2022] Open
Abstract
Post-translational modification of membrane proteins (e.g., ion channels, receptors) by protein kinases is an essential mechanism for control of excitable cell function. Importantly, loss of temporal and/or spatial control of ion channel post-translational modification is common in congenital and acquired forms of cardiac disease and arrhythmia. The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates a number of diverse cellular functions in heart, including excitation-contraction coupling, gene transcription, and apoptosis. Dysregulation of CaMKII signaling has been implicated in human and animal models of disease. Understanding of CaMKII function has been advanced by mathematical modeling approaches well-suited to the study of complex biological systems. Early kinetic models of CaMKII function in the brain characterized this holoenzyme as a bistable molecular switch capable of storing information over a long period of time. Models of CaMKII activity have been incorporated into models of the cell and tissue (particularly in the heart) to predict the role of CaMKII in regulating organ function. Disease models that incorporate CaMKII overexpression clearly demonstrate a link between its excessive activity and arrhythmias associated with congenital and acquired heart disease. This review aims at discussing systems biology approaches that have been applied to analyze CaMKII signaling from the single molecule to intact cardiac tissue. In particular, efforts to use computational biology to provide new insight into cardiac disease mechanisms are emphasized.
Collapse
Affiliation(s)
- Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA
| | - Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University Columbus, OH, USA ; Department of Biomedical Engineering, College of Engineering, The Ohio State University Columbus, OH, USA ; Department of Internal Medicine, Wexner Medical Center, The Ohio State University Columbus, OH, USA
| |
Collapse
|
32
|
Stratton M, Lee IH, Bhattacharyya M, Christensen SM, Chao LH, Schulman H, Groves JT, Kuriyan J. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 2014; 3:e01610. [PMID: 24473075 PMCID: PMC3901001 DOI: 10.7554/elife.01610] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The activation of the dodecameric Ca(2+)/calmodulin dependent kinase II (CaMKII) holoenzyme is critical for memory formation. We now report that CaMKII has a remarkable property, which is that activation of the holoenzyme triggers the exchange of subunits between holoenzymes, including unactivated ones, enabling the calcium-independent phosphorylation of new subunits. We show, using a single-molecule TIRF microscopy technique, that the exchange process is triggered by the activation of CaMKII, and that exchange is modulated by phosphorylation of two residues in the calmodulin-binding segment, Thr 305 and Thr 306. Based on these results, and on the analysis of molecular dynamics simulations, we suggest that the phosphorylated regulatory segment of CaMKII interacts with the central hub of the holoenzyme and weakens its integrity, thereby promoting exchange. Our results have implications for an earlier idea that subunit exchange in CaMKII may have relevance for information storage resulting from brief coincident stimuli during neuronal signaling. DOI: http://dx.doi.org/10.7554/eLife.01610.001.
Collapse
Affiliation(s)
- Margaret Stratton
- Department of Molecular and Cell Biology, Berkeley, Berkeley, United States
| | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Casanova JR, Nishimura M, Swann JW. The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res Bull 2013; 103:39-48. [PMID: 24140049 DOI: 10.1016/j.brainresbull.2013.10.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/08/2023]
Abstract
Severe childhood epilepsy is commonly associated with intellectual developmental disabilities. The reasons for these cognitive deficits are likely multifactorial and will vary between epilepsy syndromes and even among children with the same syndrome. However, one factor these children have in common is the recurring seizures they experience - sometimes on a daily basis. Supporting the idea that the seizures themselves can contribute to intellectual disabilities are laboratory results demonstrating spatial learning and memory deficits in normal mice and rats that have experienced recurrent seizures in infancy. Studies reviewed here have shown that seizures in vivo and electrographic seizure activity in vitro both suppress the growth of hippocampal pyramidal cell dendrites. A simplification of dendritic arborization and a resulting decrease in the number and/or properties of the excitatory synapses on them could help explain the observed cognitive disabilities. There are a wide variety of candidate mechanisms that could be involved in seizure-induced growth suppression. The challenge is designing experiments that will help focus research on a limited number of potential molecular events. Thus far, results suggest that growth suppression is NMDA receptor-dependent and associated with a decrease in activation of the transcription factor CREB. The latter result is intriguing since CREB is known to play an important role in dendrite growth. Seizure-induced dendrite growth suppression may not occur as a single process in which pyramidal cells dendrites simply stop growing or grow slower compared to normal neurons. Instead, recent results suggest that after only a few hours of synchronized epileptiform activity in vitro dendrites appear to partially retract. This acute response is also NMDA receptor dependent and appears to be mediated by the Ca(+2)/calmodulin-dependent phosphatase, calcineurin. An understanding of the staging of seizure-induced growth suppression and the underlying molecular mechanisms will likely prove crucial for developing therapeutic strategies aimed at ameliorating the intellectual developmental disabilities associated with intractable childhood epilepsy.
Collapse
Affiliation(s)
- J R Casanova
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA
| | - Masataka Nishimura
- The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA
| | - John W Swann
- The Department of Neuroscience, Baylor College of Medicine, USA; The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, USA; Department of Pediatrics, Baylor College of Medicine, USA.
| |
Collapse
|
35
|
Stratton MM, Chao LH, Schulman H, Kuriyan J. Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr Opin Struct Biol 2013; 23:292-301. [PMID: 23632248 DOI: 10.1016/j.sbi.2013.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 03/24/2013] [Accepted: 04/02/2013] [Indexed: 11/15/2022]
Abstract
Ca(2+)/calmodulin dependent protein kinase II (CaMKII) is a broadly distributed metazoan Ser/Thr protein kinase that is important in neuronal and cardiac signaling. CaMKII forms oligomeric assemblies, typically dodecameric, in which the calcium-responsive kinase domains are organized around a central hub. We review the results of crystallographic analyses of CaMKII, including the recently determined structure of a full-length and autoinhibited form of the holoenzyme. These structures, when combined with other data, allow informed speculation about how CaMKII escapes calcium-dependence when calcium spikes exceed threshold frequencies.
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
36
|
Fera A, Dosemeci A, Sousa AA, Yang C, Leapman RD, Reese TS. Direct visualization of CaMKII at postsynaptic densities by electron microscopy tomography. J Comp Neurol 2013; 520:4218-25. [PMID: 22627922 DOI: 10.1002/cne.23151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) is a major component of postsynaptic densities (PSDs) involved in synaptic regulation. It has been previously shown that upon activity CaMKII from the spine reversibly aggregates at the cytoplasmic surfaces of PSDs, where it encounters various targets for phosphorylation. Targets for CaMKII are also present within the PSD, but there has been no reliable method to pinpoint whether, or where, CaMKII is located inside the PSD. Here we show that CaMKII can be mapped molecule-by-molecule within isolated PSDs using negative stain electron microscopy tomography. CaMKII molecules found in the core of the PSD may represent a pool distinct from the CaMKII residing at the cytoplasmic surface.
Collapse
Affiliation(s)
- Andrea Fera
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Fujii H, Inoue M, Okuno H, Sano Y, Takemoto-Kimura S, Kitamura K, Kano M, Bito H. Nonlinear decoding and asymmetric representation of neuronal input information by CaMKIIα and calcineurin. Cell Rep 2013; 3:978-87. [PMID: 23602566 DOI: 10.1016/j.celrep.2013.03.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 10/26/2022] Open
Abstract
How information encoded in glutamate release rates at individual synapses is converted into biochemical activation patterns of postsynaptic enzymes remains unexplored. To address this, we developed a dual fluorescence resonance energy transfer (FRET) imaging platform and recorded CaMKIIα and calcineurin activities in hippocampal neurons while varying glutamate uncaging frequencies. With little spine morphological change, 5 Hz spine glutamate uncaging strongly stimulated calcineurin, but not CaMKIIα. In contrast, 20 Hz spine glutamate uncaging, which induced spine growth, activated both CaMKIIα and calcineurin with distinct spatiotemporal kinetics. Higher temporal resolution recording in the soma revealed that CaMKIIα activity summed supralinearly and sensed both higher frequency and input number, thus acting as an input frequency/number decoder. In contrast, calcineurin activity summated sublinearly with increasing input number and showed little frequency dependence, thus functioning as an input number counter. These results provide evidence that CaMKIIα and calcineurin are fine-tuned to unique bandwidths and compute input variables in an asymmetric manner.
Collapse
Affiliation(s)
- Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li L, Stefan MI, Le Novère N. Calcium input frequency, duration and amplitude differentially modulate the relative activation of calcineurin and CaMKII. PLoS One 2012; 7:e43810. [PMID: 22962589 PMCID: PMC3433481 DOI: 10.1371/journal.pone.0043810] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors.
Collapse
Affiliation(s)
| | | | - Nicolas Le Novère
- EMBL European Bioinformatics Institute, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Michalski PJ, Loew LM. CaMKII activation and dynamics are independent of the holoenzyme structure: an infinite subunit holoenzyme approximation. Phys Biol 2012; 9:036010. [PMID: 22683827 DOI: 10.1088/1478-3975/9/3/036010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The combinatorial explosion produced by the multi-state, multi-subunit character of CaMKII has made analysis and modeling of this key signaling protein a significant challenge. Using rule-based and particle-based approaches, we construct exact models of CaMKII holoenzyme dynamics and study these models as a function of the number of subunits per holoenzyme, N. Without phosphatases the dynamics of activation are independent of the holoenzyme structure unless phosphorylation significantly alters the kinase activity of a subunit. With phosphatases the model is independent of holoenzyme size for N > 6. We introduce an infinite subunit holoenzyme approximation (ISHA), which simplifies the modeling by eliminating the combinatorial complexities encountered in any finite holoenzyme model. The ISHA is an excellent approximation to the full system over a broad range of physiologically relevant parameters. Finally, we demonstrate that the ISHA reproduces the behavior of exact models during synaptic plasticity protocols, which justifies its use as a module in large models of synaptic plasticity.
Collapse
Affiliation(s)
- P J Michalski
- Richard D Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | |
Collapse
|
40
|
Swulius MT, Farley MM, Bryant MA, Waxham MN. Electron cryotomography of postsynaptic densities during development reveals a mechanism of assembly. Neuroscience 2012; 212:19-29. [PMID: 22516021 DOI: 10.1016/j.neuroscience.2012.03.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/27/2012] [Accepted: 03/28/2012] [Indexed: 01/10/2023]
Abstract
Postsynaptic densities (PSDs) are responsible for organizing receptors and signaling proteins that regulate excitatory transmission in the mammalian brain. To better understand the assembly and 3D organization of this synaptic structure, we employed electron cryotomography to visualize general and fine structural details of PSDs isolated from P2, P14, P21 and adult forebrain in the absence of fixatives and stains. PSDs at P2 are a loose mesh of filamentous and globular proteins and during development additional protein complexes are recruited onto the mesh. Quantitative analysis reveals that while the surface area of PSDs is relatively constant, the thickness and protein occupancy of the PSD volume increase dramatically between P14 and adult. One striking morphological feature is the appearance of lipid raft-like structures, first evident in PSDs from 14 day old animals. These detergent-resistant membranes stain for GM1 ganglioside and their terminations can be clearly seen embedded in protein "bowls" within the PSD complex. In total, these results lead to the conclusion that the PSD is assembled by the gradual recruitment and stabilization of proteins within an initial mesh that systematically adds complexity to the structure.
Collapse
Affiliation(s)
- M T Swulius
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
41
|
Kramerova I, Kudryashova E, Ermolova N, Saenz A, Jaka O, López de Munain A, Spencer MJ. Impaired calcium calmodulin kinase signaling and muscle adaptation response in the absence of calpain 3. Hum Mol Genet 2012; 21:3193-204. [PMID: 22505582 DOI: 10.1093/hmg/dds144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in the non-lysosomal, cysteine protease calpain 3 (CAPN3) result in the disease limb girdle muscular dystrophy type 2A (LGMD2A). CAPN3 is localized to several subcellular compartments, including triads, where it plays a structural, rather than a proteolytic, role. In the absence of CAPN3, several triad components are reduced, including the major Ca(2+) release channel, ryanodine receptor (RyR). Furthermore, Ca(2+) release upon excitation is impaired in the absence of CAPN3. In the present study, we show that Ca-calmodulin protein kinase II (CaMKII) signaling is compromised in CAPN3 knockout (C3KO) mice. The CaMK pathway has been previously implicated in promoting the slow skeletal muscle phenotype. As expected, the decrease in CaMKII signaling that was observed in the absence of CAPN3 is associated with a reduction in the slow versus fast muscle fiber phenotype. We show that muscles of WT mice subjected to exercise training activate the CaMKII signaling pathway and increase expression of the slow form of myosin; however, muscles of C3KO mice do not exhibit these adaptive changes to exercise. These data strongly suggest that skeletal muscle's adaptive response to functional demand is compromised in the absence of CAPN3. In agreement with our mouse studies, RyR levels were also decreased in biopsies from LGMD2A patients. Moreover, we observed a preferential pathological involvement of slow fibers in LGMD2A biopsies. Thus, impaired CaMKII signaling and, as a result, a weakened muscle adaptation response identify a novel mechanism that may underlie LGMD2A and suggest a pharmacological target that should be explored for therapy.
Collapse
Affiliation(s)
- I Kramerova
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Fera A, Farrington JE, Zimmerberg J, Reese TS. A negative stain for electron microscopic tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:331-335. [PMID: 22364718 PMCID: PMC3650645 DOI: 10.1017/s1431927611012797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While negative staining can provide detailed, two-dimensional images of biological structures, the potential of combining tomography with negative staining to provide three-dimensional views has yet to be fully realized. Basic requirements of a negative stain for tomography are that the density and atomic number of the stain are optimal, and that the stain does not degrade or rearrange with the intensive electron dose (~10⁶ e/nm²) needed to collect a full set of tomographic images. A commercially available, tungsten-based stain appears to satisfy these prerequisites. Comparison of the surface structure of negatively stained influenza A virus with previous structural results served to evaluate this negative stain. The combination of many projections of the same structure yielded detailed images of single proteins on the viral surface. Corresponding surface renderings are a good fit to images of the viral surface derived from cryomicroscopy as well as to the shapes of crystallized surface proteins. Negative stain tomography with the appropriate stain yields detailed images of individual molecules in their normal setting on the surface of the influenza A virus.
Collapse
Affiliation(s)
- Andrea Fera
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jane E. Farrington
- Laboratory of Cellular Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua Zimmerberg
- Laboratory of Cellular Molecular Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
43
|
Lisman J, Yasuda R, Raghavachari S. Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 2012; 13:169-82. [PMID: 22334212 DOI: 10.1038/nrn3192] [Citation(s) in RCA: 804] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Long-term potentiation (LTP) of synaptic strength occurs during learning and can last for long periods, making it a probable mechanism for memory storage. LTP induction results in calcium entry, which activates calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII subsequently translocates to the synapse, where it binds to NMDA-type glutamate receptors and produces potentiation by phosphorylating principal and auxiliary subunits of AMPA-type glutamate receptors. These processes are all localized to stimulated spines and account for the synapse-specificity of LTP. In the later stages of LTP, CaMKII has a structural role in enlarging and strengthening the synapse.
Collapse
Affiliation(s)
- John Lisman
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | | | |
Collapse
|
44
|
Stefan MI, Marshall DP, Le Novère N. Structural analysis and stochastic modelling suggest a mechanism for calmodulin trapping by CaMKII. PLoS One 2012; 7:e29406. [PMID: 22279535 PMCID: PMC3261145 DOI: 10.1371/journal.pone.0029406] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022] Open
Abstract
Activation of CaMKII by calmodulin and the subsequent maintenance of constitutive activity through autophosphorylation at threonine residue 286 (Thr286) are thought to play a major role in synaptic plasticity. One of the effects of autophosphorylation at Thr286 is to increase the apparent affinity of CaMKII for calmodulin, a phenomenon known as "calmodulin trapping". It has previously been suggested that two binding sites for calmodulin exist on CaMKII, with high and low affinities, respectively. We built structural models of calmodulin bound to both of these sites. Molecular dynamics simulation showed that while binding of calmodulin to the supposed low-affinity binding site on CaMKII is compatible with closing (and hence, inactivation) of the kinase, and could even favour it, binding to the high-affinity site is not. Stochastic simulations of a biochemical model showed that the existence of two such binding sites, one of them accessible only in the active, open conformation, would be sufficient to explain calmodulin trapping by CaMKII. We can explain the effect of CaMKII autophosphorylation at Thr286 on calmodulin trapping: It stabilises the active state and therefore makes the high-affinity binding site accessible. Crucially, a model with only one binding site where calmodulin binding and CaMKII inactivation are strictly mutually exclusive cannot reproduce calmodulin trapping. One of the predictions of our study is that calmodulin binding in itself is not sufficient for CaMKII activation, although high-affinity binding of calmodulin is.
Collapse
|
45
|
Spatiotemporal maps of CaMKII in dendritic spines. J Comput Neurosci 2012; 33:123-39. [DOI: 10.1007/s10827-011-0377-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 01/28/2023]
|
46
|
Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y. Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 2011; 18:3707-13. [PMID: 21774758 DOI: 10.2174/092986711796642409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.
Collapse
Affiliation(s)
- T Bányász
- Department of Physiology, University of Debrecen, Nagyerdei krt. 98. H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
47
|
Chao LH, Stratton MM, Lee IH, Rosenberg OS, Levitz J, Mandell DJ, Kortemme T, Groves JT, Schulman H, Kuriyan J. A mechanism for tunable autoinhibition in the structure of a human Ca2+/calmodulin- dependent kinase II holoenzyme. Cell 2011; 146:732-45. [PMID: 21884935 DOI: 10.1016/j.cell.2011.07.038] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/11/2011] [Accepted: 07/29/2011] [Indexed: 01/16/2023]
Abstract
Calcium/calmodulin-dependent kinase II (CaMKII) forms a highly conserved dodecameric assembly that is sensitive to the frequency of calcium pulse trains. Neither the structure of the dodecameric assembly nor how it regulates CaMKII are known. We present the crystal structure of an autoinhibited full-length human CaMKII holoenzyme, revealing an unexpected compact arrangement of kinase domains docked against a central hub, with the calmodulin-binding sites completely inaccessible. We show that this compact docking is important for the autoinhibition of the kinase domains and for setting the calcium response of the holoenzyme. Comparison of CaMKII isoforms, which differ in the length of the linker between the kinase domain and the hub, demonstrates that these interactions can be strengthened or weakened by changes in linker length. This equilibrium between autoinhibited states provides a simple mechanism for tuning the calcium response without changes in either the hub or the kinase domains.
Collapse
Affiliation(s)
- Luke H Chao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²⁺ overload resulting in neuronal cell death (excitotoxicity). The Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²⁺ stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.
Collapse
|
49
|
Cheriyan J, Kumar P, Mayadevi M, Surolia A, Omkumar RV. Calcium/calmodulin dependent protein kinase II bound to NMDA receptor 2B subunit exhibits increased ATP affinity and attenuated dephosphorylation. PLoS One 2011; 6:e16495. [PMID: 21423658 PMCID: PMC3057968 DOI: 10.1371/journal.pone.0016495] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/18/2010] [Indexed: 11/18/2022] Open
Abstract
Calcium/calmodulin dependent protein kinase II (CaMKII) is implicated to play a key role in learning and memory. NR2B subunit of N-methyl-D-aspartate receptor (NMDAR) is a high affinity binding partner of CaMKII at the postsynaptic membrane. NR2B binds to the T-site of CaMKII and modulates its catalysis. By direct measurement using isothermal titration calorimetry (ITC), we show that NR2B binding causes about 11 fold increase in the affinity of CaMKII for ATPγS, an analogue of ATP. ITC data is also consistent with an ordered binding mechanism for CaMKII with ATP binding the catalytic site first followed by peptide substrate. We also show that dephosphorylation of phospho-Thr(286)-α-CaMKII is attenuated when NR2B is bound to CaMKII. This favors the persistence of Thr(286) autophosphorylated state of CaMKII in a CaMKII/phosphatase conjugate system in vitro. Overall our data indicate that the NR2B- bound state of CaMKII attains unique biochemical properties which could help in the efficient functioning of the proposed molecular switch supporting synaptic memory.
Collapse
Affiliation(s)
- John Cheriyan
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Parimal Kumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Madhavan Mayadevi
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
- National Institute of Immunology, New Delhi, India
| | - Ramakrishnapillai V. Omkumar
- Molecular Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- * E-mail:
| |
Collapse
|
50
|
LeBoeuf B, Guo X, García LR. The effects of transient starvation persist through direct interactions between CaMKII and ether-a-go-go K+ channels in C. elegans males. Neuroscience 2011; 175:1-17. [PMID: 21145946 PMCID: PMC3059131 DOI: 10.1016/j.neuroscience.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 11/30/2010] [Accepted: 12/01/2010] [Indexed: 12/29/2022]
Abstract
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. EGL-2 and UNC-43 interactions, induced after food deprivation, maintain reduced excitability in muscles involved in sex. In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
Collapse
Affiliation(s)
- Brigitte LeBoeuf
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - Xiaoyan Guo
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| | - L. René García
- Howard Hughes Medical Institute, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258
| |
Collapse
|