1
|
Peters M, Zhao T, George S, Truong VG, Nic Chormaic S, Ying C, Nome RA, Gordon R. Energy landscape of conformational changes for a single unmodified protein. NPJ BIOSENSING 2024; 1:14. [PMID: 39524907 PMCID: PMC11541220 DOI: 10.1038/s44328-024-00014-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Resolving the free energy landscapes that govern protein biophysics has been obscured by ensemble averaging. While the folding dynamics of single proteins have been observed using fluorescent labels and/or tethers, a simpler and more direct measurement of the conformational changes would not require modifications to the protein. We use nanoaperture optical tweezers to resolve the energy landscape of a single unmodified protein, Bovine Serum Albumin (BSA), and quantify changes in the three-state conformation dynamics with temperature. A Markov model with Kramers' theory transition rates is used to model the dynamics, showing good agreement with the observed state transitions. This first look at the intrinsic energy landscape of proteins provides a transformative tool for protein biophysics and may be applied broadly, including mapping out the energy landscape of particularly challenging intrinsically disordered proteins.
Collapse
Affiliation(s)
- Matthew Peters
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Tianyu Zhao
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Sherin George
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| | - Viet Giang Truong
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Síle Nic Chormaic
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495 Japan
| | - Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science & Technology, Nottingham Trent University, Nottingham, NG11 8NS England
| | - René A. Nome
- Institute of Chemistry, State University of Campinas, Campinas, Brazil
| | - Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, V8W 2Y2 BC Canada
- Center for Advanced Material & Related Technologies, University of Victoria, Victoria, V8W 2Y2 BC Canada
| |
Collapse
|
2
|
Owczarzy A, Trzepacz M, Kulig K, Rogóż W, Zięba A, Maciążek-Jurczyk M. In vitro spectroscopic studies of 9-amino-5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazine chloride with main carrier plasma proteins. Chem Biol Interact 2024; 405:111289. [PMID: 39454709 DOI: 10.1016/j.cbi.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Current methods of cancer treatment, particularly chemotherapy, are associated with harmful side effects. For this reason, it is significant to study new substances with anticancer potential with the highest possible efficacy and the lowest possible side effects. The aim of the study was the spectroscopic analysis of the interaction between 9-amino-5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazine chloride (Salt3) and main carrier proteins, such as human serum albumin (HSA), α1 acid glycoprotein (AGP), human γ globulin (HGG) and controlled normal serum (CNS). The association constants (Ka [mol·L-1]) and the number of binding site classes (n) for the binding of Salt3 with studied carrier proteins and controlled normal serum were calculated using the Klotz equation. To study HSA and AGP high affinity binding sites, the fluorescent markers were used. Spectral parameter A and the second derivative of differential absorption spectra were used to assess environmental changes around aromatic amino acids residues. The changes in HSA and AGP secondary structure in the complexes with Salt3 were evaluated using the analysis using circular dichroism. Salt3 slightly binds to HSA, AGP, HGG molecules and CNS. In addition, Salt3 affects the tertiary structure of the studied proteins, while it does not damage the secondary structure of the main carrier proteins responsible for Salt3 distribution in the bloodstream. Because Salt3 binds weakly to model carrier proteins and normal control serum, it can lead to both strong therapeutic and toxic effects. Considering these preliminary spectroscopic studies, additional tests as well as expanding research to include other techniques seem justified.
Collapse
Affiliation(s)
- Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Monika Trzepacz
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Andrzej Zięba
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055, Katowice, Poland.
| |
Collapse
|
3
|
Del Giudice A, Del Giudice D, Spatola E, Alemanno V, Galantini L, Di Stefano S. An albumin unfolding and refolding cycle induced by a time-controlled pH jump. Org Biomol Chem 2024. [PMID: 39359130 DOI: 10.1039/d4ob01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Given the intimate connection between the structure and function of biological macromolecules, the ability to temporally control their unfolding-refolding process enables temporal regulation over specific functionalities, potentially applicable in innovative domains, including the construction of protein-based actuators or programmable catalysis and drug release in complex biotechnological processes. We show here how a temporally controlled protein unfolding-refolding cycle can be coupled in time with programmed pH sequences achieved through the spontaneous decomposition of an activated carboxylic acid. Specifically, we illustrate this process at the molecular level using albumin, the most prevalent protein found in plasma, for which a temporary shift from native to unfolded forms is promoted using nitroacetic acid, able to undergo base-catalysed decarboxylation when solubilized in water solution. As detected by small angle X-ray scattering and intrinsic tryptophan fluorescence, starting from the protein in its native form, the acid addition triggers unfolding to a partially denatured state and a subsequent time-tunable pH rise with gradual refolding that recapitulates the intermediate steps detected at the same pH values by static acidification, fitting within a framework of full reversibility of the structural changes as a function of the protein protonation state. At the end of the pH jump, the native structure is fully recovered, making this method a chemical tool to achieve a complete protein conformational sequence programmed in the timeframe of minutes without further intervention.
Collapse
Affiliation(s)
- Alessandra Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Daniele Del Giudice
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Emanuele Spatola
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Valentina Alemanno
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Stefano Di Stefano
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Radomirovic M, Gligorijevic N, Stanic-Vucinic D, Nikolic M, Cirkovic Velickovic T. Fabrication and characterization of bovine serum albumin-phycocyanobilin conjugate: effect on antioxidant and ligand-binding properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8171-8180. [PMID: 38847470 DOI: 10.1002/jsfa.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Phycocyanobilin (PCB) is an open-chain blue tetrapyrrole chromophore of C-phycocyanin (C-PC), a major chromoprotein derived from the cyanobacterium Arthrospira platensis having numerous health-promoting effects. Relying on the ability of PCB to attach to the sulfhydryl group of proteins, we propose a new method for covalent attachment of PCB to bovine serum albumin (BSA) as a means of its functionalization. RESULTS Traut's reagent (TR, 2-iminothiolane), modifying lysine residues, was used to optimize the introduction of sulfhydryl groups in BSA. A higher degree of BSA thiolation by TR induces more profound alterations of its structure, resulting in minor oligomerization and aggregation. A 50-fold molar excess of TR was found to be the optimal, balancing thiolation level and adverse effect on protein structure. PCB was covalently attached to newly introduced sulfhydryl groups at pH 9 at 20-fold PCB/BSA ratio. An increase in the TR/BSA molar ratio leads to increased efficiency of PCB conjugation with thiolated BSA. Compared to native BSA, BSA-PCB conjugate binds quercetin with similar affinity but has higher antioxidant activity and increased oxidative stability. CONCLUSIONS PCB-modified BSA could serve as a stable, food-compatible carrier of bioactive PCB, but also bind other ligands that would be protected from oxidative damage due to the high antioxidant potential of covalently bound PCB. Thiolation by TR is, at the same time, a simple method for the covalent functionalization of virtually any protein by bioactive PCB or for obtaining PCB-based fluorescent probes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mirjana Radomirovic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Nikola Gligorijevic
- Center for Chemistry, University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Dragana Stanic-Vucinic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Milan Nikolic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
5
|
Rogóż W, Owczarzy A, Kulig K, Maciążek-Jurczyk M. Ligand-human serum albumin analysis: the near-UV CD and UV-Vis spectroscopic studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03471-3. [PMID: 39347800 DOI: 10.1007/s00210-024-03471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Spectroscopic methods offer many new opportunities to study protein-ligand interactions. The aim of this study was to evaluate the possibility of using near-UV CD as well as UV-Vis spectroscopic techniques to study the interaction between human serum albumin (HSA) and markers of Sudlow's site I (warfarin, phenylbutazone) and II (ketoprofen, ibuprofen), as well as prednisolone and indapamide. In order to perform the planned measurements, near-UV CD spectropolarimetry and UV-Vis spectrophotometry have been used. It has been demonstrated that both techniques allow for rapid evaluation of non-covalent interactions between HSA and ligand, as well as identification of the HSA aromatic amino acid residues involved in this process. The near-UV CD spectroscopic data were more valuable than the analysis based on the second derivative of differential UV-Vis absorption spectra, especially for ligands with a non-specified binding site and low affinity towards HSA, such as prednisolone. The combination of both techniques makes it possible for comprehensive analysis of the interaction between HSA and ligands.
Collapse
Affiliation(s)
- Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Aleksandra Owczarzy
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055, Katowice, Poland.
| |
Collapse
|
6
|
Nucera A, Macchia ML, Baranyai Z, Carniato F, Tei L, Ravera M, Botta M. Comprehensive Investigation of [Fe(EDTA)] --Functionalized Derivatives and their Supramolecular Adducts with Human Serum Albumin. Inorg Chem 2024; 63:12992-13004. [PMID: 38949627 DOI: 10.1021/acs.inorgchem.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both 1H and 17O NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)]- and [Fe(EDTA-BOM2)(H2O)]- as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.
Collapse
Affiliation(s)
- Alessandro Nucera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Maria Ludovica Macchia
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Zsolt Baranyai
- Bracco Imaging SpA, CRB Trieste, AREA Science Park, Basovizza, TS 34149, Italy
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Ravera
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
- Magnetic Resonance Platform (PRISMA-UPO), Università del Piemonte Orientale, Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
7
|
Kakati N, Ahari D, Parmar PR, Deshmukh OS, Bandyopadhyay D. Lactic Acid-Induced Colloidal Microrheology of Synovial Fluids. ACS Biomater Sci Eng 2024; 10:3378-3386. [PMID: 38517700 DOI: 10.1021/acsbiomaterials.3c01846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The presence of colloidal scaffolds composed of proteins and hyaluronic acid engenders unique viscous and elastic properties to the synovial fluid (SF). While the elastic resistance of SF due to the presence of such nanoscale structures provides the load-bearing capacity, the viscous nature enables fluidity of the joints during the movements to minimize the wear and tear of the adjacent muscle, cartilage, or bone tissues. It is well-known that the hypoxic conditions at the bone joints often increase the lactic acid (LA) concentration due to the occurrence of excess anaerobic respiration during either hyperactivity or arthritic conditions. The present study uncovers that in such a scenario, beyond a critical loading of LA, the colloidal nanoscaffolds of SF break down to precipitate higher molecular weight (MW) proteins and hyaluronic acid (HA). Subsequently, the viscosity and elasticity of SF reduce drastically to manifest a fluid that has reduced load bearing and wear and tear resistance capacity. Interestingly, the study also suggests that a heathy SF is a viscoelastic fluid with a mild Hookean elasticity and non-Newtonian fluidity, which eventually transforms into a viscous watery liquid in the presence of a higher loading of LA. We employ this knowledge to biosynthesize an artificial SF that emulates the characteristics of the real one. Remarkably, the spatiotemporal microscopic images uncover that even for the artificial SF, a dynamic cross-linking of the high MW proteins and HA takes place before precipitating out of the same from the artificial SF matrix, emulating the real one. Control experiments suggest that this phenomenon is absent in the case when LA is mixed with either pure HA or proteins. The experiments unfold the specific role of LA in the destruction of colloidal nanoscaffolds of synovia, which is an extremely important requirement for the biosynthesis and translation of artificial synovial fluid.
Collapse
Affiliation(s)
- Nayanjyoti Kakati
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dileep Ahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prathu Raja Parmar
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Omkar Suresh Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Bae Y, Liu X. Unveiling the effects of protein corona formation on the aggregation kinetics of gold nanoparticles in monovalent and divalent electrolytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123552. [PMID: 38346633 DOI: 10.1016/j.envpol.2024.123552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
Elucidation of the aggregation behaviors of gold nanoparticles (AuNPs) in water systems is crucial to understanding their environmental fate and transport as well as human health effects. We investigated the early-stage aggregation kinetics of AuNPs coated by human serum albumin (HSA) protein corona (PC) in NaCl and CaCl2 through time-resolved dynamic light scattering. We found that the aggregation of PC-AuNPs depended on the concerted effects of electrolyte concentration, valence, and HSA concentration. At low HSA concentration (≤0.005 g/L), the aggregation kinetics of PC-AuNPs was similar to that of bare AuNPs due to insignificant HSA adsorption. At intermediate HSA concentrations of 0.025-0.050 g/L, the aggregation of PC-AuNPs was retarded in both electrolytes due to steric repulsive forces imparted by the PCs. Additionally, HSA PCs had a weaker retardation effect on PC-AuNPs aggregation in divalent than in monovalent electrolytes. Quartz crystal microbalance measurements revealed that the presence of Ca2+ promoted additional HSA adsorption on PC-AuNPs likely via -COO-Ca2+ bond, and eventually enhanced the aggregation between PC-AuNPs. High-concentration HSA (>0.5 g/L) resulted in no PC-AuNPs aggregation regardless of electrolyte valence and concentrations. Finally, desorption of HSA barely occurred after adsorption on the gold surface, suggesting that the formation of PC-AuNPs is mostly irreversible.
Collapse
Affiliation(s)
- Yeunook Bae
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Xitong Liu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States.
| |
Collapse
|
9
|
Tong Z, Zhang L, Liao W, Wang Y, Gao Y. Extraction, identification and application of gliadin from gluten: Impact of pH on physicochemical properties of unloaded- and lutein-loaded gliadin nanoparticles. Int J Biol Macromol 2023; 253:126638. [PMID: 37673163 DOI: 10.1016/j.ijbiomac.2023.126638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
In the present study, high purity gliadin was extracted from gluten by the marginally modified Osborne method and the effect of different pHs in the aqueous ethanol on the physicochemical properties of unloaded gliadin nanoparticles (UGNs) and lutein-loaded gliadin nanoparticles (LGNs) was investigated. The results revealed that the formation of UGNs and LGNs at diverse pHs was driven by a conjunction of hydrogen bonding, electrostatic interactions and hydrophobic effects, but their dominant roles varied at different pHs. pH also significantly impacted the surface hydrophobicity, secondary structure and aromatic amino acid microenvironment of UGNs and LGNs. LGNs at pH 5.0 and at pH 9.0 exhibited better loading capacity and could reach 9.7884 ± 0.0006 % and 9.7360 ± 0.0017 %, respectively. These two samples also had greater photostability and thermal stability. Half-lives of LGNs at pH 5.0 were 2.185 h and 54.579 h, respectively. Half-lives of LGNs at pH 9.0 were 2.937 h and 49.159 h, respectively. LGNs at pH 5.0 and LGNs at pH 9.0 also had higher bioaccessibility of lutein, with 15.98 ± 0.04 % and 15.27 ± 0.03 %, respectively. These findings yielded precious inspirations for designing innovative lutein delivery system.
Collapse
Affiliation(s)
- Zhen Tong
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yuan Wang
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
10
|
Negi KS, Das N, Khan T, Sen P. Osmolyte induced protein stabilization: modulation of associated water dynamics might be a key factor. Phys Chem Chem Phys 2023; 25:32602-32612. [PMID: 38009208 DOI: 10.1039/d3cp03357k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The mechanism of protein stabilization by osmolytes remains one of the most important and long-standing puzzles. The traditional explanation of osmolyte-induced stability through the preferential exclusion of osmolytes from the protein surface has been seriously challenged by the observations like the concentration-dependent reversal of osmolyte-induced stabilization/destabilization. The more modern explanation of protein stabilization/destabilization by osmolytes considers an indirect effect due to osmolyte-induced distortion of the water structure. It provides a general mechanism, but there are numerous examples of protein-specific effects, i.e., a particular osmolyte might stabilize one protein, but destabilize the other, that could not be rationalized through such an explanation. Herein, we hypothesized that osmolyte-induced modulation of associated water might be a critical factor in controlling protein stability in such a medium. Taking different osmolytes and papain as a protein, we proved that our proposal could explain protein stability in osmolyte media. Stabilizing osmolytes rigidify associated water structures around the protein, whereas destabilizing osmolytes make them flexible. The strong correlation between the stability and the associated water dynamics, and the fact that such dynamics are very much protein specific, established the importance of considering the modulation of associated water structures in explaining the osmolyte-induced stabilization/destabilization of proteins. More interestingly, we took another protein, bromelain, for which a traditionally stabilizing osmolyte, sucrose, acts as a stabilizer at higher concentrations but as a destabilizer at lower concentrations. Our proposal successfully explains such observations, which is probably impossible by any known mechanisms. We believe this report will trigger much research in this area.
Collapse
Affiliation(s)
- Kuldeep Singh Negi
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India.
| |
Collapse
|
11
|
Villar-Alvarez E, Golán-Cancela I, Pardo A, Velasco B, Fernández-Vega J, Cambón A, Al-Modlej A, Topete A, Barbosa S, Costoya JA, Taboada P. Inhibiting HER3 Hyperphosphorylation in HER2-Overexpressing Breast Cancer through Multimodal Therapy with Branched Gold Nanoshells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303934. [PMID: 37632323 DOI: 10.1002/smll.202303934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Indexed: 08/27/2023]
Abstract
Treatment failure in breast cancers overexpressing human epidermal growth factor receptor 2 (HER2) is associated mainly to the upregulation of human epidermal growth factor receptor 3 (HER3) oncoprotein linked to chemoresitence. Therefore, to increase patient survival, here a multimodal theranostic nanoplatform targeting both HER2 and HER3 is developed. This consists of doxorubicin-loaded branched gold nanoshells functionalized with the near-infrared (NIR) fluorescent dye indocyanine green, a small interfering RNA (siRNA) against HER3, and the HER2-specific antibody Transtuzumab, able to provide a combined therapeutic outcome (chemo- and photothermal activities, RNA silencing, and immune response). In vitro assays in HER2+ /HER3+ SKBR-3 breast cancer cells have shown an effective silencing of HER3 by the released siRNA and an inhibition of HER2 oncoproteins provided by Trastuzumab, along with a decrease of the serine/threonine protein kinase Akt (p-AKT) typically associated with cell survival and proliferation, which helps to overcome doxorubicin chemoresistance. Conversely, adding the NIR light therapy, an increment in p-AKT concentration is observed, although HER2/HER3 inhibitions are maintained for 72 h. Finally, in vivo studies in a tumor-bearing mice model display a significant progressively decrease of the tumor volume after nanoparticle administration and subsequent NIR light irradiation, confirming the potential efficacy of the hybrid nanocarrier.
Collapse
Affiliation(s)
- Eva Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Irene Golán-Cancela
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Alberto Pardo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Brenda Velasco
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Javier Fernández-Vega
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Adriana Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Antonio Topete
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, 44340, Mexico
| | - Silvia Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas (CIMUS), Facultad de Medicina, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, 15782, Spain
| | - Pablo Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, e Instituto de Materiales (IMATUS), Santiago de Compostela, 15782, Spain
| |
Collapse
|
12
|
Sookai S, Bracken ML, Nowakowska M. Spectroscopic and Computational pH Study of Ni II and Pd II Pyrrole-Imine Chelates with Human Serum Albumin. Molecules 2023; 28:7466. [PMID: 38005188 PMCID: PMC10673405 DOI: 10.3390/molecules28227466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Human serum albumin (HSA) efficiently transports drugs in vivo: most are organic. Therefore, it is important to delineate the binding of small molecules to HSA. Here, for the first time, we show that HSA binding depends not only on the identity of the d8 metal ion, NiII or PdII, of their complexes with bis(pyrrole-imine), H2PrPyrr, but on the pH level as well. Fluorescence quenching data for native and probe-bound HSA showed that sites close to Trp-214 (subdomain IIA) are targeted. The affinity constants, Ka, ranged from ~3.5 × 103 M-1 to ~1 × 106 M-1 at 37 °C, following the order Pd(PrPyrr) > Ni(PrPyrr) at pH levels of 4 and 7; but Ni(PrPyrr) > Pd(PrPyrr) at a pH level of 9. Ligand uptake is enthalpically driven, dependent mainly on London dispersion forces. The induced CD spectra for the protein-bound ligands could be simulated by hybrid QM:MM TD-DFT methods, allowing us to delineate the binding site of the ligands and to prove that the metal chelates neither decompose nor demetallate after uptake by HSA. The transport and delivery of the metal chelates by HSA in vivo is therefore feasible.
Collapse
Affiliation(s)
- Sheldon Sookai
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg PO WITS 2050, South Africa; (M.L.B.); (M.N.)
| | | | | |
Collapse
|
13
|
Hao PC, Burnouf T, Chiang CW, Jheng PR, Szunerits S, Yang JC, Chuang EY. Enhanced diabetic wound healing using platelet-derived extracellular vesicles and reduced graphene oxide in polymer-coordinated hydrogels. J Nanobiotechnology 2023; 21:318. [PMID: 37667248 PMCID: PMC10478311 DOI: 10.1186/s12951-023-02068-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Impaired wound healing is a significant complication of diabetes. Platelet-derived extracellular vesicles (pEVs), rich in growth factors and cytokines, show promise as a powerful biotherapy to modulate cellular proliferation, angiogenesis, immunomodulation, and inflammation. For practical home-based wound therapy, however, pEVs should be incorporated into wound bandages with careful attention to delivery strategies. In this work, a gelatin-alginate hydrogel (GelAlg) loaded with reduced graphene oxide (rGO) was fabricated, and its potential as a diabetic wound dressing was investigated. The GelAlg@rGO-pEV gel exhibited excellent mechanical stability and biocompatibility in vitro, with promising macrophage polarization and reactive oxygen species (ROS)-scavenging capability. In vitro cell migration experiments were complemented by in vivo investigations using a streptozotocin-induced diabetic rat wound model. When exposed to near-infrared light at 2 W cm- 2, the GelAlg@rGO-pEV hydrogel effectively decreased the expression of inflammatory biomarkers, regulated immune response, promoted angiogenesis, and enhanced diabetic wound healing. Interestingly, the GelAlg@rGO-pEV hydrogel also increased the expression of heat shock proteins involved in cellular protective pathways. These findings suggest that the engineered GelAlg@rGO-pEV hydrogel has the potential to serve as a wound dressing that can modulate immune responses, inflammation, angiogenesis, and follicle regeneration in diabetic wounds, potentially leading to accelerated healing of chronic wounds.
Collapse
Affiliation(s)
- Ping-Chien Hao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, Lille, F- 59000, France
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 110-52, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan.
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
| |
Collapse
|
14
|
Gammoh S, Alu’datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U’datt D, Hussein N, Alrosan M, Tan TC, Kubow S, Alzoubi H, Almajwal A. Functional and Bioactive Properties of Wheat Protein Fractions: Impact of Digestive Enzymes on Antioxidant, α-Amylase, and Angiotensin-Converting Enzyme Inhibition Potential. Molecules 2023; 28:6012. [PMID: 37630264 PMCID: PMC10459969 DOI: 10.3390/molecules28166012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
Collapse
Affiliation(s)
- Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Muhammad H. Alu’datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad N. Alhamad
- Department of Natural Resources and Environment, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Carole C. Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Doa’a Al-U’datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Neveen Hussein
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan;
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, QC H9X 3V9, Canada;
| | - Haya Alzoubi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan; (T.R.); (N.H.); (H.A.)
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| |
Collapse
|
15
|
Exploring in vitro gastrointestinal digestion of myofibrillar proteins at different heating temperatures. Food Chem 2023; 414:135694. [PMID: 36808027 DOI: 10.1016/j.foodchem.2023.135694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
The effects of different heating temperatures (40-115 °C) on the structure, oxidation, and digestibility of beef myofibrillar protein were investigated. Reductions in the number of sulfhydryl groups were observed, together with gradual increases in the number of carbonyl groups, indicating oxidation of the protein by the increased temperatures. At temperatures between 40 °C and 85 °C, β-sheets were converted to α-helices, and increased surface hydrophobicity showed that the protein expanded as the temperature approached 85 °C. These changes were reversed at temperatures over 85 °C, indicative of aggregation induced by thermal oxidation. Between 40 °C and 85 °C, the digestibility of the myofibrillar protein was increased, reaching a maximum of 59.5 % at 85 °C, after which it began to decrease. These results indicated that moderate heating and oxidation-induced protein expansion were beneficial to digestion while protein aggregation resulting from excessive heating is not conducive to digestion.
Collapse
|
16
|
Yin J, Liu K, Yuan S, Guo Y, Yu H, Cheng Y, Xie Y, Qian H, Yao W. Carbon dots in breadcrumbs: Effect of frying on them and interaction with human serum albumin. Food Chem 2023; 424:136371. [PMID: 37210845 DOI: 10.1016/j.foodchem.2023.136371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
This research confirmed the existence of carbon dots (CDs) in breadcrumbs before frying, and CDs could be significantly affected by frying. The content of CDs increased from 0.013 ± 0.002% to 1.029 ± 0.002%, and the fluorescence quantum yield increased from 1.82 ± 0.01% to 3.16 ± 0.002% after frying at 180℃ for 5 min. The size reduced from 3.32 ± 0.71 nm to 2.67 ± 0.48 nm, and the content of N increased from 1.58% to 2.53%. In addition, the interaction of the CDs and human serum albumin (HSA) through electrostatic and hydrophobic induces the increase of α-helix structure and the change of the amino acid microenvironment of HSA. CDs corona, which may have physiological significance, was found through the transmission electron microscope.
Collapse
Affiliation(s)
- Jie Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Kunfeng Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
17
|
Nemergut M, Sedláková D, Fabriciová G, Belej D, Jancura D, Sedlák E. Explanation of inconsistencies in the determination of human serum albumin thermal stability. Int J Biol Macromol 2023; 232:123379. [PMID: 36702231 DOI: 10.1016/j.ijbiomac.2023.123379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
Thermal denaturation of human serum albumin has been the subject of many studies in recent decades, but the results of these studies are often conflicting and inconclusive. To clarify this, we combined different spectroscopic and calorimetric techniques and performed an in-depth analysis of the structural changes that occur during the thermal unfolding of different conformational forms of human serum albumin. Our results showed that the inconsistency of the results in the literature is related to the different quality of samples in different batches, methodological approaches and experimental conditions used in the studies. We confirmed that the presence of fatty acids (FAs) causes a more complex process of the thermal denaturation of human serum albumin. While the unfolding pathway of human serum albumin without FAs can be described by a two-step model, consisting of subsequent reversible and irreversible transitions, the thermal denaturation of human serum albumin with FAs appears to be a three-step process, consisting of a reversible step followed by two consecutive irreversible transitions.
Collapse
Affiliation(s)
- Michal Nemergut
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia
| | - Gabriela Fabriciová
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Dominik Belej
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, P. J. Šafárik University in Košice, Jesenná 5, 04154 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, 04154 Košice, Slovakia.
| |
Collapse
|
18
|
Zhao Z, Li H, Yao J, Lan J, Bao Y, Zhao L, Zong W, Zhang Q, Hollert H, Zhao X. Binding of Tetrabromobisphenol A and S to Human Serum Albumin Is Weakened by Coexisting Nanoplastics and Environmental Kosmotropes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4464-4470. [PMID: 36893289 DOI: 10.1021/acs.est.2c09090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human serum albumin (HSA) was used as a model protein to explore the effects of brominated flame retardant (BFR) binding and the corona formation on polystyrene nanoplastics (PNs). Under physiological conditions, HSA helped to disperse PNs but promoted the formation of aggregates in the presence of tetrabromobisphenol A (TBBPA, ΔDh = 135 nm) and S (TBBPS, ΔDh = 256 nm) at pH 7. At pH 4, these aggregates became larger with fewer electrostatic repulsion effects (ΔDh = 920 and 691 nm for TBBPA and TBBPS, respectively). However, such promotion effects as well as BFR binding are different due to structural differences of tetrabromobisphenol A and S. Environmental kosmotropes efficiently stabilized the structure of HSA and inhibited BFR binding, while the chaotropes favored bioconjugated aggregate formation. Such effects were also verified in natural seawater. The newly gained knowledge may help us anticipate the behavior and fate of plastic particles and small molecular pollutants in both physiological and natural aqueous systems.
Collapse
Affiliation(s)
- Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haimei Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaqiang Yao
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Bao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Lining Zhao
- College of Life Sciences, Hebei University, Baoding 071000, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qing Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Henner Hollert
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| | - Xingchen Zhao
- Department for Evolutionary Ecology and Environmental Toxicology, Goethe University, Frankfurt am Main 60438, Germany
| |
Collapse
|
19
|
Ravikanth Reddy R, Saha D, Pan A, Aswal VK, Mati SS, Moulik SP, Phani Kumar BVN. pH-Induced Biophysical Perspectives of Binding of Surface-Active Ionic Liquid [BMIM][OSU] with HSA and Dynamics of the Formed Complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3729-3741. [PMID: 36857652 DOI: 10.1021/acs.langmuir.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The influence of pH on the human serum albumin (HSA) interaction with ionic liquid (IL)1-butyl 3-methylimidazolium octyl sulfate ([BMIM][OSU]) at its sub-micellar concentration of 5 mM (well below CMC ∼31 mM at 25 °C) in aqueous solution has been monitored employing different methods, viz., circular dichroism (CD), fluorescence, electrokinetic determination of the zeta potential (ZP), nuclear magnetic resonance (NMR), small-angle neutron scattering (SANS), and molecular docking (MD). CD analysis indicated a noticeable reduction of the α-helical content of HSA by IL at pH 3. A significant interaction of the anionic part of IL with HSA was evident from the 1H chemical shifts and saturation transfer difference (STD) NMR. A strong binding between IL and HSA was observed at pH 3 relative to pH 5, revealing the importance of electrostatic and hydrophobic interactions assessed from global binding affinities and molecular correlation times derived from STD NMR and a combined selective/nonselective spin-relaxation analysis, respectively. ZP data supported the electrostatic interaction between HSA and the anionic part of IL. The nature of IL self-diffusion with HSA was assessed from the translational self-diffusion coefficients by pulse field gradient NMR. SANS results revealed the formation of prolate ellipsoidal geometry of the IL-HSA complex. MD identified the preferential binding sites of IL to the tryptophan centers on HSA. The association of IL with HSA was supported by fluorescence measurements, in addition to the structural changes that occurred in the protein by the interaction with IL. The anionic part of IL contributed a major interaction with HSA at the pH levels of study (3, 5, 8, and 11.4); at pH > 8 (effectively 11.4), the protein also interacted weakly with the cationic component of IL.
Collapse
Affiliation(s)
- R Ravikanth Reddy
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Animesh Pan
- Department of Chemical Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, Rhode Island 02881, United States
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Soumya Sundar Mati
- Department of Chemistry, Government General Degree College, Keshiary, Singur 721135, West Bengal, India
| | - Satya Priya Moulik
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Bandaru V N Phani Kumar
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai 600020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Gao Y, Bian C, Li N, Yao K, Xiao L, Yang Z, Guan T. Exploring the binding mechanism and adverse toxic effects of chiral phenothrin to human serum albumin: Based on multi-spectroscopy, biochemical and computational approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121659. [PMID: 35930945 DOI: 10.1016/j.saa.2022.121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
To understand the binding mechanism of a mixture of chiral phenothrin with human serum albumin (HSA), we used multi-spectroscopy, including steady-state fluorescence spectroscopic titration, three-dimensional fluorescence spectroscopy, circular dichroism, and FTIR spectra to explore the precise interactions between the complex. Based on the modified Stern-Volmer equation, the binding constant (Ka) was calculated under three temperatures, which revealed that phenothrin interacts with HSA through a static quenching mechanism. The thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were determined by fitting the experimental data with van't Hoff equation, which indicates that electrostatic force and hydrogen bonds dominate the interplay in the phenothrin-HSA complex. Circular dichroism and FTIR showed the addition of phenothrin changed the secondary structure of proteins, in which the α-helicity decreased from 52.37% in free HSA to 50.02%. The esterase-like activity was reduced with the increase of phenothrin concentration, which may be attributed to the perturbated senior structure of HSA. Competitive displacement experiments confirmed that phenothrin inserted into the subdomain IIA (site I) of HSA. Several computational approaches such as molecular docking, frontier molecular orbital analysis, and electrostatic potential analysis were utilized to probe into the binding mode of the phenothrin-HSA complex. The binding behaviors of the chiral phenothrin mixture differed during the complexation. In conclusion, both the experimental and theoretical investigations provide useful information for better understanding and reducing the potential deleterious effects of the chiral phenothrin mixture on human long-term physio-pathological status.
Collapse
Affiliation(s)
- Ya Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Canfeng Bian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Kun Yao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
21
|
Mucha S, Piksa M, Firlej L, Krystyniak A, Różycka M, Kazana W, Pawlik KJ, Samoć M, Matczyszyn K. Non-toxic Polymeric Dots with the Strong Protein-Driven Enhancement of One- and Two-Photon Excited Emission for Sensitive and Non-destructive Albumin Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40200-40213. [PMID: 36017993 PMCID: PMC9460497 DOI: 10.1021/acsami.2c08858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The need for efficient probing, sensing, and control of the bioactivity of biomolecules (e.g., albumins) has led to the engineering of new fluorescent albumins' markers fulfilling very specific chemical, physical, and biological requirements. Here, we explore acetone-derived polymer dots (PDs) as promising candidates for albumin probes, with special attention paid to their cytocompatibility, two-photon absorption properties, and strong ability to non-destructively interact with serum albumins. The PDs show no cytotoxicity and exhibit high photostability. Their pronounced green fluorescence is observed upon both one-photon excitation (OPE) and two-photon excitation (TPE). Our studies show that both OPE and TPE emission responses of PDs are proteinaceous environment-sensitive. The proteins appear to constitute a matrix for the dispersion of fluorescent PDs, limiting both their aggregation and interactions with the aqueous environment. It results in a large enhancement of PD fluorescence. Meanwhile, the PDs do not interfere with the secondary protein structures of albumins, nor do they induce their aggregation, enabling the PD candidates to be good nanomarkers for non-destructive probing and sensing of albumins.
Collapse
Affiliation(s)
- Sebastian
G. Mucha
- Laboratoire
Charles Coulomb, UMR5221, Université
de Montpellier (CNRS), Montpellier 34095, France
| | - Marta Piksa
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Lucyna Firlej
- Laboratoire
Charles Coulomb, UMR5221, Université
de Montpellier (CNRS), Montpellier 34095, France
| | - Agnieszka Krystyniak
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Mirosława
O. Różycka
- Department
of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Wioletta Kazana
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Krzysztof J. Pawlik
- Ludwik
Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw 53-114, Poland
| | - Marek Samoć
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Katarzyna Matczyszyn
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
22
|
Gaikwad DD, Bangar NS, Apte MM, Gvalani A, Tupe RS. Mineralocorticoid interaction with glycated albumin downregulates NRF - 2 signaling pathway in renal cells: Insights into diabetic nephropathy. Int J Biol Macromol 2022; 220:837-851. [PMID: 35987363 DOI: 10.1016/j.ijbiomac.2022.08.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/30/2022] [Accepted: 08/13/2022] [Indexed: 12/20/2022]
Abstract
In diabetic nephropathy, hyperglycemia elevates albumin glycation and also results in increased plasma aldosterone. Both glycation and aldosterone are reported to cause oxidative stress by downregulating the NRF-2 pathway and thereby resulting in reduced levels of antioxidants and glycation detoxifying enzymes. We hypothesize that an interaction between aldosterone and glycated albumin may be responsible for amplified oxidative stress and concomitant renal cell damage. Hence, human serum albumin was glycated by methylglyoxal (MGO) in presence of aldosterone. Different structural modifications of albumin, functional modifications and aldosterone binding were analyzed. HEK-293 T cells were treated with aldosterone+glycated albumin along with inhibitors of receptors for mineralocorticoid (MR) and advanced glycation endproducts (RAGE). Cellular MGO content, antioxidant markers (nitric oxide, glutathione, catalase, superoxide dismutase, glutathione peroxidase), detoxification enzymes (aldose reductase, Glyoxalase I, II), their expression along with NRF-2 and Keap-1 were measured. Aldosterone binds to albumin with high affinity which is static and spontaneous. Cell treatment by aldosterone+glycated albumin increased intracellular MGO, MR and RAGE expression; hampered antioxidant, detoxification enzyme activities and reduced NRF-2, Keap-1 expression. Thus, the glycated albumin-aldosterone interaction and its adverse effect on renal cells were confirmed. The results will help in developing better pharmacotherapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Deepesh D Gaikwad
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Mayura M Apte
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
23
|
Yakupova LR, Kopnova TY, Skuredina AA, Kudryashova EV. Effect of Methyl-β-Cyclodextrin on the Interaction of Fluoroquinolones with Human Serum Albumin. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract—
The influence of the structure of fluoroquinolones (on the example of ciprofloxacin and levofloxacin) and their complexation with methyl-β-cyclodextrin on the interaction of the drug with human serum albumin was studied. It was found that the binding of the drug molecule with albumin is significantly affected by the structure of fluoroquinolone, as well as the presence of methyl-β-cyclodextrin. It was discovered that of the two fluoroquinolones, the more hydrophobic ciprofloxacin molecule interacts more strongly with the protein, using circular dichroism and fluorescence spectroscopy methods. It has also been shown that binding of albumin to the drug causes quenching of protein fluorescence, and this effect is more pronounced for ciprofloxacin. The complexation of fluoroquinolones with methyl-β-cyclodextrin leads to a change in the interaction of fluoroquinolones with the protein: in the case of complexes, more pronounced interactions are observed for levofloxacin. The results obtained will help to bring the use of fluoroquinolones to a new level in clinical practice, by creating new highly effective drugs with improved properties.
Collapse
|
24
|
Shamsi A, Shahwan M, Khan MS, Alhumaydhi FA, Alsagaby SA, Al Abdulmonem W, Abdullaev B, Yadav DK. Mechanistic Insight into Binding of Huperzine A with Human Serum Albumin: Computational and Spectroscopic Approaches. Molecules 2022; 27:797. [PMID: 35164061 PMCID: PMC8839580 DOI: 10.3390/molecules27030797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/27/2022] Open
Abstract
Human serum albumin (HSA) is the most abundant protein in plasma synthesized by the liver and the main modulator of fluid distribution between body compartments. It has an amazing capacity to bind with multiple ligands, offering a store and transporter for various endogenous and exogenous compounds. Huperzine A (HpzA) is a natural sesquiterpene alkaloid found in Huperzia serrata and used in various neurological conditions, including Alzheimer's disease (AD). This study elucidated the binding of HpzA with HSA using advanced computational approaches such as molecular docking and molecular dynamic (MD) simulation followed by fluorescence-based binding assays. The molecular docking result showed plausible interaction between HpzA and HSA. The MD simulation and principal component analysis (PCA) results supported the stable interactions of the protein-ligand complex. The fluorescence assay further validated the in silico study, revealing significant binding affinity between HpzA and HSA. This study advocated that HpzA acts as a latent HSA binding partner, which may be investigated further in AD therapy in experimental settings.
Collapse
Affiliation(s)
- Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
| | - Moyad Shahwan
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- College of Pharmacy & Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah 52571, Saudi Arabia;
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11932, Saudi Arabia;
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Bekhzod Abdullaev
- Scientific Department, Akfa University, Tashkent 100022, Uzbekistan;
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon 21924, Korea
| |
Collapse
|
25
|
Mukherjee M, Saha Sardar P, Basu Roy M, Mukherjee P, Ghosh R, Ghosh S. Tracking Zone-wise perturbation during unfolding of some globular proteins using Eu(III) complex of Tetracycline as a probe exhibiting Stark splitting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120231. [PMID: 34365134 DOI: 10.1016/j.saa.2021.120231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Enhanced 'Antenna effect' of a suitably designed ternary complex of Eu(III), Tetracycline hydrochloride (TC) and globular proteins viz bovine serum albumin (BSA), human serum albumin (HSA) and β-lactoglobulin A (BLGA) in aqueous medium is employed to characterize the different partially unfolded states along with investigation of the micro- heterogeneous environment of the proteins during their stepwise unfolding. The zone-wise perturbation for the proteins upon denaturation by Urea and Guanidine hydrochloride (Gdn. HCl) is followed by the emission of Eu(III) through 'Antenna Effect' and that of the tryptophan (Trp) residues of the proteins as a function of denaturants both by steady state and time resolved emission study. With Gdn. HCl as denaturant, both BSA and BLGA show quenching of Eu(III) emission compared to pure protein while HSA exhibits an enhancement of antenna effect during unfolding as compared to that in its absence. In the presence of Urea, HSA and BSA show enhancement of antenna effect accompanied by Stark splitting of the 5D0→7F2 transition of Eu(III) although BLGA follows the similar pattern of quenching of Eu(III) emission as observed with Gdn. HCl without any Stark splitting. The proteins exhibit a two state transition with ΔGD values of ~ 2-3 kcal mol-1. Thus the use of Eu(III) emission as an efficient probe is advocating here to rationalize the microenvironment of the proteins during their stepwise unfolding.
Collapse
Affiliation(s)
- Moumita Mukherjee
- Present Address: Sri Aurobindo Vidyamandir, Chandannagar, Hoogly, West Bengal, India
| | - Pinki Saha Sardar
- Department of Chemistry, The Bhawanipur Education Society College, Kolkata-700020, West Bengal, India
| | - Maitrayee Basu Roy
- Department of Chemistry, Vidyasagar College for Women, Kolkata-700006, West Bengal, India
| | - Priyanka Mukherjee
- Department of Chemistry and Biochemistry, Asutosh College, Kolkata-700026, India
| | - Rina Ghosh
- Department of Chemistry, St. Xavier's College, Kolkata-700013, India
| | - Sanjib Ghosh
- Department of Chemistry, Adamas University, Barasat, West Bengal, India.
| |
Collapse
|
26
|
Jin H, Zhang Y, Li N, Yang J, Xi Y, Cai L, Pan Z. Preparation and performance characterization of a new dust suppressant with a cross-linked network structure for use in open-pit coal mines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7001-7013. [PMID: 34467483 DOI: 10.1007/s11356-021-15329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In an effort to control dust pollution in open-air environments such as pit coal mines and coal transportation systems, a new dust suppressant with a cross-linked network structure was prepared. Graft copolymerization of soy protein isolate (SPI) and methacrylic acid (MAA), using potassium persulfate (KPS) as the initiator and hexametaphosphoric acid (SHMP) as the cross-linking agent, formed the network structure. The optimal MAA/SPI mass ratio for the dust suppressant was determined through a single-factor experiment to be 3:4, with 0.8 and 0.2 g of SHMP and KPS, respectively. The grafting reaction required 30 min at 60 °C. Scanning electron microscopy, energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, and differential scanning calorimetry were used to characterize the structure and application performance of the dust suppressant. The experimental results showed that the graft copolymerization reaction successfully formed the desired cross-linked network, and that when the cross-linked network material was sprayed on coal dust, it formed a dense, solidified shell, which effectively resisted wind erosion and served as a dust suppressant. The average reduction of the total suspended particulate matter of an open-air coal pile reached 79.95%, demonstrating effective dust suppression.
Collapse
Affiliation(s)
- Hu Jin
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
- Qingdao Intelligent Control Engineering Center for Production Safety Fire Accident, Qingdao, 266590, Shandong, China
| | - Yansong Zhang
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China.
- Qingdao Intelligent Control Engineering Center for Production Safety Fire Accident, Qingdao, 266590, Shandong, China.
| | - Nan Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Junjie Yang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Ya Xi
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Li Cai
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| | - Zhichao Pan
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, Shandong, China
| |
Collapse
|
27
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
28
|
Erol OD, Pervin B, Seker ME, Aerts-Kaya F. Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World J Stem Cells 2021; 13:1197-1214. [PMID: 34630858 PMCID: PMC8474714 DOI: 10.4252/wjsc.v13.i9.1197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Despite a vast amount of different methods, protocols and cryoprotective agents (CPA), stem cells are often frozen using standard protocols that have been optimized for use with cell lines, rather than with stem cells. Relatively few comparative studies have been performed to assess the effects of cryopreservation methods on these stem cells. Dimethyl sulfoxide (DMSO) has been a key agent for the development of cryobiology and has been used universally for cryopreservation. However, the use of DMSO has been associated with in vitro and in vivo toxicity and has been shown to affect many cellular processes due to changes in DNA methylation and dysregulation of gene expression. Despite studies showing that DMSO may affect cell characteristics, DMSO remains the CPA of choice, both in a research setting and in the clinics. However, numerous alternatives to DMSO have been shown to hold promise for use as a CPA and include albumin, trehalose, sucrose, ethylene glycol, polyethylene glycol and many more. Here, we will discuss the use, advantages and disadvantages of these CPAs for cryopreservation of different types of stem cells, including hematopoietic stem cells, mesenchymal stromal/stem cells and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Ozgur Dogus Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Burcu Pervin
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Mehmet Emin Seker
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara 06100, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
29
|
Hyunh NB, Palma CSD, Rahikainen R, Mishra A, Azizi L, Verne E, Ferraris S, Hytönen VP, Sanches Ribeiro A, Massera J. Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorption. ACS Biomater Sci Eng 2021; 7:4483-4493. [PMID: 34382772 PMCID: PMC8441970 DOI: 10.1021/acsbiomaterials.1c00735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The traditional silicate
bioactive glasses exhibit poor thermal
processability, which inhibits fiber drawing or sintering into scaffolds.
The composition of the silicate glasses has been modified to enable
hot processing. However, the hot forming ability is generally at the
expense of bioactivity. Metaphosphate glasses, on the other hand,
possess excellent thermal processability, congruent dissolution, and
a tailorable degradation rate. However, due to the layer-by-layer
dissolution mechanism, cells do not attach to the material surface.
Furthermore, the congruent dissolution leads to a low density of OH
groups forming on the glass surface, limiting the adsorption of proteins.
It is well regarded that the initial step of protein adsorption is
critical as the cells interact with this protein layer, rather than
the biomaterial itself. In this paper, we explore the possibility
of improving protein adsorption on the surface of phosphate glasses
through a variety of surface treatments, such as washing the glass
surface in acidic (pH 5), neutral, and basic (pH 9) buffer solutions
followed or not by a treatment with (3-aminopropyl)triethoxysilane
(APTS). The impact of these surface treatments on the surface chemistry
(contact angle, ζ-potential) and glass structure (FTIR) was
assessed. In this manuscript, we demonstrate that understanding of
the material surface chemistry enables to selectively improve the
adsorption of albumin and fibronectin (used as model proteins). Furthermore,
in this study, well-known silicate bioactive glasses (i.e., S53P4
and 13-93) were used as controls. While surface treatments clearly
improved proteins adsorption on the surface of both silicate and phosphate
glasses, it is of interest to note that protein adsorption on phosphate
glasses was drastically improved to reach similar protein grafting
ability to the silicate bioactive glasses. Overall, this study demonstrates
that the limited cell/phosphate glass biological response can easily
be overcome through deep understanding and control of the glass surface
chemistry.
Collapse
Affiliation(s)
- Ngoc Bao Hyunh
- Laboratory of Biomaterials and Tissue Engineering, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Cristina Santos Dias Palma
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Rolle Rahikainen
- Laboratory of Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Ayush Mishra
- Laboratory of Biomaterials and Tissue Engineering, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| | - Latifeh Azizi
- Laboratory of Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland
| | - Enrica Verne
- Laboratory of Biomaterials, Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy
| | - Sara Ferraris
- Laboratory of Biomaterials, Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy
| | - Vesa Pekka Hytönen
- Laboratory of Protein Dynamics, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, 33520 Tampere, Finland
| | - Andre Sanches Ribeiro
- Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland
| | - Jonathan Massera
- Laboratory of Biomaterials and Tissue Engineering, Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland
| |
Collapse
|
30
|
Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int J Mol Sci 2021; 22:ijms22168411. [PMID: 34445120 PMCID: PMC8395139 DOI: 10.3390/ijms22168411] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022] Open
Abstract
Serum albumin physically interacts with fatty acids, small molecules, metal ions, and several other proteins. Binding with a plethora of bioactive substances makes it a critical transport molecule. Albumin also scavenges the reactive oxygen species that are harmful to cell survival. These properties make albumin an excellent choice to promote cell growth and maintain a variety of eukaryotic cells under in vitro culture environment. Furthermore, purified recombinant human serum albumin is mostly free from impurities and modifications, providing a perfect choice as an additive in cell and tissue culture media while avoiding any regulatory constraints. This review discusses key features of human serum albumin implicated in cell growth and survival under in vitro conditions.
Collapse
|
31
|
Song M, Fu W, Liu Y, Yao H, Zheng K, Liu L, Xue J, Xu P, Chen Y, Huang M, Li J. Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Bapli A, Chatterjee A, Gautam RK, Jana R, Seth D. Modulation of the Protein-Ligand Interaction in the Presence of Graphene Oxide: a Detailed Spectroscopic Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5034-5048. [PMID: 33847123 DOI: 10.1021/acs.langmuir.1c00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several applications of graphene oxide (GO) have been established over the years, and it has the potential to be used as a biomedical material. Studying the effect of GO on protein-ligand (small molecules/drugs) complex systems are vital as the mechanisms involved are not well understood. The interaction of GO on the protein-ligand binding is also vital for the preparation of an effective drug carrier in the bloodstream. In this work, we have tried to explore in details the effect of GO on the interaction between a hydrophilic molecule, namely, 7-(N,N'-diethylamino) coumarin-3-carboxylic acid (7-DCA) with human serum albumin (HSA) by employing multispectroscopic, microscopic, calorimetric, and molecular docking studies. We find out that protein-ligand complexes were placed on the GO surface, and GO gives stability to the protein-ligand complex via hydrogen bonding, electrostatic interactions, hydrophobic interactions, and so forth. Due to the presence of a large surface area in GO, it offers a hydrophobic environment, and as a result, the emission maxima of 7-DCA in the ternary complex is more blue-shifted, and the average lifetime becomes higher compared to the binary system. Circular dichroism spectral studies give information about the conformational changes of HSA in the absence and presence of GO when it forms complex with 7-DCA. The fluorescence lifetime imaging study shows the presence of the 7-DCA/HSA complex on the GO sheet. Molecular docking simulation shows that the closest distance between 7-DCA and HSA is 11.9 Å, and the protein interacted with the ligand through hydrogen bonding, hydrophobic interaction, and so forth.
Collapse
Affiliation(s)
- Aloke Bapli
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Aninda Chatterjee
- Laboratoire Énergies & MécaniqueThéorique et Appliquée, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy 54500, France
| | - Rajesh Kumar Gautam
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Rabindranath Jana
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| | - Debabrata Seth
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar 801103, India
| |
Collapse
|
33
|
Wynendaele E, Ma GJ, Xu X, Cho NJ, De Spiegeleer B. Conformational stability as a quality attribute for the cell therapy raw material human serum albumin. RSC Adv 2021; 11:15332-15339. [PMID: 35424076 PMCID: PMC8698240 DOI: 10.1039/d1ra01064f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/19/2021] [Indexed: 01/30/2023] Open
Abstract
Although human serum albumin (HSA) has been used for many decades, there is still a lack of suitable quality control (QC) attributes. Its current use as a raw material in gene-, cell- and tissue-therapies requires more appropriate functionally-relevant quality attributes and methods. This study investigated the conformational stability of serum albumin using circular dichroism (CD) spectroscopy and dynamic light scattering (DLS) for evaluating the thermal sensitivity, and quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) for assessing the adsorption behavior. Different serum albumin samples were used, encompassing plasma-derived HSA (pHSA), recombinant octanoate-stabilized HSA (rHSA) and bovine serum albumin (BSA). The melting temperature (T m) as well as the onset temperature (T onset) were obtained from the derivative curves of the temperature gradient CD data at 222 nm. The results from DLS, as well as from real-time QCM-D and LSPR silica-adsorption kinetic profiles confirmed the relatively higher conformational stability of the octanoate (fatty acid) containing rHSA, while the additional negative charge resulted in a lower amount adsorbed to the silica surface compared to the non-stabilized HSA and BSA. Adsorption studies further revealed that BSA has a lower conformational stability and undergoes more extensive adsorption-induced spreading compared to the non-stabilized HSA. Collectively, the temperature-based (CD and DLS) as well as adsorption-based biosensor (QCM-D and LSPR) approaches gave congruent and discriminatory information about the conformational stability of different serum albumins, indicating that these techniques provide information on valuable QC attributes.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue Nanyang 639798 Singapore
| | - Xiaolong Xu
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue Nanyang 639798 Singapore
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Ghent University Ottergemsesteenweg 460 Ghent 9000 Belgium +32 9 264 81 00
| |
Collapse
|
34
|
A pH-dependent protein stability switch coupled to the perturbed pKa of a single ionizable residue. Biophys Chem 2021; 274:106591. [PMID: 33895555 DOI: 10.1016/j.bpc.2021.106591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022]
Abstract
The contribution of electrostatic interactions in protein stability has not been fully understood. Burial of an ionizable amino acid inside the hydrophobic protein core can affect its ionization equilibrium and shift its pKa differentially in the native (N) and unfolded (U) states of a protein and this coupling between the folding/unfolding cycle and the ionization equilibria of the ionizable residue can substantially influence the protein stability. Here, we studied the coupling of the folding/unfolding cycle with the ionization of a buried ionizable residue in a multi-domain protein, Human Serum Albumin (HSA) using fluorescence spectroscopy. A pH-dependent change in the stability of HSA was observed in the near native pH range (pH 6.0-9.0). The protonation-deprotonation equilibrium of a single thiol residue that is buried in the protein structure was identified to give rise to the pH-dependent protein stability. We quantified the pKa of the thiol residue in the N and the U states. The mean pKa of the thiol in the N state was upshifted by 0.5 units to 8.7 due to the burial of the thiol in the protein structure. Surprisingly, the mean pKa of the thiol in the U state was observed to be downshifted by 1.3 units to 6.9. These results indicate that some charged residues are spatially proximal to the thiol group in the U state. Our results suggest that, in addition to the N state, electrostatic interactions in the U state are important determinants of protein stability.
Collapse
|
35
|
Turell L, Steglich M, Torres MJ, Deambrosi M, Antmann L, Furdui CM, Schopfer FJ, Alvarez B. Sulfenic acid in human serum albumin: Reaction with thiols, oxidation and spontaneous decay. Free Radic Biol Med 2021; 165:254-264. [PMID: 33515755 DOI: 10.1016/j.freeradbiomed.2021.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 12/21/2022]
Abstract
Human serum albumin (HSA) contains 17 disulfides and only one reduced cysteine, Cys34, which can be oxidized to a relatively stable sulfenic acid (HSA-SOH). This derivative has been previously detected and quantified. However, its properties are poorly understood. Herein, HSA-SOH formation from the exposure of HSA to hydrogen peroxide was confirmed using the sulfenic acid probe bicyclo [6.1.0]nonyne-biotin (BCN-Bio1), and by direct detection by whole protein mass spectrometry. The decay pathways of HSA-SOH were studied. HSA-SOH reacted with a thiol leading to the formation of a mixed disulfide. The reaction occurred through a concerted or direct displacement mechanism (SN2) with the thiolate (RS-) as nucleophile towards HSA-SOH. The net charge of the thiolate affected the value of the rate constant. In the presence of hydrogen peroxide, HSA-SOH was further oxidized to sulfinic acid (HSA-SO2H) and sulfonic acid (HSA-SO3H). The rate constants of these reactions were estimated. Lastly, HSA-SOH spontaneously decayed in solution. Mass spectrometry experiments suggested that the decay product is a sulfenylamide (HSA-SN(R')R″). Chromatofocusing analysis showed that the overoxidation with hydrogen peroxide predominates at alkaline pH whereas the spontaneous decay predominates at acidic pH. The present findings provide insights into the reactivity and fate of the sulfenic acid in albumin, which are also of relevance to numerous sulfenic acid-mediated processes in redox biology and catalysis.
Collapse
Affiliation(s)
- Lucía Turell
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay.
| | - Martina Steglich
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay
| | - Maria J Torres
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Matías Deambrosi
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Antmann
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine and Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Gral. Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
36
|
Heat-induced self-assembling of BSA at the isoelectric point. Int J Biol Macromol 2021; 177:40-47. [PMID: 33607130 DOI: 10.1016/j.ijbiomac.2021.02.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12-84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.
Collapse
|
37
|
Judy E, Kishore N. Discrepancies in Thermodynamic Information Obtained from Calorimetry and Spectroscopy in Ligand Binding Reactions: Implications on Correct Analysis in Systems of Biological Importance. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai – 400 076, India
| |
Collapse
|
38
|
Yamamoto S, Sasahara K, Domon M, Yamaguchi K, Ito T, Goto S, Goto Y, Narita I. pH-Dependent Protein Binding Properties of Uremic Toxins In Vitro. Toxins (Basel) 2021; 13:toxins13020116. [PMID: 33557434 PMCID: PMC7914709 DOI: 10.3390/toxins13020116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
Protein-bound uremic toxins (PBUTs) are difficult to remove using conventional dialysis treatment owing to their high protein-binding affinity. As pH changes the conformation of proteins, it may be associated with the binding of uremic toxins. Albumin conformation at pH 2 to 13 was analyzed using circular dichroism. The protein binding behavior between indoxyl sulfate (IS) and albumin was examined using isothermal titration calorimetry. Albumin with IS, and serum with IS, p-cresyl sulfate, indole acetic acid or phenyl sulfate, as well as serum from hemodialysis patients, were adjusted pH of 3 to 11, and the concentration of the free PBUTs was measured using mass spectrometry. Albumin was unfolded at pH < 4 or >12, and weakened interaction with IS occurred at pH < 5 or >10. The concentration of free IS in the albumin solution was increased at pH 4.0 and pH 11.0. Addition of human serum to each toxin resulted in increased free forms at acidic and alkaline pH. The pH values of serums from patients undergoing hemodialysis adjusted to 3.4 and 11.3 resulted in increased concentrations of the free forms of PBUTs. In conclusion, acidic and alkaline pH conditions changed the albumin conformation and weakened the protein binding property of PBUTs in vitro.
Collapse
Affiliation(s)
- Suguru Yamamoto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (M.D.); (T.I.); (S.G.); (I.N.)
- Correspondence: ; Tel.: +81-25-227-2200
| | - Kenichi Sasahara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; (K.S.); (K.Y.); (Y.G.)
| | - Mio Domon
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (M.D.); (T.I.); (S.G.); (I.N.)
| | - Keiichi Yamaguchi
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; (K.S.); (K.Y.); (Y.G.)
| | - Toru Ito
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (M.D.); (T.I.); (S.G.); (I.N.)
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (M.D.); (T.I.); (S.G.); (I.N.)
| | - Yuji Goto
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan; (K.S.); (K.Y.); (Y.G.)
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; (M.D.); (T.I.); (S.G.); (I.N.)
| |
Collapse
|
39
|
Merzougui CE, Roblin P, Aimar P, Venault A, Chang Y, Causserand C, Bacchin P. Pearl-necklace assembly of human serum albumin with the poly(acrylic acid) polyelectrolyte investigated using small angle X-ray scattering (SAXS). SOFT MATTER 2020; 16:9964-9974. [PMID: 33034602 DOI: 10.1039/d0sm01221a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this comprehensive study, the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA) was explored using small angle X-ray scattering (SAXS) combined with chromatography. The results revealed the formation of a complex between HSA macromolecules and PAA chains but solely under some specific conditions of the ionic strength and pH of the medium. In fact, this binding was found to take place only at pH close to 5 and at low ionic strength (0.15 M). Otherwise, for a higher pH and a salt concentration of 0.75 M the HSA-PAA complex tends to dissociate completely showing the reversibility of the complexation. The assessment of the influence of the HSA/PAA molar ratio on the radius of gyration of the complex suggests that 4 HSA molecules could bind to each 100 kDa PAA chain. In addition, the Porod volume evaluation for the same range of the HSA/PAA ratio confirms this assumption. Finally, an all-atom SAXS modelling study using the BUNCH program was conducted to find a compatible model that fits the HSA-PAA complex scattering data. This model allows us to portray the HSA/PAA complex as a pearl-necklace assembly with 4 HSA molecules on the 100 kDa PAA chain.
Collapse
Affiliation(s)
- Charaf E Merzougui
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Roblin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Pierre Aimar
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Antoine Venault
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Yung Chang
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Christel Causserand
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| | - Patrice Bacchin
- Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
| |
Collapse
|
40
|
Shabbir S, Muslim M, Muthu SA, Pissurlenkar RRS, Fatima S, Ali A, Ahmad A, Ahmad M, Ahmad B. The cocrystal of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methyl) benzonitrile with 5-hydroxy isophthalic acid prevents protofibril formation of serum albumin. J Biomol Struct Dyn 2020; 40:538-548. [PMID: 32876543 DOI: 10.1080/07391102.2020.1815585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The formation of amyloid-like fibrils is a central problem in biophysical chemistry and medicine. Fibril formation and their deposition in various tissues and organs are associated with many human diseases. Searching for molecules able to prevent the formation of fibrils is, therefore, necessary. In this work, we examined the potential of a cocrystal (SS3) of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methy) benzonitrile with 5-hydroxy isophthalic acid, to prevent fibrillation of human serum albumin. We found that the cocrystal strongly bound to human serum albumin (HSA) with association constant (Ka) of 5.8 ± 0.7 × 105 M-1. The SS3 binding was found to cause small alterations in both secondary and tertiary structure of the protein. Transmission electron microscopy showed that the cocrystal completely prevented the formation of worm-like protofibrils by HSA at SS3/HSA molar ratio of 1:1. The molecule was found to prevent the aggregation in a concentration dependent manner. It was also observed that most of protein in the presence of SS3 remained in soluble state and the secondary structure contained native-like α-helical structure. Therefore, we conclude that the cocrystal effectively prevented conversion of HSA into worm-like protofibril. These finding suggest that combination of molecules in the form of cocrystal or other stable combination could pave a way for the development of drugs against amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiya Shabbir
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Mohd Muslim
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shivani A Muthu
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Raghuvir R S Pissurlenkar
- (Bio) Molecular Simulations Group, Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, India
| | - Shaista Fatima
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Arif Ali
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Aiman Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Basir Ahmad
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
41
|
Patnin S, Makarasen A, Kuno M, Deeyohe S, Techasakul S, Chaivisuthangkura A. Binding interaction of potent HIV-1 NNRTIs, amino-oxy-diarylquinoline with the transport protein using spectroscopic and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 233:118159. [PMID: 32120287 DOI: 10.1016/j.saa.2020.118159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/11/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
In the present investigation, the intermolecular interaction of 4-(4'-cyanophenoxy)-2-(4''-cyanophenyl)-aminoquinoline (1), a potent non-nucleoside HIV-1 reverse transcriptase inhibitors, with the transport proteins, namely bovine serum albumin (BSA) and human serum albumin (HSA), has been investigated under physiological conditions employing UV-Vis, fluorescence spectrophotometry, competitive binding experiments and molecular docking methods. The results indicated that binding of (1) to the transport proteins caused fluorescence quenching though a static quenching mechanism. The number of binding site (n) and the apparent binding constant (Kb) between (1) and the transport proteins were determined to be about 1 and 104-105 L·mol-1 (at three different temperatures; 298, 308, 318 K), respectively. The interaction of (1) upon binding to the transport proteins was spontaneous. The enthalpic change (ΔH°) and the entropic change (ΔS°) were calculated to be -56.50 kJ·mol-1, -72.31 J·mol-1 K-1 for (1)/BSA, respectively and computed to be -49.35 kJ·mol-1, -58.64 J·mol-1 K-1, respectively for (1)/HSA, respectively. The results implied that the process of interaction force of (1) with the transport protein were Vander Waals force and/or hydrogen bonding interactions. The site maker competitive experiments revealed that the binding site of (1) with the transport proteins were mainly located within site I (sub-domain IIA) in both proteins. Additionally, the molecular docking experiment supported the above results which confirmed the binding interaction between (1) and the transport proteins. This study will come up with basic data for explicating the binding mechanisms of (1) with the transport protein and can be great significance in the opening to clarify the transport process of (1) in vivo.
Collapse
Affiliation(s)
- Suwicha Patnin
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Arthit Makarasen
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand.
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand
| | - Sirinya Deeyohe
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Department of Chemistry, Laboratory of Organic Synthesis, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Apinya Chaivisuthangkura
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand.
| |
Collapse
|
42
|
Stojanović SD, Nićiforović JM, Živanović SM, Odović JV, Jelić RM. Spectroscopic studies on the drug–drug interaction: the influence of fluoroquinolones on the affinity of tigecycline to human serum albumin and identification of the binding site. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02627-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
43
|
Kovalska V, Kuperman M, Losytskyy M, Vakarov S, Potocki S, Yarmoluk S, Voloshin Y, Varzatskii O, Gumienna-Kontecka E. Induced CD of iron(ii) clathrochelates: sensing of the structural and conformational alterations of serum albumins. Metallomics 2020; 11:338-348. [PMID: 30516230 DOI: 10.1039/c8mt00278a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An ability of inherently achiral macrobicyclic metal complexes iron(ii) clathrochelates to acquire an induced CD (ICD) output in the visible spectral range upon interaction with bovine serum albumin (BSA) was recently discovered. In the present work, the CD-reporting properties of iron(ii) clathrochelates to proteins and the thermodynamic parameters of their binding to albumins are evaluated. It is shown that iron(ii) clathrochelates functionalized by six ribbed carboxyphenylsulfide groups are able to discriminate between serum albumins of relative structure (here human and bovine albumins) by giving distinct ICD spectra. Besides, by the variation of the shape and intensity of CD bands, these cage metal complexes reflect the pH-triggered alterations of the tertiary structure of albumins. The constitutional isomerism (ortho-, meta- or para-isomers) of terminal carboxyphenylsulfide groups of iron(ii) clathrochelates strongly affects both the character of their ICD output upon binding with proteins and the parameters of the formed guest-host associates. Using isothermal titration calorimetry, it was determined that cage metal complexes bearing meta- and ortho-isomers of carboxyphenylsulfide groups possess higher association constants (Ka ∼ 2 × 104 M-1) and clathrochelate-to-BSA binding ratios (n = 2) than the para-isomer (Ka ∼ 5 × 103 M-1, n = 1). The iron(ii) clathrochelates are suggested to be potential molecular three-dimensional scaffolds for the design of CD-sensitive reporters able to recognize specific elements of protein surfaces.
Collapse
Affiliation(s)
- Vladyslava Kovalska
- Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Srivastava R, Alam MS. Spectroscopic studies of the aggregation behavior of Human Serum Albumin and cetyltrimethylammonium bromide. Int J Biol Macromol 2020; 158:394-400. [PMID: 32380109 DOI: 10.1016/j.ijbiomac.2020.04.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
To check the role of micelle in the interaction studies of human serum albumin (HSA) and cetyltrimethylammonium bromide (CTAB), many spectroscopic techniques, like UV-visible, fluorescence, circular dichroism, fluorescence lifetime measurement, and atomic force microscopy (AFM), are employed. The binding affinity of all compound groups depended on the hydrocarbon chain, indicating the predominant role of hydrophobic forces, electrostatic forces and supported by polar interactions on protein surfaces. The protein has a different effect on the polarity of a microenvironment in fluorescence spectra above and below the critical micelle concentration (CMC) of the suractant. The far-UV-CD spectra show unfolding below the CMC and refolding above the CMC. The binding of the surfactant induces changes in the microenvironment at different pHs around the residues of the aromatic amino acid and the disulfide bond of protein. The AFM images show significant changes in the protein's structure. AFM images show dense aggregation below the CMC and above the CMC, some net-like structure formed in the HSA-CTAB complex. To test the experimental results, we used Auto dock Vina to conduct molecular docking. Above and below the CMC, structural changes can be seen.
Collapse
Affiliation(s)
- Rachana Srivastava
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India
| | - Md Sayem Alam
- Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Polymer Science &Technology Laboratory, Chennai 600020, India; Chemical Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.
| |
Collapse
|
45
|
Plisko TV, Bildyukevich AV, Burts KS, Ermakov SS, Penkova AV, Kuzminova AI, Dmitrenko ME, Hliavitskaya TA, Ulbricht M. One-Step Preparation of Antifouling Polysulfone Ultrafiltration Membranes via Modification by a Cationic Polyelectrolyte Based on Polyacrylamide. Polymers (Basel) 2020; 12:E1017. [PMID: 32365754 PMCID: PMC7284957 DOI: 10.3390/polym12051017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/03/2022] Open
Abstract
A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05-0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of "solvent-non-solvent" exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.
Collapse
Affiliation(s)
- Tatiana V. Plisko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Alexandr V. Bildyukevich
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Katsiaryna S. Burts
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Sergey S. Ermakov
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Anastasia V. Penkova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Anna I. Kuzminova
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Maria E. Dmitrenko
- Department of Analytical Chemistry, Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (S.S.E.); (A.V.P.); (A.I.K.); (M.E.D.)
| | - Tatiana A. Hliavitskaya
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov str., 220072 Minsk, Belarus; (A.V.B.); (K.S.B.); (T.A.H.)
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, and Center for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45141 Essen, Germany;
| |
Collapse
|
46
|
Maciążek-Jurczyk M, Janas K, Pożycka J, Szkudlarek A, Rogóż W, Owczarzy A, Kulig K. Human Serum Albumin Aggregation/Fibrillation and its Abilities to Drugs Binding. Molecules 2020; 25:molecules25030618. [PMID: 32023900 PMCID: PMC7038104 DOI: 10.3390/molecules25030618] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Human serum albumin (HSA) is a protein that transports neutral and acid ligands in the organism. Depending on the environment's pH conditions, HSA can take one of the five isomeric forms that change its conformation. HSA can form aggregates resembling those in vitro formed from amyloid at physiological pH (neutral and acidic). Not surprisingly, the main goal of the research was aggregation/fibrillation of HSA, the study of the physicochemical properties of formed amyloid fibrils using thioflavin T (ThT) and the analysis of ligand binding to aggregated/fibrillated albumin in the presence of dansyl-l-glutamine (dGlu), dansyl-l-proline (dPro), phenylbutazone (Phb) and ketoprofen (Ket). Solutions of human serum albumin, both non-modified and modified, were examined with the use of fluorescence, absorption and circular dichroism (CD) spectroscopy. The experiments conducted allowed observation of changes in the structure of incubated HSA (HSAINC) in relation to nonmodified HSA (HSAFR). The formed aggregates/fibrillation differed in structure from HSA monomers and dimers. Based on CD spectroscopy, previously absent βstructural constructs have been registered. Whereas, using fluorescence spectroscopy, the association constants differing for fresh and incubated HSA solutions in the presence of dansyl-amino acids and markers for binding sites were calculated and allowed observation of the conformational changes in HSA molecule.
Collapse
Affiliation(s)
- Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
- Correspondence: ; Tel.: +48-32-364-1582
| | - Kamil Janas
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Agnieszka Szkudlarek
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Wojciech Rogóż
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| | - Aleksandra Owczarzy
- Independent Public Clinical Hospital No. 1 in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Karolina Kulig
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (K.J.); (J.P.); (A.S.); (W.R.); (K.K.)
| |
Collapse
|
47
|
Interstitial serum albumin empowers osteosarcoma cells with FAIM2 transcription to obtain viability via dedifferentiation. In Vitro Cell Dev Biol Anim 2020; 56:129-144. [PMID: 31942726 DOI: 10.1007/s11626-019-00421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023]
Abstract
During hematogenous metastasis, cancer cells escape from primary lesions and enter into the circulatory system, and only a few can colonize distant organs. However, the mechanism of cell survival and metastasis in the hematopoietic environment remains unclear. Angiorrhea is the character of pathological neovascularization in malignant tumors and commonly detected in osteosarcoma (OS), a bone tumor that prefers circulatory metastasis. In the present study, we focused on the notable role of serum albumin, the highest content in blood plasma, on OS progression. Our results indicated that serum albumin might act as a barrier against exogenous cancer cells during hematogenous metastasis. OS cells with high metastatic potential could gradually obtain strong viability through dedifferentiation under the effect of serum albumin in the angiorrhea region. Further exploration showed that serum albumin could increase the intracellular calcium concentration by activating the voltage-dependent calcium channel Cav2.1 in OS cells to affect the cytoskeleton, sequentially leading to dedifferentiation. Dedifferentiated OS cells with increased FAS apoptosis inhibitory molecule 2 (FAIM2) expression would gradually acquire survival ability, whereas knockdown of FAIM2 caused apoptosis in serum albumin. Moreover, FAIM2 overexpression rescued the viability of OS cells with low metastatic potential in serum albumin. In clinical specimens, OS cells showed markedly stronger positive staining of FAIM2 in the angiorrhea area. Taken together, our findings indicate that serum albumin in the angiorrhea region is a critical substance during pulmonary metastasis of OS cells. Angiorrhea is a nonnegligible prognostic element and FAIM2 might serve as a promising therapeutic target.
Collapse
|
48
|
Qian K, Chen H, Qu C, Qi J, Du B, Ko T, Xiang Z, Kandawa-Schulz M, Wang Y, Cheng Z. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 23:102087. [DOI: 10.1016/j.nano.2019.102087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/26/2022]
|
49
|
Nandi R, Yucknovsky A, Mazo MM, Amdursky N. Exploring the inner environment of protein hydrogels with fluorescence spectroscopy towards understanding their drug delivery capabilities. J Mater Chem B 2020; 8:6964-6974. [DOI: 10.1039/d0tb00818d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Time-resolved fluorescence have used to explore the inner surface and solvation dynamics within protein hydrogels assisting in rationalizing their drug binding and release capabilities.
Collapse
Affiliation(s)
- Ramesh Nandi
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| | - Manuel M. Mazo
- Cell Therapy Area
- Clinica Universidad de Navarra, and Regenerative Medicine Program
- Cima Universidad de Navarra
- Pamplona
- Spain
| | - Nadav Amdursky
- Schulich Faculty of Chemistry
- Technion Israel Institute of Technology
- Haifa-3200003
- Israel
| |
Collapse
|
50
|
Zhang W, Meckes B, Mirkin CA. Spherical Nucleic Acids with Tailored and Active Protein Coronae. ACS CENTRAL SCIENCE 2019; 5:1983-1990. [PMID: 31893228 PMCID: PMC6936096 DOI: 10.1021/acscentsci.9b01105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 05/02/2023]
Abstract
Spherical nucleic acids (SNAs) are nanomaterials typically consisting of a nanoparticle core and a functional, dense, and highly oriented oligonucleotide shell with unusual biological properties that make them appealing for many applications, including sequence-specific gene silencing, mRNA quantification, and immunostimulation. When placed in biological fluids, SNAs readily interact with serum proteins, leading to the formation of ill-defined protein coronae on the surface, which can influence the targeting capabilities of the conjugate. In this work, SNAs were designed and synthesized with functional proteins, such as antibodies and serum albumin, deliberately adsorbed onto their surfaces. These particles exhibit increased resistance to protease degradation compared with native SNAs but still remain functional, as they can engage in hybridization with complementary oligonucleotides. SNAs with adsorbed targeting antibodies exhibit improved cellular selectivity within mixed cell populations. Similarly, SNAs coated with the dysopsonizing protein serum albumin show reduced macrophage uptake, providing a strategy for tailoring selective SNA delivery. Importantly, the protein coronae remain stable on the SNAs in human serum, exhibiting a less than 45% loss of protein through exchange after 12 h at 37 °C. Taken together, these results show that protein-SNA complexes and the method used to prepare them provide a new avenue for enhancing SNA stability, targeting, and biodistribution.
Collapse
Affiliation(s)
- Wuliang Zhang
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Brian Meckes
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
| | - Chad A. Mirkin
- Department
of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- International
Institute for Nanotechnology, Northwestern
University, 2145 Sheridan Road, Evanston, Illinois 60208, United
States
- E-mail:
| |
Collapse
|