1
|
Rezaei N, Dormiani K, Kiani-Esfahani A, Mirdamadian S, Rahmani M, Jafarpour F, Nasr-Esfahani MH. Characterization and functional evaluation of goat PDX1 regulatory modules through comparative analysis of conserved interspecies homologs. Sci Rep 2024; 14:26755. [PMID: 39500950 PMCID: PMC11538457 DOI: 10.1038/s41598-024-77614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
PDX1 is a crucial transcription factor in pancreas development and mature β-cell function. However, the regulation of PDX1 expression in larger animals mirroring human pancreas morphogenesis and endocrine maturation remains poorly understood. Therefore, we conducted a comparative analysis to characterize regulatory regions of goat PDX1 gene and assessed their transcriptional activity by transient transfection of several transgenic EGFP constructs in β- and non-β cell lines. We recognized several highly conserved regions encompassing the promoter and cis-regulatory elements (Area I-IV) at 5' flanking sequence of the genes. Within the promoter, we identified that a key E-box and nearby CAAT element synergistically drive transcription, constituting the basal promoter of goat PDX1 gene. Furthermore, each recognized regulatory area separately enhances this basal promoter activity in β-cells compared to non-β cells; however, cooperatively, they exhibit a bifunctional regulatory effect on transcription. Additionally, the intact ~ 3 kb upstream region (Area I-III) functions as the most efficient reporter transgene in vitro and shows islet-specific expression in native rat pancreas. Together, our findings suggest that the regulation of goat PDX1 gene is governed by conserved regions similar to other mammals, while both structurally and functionally, these regions exhibit a closer resemblance to those found in humans.
Collapse
Affiliation(s)
- Naeimeh Rezaei
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kianoush Dormiani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Abbas Kiani-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Mirdamadian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Siwan D, Nandave M, Gilhotra R, Almalki WH, Gupta G, Gautam RK. Unlocking β-cell restoration: The crucial role of PDX1 in diabetes therapy. Pathol Res Pract 2024; 254:155131. [PMID: 38309018 DOI: 10.1016/j.prp.2024.155131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Diabetes has been a significant healthcare problem worldwide for a considerable period. The primary objective of diabetic treatment plans is to control the symptoms associated with the pathology. To effectively combat diabetes, it is crucial to comprehend the disease's etiology, essential factors, and the relevant processes involving β-cells. The development of the pancreas, maturation, and maintenance of β-cells, and their role in regular insulin function are all regulated by PDX1. Therefore, understanding the regulation of PDX1 and its interactions with signaling pathways involved in β-cell differentiation and proliferation are crucial elements of alternative diabetes treatment strategies. The present review aims to explore the protective role of PDX1 in β-cell proliferation through signaling pathways. The main keywords chosen for this review include "PDX1 for β-cell mass," "β-cell proliferation," "β-cell restoration via PDX1," and "mechanism of PDX1 in β-cells." A comprehensive literature search was conducted using various internet search engines, such as PubMed, Science Direct, and other publication databases. We summarize several approaches to generating β-cells from alternative cell sources, employing PDX1 under various modified growth conditions and different transcriptional factors. Our analysis highlights the unique potential of PDX1 as a promising target in molecular and cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Deepali Siwan
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India.
| | - Ritu Gilhotra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, IIST Campus, Opposite IIM Indore, Rau-Pithampur Road, Indore 453331, Madhya Pradesh, India
| |
Collapse
|
3
|
Guo P, Zhang T, Lu A, Shiota C, Huard M, Whitney KE, Huard J. Specific reprogramming of alpha cells to insulin-producing cells by short glucagon promoter-driven Pdx1 and MafA. Mol Ther Methods Clin Dev 2023; 28:355-365. [PMID: 36879848 PMCID: PMC9984919 DOI: 10.1016/j.omtm.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Endogenous reprogramming of pancreas-derived non-beta cells into insulin-producing cells is a promising approach to treat type 1 diabetes (T1D). One strategy that has yet to be explored is the specific delivery of insulin-producing essential genes, Pdx1 and MafA, to pancreatic alpha cells to reprogram the cells into insulin-producing cells in an adult pancreas. In this study, we used an alpha cell-specific glucagon (GCG) promoter to drive Pdx1 and MafA transcription factors to reprogram alpha cells to insulin-producing cells in chemically induced and autoimmune diabetic mice. Our results showed that a combination of a short glucagon-specific promoter with AAV serotype 8 (AAV8) can be used to successfully deliver Pdx1 and MafA to pancreatic alpha cells in the mouse pancreas. Pdx1 and MafA expression specifically in alpha cells were also able to correct hyperglycemia in both induced and autoimmune diabetic mice. With this technology, targeted gene specificity and reprogramming were accomplished with an alpha-specific promotor combined with an AAV-specific serotype and provide an initial basis to develop a novel therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Ping Guo
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80526, USA
| | - Ting Zhang
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Aiping Lu
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80526, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthieu Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80526, USA
| | - Kaitlyn E Whitney
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA.,Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80526, USA
| |
Collapse
|
4
|
Ebrahim N, Shakirova K, Dashinimaev E. PDX1 is the cornerstone of pancreatic β-cell functions and identity. Front Mol Biosci 2022; 9:1091757. [PMID: 36589234 PMCID: PMC9798421 DOI: 10.3389/fmolb.2022.1091757] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related β-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of β-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining β-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain β-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Ksenia Shakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia,*Correspondence: Erdem Dashinimaev,
| |
Collapse
|
5
|
PDX-1: A Promising Therapeutic Target to Reverse Diabetes. Biomolecules 2022; 12:biom12121785. [PMID: 36551213 PMCID: PMC9775243 DOI: 10.3390/biom12121785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 12/02/2022] Open
Abstract
The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, β-cell differentiation, and the maintenance of mature β-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes β-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.
Collapse
|
6
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Salguero-Aranda C, Beltran-Povea A, Postigo-Corrales F, Hitos AB, Díaz I, Caballano-Infantes E, Fraga MF, Hmadcha A, Martín F, Soria B, Tapia-Limonchi R, Bedoya FJ, Tejedo JR, Cahuana GM. Pdx1 Is Transcriptionally Regulated by EGR-1 during Nitric Oxide-Induced Endoderm Differentiation of Mouse Embryonic Stem Cells. Int J Mol Sci 2022; 23:ijms23073920. [PMID: 35409280 PMCID: PMC8999925 DOI: 10.3390/ijms23073920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
The transcription factor, early growth response-1 (EGR-1), is involved in the regulation of cell differentiation, proliferation, and apoptosis in response to different stimuli. EGR-1 is described to be involved in pancreatic endoderm differentiation, but the regulatory mechanisms controlling its action are not fully elucidated. Our previous investigation reported that exposure of mouse embryonic stem cells (mESCs) to the chemical nitric oxide (NO) donor diethylenetriamine nitric oxide adduct (DETA-NO) induces the expression of early differentiation genes such as pancreatic and duodenal homeobox 1 (Pdx1). We have also evidenced that Pdx1 expression is associated with the release of polycomb repressive complex 2 (PRC2) and P300 from the Pdx1 promoter; these events were accompanied by epigenetic changes to histones and site-specific changes in the DNA methylation. Here, we investigate the role of EGR-1 on Pdx1 regulation in mESCs. This study reveals that EGR-1 plays a negative role in Pdx1 expression and shows that the binding capacity of EGR-1 to the Pdx1 promoter depends on the methylation level of its DNA binding site and its acetylation state. These results suggest that targeting EGR-1 at early differentiation stages might be relevant for directing pluripotent cells into Pdx1-dependent cell lineages.
Collapse
Affiliation(s)
- Carmen Salguero-Aranda
- Department of Pathology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, CSIC-University of Seville, 41013 Seville, Spain
- Spanish Biomedical Research Network Centre in Oncology, CIBERONC of the Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41004 Seville, Spain
- Correspondence: (C.S.-A.); (G.M.C.)
| | - Amparo Beltran-Povea
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
| | - Fátima Postigo-Corrales
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
| | - Ana Belén Hitos
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
| | - Irene Díaz
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Estefanía Caballano-Infantes
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Mario F. Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Cancer Epigenetics and Nanomedicine Laboratory, 33940 El Entrego, Spain;
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Department of Biotechnology, University of Alicante, 03690 Alicante, Spain
| | - Franz Martín
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Regeneration and Cell Therapy Andalusian, Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Seville-CSIC, 41013 Seville, Spain
| | - Bernat Soria
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Department of Biotechnology, University of Alicante, 03690 Alicante, Spain
- Health Research Institute-ISABIAL Dr Balmis University Hospital and Institute of Bioengineering, University Miguel Hernández de Elche, 03010 Alicante, Spain
| | - Rafael Tapia-Limonchi
- Tropical Disease Institute, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas 01001, Peru;
| | - Francisco J. Bedoya
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Tropical Disease Institute, Universidad Nacional Toribio Rodríguez de Mendoza, Amazonas 01001, Peru;
| | - Gladys M. Cahuana
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, 41013 Seville, Spain; (A.B.-P.); (F.P.-C.); (E.C.-I.); (A.H.); (F.M.); (F.J.B.); (J.R.T.)
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM of the Carlos III Health Institute (ISCIII), 08036 Madrid, Spain; (A.B.H.); (I.D.); (B.S.)
- Correspondence: (C.S.-A.); (G.M.C.)
| |
Collapse
|
8
|
Transcriptional control of pancreatic β-cell identity and plasticity during the pathogenesis of type 2 diabetes. J Genet Genomics 2022; 49:316-328. [DOI: 10.1016/j.jgg.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
|
9
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Font-Cunill B, Arnes L, Ferrer J, Sussel L, Beucher A. Long Non-coding RNAs as Local Regulators of Pancreatic Islet Transcription Factor Genes. Front Genet 2018; 9:524. [PMID: 30459811 PMCID: PMC6232259 DOI: 10.3389/fgene.2018.00524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
The transcriptional programs of differentiated cells are tightly regulated by interactions between cell type-specific transcription factors and cis-regulatory elements. Long non-coding RNAs (lncRNAs) have emerged as additional regulators of gene transcription. Current evidence indicates that lncRNAs are a very heterogeneous group of molecules. For example, selected lncRNAs have been shown to regulate gene expression in cis or trans, although in most cases the precise underlying molecular mechanisms is unknown. Recent studies have uncovered a large number of lncRNAs that are selectively expressed in pancreatic islet cells, some of which were shown to regulate β cell transcriptional programs. A subset of such islet lncRNAs appears to control the expression of β cell-specific transcription factor (TF) genes by local cis-regulation. In this review, we discuss current knowledge of molecular mechanisms underlying cis-regulatory lncRNAs and discuss challenges involved in using genetic perturbations to define their function. We then discuss known examples of pancreatic islet lncRNAs that appear to exert cis-regulation of TF genes. We propose that cis-regulatory lncRNAs could represent a molecular target for modulation of diabetes-relevant genes.
Collapse
Affiliation(s)
- Berta Font-Cunill
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Luis Arnes
- Department of Systems Biology, Columbia University Medical Center, New York, NY, United States.,Department of Biomedical Informatics, Columbia University Medical Center, New York, NY, United States
| | - Jorge Ferrer
- Department of Medicine, Imperial College London, London, United Kingdom.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Lori Sussel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, United States.,Barbara Davis Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anthony Beucher
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 2018; 92:77-88. [PMID: 30142440 DOI: 10.1016/j.semcdb.2018.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/29/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022]
Abstract
The pancreas is a compound gland comprised of both exocrine acinar and duct cells as well as endocrine islet cells. Most notable amongst the latter are the insulin-synthesizing β-cells, loss or dysfunction of which manifests in diabetes mellitus. All exocrine and endocrine cells derive from multipotent pancreatic progenitor cells arising from the primitive gut epithelium via inductive interactions with adjacent mesodermal tissues. Research in the last two decades has revealed the identity of many of these extrinsic cues and they include signaling molecules used in many other developmental contexts such as retinoic acid, fibroblast growth factors, and members of the TGF-β superfamily. As important as these inductive cues is the absence of other signaling molecules such as hedgehog family members. Much has been learned about the interactions of extrinsic factors with fate regulators intrinsic to the pancreatic endoderm. This new knowledge has had tremendous impact on the development of directed differentiation protocols for converting pluripotent stem cells to β-cells in vitro.
Collapse
|
12
|
Affiliation(s)
- Aaron R Cox
- McNair Medical Institute and Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jake A Kushner
- McNair Medical Institute and Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Spaeth JM, Gupte M, Perelis M, Yang YP, Cyphert H, Guo S, Liu JH, Guo M, Bass J, Magnuson MA, Wright C, Stein R. Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes 2017; 66:2830-2839. [PMID: 28705881 PMCID: PMC5652607 DOI: 10.2337/db16-1516] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
The transcription factor encoded by the Pdx1 gene is a critical transcriptional regulator, as it has fundamental actions in the formation of all pancreatic cell types, islet β-cell development, and adult islet β-cell function. Transgenic- and cell line-based experiments have identified 5'-flanking conserved sequences that control pancreatic and β-cell type-specific transcription, which are found within areas I (bp -2694 to -2561), II (bp -2139 to -1958), III (bp -1879 to -1799), and IV (bp -6200 to -5670). Because of the presence in area IV of binding sites for transcription factors associated with pancreas development and islet cell function, we analyzed how an endogenous deletion mutant affected Pdx1 expression embryonically and postnatally. The most striking result was observed in male Pdx1ΔIV mutant mice after 3 weeks of birth (i.e., the onset of weaning), with only a small effect on pancreas organogenesis and no deficiencies in their female counterparts. Compromised Pdx1 mRNA and protein levels in weaned male mutant β-cells were tightly linked with hyperglycemia, decreased β-cell proliferation, reduced β-cell area, and altered expression of Pdx1-bound genes that are important in β-cell replication, endoplasmic reticulum function, and mitochondrial activity. We discuss the impact of these novel findings to Pdx1 gene regulation and islet β-cell maturation postnatally.
Collapse
Affiliation(s)
- Jason M Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Manisha Gupte
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Mark Perelis
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Ping Yang
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Holly Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Shuangli Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Jin-Hua Liu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Joseph Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mark A Magnuson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Christopher Wright
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|
14
|
Abstract
A small number of cells in the adult pancreas are endocrine cells. They are arranged in clusters called islets of Langerhans. The islets make insulin, glucagon, and other endocrine hormones, and release them into the blood circulation. These hormones help control the level of blood glucose. Therefore, a dysfunction of endocrine cells in the pancreas results in impaired glucose homeostasis, or diabetes mellitus. The pancreas is an organ that originates from the evaginations of pancreatic progenitor cells in the epithelium of the foregut endoderm. Pancreas organogenesis and maturation of the islets of Langerhans occurs via a coordinated and complex interplay of transcriptional networks and signaling molecules, which guide a stepwise and repetitive process of the propagation of progenitor cells and their maturation, eventually resulting in a fully functional organ. Increasing our understanding of the extrinsic, as well as intrinsic mechanisms that control these processes should facilitate the efforts to generate surrogate β cells from ES or iPS cells, or to reactivate the function of important cell types within pancreatic islets that are lost in diabetes.
Collapse
Affiliation(s)
- Yoshio Fujitani
- Laboratory of Developmental Biology & Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- AMED-CREST Program, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
15
|
Hani H, Allaudin ZN, Mohd-Lila MA, Sarsaifi K, Rasouli M, Tam YJ, Tengku-Ibrahim TA, Othman AM. Improvement of isolated caprine islet survival and functionality in vitro by enhancing of PDX1 gene expression. Xenotransplantation 2017; 24. [PMID: 28397308 DOI: 10.1111/xen.12302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dead islets replaced with viable islets are a promising offer to restore normal insulin production to a person with diabetes. The main reason for establishing a new islet source for transplantation is the insufficiency of human donor pancreas while using xenogeneic islets perhaps assists this problem. The expression of PDX1 is essential for the pancreas expansion. In mature β-cells, PDX1 has several critical roles such as glucose sensing, insulin synthesis, and insulin secretion. In this study, we aimed to evaluate the expression of pancreatic duodenal homeobox-1 (PDX1) in treated caprine islets in culture and to assess the protective effects of antioxidant factors on the PDX1 gene in cultured caprine islets. MATERIALS AND METHODS Purified islets were treated with serum-free, serum, IBMX, tocopherol, or IBMX and tocopherol media. Quantitative polymerase chain reaction and Western blotting were carried out to compare the expression levels of PDX1 in treated purified islets cultured with different media. RESULTS Islets treated with IBMX/tocopherol exhibited the highest fold change in the relative expression of PDX1 on day 5 post-treatment (relative expression: 6.80±2.08), whereas serum-treated islets showed the lowest fold changes in PDX1 expression on day 5 post-treatment (0.67±0.36), as compared with the expression on day 1 post-treatment. Insulin production and viability tests of purified islets showed superiority of islet at supplemented serum-free media with IBMX/tocopherol compared to other cultures (53.875%±1.59%). CONCLUSIONS Our results indicated that supplemented serum-free medium with tocopherol and IBMX enhances viability and PDX1 gene expression compared to serum-added and serum-free media.
Collapse
Affiliation(s)
- Homayoun Hani
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zeenathul Nazariah Allaudin
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd-Azmi Mohd-Lila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kazhal Sarsaifi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mina Rasouli
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yew Joon Tam
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tengku-Azmi Tengku-Ibrahim
- Department of Veterinary Preclinical, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abas Mazni Othman
- Department of Animal Reproduction, Agro-Biotechnology Institute Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Bastidas-Ponce A, Roscioni SS, Burtscher I, Bader E, Sterr M, Bakhti M, Lickert H. Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Mol Metab 2017; 6:524-534. [PMID: 28580283 PMCID: PMC5444078 DOI: 10.1016/j.molmet.2017.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The transcription factors (TF) Foxa2 and Pdx1 are key regulators of beta-cell (β-cell) development and function. Mutations of these TFs or their respective cis-regulatory consensus binding sites have been linked to maturity diabetes of the young (MODY), pancreas agenesis, or diabetes susceptibility in human. Although Foxa2 has been shown to directly regulate Pdx1 expression during mouse embryonic development, the impact of this gene regulatory interaction on postnatal β-cell maturation remains obscure. METHODS In order to easily monitor the expression domains of Foxa2 and Pdx1 and analyze their functional interconnection, we generated a novel double knock-in homozygous (FVFPBFDHom) fluorescent reporter mouse model by crossing the previously described Foxa2-Venus fusion (FVF) with the newly generated Pdx1-BFP (blue fluorescent protein) fusion (PBF) mice. RESULTS Although adult PBF homozygous animals exhibited a reduction in expression levels of Pdx1, they are normoglycemic. On the contrary, despite normal pancreas and endocrine development, the FVFPBFDHom reporter male animals developed hyperglycemia at weaning age and displayed a reduction in Pdx1 levels in islets, which coincided with alterations in β-cell number and islet architecture. The failure to establish mature β-cells resulted in loss of β-cell identity and trans-differentiation towards other endocrine cell fates. Further analysis suggested that Foxa2 and Pdx1 genetically and functionally cooperate to regulate maturation of adult β-cells. CONCLUSIONS Our data show that the maturation of pancreatic β-cells requires the cooperative function of Foxa2 and Pdx1. Understanding the postnatal gene regulatory network of β-cell maturation will help to decipher pathomechanisms of diabetes and identify triggers to regenerate dedifferentiated β-cell mass.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Sara S Roscioni
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Erik Bader
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, Germany.,Technical University of Munich, Germany.,German Center for Diabetes Research (DZD), Germany
| |
Collapse
|
17
|
Yang YP, Magnuson MA, Stein R, Wright CVE. The mammal-specific Pdx1 Area II enhancer has multiple essential functions in early endocrine cell specification and postnatal β-cell maturation. Development 2016; 144:248-257. [PMID: 27993987 DOI: 10.1242/dev.143123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
Abstract
The transcription factor Pdx1 is required for multiple aspects of pancreatic organogenesis. It remains unclear to what extent Pdx1 expression and function depend upon trans-activation through 5' conserved cis-regulatory regions and, in particular, whether the mammal-specific Area II (-2139 to -1958 bp) affects minor or major aspects of organogenesis. We show that Area II is a primary effector of endocrine-selective transcription in epithelial multipotent cells, nascent endocrine progenitors, and differentiating and mature β cells in vivo Pdx1ΔAREAII/- mice exhibit a massive reduction in endocrine progenitor cells and progeny hormone-producing cells, indicating that Area II activity is fundamental to mounting an effective endocrine lineage-specification program within the multipotent cell population. Creating an Area II-deleted state within already specified Neurog3-expressing endocrine progenitor cells increased the proportion of glucagon+ α relative to insulin+ β cells, associated with the transcriptional and epigenetic derepression of the α-cell-determining Arx gene in endocrine progenitors. There were also glucagon and insulin co-expressing cells, and β cells that were incapable of maturation. Creating the Pdx1ΔAREAII state after cells entered an insulin-expressing stage led to immature and dysfunctional islet β cells carrying abnormal chromatin marking in vital β-cell-associated genes. Therefore, trans-regulatory integration through Area II mediates a surprisingly extensive range of progenitor and β-cell-specific Pdx1 functions.
Collapse
Affiliation(s)
- Yu-Ping Yang
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Roland Stein
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology and Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232 USA .,Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
18
|
The Chromatin Modifier MSK1/2 Suppresses Endocrine Cell Fates during Mouse Pancreatic Development. PLoS One 2016; 11:e0166703. [PMID: 27973548 PMCID: PMC5156359 DOI: 10.1371/journal.pone.0166703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/02/2016] [Indexed: 11/24/2022] Open
Abstract
Type I diabetes is caused by loss of insulin-secreting beta cells. To identify novel, pharmacologically-targetable histone-modifying proteins that enhance beta cell production from pancreatic progenitors, we performed a screen for histone modifications induced by signal transduction pathways at key pancreatic genes. The screen led us to investigate the temporal dynamics of ser-28 phosphorylated histone H3 (H3S28ph) and its upstream kinases, MSK1 and MSK2 (MSK1/2). H3S28ph and MSK1/2 were enriched at the key endocrine and acinar promoters in E12.5 multipotent pancreatic progenitors. Pharmacological inhibition of MSK1/2 in embryonic pancreatic explants promoted the specification of endocrine fates, including the beta-cell lineage, while depleting acinar fates. Germline knockout of both Msk isoforms caused enhancement of alpha cells and a reduction in acinar differentiation, while monoallelic loss of Msk1 promoted beta cell mass. Our screen of chromatin state dynamics can be applied to other developmental contexts to reveal new pathways and approaches to modulate cell fates.
Collapse
|
19
|
Teo AKK, Lau HH, Valdez IA, Dirice E, Tjora E, Raeder H, Kulkarni RN. Early Developmental Perturbations in a Human Stem Cell Model of MODY5/HNF1B Pancreatic Hypoplasia. Stem Cell Reports 2016; 6:357-67. [PMID: 26876668 PMCID: PMC4788763 DOI: 10.1016/j.stemcr.2016.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022] Open
Abstract
Patients with an HNF1BS148L/+ mutation (MODY5) typically exhibit pancreatic hypoplasia. However, the molecular mechanisms are unknown due to inaccessibility of patient material and because mouse models do not fully recapitulate MODY5. Here, we differentiated MODY5 human-induced pluripotent stem cells (hiPSCs) into pancreatic progenitors, and show that the HNF1BS148L/+ mutation causes a compensatory increase in several pancreatic transcription factors, and surprisingly, a decrease in PAX6 pancreatic gene expression. The lack of suppression of PDX1, PTF1A, GATA4, and GATA6 indicates that MODY5-mediated pancreatic hypoplasia is mechanistically independent. Overexpression studies demonstrate that a compensatory increase in PDX1 gene expression is due to mutant HNF1BS148L/+ but not wild-type HNF1B or HNF1A. Furthermore, HNF1B does not appear to directly regulate PAX6 gene expression necessary for glucose tolerance. Our results demonstrate compensatory mechanisms in the pancreatic transcription factor network due to mutant HNF1BS148L/+ protein. Thus, patients typically develop MODY5 but not neonatal diabetes despite exhibiting pancreatic hypoplasia. HNF1BS148L/+ mutation elicits a compensatory increase in DE and pancreatic genes MODY5-mediated pancreatic hypoplasia is independent of PDX1, PTF1A, GATA4, and GATA6 HNF1BS148L mutation directly causes a compensatory increase in PDX1 gene expression HNF1BS148L/+ mutation limits PAX6 expression and consequently leads to MODY5
Collapse
Affiliation(s)
- Adrian Kee Keong Teo
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA; Discovery Research Division, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos #06-07, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| | - Hwee Hui Lau
- Discovery Research Division, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos #06-07, Singapore 138673, Singapore
| | - Ivan Achel Valdez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Ercument Dirice
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA
| | - Erling Tjora
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, 5021 Bergen, Norway
| | - Helge Raeder
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, 5021 Bergen, Norway
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Stem Cell Institute, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
21
|
Abstract
Islets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease. Early transcriptional regulation studies of specific islet genes, including insulin (INS) and the transcription factor PDX1, identified the first cis-regulatory DNA sequences and trans-acting factors governing islet function. Here, we review how human islet "omics" studies are reshaping our understanding of transcriptional regulation in islet (dys)function and diabetes. First, we highlight the expansion of islet transcript number, form, and function and of DNA transcriptional regulatory elements controlling their production. Next, we cover islet transcriptional effects of genetic and environmental perturbation. Finally, we discuss how these studies' emerging insights should empower our diabetes research community to build mechanistic understanding of diabetes pathophysiology and to equip clinicians with tailored, precision medicine options to prevent and treat islet dysfunction and diabetes.
Collapse
Affiliation(s)
- Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine (JAX-GM), Farmington, CT, USA,
| | | | | | | |
Collapse
|
22
|
Genomic profiling guides the choice of molecular targeted therapy of pancreatic cancer. Cancer Lett 2015; 363:1-6. [PMID: 25890222 DOI: 10.1016/j.canlet.2015.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer has the worst five-year survival rate of all malignancies due to its aggressive progression and resistance to therapy. Current therapies are limited to gemcitabine-based chemotherapeutics, surgery, and radiation. The current trend toward "personalized genomic medicine" has the potential to improve the treatment options for pancreatic cancer. Gene identification and genetic alterations like single nucleotide polymorphisms and mutations will allow physicians to predict the efficacy and toxicity of drugs, which could help diagnose pancreatic cancer, guide neoadjuvant or adjuvant treatment, and evaluate patients' prognosis. This article reviews the multifaceted roles of genomics and pharmacogenomics in pancreatic cancer.
Collapse
|
23
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
24
|
Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, Kaestner KH, Stein R, Stoffers DA, May CL. Islet-1 Is essential for pancreatic β-cell function. Diabetes 2014; 63:4206-17. [PMID: 25028525 PMCID: PMC4237994 DOI: 10.2337/db14-0096] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal β-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, β-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal β-cells reduced glucose tolerance without significantly reducing β-cell mass or increasing β-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and βTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the β-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal β-cell function, directly regulates Pdx1 and Slc2a2, and has a mature β-cell cistrome distinct from that of pancreatic endocrine progenitors.
Collapse
Affiliation(s)
- Benjamin N Ediger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aiping Du
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jingxuan Liu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Erik R Walp
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Doris A Stoffers
- Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine L May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Janssen Research & Development, Spring House, PA
| |
Collapse
|
25
|
Rouse R, Zhang L, Shea K, Zhou H, Xu L, Stewart S, Rosenzweig B, Zhang J. Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet. PLoS One 2014; 9:e109477. [PMID: 25291183 PMCID: PMC4188617 DOI: 10.1371/journal.pone.0109477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/31/2014] [Indexed: 12/22/2022] Open
Abstract
This study expanded upon a previous study in mice reporting a link between exenatide treatment and exocrine pancreatic injury by demonstrating temporal and dose responses and providing an initial mechanistic hypothesis. The design of the present study included varying lengths of exenatide exposure (3, 6 weeks to 12 weeks) at multiple concentrations (3, 10, or 30 µg/kg) with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles). Time- and dose-dependent exocrine pancreatic injury was observed in mice on a high fat diet treated with exenatide. The morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy), cell adaptations (hypertrophy and hyperplasia), and cell survival (proliferation/regeneration) accompanied by varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles indicated increased signaling for cell survival and altered lipid metabolism in exenatide treated mice. Immunohistochemistry supported gene expression findings that exenatide caused and/or exacerbated pancreatic injury in a high fat diet environment potentially by further increasing high fat diet exacerbated lipid metabolism and resulting oxidative stress. Further investigation is required to confirm these findings and determine their relevance to human disease.
Collapse
Affiliation(s)
- Rodney Rouse
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Leshuai Zhang
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Katherine Shea
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hongfei Zhou
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Lin Xu
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Sharron Stewart
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Barry Rosenzweig
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jun Zhang
- Division of Applied Regulatory Science, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| |
Collapse
|
26
|
Inada A, Inada O, Fujii NL, Fujishima K, Inai T, Fujii H, Sueishi K, Kurachi K. β-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology 2014; 155:3829-42. [PMID: 25057794 DOI: 10.1210/en.2014-1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Previously we have generated transgenic (Tg) mice developing severe diabetes early in life with a profound depletion of β-cells with β-cell-directed expression of inducible cAMP early repressor-Iγ. Only male mice continue to demonstrate hyperglycemia throughout life. To investigate this sexual dimorphism, we treated severely diabetic male Tg mice with orchiectomy (ORX) or 17β-estradiol (E2) pellet implantation alone or in combination with ORX and E2-implantation to change the circulating levels and patterns of the ratio of estradiol to androgens. In the Tg-ORX group, the blood-glucose levels decreased to a certain level within several weeks but never reached the female Tg-control level. In contrast, the Tg-ORX+E2 or Tg-E2 group showed a more rapid drop in blood glucose to the basal level with a substantial increase in β-cells, thus preventing the occurrence of severe diabetes in the male mice. The β-cells, not only within islet but also in and adjacent to ducts and scattered β-cell clusters, were strongly induced by 1 week after treatment, and the islet morphology dramatically changed. Enhanced β-cell induction in the ducts occurred concomitantly with markedly increased levels of pancreatic duodenal homeobox-1 and related transcription factors. The glucose-lowering and β-cell-increasing effects were independent of the age at which the treatment is started. These data provide evidence that the circulating level of E2 and the ratio of E2 to T greatly affect the blood glucose levels, the β-cell induction, and the islet morphology in diabetic male Tg mice. This novel mechanism offers great potential for developing strategies to increase the number of β-cells in vivo.
Collapse
Affiliation(s)
- Akari Inada
- Departments of Diabetes and Genes and Advanced Medical Initiatives (A.I., O.I., K.F.), Developmental Molecular Anatomy (T.I.), and Pathophysiological and Experimental Pathology (HY.F., K.S.), and Medical Institute of Bioregulation (K.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; and Department of Health Promotion Sciences (N.L.F.), Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mulley JF, Holland PW. Genomic organisation of the seven ParaHox genes of coelacanths. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B: MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:352-8. [PMID: 23775937 PMCID: PMC4471637 DOI: 10.1002/jez.b.22513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
Abstract
Human and mouse genomes contain six ParaHox genes implicated in gut and neural patterning. In coelacanths and cartilaginous fish, an additional ParaHox gene exists—Pdx2—that dates back to the genome duplications in early vertebrate evolution. Here we examine the genomic arrangement and flanking genes of all ParaHox genes in coelacanths, to determine the full complement of these genes. We find that coelacanths have seven ParaHox genes in total, in four chromosomal locations, revealing that five gene losses occurred soon after vertebrate genome duplication. Comparison of intergenic sequences reveals that some Pdx1 regulatory regions associated with development of pancreatic islets are older than tetrapods, that Pdx1 and Pdx2 share few if any conserved non-coding elements, and that there is very high sequence conservation between coelacanth species.
Collapse
Affiliation(s)
- John F. Mulley
- School of Biological SciencesBangor UniversityBangorGwynedd, United Kingdom
| | | |
Collapse
|
28
|
Thymiakou E, Kardassis D. Novel mechanism of transcriptional repression of the human ATP binding cassette transporter A1 gene in hepatic cells by the winged helix/forkhead box transcription factor A2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:526-36. [DOI: 10.1016/j.bbagrm.2014.04.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
|
29
|
Wang RH, Xu X, Kim HS, Xiao Z, Deng CX. SIRT1 deacetylates FOXA2 and is critical for Pdx1 transcription and β-cell formation. Int J Biol Sci 2013; 9:934-46. [PMID: 24163589 PMCID: PMC3807017 DOI: 10.7150/ijbs.7529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022] Open
Abstract
Pancreas duodenum homeobox 1 (PDX1) is essential for pancreas development and β-cell formation; however more studies are needed to clearly illustrate the precise mechanism regarding spatiotemporal regulation of Pdx1 expression during β-cell formation and development. Here, we demonstrate that SIRT1, FOXA2 and a number of proteins form a protein complex on the promoter of the Pdx1 gene. SIRT1 and PDX1 are expressed in the same set of cells during β-cell differentiation and maturation. Pancreas-specific disruption of SIRT1 diminished PDX1 expression and impaired islet development. Consequently, SIRT1 mutant mice develop progressive hyperglycemia, glucose intolerance, and insulin insufficiency, which directly correlate with the extent of SIRT1 deletion. We further show that SIRT1 interacts with and deacetylates FOXA2 on the promoter of the Pdx1gene, and positively regulates its transcription. These results uncover an essential role of SIRT1 in β-cell formation by maintaining expression of PDX1 and its downstream genes, and identify pancreas-specific SIRT1 mutant mice as a relevant model for studying insulin insufficiency.
Collapse
Affiliation(s)
- Rui-Hong Wang
- 1. Genetics of Development and Disease Branch, 10/9N105, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland MD 20892, USA
| | | | | | | | | |
Collapse
|
30
|
Igarashi S, Sato Y, Ren XS, Harada K, Sasaki M, Nakanuma Y. Participation of peribiliary glands in biliary tract pathophysiologies. World J Hepatol 2013; 5:425-432. [PMID: 24023981 PMCID: PMC3767841 DOI: 10.4254/wjh.v5.i8.425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/24/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the roles of peribiliary glands around the bile ducts in the pathophysiology of the biliary tract.
METHODS: The expression of fetal pancreatic markers, pancreatic duodenal homeobox factor 1 (PDX1) and hairy and enhancer of split 1 (HES1) and endodermal stem/progenitor (S/P) cell markers [CD44s, chemokine receptor type 4 (CXCR4), SOX9 and epithelial cell adhesion molecule (EpCAM)] were examined immunohistochemically in 32 normal adult livers (autopsy livers) and 22 hepatolithiatic livers (surgically resected livers). The latter was characterized by the proliferation of the peribiliary glands. Immunohistochemistry was performed using formalin-fixed, paraffin-embedded tissue sections after deparaffinization. Although PDX1 and HES1 were expressed in both the nucleus and cytoplasm of epithelial cells, only nuclear staining was evaluated. SOX9 was expressed in the nucleus, while CD44s, CXCR4 and EpCAM were expressed in the cell membranes. The frequency and extent of the expression of these molecules in the lining epithelia and peribiliary glands were evaluated semi-quantitatively based on the percentage of positive cells: 0, 1+ (focal), 2+ (moderate) and 3+ (extensive).
RESULTS: In normal livers, PDX1 was infrequently expressed in the lining epithelia, but was frequently expressed in the peribiliary glands. In contrast, HES1 was frequently expressed in the lining epithelia, but its expression in the peribiliary glands was focal, suggesting that the peribiliary glands retain the potential of differentiation toward the pancreas and the lining epithelia exhibit properties to inhibit such differentiation. This unique combination was also seen in hepatolithiatic livers. The expression of endodermal S/P cell markers varied in the peribiliary glands in normal livers: SOX9 and EpCAM were frequently expressed, CD44s infrequently, and CXCR4 almost not at all. The expression of these markers, particularly CD44s and CXCR4, increased in the peribiliary glands and lining epithelia in hepatolithiatic livers. This increased expression of endodermal S/P cell markers may be related to the increased production of intestinal and gastric mucin and also to the biliary neoplasia associated with the gastric and intestinal phenotypes reported in hepatolithiasis.
CONCLUSION: The unique expression pattern of PDX1 and HES1 and increased expression of endodermal S/P cell markers in the peribiliary glands may be involved in biliary pathophysiologies.
Collapse
|
31
|
Yamamoto K, Matsuoka TA, Kawashima S, Takebe S, Kubo N, Miyatsuka T, Kaneto H, Shimomura I. A novel function of Onecut1 protein as a negative regulator of MafA gene expression. J Biol Chem 2013; 288:21648-58. [PMID: 23775071 PMCID: PMC3724624 DOI: 10.1074/jbc.m113.481424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Indexed: 11/06/2022] Open
Abstract
The transcription factor MafA is a key regulator of insulin gene expression and maturation of islet β cells. Despite its importance, the regulatory mechanism of MafA gene expression is still unclear. To identify the transcriptional regulators of MafA, we examined various transcription factors, which are potentially involved in β cell differentiation. An adenovirus-mediated overexpression study clearly demonstrated that Onecut1 suppresses the promoter activity of MafA through the Foxa2-binding cis-element on the MafA enhancer region (named area A). However, ChIP analysis showed that Foxa2 but not Onecut1 could directly bind to area A. Furthermore, overexpression of Onecut1 inhibited the binding of Foxa2 onto area A upon ChIP analysis. Importantly, insertion of a mutation in the Foxa2-binding site of area A significantly decreased the promoter activity of MafA. These findings suggest that Onecut1 suppresses MafA gene expression through the Foxa2-binding site. In the mouse pancreas, MafA expression was first detected at the latest stage of β cell differentiation and was scarcely observed in Onecut1-positive cells during pancreas development. In addition, Onecut1 expression was significantly increased in the islets of diabetic db/db mice, whereas MafA expression was markedly decreased. The improved glucose levels of db/db mice with insulin injections significantly reduced Onecut1 expression and rescued the reduction of MafA expression. These in vivo experiments also suggest that Onecut1 is a negative regulator of MafA gene expression. This study implicates the novel role of Onecut1 in the control of normal β cell differentiation and its involvement in β cell dysfunction under diabetic conditions by suppressing MafA gene expression.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- Blotting, Western
- Cell Differentiation/genetics
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Gene Expression Regulation, Developmental
- Hepatocyte Nuclear Factor 3-beta/genetics
- Hepatocyte Nuclear Factor 3-beta/metabolism
- Hepatocyte Nuclear Factor 6/genetics
- Hepatocyte Nuclear Factor 6/metabolism
- Hepatocyte Nuclear Factor 6/physiology
- Immunohistochemistry
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Maf Transcription Factors, Large/genetics
- Maf Transcription Factors, Large/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Models, Genetic
- Pancreas/embryology
- Pancreas/growth & development
- Pancreas/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA Interference
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Kaoru Yamamoto
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Taka-aki Matsuoka
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Satoshi Kawashima
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Satomi Takebe
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Noriyo Kubo
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Takeshi Miyatsuka
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Hideaki Kaneto
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| | - Iichiro Shimomura
- From the Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, 565-0871 Suita, Japan
| |
Collapse
|
32
|
Hunter CS, Stein R. Characterization of an apparently novel β-cell line-enriched 80-88 kDa transcriptional activator of the MafA and Pdx1 genes. J Biol Chem 2012; 288:3795-803. [PMID: 23269676 DOI: 10.1074/jbc.m112.434282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MafA and Pdx1 represent critical transcriptional regulators required for the maintenance of pancreatic islet β-cell function. The in vivo β-cell-enriched expression pattern of these genes is principally directed by islet transcription factors binding within conserved Region 3 (base pairs (bp) -8118/-7750) of MafA and Area II (bp -2153/-1923) of the Pdx1 gene. Comprehensive mutational analysis of conserved MafA Region 3 revealed two new β-cell line-specific cis-activation elements, termed Site 4 (bp -7997 to -7988) and Site 12 (bp -7835 to -7826). Gel mobility and antibody super-shift analysis identified Pdx1 as the Site 4 binding factor, while an 80-88 kilodalton (kDa) β-cell line-enriched protein complex bound Site 12 and similar aligned nucleotides within Pdx1 Area II. The 80-88 kDa activator was also found in adult mouse islet extract. Strikingly, the molecular weight, DNA binding, and antibody recognition properties of this activator were unique when compared with all other key islet transcription factors tested, including Prox1 (83 kDa), Hnf1α (67 kDa), FoxA2 (48 kDa), MafA (46 kDa), Isl1 (44 kDa), Pdx1 (42 kDa), and Nkx2.2 (30 kDa). Collectively, these data define an apparently novel MafA Region 3 and Pdx1 Area II activator contributing to expression in β-cells.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
33
|
Shojima N, Hara K, Fujita H, Horikoshi M, Takahashi N, Takamoto I, Ohsugi M, Aburatani H, Noda M, Kubota N, Yamauchi T, Ueki K, Kadowaki T. Depletion of homeodomain-interacting protein kinase 3 impairs insulin secretion and glucose tolerance in mice. Diabetologia 2012; 55:3318-30. [PMID: 22983607 DOI: 10.1007/s00125-012-2711-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/07/2012] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Insufficient insulin secretion and reduced pancreatic beta cell mass are hallmarks of type 2 diabetes. Here, we focused on a family of serine-threonine kinases known as homeodomain-interacting protein kinases (HIPKs). HIPKs are implicated in the modulation of Wnt signalling, which plays a crucial role in transcriptional activity, and in pancreas development and maintenance. The aim of the present study was to characterise the role of HIPKs in glucose metabolism. METHODS We used RNA interference to characterise the role of HIPKs in regulating insulin secretion and transcription activity. We conducted RT-PCR and western blot analyses to analyse the expression and abundance of HIPK genes and proteins in the islets of high-fat diet-fed mice. Glucose-induced insulin secretion and beta cell proliferation were measured in islets from Hipk3 ( -/- ) mice, which have impaired glucose tolerance owing to an insulin secretion deficiency. The abundance of pancreatic duodenal homeobox (PDX)-1 and glycogen synthase kinase (GSK)-3β phosphorylation in Hipk3 ( -/- ) islets was determined by immunohistology and western blot analyses. RESULTS We found that HIPKs regulate insulin secretion and transcription activity. Hipk3 expression was most significantly increased in the islets of high-fat diet-fed mice. Furthermore, glucose-induced insulin secretion and beta cell proliferation were decreased in the islets of Hipk3 ( -/- ) mice. Levels of PDX1 and GSK-3β phosphorylation were significantly decreased in Hipk3 ( -/- ) islets. CONCLUSIONS/INTERPRETATION Depletion of HIPK3 impairs insulin secretion and glucose tolerance. Decreased levels of HIPK3 may play a substantial role in the pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- N Shojima
- Department of Diabetes and Metabolic Disease, Graduate School of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Belaguli NS, Zhang M, Brunicardi FC, Berger DH. Forkhead box protein A2 (FOXA2) protein stability and activity are regulated by sumoylation. PLoS One 2012; 7:e48019. [PMID: 23118920 PMCID: PMC3485284 DOI: 10.1371/journal.pone.0048019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/19/2012] [Indexed: 12/29/2022] Open
Abstract
The forkhead box protein A2 (FOXA2) is an important regulator of glucose and lipid metabolism and organismal energy balance. Little is known about how FOXA2 protein expression and activity are regulated by post-translational modifications. We have identified that FOXA2 is post-translationally modified by covalent attachment of a small ubiquitin related modifier-1 (SUMO-1) and mapped the sumoylation site to the amino acid lysine 6 (K6). Preventing sumoylation by mutating the SUMO acceptor K6 to arginine resulted in downregulation of FOXA2 protein but not RNA expression in INS-1E insulinoma cells. K6R mutation also downregulated FOXA2 protein levels in HepG2 hepatocellular carcinoma cells, HCT116 colon cancer cells and LNCaP and DU145 prostate cancer cells. Further, interfering with FOXA2 sumoylation through siRNA mediated knockdown of UBC9, an essential SUMO E2 conjugase, resulted in downregulation of FOXA2 protein levels. Stability of sumoylation deficient FOXA2K6R mutant protein was restored when SUMO-1 was fused in-frame. FOXA2 sumoylation and FOXA2 protein levels were increased by PIAS1 SUMO ligase but not a SUMO ligase activity deficient PIAS1 mutant. Although expressed at lower levels, sumoylation deficient FOXA2K6R mutant protein was detectable in the nucleus indicating that FOXA2 nuclear localization is independent of sumoylation. Sumoylation increased the transcriptional activity of FOXA2 on Pdx-1 area I enhancer. Together, our results show that sumoylation regulates FOXA2 protein expression and activity.
Collapse
|
35
|
Carrasco M, Delgado I, Soria B, Martín F, Rojas A. GATA4 and GATA6 control mouse pancreas organogenesis. J Clin Invest 2012; 122:3504-15. [PMID: 23006330 DOI: 10.1172/jci63240] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/12/2012] [Indexed: 01/21/2023] Open
Abstract
Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, double Gata4/Gata6 mutant mice failed to develop pancreata, died shortly after birth, and displayed hyperglycemia. Morphological defects in Gata4/Gata6 mutant pancreata were apparent during embryonic development, and the epithelium failed to expand as a result of defects in cell proliferation and differentiation. The number of multipotent pancreatic progenitors, including PDX1+ cells, was reduced in the Gata4/Gata6 mutant pancreatic epithelium. Remarkably, deletion of only 1 Gata6 allele on a Gata4 conditional knockout background severely reduced pancreatic mass. In contrast, a single WT allele of Gata4 in Gata6 conditional knockout mice was sufficient for normal pancreatic development, indicating differential contributions of GATA factors to pancreas formation. Our results place GATA factors at the top of the transcriptional network hierarchy controlling pancreas organogenesis.
Collapse
Affiliation(s)
- Manuel Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Sevilla, Spain
| | | | | | | | | |
Collapse
|
36
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
37
|
Igarashi S, Matsubara T, Harada K, Ikeda H, Sato Y, Sasaki M, Matsui O, Nakanuma Y. Bile duct expression of pancreatic and duodenal homeobox 1 in perihilar cholangiocarcinogenesis. Histopathology 2012; 61:266-76. [PMID: 22594685 DOI: 10.1111/j.1365-2559.2012.04218.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Pancreatic and duodenal homeobox 1 (Pdx1) is a transcription factor that is crucial in embryogenic development and differentiation of pancreas, and its overexpression is reportedly involved in the progression of many malignancies, including pancreatic carcinoma. In this study, the role of Pdx1 was examined in cholangiocarcinogenesis. METHODS AND RESULTS Forty-three cases of human cholangiocarcinoma (CC) and 66 cases of hepatolithiasis or primary sclerosing cholangitis (PSC) with biliary intraepithelial neoplasia (BilIN) lesions and also eight fetal and 20 adult normal livers were examined immunohistochemically. Pdx1 was constantly expressed in the nuclei of fetal bile ducts, but was virtually absent in the large bile ducts of adults. By contrast, Hairy and enhancer of split 1 (Hes1), which represses pancreatic exocrine and endocrine differentiation, was expressed frequently in the adult bile ducts. Pdx1 was expressed in 67% of invasive CCs. In large bile ducts, expression of Pdx1 increased while that of Hes1 decreased during the progression of BilIN lesions to CC. Expression of Pdx1 correlated with proliferative activities in CCs. In an in vitro study, all three CC cell lines expressed Pdx1 mRNA and protein. CONCLUSION Up-regulation of Pdx1 is a feature of cholangiocarcinogenesis associated with chronic cholangitis. Furthermore, expression of Pdx1 in CC is related to increased proliferative activity in CCs.
Collapse
Affiliation(s)
- Saya Igarashi
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schroeder IS, Sulzbacher S, Nolden T, Fuchs J, Czarnota J, Meisterfeld R, Himmelbauer H, Wobus AM. Induction and Selection of Sox17-Expressing Endoderm Cells Generated from Murine Embryonic Stem Cells. Cells Tissues Organs 2011; 195:507-23. [DOI: 10.1159/000329864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 01/16/2023] Open
|
39
|
Ma J, Liu QH, Wang BB, Liao SY, Sha WH, Wang QY. Construction of a reporter vector regulated by the Pdx1 promoter and evaluation of the effect of DNA methylation on Pdx1 promoter activity in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2011; 19:3222-3228. [DOI: 10.11569/wcjd.v19.i31.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a reporter vector regulated by the Pdx1 promoter to determine the effect of DNA methylation on the promoter activity of Pdx1 gene.
METHODS: PCR amplification was performed to obtain nine potential Pdx1 promoter fragments, which were then cloned into the pGL3-basic vector to obtain recombinant pGL3-Pdx1 constructs. Promoter activity of different Pdx1 fragments in gastric cancer cells was detected by luciferase assay to identify the potential promoter area. The activity of the Pdx1 promoter with or without SssI methylase treatment was also evaluated by luciferase assay.
RESULTS: Luciferase assay showed that three fragments (F383, F720 and F1039), all of which contained the F383 sequence, had stronger promoter activity than pGL3-basic control. The promoter activity of these three fragments decreased significantly after SssI methylase treatment (all P < 0.05).
CONCLUSION: A luciferase reporter gene system containing the Pdx1 promoter was successfully constructed. F383 is the potential core area of the Pdx1 promoter. These results provide a basis for studying the epigenetic mechanism of Pdx1 gene silencing in gastric cancer.
Collapse
|
40
|
Dubois CL, Shih HP, Seymour PA, Patel NA, Behrmann JM, Ngo V, Sander M. Sox9-haploinsufficiency causes glucose intolerance in mice. PLoS One 2011; 6:e23131. [PMID: 21829703 PMCID: PMC3149078 DOI: 10.1371/journal.pone.0023131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/07/2011] [Indexed: 01/08/2023] Open
Abstract
The HMG box transcription factor Sox9 plays a critical role in progenitor cell expansion during pancreas organogenesis and is required for proper endocrine cell development in the embryo. Based on in vitro studies it has been suggested that Sox9 controls expression of a network of important developmental regulators, including Tcf2/MODY5, Hnf6, and Foxa2, in pancreatic progenitor cells. Here, we sought to: 1) determine whether Sox9 regulates this transcriptional network in vivo and 2) investigate whether reduced Sox9 gene dosage leads to impaired glucose homeostasis in adult mice. Employing two genetic models of temporally-controlled Sox9 inactivation in pancreatic progenitor cells, we demonstrate that contrary to in vitro findings, Sox9 is not required for Tcf2, Hnf6, or Foxa2 expression in vivo. Moreover, our analysis revealed a novel role for Sox9 in maintaining the expression of Pdx1/MODY4, which is an important transcriptional regulator of beta-cell development. We further show that reduced beta-cell mass in Sox9-haploinsufficient mice leads to glucose intolerance during adulthood. Sox9-haploinsufficient mice displayed 50% reduced beta-cell mass at birth, which recovered partially via a compensatory increase in beta-cell proliferation early postnatally. Endocrine islets from mice with reduced Sox9 gene dosage exhibited normal glucose stimulated insulin secretion. Our findings show Sox9 plays an important role in endocrine development by maintaining Ngn3 and Pdx1 expression. Glucose intolerance in Sox9-haploinsufficient mice suggests that mutations in Sox9 could play a role in diabetes in humans.
Collapse
Affiliation(s)
- Claire L. Dubois
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Hung Ping Shih
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Philip A. Seymour
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nisha A. Patel
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - James M. Behrmann
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Victoria Ngo
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
42
|
Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA. Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. J Clin Invest 2010; 120:3713-21. [PMID: 20811152 DOI: 10.1172/jci40440] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
The homeodomain transcription factor pancreatic duodenal homeobox 1 (Pdx1) is a major mediator of insulin transcription and a key regulator of the β cell phenotype. Heterozygous mutations in PDX1 are associated with the development of diabetes in humans. Understanding how Pdx1 expression levels are controlled is therefore of intense interest in the study and treatment of diabetes. Pdx1 C terminus-interacting factor-1 (Pcif1, also known as SPOP) is a nuclear protein that inhibits Pdx1 transactivation. Here, we show that Pcif1 targets Pdx1 for ubiquitination and proteasomal degradation. Silencing of Pcif1 increased Pdx1 protein levels in cultured mouse β cells, and Pcif1 heterozygosity normalized Pdx1 protein levels in Pdx1(+/-) mouse islets, thereby increasing expression of key Pdx1 transcriptional targets. Remarkably, Pcif1 heterozygosity improved glucose homeostasis and β cell function and normalized β cell mass in Pdx1(+/-) mice by modulating β cell survival. These findings indicate that in adult mouse β cells, Pcif1 limits Pdx1 protein accumulation and thus the expression of insulin and other gene targets important in the maintenance of β cell mass and function. They also provide evidence that targeting the turnover of a pancreatic transcription factor in vivo can improve glucose homeostasis.
Collapse
Affiliation(s)
- Kathryn C Claiborn
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ma J, Wang JD, Zhang WJ, Zou B, Chen WJ, Lam CSC, Chen MH, Pang R, Tan VPY, Hung IF, Lan HY, Wang QY, Wong BCY. Promoter hypermethylation and histone hypoacetylation contribute to pancreatic-duodenal homeobox 1 silencing in gastric cancer. Carcinogenesis 2010; 31:1552-60. [PMID: 20622005 DOI: 10.1093/carcin/bgq140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND AIMS The expression of pancreatic-duodenal homeobox 1 (PDX1) in gastric cancer is aberrantly reduced. The aim of this study was to elucidate the regulation of DNA methylation and histone acetylation at the promoter for PDX1 silencing in gastric cancer. METHODS PDX1 expression in response to demethylation and acetylation was detected in human gastric cancer cell lines by reverse transcription-polymerase chain reaction (PCR) and western blot. Four CpG islands within the 5'-flanking region of PDX1 gene were analyzed with their transcription activities being detected by dual luciferase assay. Promoter hypermethylation was identified in gastric cancer cell lines and cancer tissues by methylation-specific PCR or bisulfite DNA sequencing PCR analysis. Histone acetylation was determined by chromatin immunoprecipitation (ChIP) assay. RESULTS Demethylation by 5'-aza-2'-deoxycytidine (5'-aza-dC) and/or acetylation by trichostatin A (TSA) restored PDX1 expression in gastric cancer cells. Hypermethylation was found in four CpG islands in six of seven cancer cell lines. However, only the distal CpG island located in the promoter fragment of PDX1, F383 (c.-2063 to -1681 nt upstream of the ATG start codon) displayed significant transcriptional activity that could be suppressed by SssI methylase and increased by 5'-aza-dC and TSA. More than 70% of the single CpG sites in F383 were methylated with hypermethylation of F383 fragment more common in gastric cancerous tissues compared with the paired normal tissues (P < 0.05). ChIP assay showed F383 was also associated with low hypoacetylation level of the histones. CONCLUSION Promoter hypermethylation and histone hypoacetylation contribute to PDX1 silencing in gastric cancer.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong General Hospital, Guangzhou 510080, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mwangi SM, Usta Y, Raja SM, Anitha M, Chandrasekharan B, Parsadanian A, Sitaraman SV, Srinivasan S. Glial cell line-derived neurotrophic factor enhances neurogenin3 gene expression and beta-cell proliferation in the developing mouse pancreas. Am J Physiol Gastrointest Liver Physiol 2010; 299:G283-92. [PMID: 20448145 PMCID: PMC2904114 DOI: 10.1152/ajpgi.00096.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 04/30/2010] [Indexed: 01/31/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is a factor produced by glial cells that is required for the development of the enteric nervous system. In transgenic mice that overexpress GDNF in the pancreas, GDNF has been shown to enhance beta-cell mass and improve glucose control, but the transcriptional and cellular processes involved are not known. In this study we examined the influence of GDNF on the expression of neurogenin3 (Ngn3) and other transcription factors implicated in early beta-cell development, as well as on beta-cell proliferation during embryonic and early postnatal mouse pancreas development. Embryonic day 15.5 (E15.5) mouse pancreatic tissue when exposed to GDNF for 24 h showed higher Ngn3, pancreatic and duodenal homeobox gene 1 (Pdx1), neuroD1/beta(2), paired homeobox gene 4 (Pax4), and insulin mRNA expression than tissue exposed to vehicle only. Transgenic expression of GDNF in mouse pancreata was associated with increased numbers of Ngn3-expressing pancreatic cells and higher beta-cell mass at embryonic day 18 (E18), as well as higher beta-cell proliferation and Pdx1 expression in beta-cells at E18 and postnatal day 1. In the HIT-T15 beta-cell line, GDNF enhanced the expression of Pax6. This response was, however, blocked in the presence of Pdx1 small interfering RNA (siRNA). Chromatin immunoprecipitation studies using the HIT-T15 beta-cell line demonstrated that GDNF can influence Pdx1 gene expression by enhancing the binding of Sox9 and neuroD1/beta(2) to the Pdx1 promoter. Our data provide evidence of a mechanism by which GDNF influences beta-cell development. GDNF could be a potential therapeutic target for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Simon M Mwangi
- Division of Digestive Diseases, Emory University, 615 Michael St., Atlanta, GA 30307, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fernandez-Zapico ME, van Velkinburgh JC, Gutiérrez-Aguilar R, Neve B, Froguel P, Urrutia R, Stein R. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J Biol Chem 2009; 284:36482-36490. [PMID: 19843526 DOI: 10.1074/jbc.m109.028852] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pdx-1 (pancreatic-duodenal homeobox-1), a MODY4 homeodomain transcription factor, serves as a master regulator in the pancreas because of its importance during organogenesis and in adult islet insulin-producing beta cell activity. Here, we show that KLF11, an SP/Krüppel-like (SP/KLF) transcription factor, mutated in French maturity onset diabetes of the young patients (MODY7), regulates Pdx-1 transcription in beta cells through two evolutionarily conserved GC-rich motifs in conserved Area II, a control region essential to islet beta cell-enriched expression. These regulatory elements, termed GC1 (human base pair -2061/-2055) and GC2 (-2036/-2027), are also nearly identical to the consensus KLF11 binding sequence defined here by random oligonucleotide binding analysis. KLF11 specifically associates with Area II in chromatin immunoprecipitation assays, while preventing binding to GC1- and/or GC2-compromised Pdx1-driven reporter activity in beta cell lines. Mechanistically, we find that KLF11 interacts with the coactivator p300 via its zinc finger domain in vivo to mediate Pdx-1 activation. Together, our data identified a hierarchical regulatory cascade for these two MODY genes, suggesting that gene regulation in MODY is more complex than anticipated previously. Furthermore, because KLF11 like most MODY-associated transcription factors uses p300, these data further support a role for this coactivator as a critical chromatin link in forms of type 2 diabetes.
Collapse
Affiliation(s)
| | - Jennifer C van Velkinburgh
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Ruth Gutiérrez-Aguilar
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France
| | - Bernadette Neve
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France; Genomic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philippe Froguel
- CNRS, Unite Mixte de Recherche 8090, Institute of Biology, Institute Pasteur de Lille, F-59019 Lille, France; Genomic Medicine, Hammersmith Hospital, Imperial College London, London SW7 2AZ, United Kingdom
| | - Raul Urrutia
- Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota 55905
| | - Roland Stein
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota 55905.
| |
Collapse
|
46
|
Pandey AK, Bhardwaj V, Datta M. Tumour necrosis factor-alpha attenuates insulin action on phosphoenolpyruvate carboxykinase gene expression and gluconeogenesis by altering the cellular localization of Foxa2 in HepG2 cells. FEBS J 2009; 276:3757-69. [PMID: 19769745 DOI: 10.1111/j.1742-4658.2009.07091.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Circulating tumour necrosis factor-alpha (TNFalpha) levels, which are elevated in obesity-associated insulin resistance and diabetes, inhibit insulin signalling at several points in the signalling cascade. The liver is critical in maintaining circulating glucose levels and, in a preliminary investigation using the human hepatoma (HepG2) cell line in this study, we demonstrated the role of TNFalpha in the regulation of this phenomenon and determined the underlying molecular mechanisms. As the transcription factor Foxa2 has been implicated, in part, in the regulation of gluconeogenic genes, we studied the effects of TNFalpha and/or insulin on its cellular status in hepatocytes, followed by an assessment of its occupancy on the phosphoenolpyruvate carboxykinase (PEPCK) promoter. Preincubation of cells with TNFalpha, followed by insulin, significantly prevented insulin-mediated nuclear exclusion of Foxa2 and substantially increased its nuclear concentration. Foxa2 was subsequently found to occupy its binding element on the PEPCK promoter. TNFalpha alone, however, did not alter the status of cellular Foxa2 or its occupancy on the PEPCK promoter. TNFalpha preincubation also significantly attenuated insulin-induced inhibition of the expression of gluconeogenic enzymes and hepatic glucose production. Insulin inhibition of PEPCK expression and the preventive effect of TNFalpha could be partially but significantly restored in the presence of Foxa2 siRNA. Several other well-known mediators of insulin action in the liver in general and of gluconeogenic genes in particular include Foxo1, PGC-1 and SREBP-1c. Our results indicate that another transcription factor, Foxa2, is at least partly responsible for the attenuating effect of TNFalpha on insulin action on PEPCK expression and glucose production in HepG2 cells.
Collapse
Affiliation(s)
- Amit K Pandey
- Institute of Genomics and Integrative Biology (CSIR), Delhi, India
| | | | | |
Collapse
|
47
|
Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, Kaestner KH, Stoffers DA. The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice. J Clin Invest 2009; 119:1888-98. [PMID: 19487809 DOI: 10.1172/jci37028] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 04/02/2009] [Indexed: 12/12/2022] Open
Abstract
Heterozygous mutations in the gene encoding the pancreatic homeodomain transcription factor pancreatic duodenal homeobox 1 (PDX1) are associated with maturity onset diabetes of the young, type 4 (MODY4) and type 2 diabetes. Pdx1 governs the early embryonic development of the pancreas and the later differentiation of the insulin-producing islet beta cells of the endocrine compartment. We derived a Pdx1 hypomorphic allele that reveals a role for Pdx1 in the specification of endocrine progenitors. Mice homozygous for this allele displayed a selective reduction in endocrine lineages associated with decreased numbers of endocrine progenitors and a marked reduction in levels of mRNA encoding the proendocrine transcription factor neurogenin 3 (Ngn3). During development, Pdx1 occupies an evolutionarily conserved enhancer region of Ngn3 and interacts with the transcription factor one cut homeobox 1 (Hnf6) to activate this enhancer. Furthermore, mRNA levels of all 4 members of the transcription factor network that regulates Ngn3 expression, SRY-box containing gene 9 (Sox9), Hnf6, Hnf1b, and forkhead box A2 (Foxa2), were decreased in homozygous mice. Pdx1 also occupied regulatory sequences in Foxa2 and Hnf1b. Thus, Pdx1 contributes to specification of endocrine progenitors both by regulating expression of Ngn3 directly and by participating in a cross-regulatory transcription factor network during early pancreas development. These results provide insights that may be applicable to beta cell replacement strategies involving the guided differentiation of ES cells or other progenitor cell types into the beta cell lineage, and they suggest a molecular mechanism whereby human PDX1 mutations cause diabetes.
Collapse
Affiliation(s)
- Jennifer M Oliver-Krasinski
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 2009; 22:3435-48. [PMID: 19141476 DOI: 10.1101/gad.1752608] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The onset of pancreas development in the foregut endoderm is marked by activation of the homeobox gene Pdx1 (IPF1). Pdx1 is essential for the expansion of the pancreatic primordium and the development of endocrine islets. The control of Pdx1 expression has been only partially elucidated. We demonstrate here that the winged-helix transcription factors Foxa1 and Foxa2 co-occupy multiple regulatory domains in the Pdx1 gene. Compound conditional ablation of both Foxa1 and Foxa2 in the pancreatic primordium results in complete loss of Pdx1 expression and severe pancreatic hypoplasia. Mutant mice exhibit hyperglycemia with severely disrupted acinar and islet development, and die shortly after birth. Assessment of developmental markers in the mutant pancreas revealed a failure in the expansion of the pancreatic anlage, a blockage of exocrine and endocrine cell differentiation, and an arrest at the primitive duct stage. Comparing their relative developmental activity, we find that Foxa2 is the major regulator in promoting pancreas development and cell differentiation. Using chromatin immunoprecipitations (ChIP) and ChIP sequencing (ChIPSeq) of fetal pancreas and islet chromatin, we demonstrate that Foxa1 and Foxa2 predominantly occupy a distal enhancer at -6.4 kb relative to the transcriptional start site in the Pdx1 gene. In addition, occupancy of the well-characterized proximal Pdx1 enhancer by Foxa1 and Foxa2 is developmental stage-dependent. Thus, the regulation of Pdx1 expression by Foxa1 and Foxa2 is a key early event controlling the expansion and differentiation of the pancreatic primordia.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
49
|
Gao N, LeLay J, Vatamaniuk MZ, Rieck S, Friedman JR, Kaestner KH. Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development. Genes Dev 2009. [PMID: 19141476 DOI: 10.1101/gad.1752608.lineages] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The onset of pancreas development in the foregut endoderm is marked by activation of the homeobox gene Pdx1 (IPF1). Pdx1 is essential for the expansion of the pancreatic primordium and the development of endocrine islets. The control of Pdx1 expression has been only partially elucidated. We demonstrate here that the winged-helix transcription factors Foxa1 and Foxa2 co-occupy multiple regulatory domains in the Pdx1 gene. Compound conditional ablation of both Foxa1 and Foxa2 in the pancreatic primordium results in complete loss of Pdx1 expression and severe pancreatic hypoplasia. Mutant mice exhibit hyperglycemia with severely disrupted acinar and islet development, and die shortly after birth. Assessment of developmental markers in the mutant pancreas revealed a failure in the expansion of the pancreatic anlage, a blockage of exocrine and endocrine cell differentiation, and an arrest at the primitive duct stage. Comparing their relative developmental activity, we find that Foxa2 is the major regulator in promoting pancreas development and cell differentiation. Using chromatin immunoprecipitations (ChIP) and ChIP sequencing (ChIPSeq) of fetal pancreas and islet chromatin, we demonstrate that Foxa1 and Foxa2 predominantly occupy a distal enhancer at -6.4 kb relative to the transcriptional start site in the Pdx1 gene. In addition, occupancy of the well-characterized proximal Pdx1 enhancer by Foxa1 and Foxa2 is developmental stage-dependent. Thus, the regulation of Pdx1 expression by Foxa1 and Foxa2 is a key early event controlling the expansion and differentiation of the pancreatic primordia.
Collapse
Affiliation(s)
- Nan Gao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
50
|
Dos Santos C, Bougnères P, Fradin D. A single-nucleotide polymorphism in a methylatable Foxa2 binding site of the G6PC2 promoter is associated with insulin secretion in vivo and increased promoter activity in vitro. Diabetes 2009; 58:489-92. [PMID: 18984742 PMCID: PMC2628624 DOI: 10.2337/db08-0587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The G6PC2 gene encoding islet-specific glucose-6-phosphatase related protein (IGRP) has a common promoter variant, rs573225 (-231G/A), located within a Foxa binding site. We tested the cis-regulatory effects of rs573225 on promoter activity and its association with insulin response to oral glucose. RESEARCH DESIGN AND METHODS Functional effects of rs573225 were explored in transfected INS-1 and HIT-T beta-cell lines. A total of 734 young obese subjects of European ancestry were genotyped for rs573225. Insulin and glucose levels were measured in response to oral glucose, and the insulinogenic index (IGI) of insulin secretion was calculated. RESULTS In vitro, the G allele showed a higher affinity for binding Foxa2 transcription factor and increased G6PC2 promoter activity. Foxa2 binding is modified if the C adjacent to the G allele is methylated. IGI was associated with rs573225 by linear regression analysis and was 30% greater in AA or AG than in GG obese children. rs573225 was also associated with fasting glucose. CONCLUSIONS rs573225 is a functional cis-regulatory (epi)-single-nucleotide polymorphism (SNP) of G6PC2 associated with glucose-insulin homeostasis in obese children, likely to explain the results of recent genome-wide association studies in nondiabetic adults.
Collapse
Affiliation(s)
- Christine Dos Santos
- Department of Pediatric Endocrinology and U561 Institut National de Santé et de Recherche Médicale, Hôpital Saint-Vincent de Paul, Paris, France
| | | | | |
Collapse
|