1
|
Senderovic A, Galijasevic S. The Role of Inducible Nitric Oxide Synthase in Assessing the Functional Level of Coronary Artery Lesions in Chronic Coronary Syndrome. Cardiol Res 2024; 15:330-339. [PMID: 39420980 PMCID: PMC11483113 DOI: 10.14740/cr1700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Chronic coronary syndrome (CCS) is a long-term manifestation of coronary artery disease, marked by stable but recurring chest pain and myocardial ischemia due to the gradual buildup of atherosclerotic plaques in the coronary arteries. It is a metabolic disorder of coronary arteries characterized by oxidative stress, endothelial dysfunction, inflammation, and hyperlipidemia. The imbalance in oxidative-antioxidative status contributes to stable ischemic heart disease. Oxidative stress involves reactive oxygen and nitrogen species, leading to low-density lipoprotein (LDL) oxidation. Endothelial dysfunction, marked by reduced nitric oxide (NO) bioavailability, is an early onset of CCS, affecting vasodilation, cell proliferation, and inflammatory responses. Enzyme myeloperoxidase (MPO), traditionally considered protective, plays a dual role in initiating and progressing inflammatory diseases. MPO interacts with NO, modulating its catalytic activity. Elevated NO levels inhibit MPO through a reversible complex formation, preventing NO-induced inhibition by inducible nitric oxide synthase (iNOS). MPO also inactivates endothelial nitric oxide synthase (eNOS) and reacts with L-arginine, hindering NO synthesis. The interplay between MPO and NO significantly influences inflammation sites, impacting peroxidation rates and oxidation reactions. Peroxynitrite, a reactive species, contributes to nitration of tyrosine residues and lipid peroxidation. Mechanistic pathways suggest MPO enhances iNOS catalytic activity, influencing CCS development. iNOS, implicated in inflammation and atherosclerosis, is connected to NO regulation. This review analyzes the complex interplay of MPO, iNOS, and NO that affects plaque morphology, oxidative stress, and inflammation, contributing to atherosclerosis progression. Therefore, it is possible that the phenotypes of atherosclerotic plaques, focal and diffuse coronary artery disease, could be defined by the relationship between MPO and iNOS.
Collapse
Affiliation(s)
- Admina Senderovic
- Public Institution of Health Centers of the Canton of Sarajevo, Laboratory Diagnostics Service of the Ilidza, Health Center, Ilidza, Bosnia and Herzegovina
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Hercegovina
| | - Semira Galijasevic
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Hercegovina
| |
Collapse
|
2
|
Geissen S, Braumann S, Adler J, Nettersheim FS, Mehrkens D, Hof A, Guthoff H, von Stein P, Witkowski S, Gerdes N, Tellkamp F, Krüger M, Isermann L, Trifunovic A, Bunck AC, Mollenhauer M, Winkels H, Adam M, Klinke A, Buch G, Ten Cate V, Hellmich M, Kelm M, Rudolph V, Wild PS, Rosenkranz S, Baldus S. Inhibition of myeloperoxidase to treat left ventricular dysfunction in non-ischaemic cardiomyopathy. Eur J Heart Fail 2024; 26:2269-2281. [PMID: 39212229 DOI: 10.1002/ejhf.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
AIMS Non-ischaemic cardiomyopathy (NICMP), an incurable disease terminating in systolic heart failure (heart failure with reduced ejection fraction [HFrEF]), causes immune activation, however anti-inflammatory treatment strategies so far have failed to alter the course of this disease. Myeloperoxidase (MPO), the principal enzyme in neutrophils, has cytotoxic, pro-fibrotic and nitric oxide oxidizing effects. Whether MPO inhibition ameliorates the phenotype in NICMP remains elusive. METHODS AND RESULTS Prognostic information from MPO was derived from proteomic data of a large human cardiovascular health cohort (n = 3289). In a murine model of NICMP, we studied the mechanisms of MPO in this disease. In a case series, the MPO inhibitor was also evaluated in NICMP patients. Individuals with increased MPO revealed higher long-term mortality and worsening of heart failure, with impaired prognosis when MPO increased during follow-up. MPO infusion attenuated left ventricular ejection fraction (LVEF) in mice with NICMP, whereas genetic ablation or inhibition of MPO decreased systemic vascular resistance (SVR, 9.4 ± 0.7 mmHg*min/ml in NICMP vs. 6.7 ± 0.8 mmHg*min/ml in NICMP/Mpo-/-mice, n = 8, p = 0.006, data expressed as mean ± standard error of the mean) and improved left ventricular function (LVEF 30.3 ± 2.2% in NICMP vs. 40.7 ± 1.1% in NICMP/Mpo-/- mice, n = 16, p < 0.0001). Four patients diagnosed with NICMP and treated with an MPO inhibitor over 12 weeks showed increase in LVEF, decline in natriuretic peptides and improved 6-min walking distance. MPO inhibitor-related changes in the proteome of NICMP patients predicted reduced mortality when related to the changes in the proteome of the above referenced cardiovascular health cohort. CONCLUSIONS Myeloperoxidase predicts long-term outcome in HFrEF and its inhibition elicits systemic anti-inflammatory and vasodilating effects which translate into improved left ventricular function. MPO inhibition deserves further evaluation as a novel, complementary treatment strategy for HFrEF.
Collapse
Affiliation(s)
- Simon Geissen
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Simon Braumann
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Joana Adler
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Felix Sebastian Nettersheim
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Alexander Hof
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Philipp von Stein
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
| | - Sven Witkowski
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Frederik Tellkamp
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, Germany
- University of Cologne, Department of Biology, Institute for Genetics, Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, Germany
- University of Cologne, Department of Biology, Institute for Genetics, Cologne, Germany
| | - Lea Isermann
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, Germany
| | - Alexander C Bunck
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Holger Winkels
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Matti Adam
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Gregor Buch
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Hellmich
- Institute of Medical Statistics and Computational Biology (IMSB), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Volker Rudolph
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephan Rosenkranz
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Stephan Baldus
- Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Cologne Cardiovascular Research Center (CCRC), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Saed GM. Is there a link between talcum powder, oxidative stress, and ovarian cancer risk? Expert Rev Anticancer Ther 2024; 24:485-491. [PMID: 38712572 DOI: 10.1080/14737140.2024.2352506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION The link between talcum powder use and cancer, particularly ovarian cancer, has been a topic of scientific research and legal debate for several years. Studies have suggested a potential association between long-term talcum powder use in the genital area and an increased risk of ovarian cancer. AREAS COVERED The following report includes up-to-date evidence to support the potential link between talcum powder use and the risk of developing ovarian cancer. The International Agency for Research on Cancer, which is part of the World Health Organization, classified talc-based body powder as possibly carcinogenic to humans when used in the female genital area. However, other studies have not consistently supported this association, and thus more research is needed to establish a clear and definitive link between talcum powder use and cancer. Despite this, recent molecular-level data have linked talc to alterations in redox balance, gene mutations, and inflammatory responses. Specifically, we have identified a role for talc to induce the pro-oxidant state, inhibit apoptosis, and more importantly induced cellular transformation in normal ovarian cells. EXPERT OPINION We presented unequivocal evidence to support our opinion that talc is not biologically inert and induces molecular changes that mimic the hallmarks of cancer.
Collapse
Affiliation(s)
- Ghassan M Saed
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
4
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Saed GM, Nawaz A, Alvero AA, Harper AK, Morris RT. Monomeric myeloperoxidase is a specific biomarker for early-stage ovarian cancer. Biomarkers 2023; 28:663-671. [PMID: 37982229 DOI: 10.1080/1354750x.2023.2284106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Background: Ovarian cancer cells are known to express myeloperoxidase (MPO), an oxidant-producing enzyme with a 150 kDa homodimer, consisting of two identical monomers connected by a disulfide bond. Here, we aim to validate monomeric MPO (mMPO) as a biomarker for the early detection of ovarian cancer.Methods: Human ovarian cancer cells, sera from patients at various stages, sera from non-cancer inflammatory gynecological diseases, and healthy volunteers were used. Monomeric and dimeric MPO were measured by ELISA. Receiver operating curves were used to compare the predictive powers of serum dimeric and monomeric MPO to discriminate between samples.Results: The expression of MPO was unique to ovarian cancer cells. Specifically, mMPO was found to be the only form of MPO in all ovarian cancer cell lines. Intriguingly, mMPO was detected in the sera from all patients with ovarian cancer at various stages, but not from healthy individuals. Serum mMPO discriminated between early-stage ovarian cancer, healthy controls, and benign inflammatory gynecologic disorders. In addition, mMPO discriminated between the early and late stages of the disease.Conclusion: This work highlights mMPO as a potential biomarker for early detection of ovarian cancer, which is critically needed.
Collapse
Affiliation(s)
- Ghassan M Saed
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Asad Nawaz
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ayesha A Alvero
- The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Amy K Harper
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Robert T Morris
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| |
Collapse
|
6
|
Zhao L, Shen C, Xie S, Zhou J, Zhang H, Zhu H, Li Y, Gao S. The role and mechanism of myeloperoxidase in dermatomyositis. Int Immunopharmacol 2023; 124:110803. [PMID: 37625367 DOI: 10.1016/j.intimp.2023.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
OBJECTIVE Dermatomyositis (DM) is the best known subtype of idiopathic inflammatory myopathies. The hallmarks of DM muscle pathology including microangiopathy, inflammatory infiltration, and perifascicular atrophy. Recent findings have revealed pathogenetic effects of myeloperoxidase (MPO) by causing oxidative damage and regulating abnormal immunity in multiple disease conditions. In this study, we aimed to explore the role of MPO in the pathogenesis of DM. METHODS The peripheral blood mononuclear cell (PBMC) mRNA expression and DNA methylation of MPO were verified using real-time qPCR and bisulfite pyrosequencing, respectively. Plasma MPO levels were measured with enzyme-linked immunosorbent assay, and their relationships with clinical characteristics were analyzed. The expression and distribution of MPO in muscle were tested by immunofluorescence. Purified human native MPO protein was used to stimulate human dermal microvascular endothelial cells (HDMECs) and skeletal muscle myotubes. The cell viability, tube forming capacity, permeability, adhesion molecule expressions in HDMECs, and atrophy and programmed cell death pathways in myotubes were then observed. RESULTS MPO gene methylation was decreased, while mRNA expression and plasma levels were increased in DM. Plasma MPO of DM patients was positively correlated with serum creatine kinase (CK). MPO mainly distributed around endomysia capillaries and perifascicular atrophy in DM muscle biopsies, and was co-localized with CD4+, CD8+ T cells and CD19+ B cells. MPO not only could influence the cell viability, tube forming capacity, permeability and expression of adhesion molecules (including ICAM 1, VCAM 1 and E-selectin) of HDMECs, but also could cause atrophy of myotubes. CONCLUSIONS Our study disclosed, for the first time, that MPO plays an important role in promoting inflammatory infiltration and inducing muscle damage in DM patients. MPO may be a potential biomarker for DM muscle involvement and MPO targeted drugs may be promising in DM treatment.
Collapse
Affiliation(s)
- Lijuan Zhao
- Department of Nephrology and Rheumatology, The Third Xiangya Hospital of Central South University, Changsha, PR China; Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China
| | - Chuyu Shen
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Shasha Xie
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Junyu Zhou
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, PR China
| | - Honglin Zhu
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China
| | - Yisha Li
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, PR China; Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital of Central South University, Changsha, PR China.
| | - Siming Gao
- Department of Rheumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
7
|
Roy I, Jover E, Matilla L, Alvarez V, Fernández-Celis A, Beunza M, Escribano E, Gainza A, Sádaba R, López-Andrés N. Soluble ST2 as a New Oxidative Stress and Inflammation Marker in Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032579. [PMID: 36767947 PMCID: PMC9915842 DOI: 10.3390/ijerph20032579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Metabolic syndrome (MS) is a complex and prevalent disorder. Oxidative stress and inflammation might contribute to the progression of MS. Soluble ST2 (sST2) is an attractive and druggable molecule that sits at the interface between inflammation, oxidative stress and fibrosis. This study aims to analyze the relationship among sST2, oxidative stress, inflammation and echocardiographic parameters in MS patients. METHODS Fifty-eight patients with MS were recruited and underwent physical, laboratory and transthoracic echocardiography examinations. Commercial ELISA and appropriate colorimetric assays were used to quantify serum levels of oxidative stress and inflammation markers and sST2. RESULTS Circulating sST2 was increased in MS patients and was significantly correlated with the oxidative stress markers nitrotyrosine and 8-hydroxy-2'-deoxyguanosine as well as with peroxide levels. The inflammatory parameters interleukin-6, intercellular adhesion molecule-1 and myeloperoxidase were positively correlated with sST2. Noteworthy, sST2 was positively correlated with left ventricular mass, filling pressures and pulmonary arterial pressures. CONCLUSION Circulating levels of sST2 are associated with oxidative stress and inflammation burden and may underlie the pathological remodeling and dysfunction of the heart in MS patients. Our results suggest that sST2 elevation precedes diastolic dysfunction, emerging as an attractive biotarget in MS.
Collapse
|
8
|
Harper AK, Kirsch-Mangu TK, Lutfi H, Morris RT, Saed GM. Binding of Intracellular Myeloperoxidase to αV/β1 Integrin Serves as a Mechanism of Survival in Epithelial Ovarian Cancer. Reprod Sci 2023; 30:291-300. [PMID: 35799017 DOI: 10.1007/s43032-022-01025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 01/11/2023]
Abstract
We were the first to report that epithelial ovarian cancer (EOC) cells and tissues express myeloperoxidase (MPO) that is known to play a role in immune surveillance and inflammation by myeloid cells. Additionally, we reported that MPO is colocalized with inducible nitric oxide synthase (iNOS), a key pro-oxidant enzyme, and plays a key role in regulating apoptosis in EOC cells. Whereas myeloid cells express MPO in a dimeric form, intriguingly, here we report the unique expression of only the monomeric form of MPO in EOC cells, tissues, and blood of an ovarian cancer patient. Additionally, we have identified a cell membrane receptor, αV/β1 integrin, that is uniquely expressed by both chemosensitive and chemoresistant EOC cells with significantly higher expression in chemoresistant EOC cells. More importantly, we have demonstrated that monoclonal antibodies against αV/β1 integrin induced cytotoxicity in EOC cells, but not in normal cells, that is also synergistic with conventional chemotherapies. Cytotoxicity of αV/β1 antibodies is due to conformational changes in αV/β1 integrin which prevents monomeric MPO binding to αV/β1 integrin inhibiting the activation of MPO, leading to increased apoptosis. Since normal epithelial cells and macrophages lack monomeric MPO and αV/β1 integrin system, targeting this unique MPO-dependent survival mechanism will selectively eliminate EOC cells and will be the target for developing specific ovarian cancer therapies.
Collapse
Affiliation(s)
- Amy K Harper
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Thea K Kirsch-Mangu
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Hala Lutfi
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Robert T Morris
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA
| | - Ghassan M Saed
- Division of Gynecologic Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
- Department of Obstetrics and Gynecology, The C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI, 48201, USA.
| |
Collapse
|
9
|
Ghosh A, Sumi MP, Tupta B, Okamoto T, Aulak K, Tsutsui M, Shimokawa H, Erzurum SC, Stuehr DJ. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic. Redox Biol 2022; 56:102478. [PMID: 36116161 PMCID: PMC9486108 DOI: 10.1016/j.redox.2022.102478] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide (NO) is a signal molecule and plays a critical role in the regulation of vascular tone, displays anti-platelet and anti-inflammatory properties. While our earlier and current studies found that low NO doses trigger a rapid heme insertion into immature heme-free soluble guanylyl cyclase β subunit (apo-sGCβ), resulting in a mature sGC-αβ heterodimer, more recent evidence suggests that low NO doses can also trigger heme-maturation of hemoglobin and myoglobin. This low NO phenomena was not only limited to sGC and the globins, but was also found to occur in all three nitric oxide synthases (iNOS, nNOS and eNOS) and Myeloperoxidase (MPO). Interestingly high NO doses were inhibitory to heme-insertion for these hemeproteins, suggesting that NO has a dose-dependent dual effect as it can act both ways to induce or inhibit heme-maturation of key hemeproteins. While low NO stimulated heme-insertion of globins required the presence of the NO-sGC-cGMP signal pathway, iNOS heme-maturation also required the presence of an active sGC. These effects of low NO were significantly diminished in the tissues of double (n/eNOS−/−) and triple (n/i/eNOS−/−) NOS knock out mice where lung sGC was found be heme-free and the myoglobin or hemoglobin from the heart/lungs were found be low in heme, suggesting that loss of endogenous NO globally impacts the whole animal and that this impact of low NO is both essential and physiologically relevant for hemeprotein maturation. Effects of low NO were also found to be protective against ischemia reperfusion injury on an ex vivo lung perfusion (EVLP) system prior to lung transplant, which further suggests that low NO levels are also therapeutic. Low levels of NO enable heme-maturation of the globins by a process that required an NO triggered heme-insertion into sGCβ. •This effect of low NO was also found to occur for all three nitric oxide synthases (NOSs) and Myeloperoxidase (MPO). •Tissues from n/eNOS−/− and n/i/eNOS−/− knock out mice had low heme levels in the globins, while sGC was largely heme-free. •Low NO at ppm levels also manifests itself as a therapy during ischemic reperfusion injury of lungs on the EVLP.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Mamta P Sumi
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Blair Tupta
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Toshihiro Okamoto
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Kulwant Aulak
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hiroaki Shimokawa
- Faculty of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686, Japan
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
10
|
Abarikwu SO, Njoku RCC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Syst Biol Reprod Med 2021; 68:151-161. [PMID: 34753368 DOI: 10.1080/19396368.2021.1989727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
There are few treatment options, including the use of natural phenolics-based combination therapy for mitigating male infertility conditions associated with chemotherapy. Busulfan is an anti-cancer drug that leads to testicular problems in humans. Here, we studied the effect of co-treatment of rutin and kolaviron against busulfan-induced testis damage. Young adult male Wistar rats were intraperitoneally injected busulfan (4 mg/kg b.w), and then orally administered rutin (30 mg/kg b.w), and kolaviron (50 mg/kg b.w) alone and combined for 60 days. Results revealed that rutin and kolaviron alone or in combination reversed busulfan-induced increase in oxidative stress along with sperm quality of treated animals. However, kolaviron and rutin separately improved the concentrations of MDA and GSH and sperm quality more than when they were combined. Similarly, rutin and kolaviron separately or in combination preserved spermatogenesis and relieved busulfan-induced increase in nitric oxide concentration, myeloperoxidase and 3β-hydroxysteroid dehydrogenase activities. Co-supplementation with kolaviron but not rutin nor when rutin was combined with kolaviron also improved the testicular level of tumor necrosis-alpha. Finally, the histological features in the testes caused by busulfan were reversed by rutin, whereas treatment with kolaviron alone or in combination with rutin partially protected the testis from busulfan-induced injury as demonstrated by the appearance of few germ cells, damaged tubules, loss of round spermatids and defoliation of the seminiferous epithelium. Thus, the combined treatment regimen of rutin and kolaviron sparingly prevented busulfan-induced testicular injuries in rats.Abbreviations: CAT: Catalase; GSH: Glutathione; 3β-HSD: 3β- hydroxysteroid Dehydrogenase; MDA: Malondialdehyde; TNF-α: Tumor necrosis-alpha; BUS: Busulfan; RUT: Rutin; KV: Kolaviron; TBARS: Thiobarbituric Acid Reactive Substances; MPO: Myeloperoxidase; ELISA: Enzyme-Linked Immunoassay; NAD: Nicotinamide Adenine Dinucleotide (oxidized); ROS: Reactive Oxygen Species.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Rex-Clovis C Njoku
- Department of Chemistry/Biochemistry & Molecular Biology, Alex Ekwueme-Federal University Ndufu-Alike, Ikwo, Nigeria
| | - Ifeoma G John
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Benjamin A Amadi
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Chigozie L Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
11
|
Mondal P, Tolbert GB, Wijeratne GB. Bio-inspired nitrogen oxide (NO x) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. J Inorg Biochem 2021; 226:111633. [PMID: 34749065 DOI: 10.1016/j.jinorgbio.2021.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Dioxygen activating heme enzymes have long predicted to be powerhouses for nitrogen oxide interconversion, especially for nitric oxide (NO) oxidation which has far-reaching biological and/or environmental impacts. Lending credence, reactivity of NO with high-valent heme‑oxygen intermediates of globin proteins has recently been implicated in the regulation of a variety of pivotal physiological events such as modulating catalytic activities of various heme enzymes, enhancing antioxidant activity to inhibit oxidative damage, controlling inflammatory and infectious properties within the local heme environments, and NO scavenging. To reveal insights into such crucial biological processes, we have investigated low temperature NO reactivities of two classes of synthetic high-valent heme intermediates, Compound-II and Compound-I. In that, Compound-II rapidly reacts with NO yielding the six-coordinate (NO bound) heme ferric nitrite complex, which upon warming to room temperature converts into the five-coordinate heme ferric nitrite species. These ferric nitrite complexes mediate efficient substrate oxidation reactions liberating NO; i.e., shuttling NO2- back to NO. In contrast, Compound-I and NO proceed through an oxygen-atom transfer process generating the strong nitrating agent NO2, along with the corresponding ferric nitrosyl species that converts to the naked heme ferric parent complex upon warmup. All reaction components have been fully characterized by UV-vis, 2H NMR and EPR spectroscopic methods, mass spectrometry, elemental analyses, and semi-quantitative determination of NO2- anions. The clean, efficient, potentially catalytic NOx interconversions driven by high-valent heme species presented herein illustrate the strong prospects of a heme enzyme/O2/NOx dependent unexplored territory that is central to human physiology, pathology, and therapeutics.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Garrett B Tolbert
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35205, United States.
| |
Collapse
|
12
|
Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, Müller A, Fehrenbacher B, Gonzalez-Menendez I, Quintanilla-Martinez L, Schröder K, Brandes RP, Schaller M, Ruf W, Eichner M, Ghoreschi K, Röcken M, Pichler BJ, Kneilling M. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics 2021; 11:470-490. [PMID: 33391487 PMCID: PMC7738859 DOI: 10.7150/thno.51462] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Rationale: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important regulators of inflammation. The exact impact of ROS/RNS on cutaneous delayed-type hypersensitivity reaction (DTHR) is controversial. The aim of our study was to identify the dominant sources of ROS/RNS during acute and chronic trinitrochlorobenzene (TNCB)-induced cutaneous DTHR in mice with differently impaired ROS/RNS production. Methods: TNCB-sensitized wild-type, NADPH oxidase 2 (NOX2)- deficient (gp91phox-/-), myeloperoxidase-deficient (MPO-/-), and inducible nitric oxide synthase-deficient (iNOS-/-) mice were challenged with TNCB on the right ear once to elicit acute DTHR and repetitively up to five times to induce chronic DTHR. We measured ear swelling responses and noninvasively assessed ROS/RNS production in vivo by employing the chemiluminescence optical imaging (OI) probe L-012. Additionally, we conducted extensive ex vivo analyses of inflamed ears focusing on ROS/RNS production and the biochemical and morphological consequences. Results: The in vivo L-012 OI of acute and chronic DTHR revealed completely abrogated ROS/RNS production in the ears of gp91phox-/- mice, up to 90 % decreased ROS/RNS production in the ears of MPO-/- mice and unaffected ROS/RNS production in the ears of iNOS-/- mice. The DHR flow cytometry analysis of leukocytes derived from the ears with acute DTHR confirmed our in vivo L-012 OI results. Nevertheless, we observed no significant differences in the ear swelling responses among all the experimental groups. The histopathological analysis of the ears of gp91phox-/- mice with acute DTHRs revealed slightly enhanced inflammation. In contrast, we observed a moderately reduced inflammatory immune response in the ears of gp91phox-/- mice with chronic DTHR, while the inflamed ears of MPO-/- mice exhibited the strongest inflammation. Analyses of lipid peroxidation, 8-hydroxy-2'deoxyguanosine levels, redox related metabolites and genomic expression of antioxidant proteins revealed similar oxidative stress in all experimental groups. Furthermore, inflamed ears of wild-type and gp91phox-/- mice displayed neutrophil extracellular trap (NET) formation exclusively in acute but not chronic DTHR. Conclusions: MPO and NOX2 are the dominant sources of ROS/RNS in acute and chronic DTHR. Nevertheless, depletion of one primary source of ROS/RNS exhibited only marginal but conflicting impact on acute and chronic cutaneous DTHR. Thus, ROS/RNS are not a single entity, and each species has different properties at certain stages of the disease, resulting in different outcomes.
Collapse
|
13
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
14
|
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric Oxide-cGMP Signaling in Hypertension: Current and Future Options for Pharmacotherapy. Hypertension 2020; 76:1055-1068. [PMID: 32829664 DOI: 10.1161/hypertensionaha.120.15856] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the treatment of systemic hypertension, pharmacological intervention in nitric oxide-cyclic guanosine monophosphate signaling is a well-explored but unexploited option. In this review, we present the identified drug targets, including oxidases, mitochondria, soluble guanylyl cyclase, phosphodiesterase 1 and 5, and protein kinase G, important compounds that modulate them, and the current status of (pre)clinical development. The mode of action of these compounds is discussed, and based upon this, the clinical opportunities. We conclude that drugs that directly target the enzymes of the nitric oxide-cyclic guanosine monophosphate cascade are currently the most promising compounds, but that none of these compounds is under investigation as a treatment option for systemic hypertension.
Collapse
Affiliation(s)
- Ehsan Ataei Ataabadi
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Keivan Golshiri
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Annika Jüttner
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Guido Krenning
- Sulfateq B.V., Groningen, the Netherlands (G.K.).,Cardiovascular Regenerative Medicine, Department Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, the Netherlands (G.K.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands (E.A.A., K.G., A.J., A.H.J.D., A.J.M.R.)
| |
Collapse
|
15
|
Soubhye J, Van Antwerpen P, Dufrasne F. A patent review of myeloperoxidase inhibitors for treating chronic inflammatory syndromes (focus on cardiovascular diseases, 2013-2019). Expert Opin Ther Pat 2020; 30:595-608. [DOI: 10.1080/13543776.2020.1780210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jalal Soubhye
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - Pierre Van Antwerpen
- Department of Pharmacognosy, Bioanalysis and Drug Discovery, Faculty of Pharmacy, Universite Libre De Bruxelles (ULB), Bruxelles, Belgium
| | - François Dufrasne
- Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Universite Libre De Bruxelles, Bruxelles, Belgium
| |
Collapse
|
16
|
Abarikwu SO, Mgbudom-Okah CJ, Onuah CL, Ogunlaja A. Fluted pumpkin seeds protect against busulfan-induced oxidative stress and testicular injuries in adult mice. Drug Chem Toxicol 2019; 45:22-32. [DOI: 10.1080/01480545.2019.1657885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- S. O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. J. Mgbudom-Okah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - C. L. Onuah
- Department of Biochemistry, University of Port Harcourt, Choba, Rivers, Nigeria
| | - A. Ogunlaja
- Department of Biological Sciences, Redeemer’s University, Ede, Osun, Nigeria
| |
Collapse
|
17
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X, Wang H. Biochemical basis and metabolic interplay of redox regulation. Redox Biol 2019; 26:101284. [PMID: 31400697 PMCID: PMC6831867 DOI: 10.1016/j.redox.2019.101284] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Accumulated evidence strongly indicates that oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidants in favor of oxidants, plays an important role in disease pathogenesis. However, ROS can act as signaling molecules and fulfill essential physiological functions at basal levels. Each ROS would be different in the extent to stimulate and contribute to different pathophysiological effects. Importantly, multiple ROS generators can be activated either concomitantly or sequentially by relevant signaling molecules for redox biological functions. Here, we summarized the current knowledge related to chemical and biochemical features of primary ROS species and corresponding antioxidants. Metabolic pathways of five major ROS generators and five ROS clearance systems were described, including their ROS products, specific ROS enriched tissue, cell and organelle, and relevant functional implications. We provided an overview of ROS generation and induction at different levels of metabolism. We classified 11 ROS species into three types based on their reactivity and target selectivity and presented ROS homeostasis and functional implications in pathological and physiological status. This article intensively reviewed and refined biochemical basis, metabolic signaling and regulation, functional insights, and provided guidance for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Ramón Cueto
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Comfort Effi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yuling Zhang
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, China
| | - Xuebin Qin
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
18
|
Shafabakhsh R, Asemi Z. Quercetin: a natural compound for ovarian cancer treatment. J Ovarian Res 2019; 12:55. [PMID: 31202269 PMCID: PMC6570913 DOI: 10.1186/s13048-019-0530-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
Ovarian cancer is the main cause of death among all reproductive cancers in females. In 2018, ovarian cancer was the seventh most common cancer of women entire the world. A wide variety of molecular and genetic alterations as well as different response to therapies in the different types of ovarian cancer lead to problems in design a common therapeutic strategy. Besides, ovarian cancer cells have tendency to acquire resistance to common cancer treatments through multiple mechanisms. Various factors, including cytokines, growth factors, proteases, adhesion molecules, coagulation factors, hormones and apoptotic agents have been examined to find effective cancer treatment. Phytochemicals have been indicated to have great potential anti-cancer properties against various types of cancers. Quercetin is one of the phytochemicals that exists extensively in daily foods. Wide evidences revealed that quercetin is able to inhibit various types of cancers including breast, lung, nasopharyngeal, kidney, colorectal, prostate, pancreatic, and ovarian cancer. Several in vitro and in vivo studied conducted to evaluate cytotoxic effects of quercetin on ovarian cancer. Since quercetin does not harm healthy cells and it is cytotoxic to cancer cells via various mechanisms, researchers suggest that it could be an ideal agent for ovarian cancer treatment or an adjuvant agent in combination with other anti-cancer drugs. Thus, in this review, we focused on chemo-preventive and curative attitude of quercetin for ovarian cancer and summarize some of the most recent findings which regard the possible molecular mechanisms by which this natural compound inhibits this cancer.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, IR, Iran.
| |
Collapse
|
19
|
Galijasevic S. The development of myeloperoxidase inhibitors. Bioorg Med Chem Lett 2018; 29:1-7. [PMID: 30466896 DOI: 10.1016/j.bmcl.2018.11.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Myeloperoxidase (MPO), an abundant hemoprotein present in neutrophils and monocytes, plays a significant role in immune surveillance and host defense mechanisms. However, increased MPO activity has been linked to a number of pathologies with compelling evidence in initiation and progression of inflammatory events. As a result, search for active compounds that can efficiently inhibit MPO activity and subsequently decrease inflammatory events has been focus of the current research. This perspective provides an overview of the development of MPO inhibitors, their mechanism of action and the review of molecules that were in clinical trials as promising MPO inhibitors.
Collapse
Affiliation(s)
- Semira Galijasevic
- University Sarajevo School of Science and Technology, Sarajevo Medical School, Bosnia and Herzegovina.
| |
Collapse
|
20
|
Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A 2018; 115:5839-5848. [PMID: 29802228 DOI: 10.1073/pnas.1804932115] [Citation(s) in RCA: 643] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oxygen-derived free radicals and related oxidants are ubiquitous and short-lived intermediates formed in aerobic organisms throughout life. These reactive species participate in redox reactions leading to oxidative modifications in biomolecules, among which proteins and lipids are preferential targets. Despite a broad array of enzymatic and nonenzymatic antioxidant systems in mammalian cells and microbes, excess oxidant formation causes accumulation of new products that may compromise cell function and structure leading to cell degeneration and death. Oxidative events are associated with pathological conditions and the process of normal aging. Notably, physiological levels of oxidants also modulate cellular functions via homeostatic redox-sensitive cell signaling cascades. On the other hand, nitric oxide (•NO), a free radical and weak oxidant, represents a master physiological regulator via reversible interactions with heme proteins. The bioavailability and actions of •NO are modulated by its fast reaction with superoxide radical ([Formula: see text]), which yields an unusual and reactive peroxide, peroxynitrite, representing the merging of the oxygen radicals and •NO pathways. In this Inaugural Article, I summarize early and remarkable developments in free radical biochemistry and the later evolution of the field toward molecular medicine; this transition includes our contributions disclosing the relationship of •NO with redox intermediates and metabolism. The biochemical characterization, identification, and quantitation of peroxynitrite and its role in disease processes have concentrated much of our attention. Being a mediator of protein oxidation and nitration, lipid peroxidation, mitochondrial dysfunction, and cell death, peroxynitrite represents both a pathophysiologically relevant endogenous cytotoxin and a cytotoxic effector against invading pathogens.
Collapse
|
21
|
Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode. Methods Mol Biol 2018. [PMID: 29600447 DOI: 10.1007/978-1-4939-7695-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Precise information about the intracell nitric oxide (NO) concentration [NO] of a single cell are necessary in designing accurate experiments to further knowledge and develop treatment plans in certain disorders. The direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. In this work, we describe the direct, real-time, and quantitative intracellular [NO] measurement utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu.
Collapse
|
22
|
Saed GM, Fletcher NM, Diamond MP, Morris RT, Gomez-Lopez N, Memaj I. Novel expression of CD11b in epithelial ovarian cancer: Potential therapeutic target. Gynecol Oncol 2018; 148:567-575. [PMID: 29329880 DOI: 10.1016/j.ygyno.2017.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/05/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The objective of this study was to determine the expression, and effect of targeting CD11b with a monoclonal antibody in ovarian cancer cells. METHODS CD11b expression was determined in epithelial ovarian cancer (EOC) cell lines and tissues by immunofluorescence and flow cytometry. Cytotoxicity of the CD11b antibody and synergism with chemothearapeutic drugs were determined by the MTT Cell Proliferation Assay in human macrophages, normal ovarian epithelial cells, and in both sensitive and chemoresistant EOC cell lines. Cell migration was assessed with a scratch assay and in vivo effects of the CD11b antibody was assessed with a nude mouse ovarian cancer xenograft model. Data was analyzed with either t-tests or one-way ANOVA. RESULTS CD11b was unexpectedly expressed in several EOC lines and tissues, but not normal tissues. Targeting CD11b with its monoclonal antibody resulted in intriguing cytotoxic effects in sensitive and chemoresistant EOC lines, while surprisingly not affecting normal cells. More importantly, the cytotoxicity of the CD11b antibody when combined with chemotherapeutic drugs (cisplatin or docetaxel) was significantly synergistic, in both sensitive and chemoresistant EOC cells. The anti-tumorigenic effect of the CD11b antibody was confirmed in an ovarian cancer nude mouse xenograft model. CONCLUSION Here we identify CD11b as a novel target, which selectively induces cytotoxicity in ovarian cancer cells.
Collapse
Affiliation(s)
- Ghassan M Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, 1120 15th Street, BA-7300, Augusta, GA 30912, United States.
| | - Robert T Morris
- Karmanos Cancer Center, 4100 John R, Detroit, MI 48201, United States.
| | - Nardhy Gomez-Lopez
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, United States.
| | - Ira Memaj
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E Hancock St, Detroit, MI 48201, United States.
| |
Collapse
|
23
|
Akentieva NP, Sanina NA, Gizatullin AR, Shmatko NY, Goryachev NS, Shkondina NI, Prikhodchenko TR, Aldoshin SM. The inhibitory effect of dinitrosyl iron complexes (NO donors) on myeloperoxidase activity. DOKL BIOCHEM BIOPHYS 2018; 477:389-393. [DOI: 10.1134/s1607672917060126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/23/2022]
|
24
|
Jeelani R, Jahanbakhsh S, Kohan-Ghadr HR, Thakur M, Khan S, Aldhaheri SR, Yang Z, Andreana P, Morris R, Abu-Soud HM. Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Free Radic Biol Med 2017; 110:54-62. [PMID: 28552694 PMCID: PMC6859649 DOI: 10.1016/j.freeradbiomed.2017.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/13/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022]
Abstract
Myeloperoxidase (MPO), an abundant protein in neutrophils, monocytes, and macrophages, is thought to play a critical role in the pathogenesis of various disorders ranging from cardiovascular diseases to cancer. We show that mesna (2-mercaptoethanesulfonic acid sodium salt), a detoxifying agent, which inhibits side effects of oxazaphosphorine chemotherapy, functions as a potent inhibitor of MPO; modulating its catalytic activity and function. Using rapid kinetic methods, we examined the interactions of mesna with MPO compounds I and II and ferric forms in the presence and absence of chloride (Cl-), the preferred substrate of MPO. Our results suggest that low mesna concentrations dramatically influenced the build-up, duration, and decay of steady-state levels of Compound I and Compound II, which is the rate-limiting intermediate in the classic peroxidase cycle. Whereas, higher mesna concentrations facilitate the porphyrin-to-adjacent amino acid electron transfer allowing the formation of an unstable transient intermediate, Compound I*, that displays a characteristic spectrum similar to Compound I. In the absence of plasma level of chloride, mesna not only accelerated the formation and decay of Compound II but also reduced its stability in a dose depend manner. Mesna competes with Cl-, inhibiting MPO's chlorinating activity with an IC50 of 5µM, and switches the reaction from a 2e- to a 1e- pathway allowing the enzyme to function only with catalase-like activity. A kinetic model which shows the dual regulation through which mesna interacts with MPO and regulates its downstream inflammatory pathways is presented further validating the repurposing of mesna as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Roohi Jeelani
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Seyedehameneh Jahanbakhsh
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Mili Thakur
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sana Khan
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Sarah R Aldhaheri
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Zhe Yang
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States
| | - Peter Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, University of Toledo, Toledo, OH 43606, United States
| | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Karmanos Cancer Institute, Detroit, MI, 48201, United States
| | - Husam M Abu-Soud
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, 48201, United States; Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, United States.
| |
Collapse
|
25
|
Fletcher NM, Abusamaan MS, Memaj I, Saed MG, Al-Hendy A, Diamond MP, Saed GM. Oxidative stress: a key regulator of leiomyoma cell survival. Fertil Steril 2017; 107:1387-1394.e1. [PMID: 28483502 DOI: 10.1016/j.fertnstert.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/10/2017] [Accepted: 04/19/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the effects of attenuating oxidative stress with the use of dichloroacetate (DCA) on the expression of key redox enzymes myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) as well as on apoptosis. DESIGN Prospective experimental study. SETTING University medical center. PATIENT(S) Cells established from myometrium and uterine fibroid from the same patients. INTERVENTION(S) Cells were exposed to normal (20% O2) or hypoxic (2% O2) conditions for 24 hours with or without DCA (20 μg/mL), a metabolic modulator that shifts anaerobic to aerobic metabolism. MAIN OUTCOME MEASURE(S) Nitrate/nitrite (iNOS activity indicator), iNOS, Bcl-2/Bax ratio, MPO, and caspase-3 activities and levels were determined by means of Greiss assay, real-time reverse-transcription polymerase chain reaction, and ELISA. Data were analyzed with the use of SPSS by means of one-way analysis of variance with Tukey post hoc analysis and independent t tests. RESULT(S) MPO, iNOS, and nitrate/nitrite expression were higher in leiomyoma than in myometrial cells, and they were further enhanced by hypoxia in myometrial cells. Treatment with the use of DCA decreased MPO, iNOS, and nitrate/nitrite levels and negated the effect of hypoxia in both types of cells. Leiomyoma cells showed less apoptosis, as indicated by both caspase-3 activity and the Bcl-2/Bax ratio, than myometrial cells. Hypoxia further decreased apoptosis in myometrial cells with no further effect on leiomyoma cells. Treatment with DCA resulted in increased apoptosis in both types of cells, even in the presence of hypoxia. CONCLUSION(S) Shifting anaerobic to aerobic metabolism with the use of DCA resulted in an increase in apoptosis in leiomyoma cells and protected myometrial cells from the acquisition of the leiomyoma-like phenotype.
Collapse
Affiliation(s)
- Nicole M Fletcher
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed S Abusamaan
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Ira Memaj
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed G Saed
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
26
|
Maiocchi SL, Morris JC, Rees MD, Thomas SR. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents. Biochem Pharmacol 2017; 135:90-115. [PMID: 28344126 DOI: 10.1016/j.bcp.2017.03.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
Abstract
The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H2O2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation.
Collapse
Affiliation(s)
- Sophie L Maiocchi
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Martin D Rees
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Shane R Thomas
- Mechanisms of Disease & Translational Research, Department of Pathology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
27
|
Myeloperoxidase, asymmetric dimethyl-arginine and the renin-angiotensin-aldosterone-system in cardiovascular risk patients: Cross-sectional findings from the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Biochem 2017; 50:739-745. [PMID: 28322753 DOI: 10.1016/j.clinbiochem.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The leukocyte-derived myeloperoxidase (MPO), the nitric oxidase synthase (NOS) inhibitor asymmetrical dimethyl-arginine (ADMA) and the renin-angiotensin-aldosterone-system (RAAS) are associated with cardiovascular diseases (CVD). This study aimed to investigate potential interactions between the RAAS, ADMA and MPO in cardiovascular risk patients. DESIGN AND METHODS All in all, 1446 patients, who were referred to coronary angiography, were included in this prospective study. MPO, ADMA and circulating serum markers of the RAAS system were measured. Additionally, all-cause and CVD mortality, cardiovascular risk factors, inflammatory and endothelial markers, and medication use were investigated. RESULTS MPO concentrations were significantly associated with ADMA (P=0.002), renin (P=0.001) and angiotensin II levels (P=0.015), whereas ADMA was in tendency associated with renin (P=0.059) and significantly with angiotensin II (P=0.001). Both, ADMA and MPO were inversely correlated with angiotensinogen, angiotensin I and the angiotensin I/angiotensin II ratio. ADMA and angiotensin II were found stronger independent risk factors for all-cause and CVD mortality compared to MPO. CONCLUSIONS MPO concentrations were significantly associated with higher ADMA levels and an up-regulated circulating RAAS in patients with CVD. Moreover, serum levels of ADMA and angiotensin II were shown to be more predictive for all-cause and CVD mortality compared to MPO.
Collapse
|
28
|
Saed GM, Diamond MP, Fletcher NM. Updates of the role of oxidative stress in the pathogenesis of ovarian cancer. Gynecol Oncol 2017; 145:595-602. [PMID: 28237618 DOI: 10.1016/j.ygyno.2017.02.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 01/16/2023]
Abstract
Clinical and epidemiological investigations have provided evidence supporting the role of reactive oxygen species (ROS) and reactive nitrogen species (RNS), collectively known as oxidative stress, in the etiology of cancer. Exogenous factors such as chronic inflammation, infection and hypoxia are major sources of cellular oxidative stress. Specifically, oxidative stress plays an important role in the pathogenesis, neoangiogenesis, and dissemination of local or distant ovarian cancer, as it is known to induce phenotypic modifications of tumor cells by cross talk between tumor cells and the surrounding stroma. Subsequently, the biological significance of the relationship between oxidative stress markers and various stages of epithelial ovarian cancer highlights potential therapeutic interventions as well as provides urgently needed early detection biomarkers. In the light of our scientific research and the most recent experimental and clinical observations, this review provides the reader with up to date most relevant findings on the role of oxidative stress in the pathogenesis of ovarian cancer and the possible therapeutic implications.
Collapse
Affiliation(s)
- Ghassan M Saed
- The Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Michael P Diamond
- The Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, United States
| | - Nicole M Fletcher
- The Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
29
|
Sinha S, Saxena S, Das S, Prasad S, Bhasker SK, Mahdi AA, Kruzliak P. Antimyeloperoxidase antibody is a biomarker for progression of diabetic retinopathy. J Diabetes Complications 2016; 30:700-4. [PMID: 26948921 DOI: 10.1016/j.jdiacomp.2016.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/03/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023]
Abstract
AIM To study the correlation between serum antimyeloperoxidase (MPO) antibody levels with severity of diabetic retinopathy (DR). METHODS Study subjects included 60 consecutive cases of type 2 diabetes mellitus (DM): no diabetic retinopathy (NODR, n=20); nonproliferative DR (NPDR, n=20); proliferative DR (PDR, n=20) and 20 healthy controls. Best corrected visual acuity (BCVA) was measured on logMAR scale. Serum anti-MPO antibody levels were evaluated using ELISA IgG kit. Serum urea and creatinine was measured using standard protocol. Data were analysed statistically. RESULTS Mean serum anti-MPO antibody (RU/ml) was 16.94 ± 4.85 in controls, 17.66 ± 4.78 in NODR, 21.51 ± 5.27 in NPDR and 37.27 ± 11.92 in PDR groups. On ANOVA, significant difference in visual acuity was found among the study groups (F=73.46, p<0.001). Serum anti-MPO antibody was correlated significantly with decrease in visual acuity (F=48.40, p<0.001), increase in serum urea (F=128.13, p<0.001) and creatinine (F=77.10, p<0.001). CONCLUSION Increase in serum anti-MPO antibody levels correlate with increased severity of DR. Serum anti-MPO antibody may be a noteworthy biochemical marker for progression of retinopathy from nonproliferative to proliferative stage.
Collapse
Affiliation(s)
- Shivani Sinha
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Sandeep Saxena
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India.
| | - Siddharth Das
- Department of Rheumatology, King George's Medical University, Lucknow, India
| | - Senthamizh Prasad
- Department of Preventive and Social Medicine, King George's Medical University, Lucknow, India
| | - Shashi Kumar Bhasker
- Retina service, Department of Ophthalmology, King George's Medical University, Lucknow, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, India
| | - Peter Kruzliak
- Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
30
|
Belotte J, Fletcher NM, Saed MG, Abusamaan MS, Dyson G, Diamond MP, Saed GM. A Single Nucleotide Polymorphism in Catalase Is Strongly Associated with Ovarian Cancer Survival. PLoS One 2015; 10:e0135739. [PMID: 26301412 PMCID: PMC4547699 DOI: 10.1371/journal.pone.0135739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/25/2015] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer is the deadliest of all gynecologic cancers. Recent evidence demonstrates an association between enzymatic activity altering single nucleotide polymorphisms (SNP) with human cancer susceptibility. We sought to evaluate the association of SNPs in key oxidant and antioxidant enzymes with increased risk and survival in epithelial ovarian cancer. Individuals (n = 143) recruited were divided into controls, (n = 94): healthy volunteers, (n = 18), high-risk BRCA1/2 negative (n = 53), high-risk BRCA1/2 positive (n = 23) and ovarian cancer cases (n = 49). DNA was subjected to TaqMan SNP genotype analysis for selected oxidant and antioxidant enzymes. Of the seven selected SNP studied, no association with ovarian cancer risk (Pearson Chi-square) was found. However, a catalase SNP was identified as a predictor of ovarian cancer survival by the Cox regression model. The presence of this SNP was associated with a higher likelihood of death (hazard ratio (HR) of 3.68 (95% confidence interval (CI): 1.149–11.836)) for ovarian cancer patients. Kaplan-Meier survival analysis demonstrated a significant median overall survival difference (108 versus 60 months, p<0.05) for those without the catalase SNP as compared to those with the SNP. Additionally, age at diagnosis greater than the median was found to be a significant predictor of death (HR of 2.78 (95% CI: 1.022–7.578)). This study indicates a strong association with the catalase SNP and survival of ovarian cancer patients, and thus may serve as a prognosticator.
Collapse
Affiliation(s)
- Jimmy Belotte
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Nicole M. Fletcher
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mohammed G. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Mohammed S. Abusamaan
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Gregory Dyson
- Karmanos Cancer Institute, Detroit, MI, United States of America
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, United States of America
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
31
|
Transcriptional regulation of chemokine genes: a link to pancreatic islet inflammation? Biomolecules 2015; 5:1020-34. [PMID: 26018641 PMCID: PMC4496708 DOI: 10.3390/biom5021020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022] Open
Abstract
Enhanced expression of chemotactic cytokines (aka chemokines) within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.
Collapse
|
32
|
Konradi J, Mollenhauer M, Baldus S, Klinke A. Redox-sensitive mechanisms underlying vascular dysfunction in heart failure. Free Radic Res 2015; 49:721-42. [DOI: 10.3109/10715762.2015.1027200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Shaeib F, Khan SN, Ali I, Najafi T, Maitra D, Abdulhamid I, Saed GM, Pennathur S, Abu-Soud HM. Melatonin prevents myeloperoxidase heme destruction and the generation of free iron mediated by self-generated hypochlorous acid. PLoS One 2015; 10:e0120737. [PMID: 25835505 PMCID: PMC4383586 DOI: 10.1371/journal.pone.0120737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022] Open
Abstract
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
Collapse
Affiliation(s)
- Faten Shaeib
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sana N. Khan
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Iyad Ali
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Genetics, Faculty of Medicine, An-Najah National University, Nablus, Palestine
| | - Tohid Najafi
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dhiman Maitra
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | | | - Ghassan M. Saed
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Husam M. Abu-Soud
- Departments of Obstetrics and Gynecology, the C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
34
|
Mehanna ET, Saleh SM, Ghattas MH, Mesbah NM, Abo-Elmatty DM. Relation of myeloperoxidase-463G/A polymorphism with metabolic syndrome and its component traits in Egyptian women. Arch Physiol Biochem 2015; 121:13-8. [PMID: 25482861 DOI: 10.3109/13813455.2014.988631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Myeloperoxidase is a heme protein secreted by activated macrophages and generates intermediates that oxidize lipoproteins. Myeloperoxidase-463G/A is a functional polymorphism involved in regulation of myeloperoxidase expression. OBJECTIVE The aim of this study is to assess the relation of myeloperoxidase-463G/A polymorphism with metabolic syndrome and its component traits in Egyptian women from the Suez Canal area. METHODS The study includes 100 healthy female subjects and 100 metabolic syndrome patients. The component traits of metabolic syndrome are determined and the genotypes of the polymorphisms assessed using the PCR-RFLP technique. RESULTS There was no significant difference in the allele frequencies between the metabolic syndrome and control groups. However, the GA and AA genotypes were associated with lower total cholesterol, LDL-C, systolic and diastolic blood pressure in the patients. CONCLUSION Myeloperoxidase-463G/A polymorphism is not associated with the incidence of metabolic syndrome.
Collapse
Affiliation(s)
- Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University , Ismailia , Egypt and
| | | | | | | | | |
Collapse
|
35
|
Oxidative status imbalance in patients with metabolic syndrome: role of the myeloperoxidase/hydrogen peroxide axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:898501. [PMID: 25386227 PMCID: PMC4216703 DOI: 10.1155/2014/898501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/17/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
Abstract
The present study evaluated the cardiometabolic and redox balance profiles in patients with Metabolic Syndrome compared to apparently healthy individuals, and the participation of the myeloperoxidase/hydrogen peroxide axis in systemic lipid peroxidation. Twenty-four patients with Metabolic Syndrome and eighteen controls underwent a full clinical assessment. Venous blood samples were collected for general biochemical dosages, as well as for the oxidative stress analyses (superoxide dismutase, catalase, and arginase activities; and lipid peroxidation, myeloperoxidase activity, nitrite, and hydrogen peroxide concentrations in plasma). Arterial stiffness was assessed by radial artery applanation tonometry. Plasma lipid peroxidation, erythrocyte superoxide dismutase activity, myeloperoxidase activity, and hydrogen peroxide concentrations were shown to be increased in Metabolic Syndrome patients, without significant differences for the other enzymes, plasma nitrite concentrations, and arterial stiffness. Linear regression analysis revealed a positive and significant correlation between lipid peroxidation and myeloperoxidase and also between this enzyme and hydrogen peroxide. In contrast, such correlation was not observed between lipid peroxidation and hydrogen peroxide. In summary, Metabolic Syndrome patients exhibited evident systemic redox imbalance compared to controls, with the possible participation of the myeloperoxidase/hydrogen peroxide axis as a contributor in lipid peroxidation.
Collapse
|
36
|
Tidball JG, Wehling-Henricks M. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy. J Physiol 2014; 592:4627-38. [PMID: 25194047 DOI: 10.1113/jphysiol.2014.274878] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The secondary loss of neuronal nitric oxide synthase (nNOS) that occurs in dystrophic muscle is the basis of numerous, complex and interacting features of the dystrophic pathology that affect not only muscle itself, but also influence the interaction of muscle with other tissues. Many mechanisms through which nNOS deficiency contributes to misregulation of muscle development, blood flow, fatigue, inflammation and fibrosis in dystrophic muscle have been identified, suggesting that normalization in NO production could greatly attenuate diverse aspects of the pathology of muscular dystrophy through multiple regulatory pathways. However, the relative importance of the loss of nNOS from the sarcolemma versus the importance of loss of total nNOS from dystrophic muscle remains unknown. Although most current evidence indicates that nNOS localization at the sarcolemma is not required to achieve NO-mediated reductions of pathology in muscular dystrophy, the question remains open concerning whether membrane localization would provide a more efficient rescue from features of the dystrophic phenotype.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, USA Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
37
|
Rees MD, Maiocchi SL, Kettle AJ, Thomas SR. Mechanism and regulation of peroxidase-catalyzed nitric oxide consumption in physiological fluids: critical protective actions of ascorbate and thiocyanate. Free Radic Biol Med 2014; 72:91-103. [PMID: 24704973 DOI: 10.1016/j.freeradbiomed.2014.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 01/01/2023]
Abstract
Catalytic consumption of nitric oxide (NO) by myeloperoxidase and related peroxidases is implicated as playing a key role in impairing NO bioavailability during inflammatory conditions. However, there are major gaps in our understanding of how peroxidases consume NO in physiological fluids, in which multiple reactive enzyme substrates and antioxidants are present. Notably, ascorbate has been proposed to enhance myeloperoxidase-catalyzed NO consumption by forming NO-consuming substrate radicals. However, we show that in complex biological fluids ascorbate instead plays a critical role in inhibiting NO consumption by myeloperoxidase and related peroxidases (lactoperoxidase, horseradish peroxidase) by acting as a competitive substrate for protein-bound redox intermediates and by efficiently scavenging peroxidase-derived radicals (e.g., urate radicals), yielding ascorbyl radicals that fail to consume NO. These data identify a novel mechanistic basis for how ascorbate preserves NO bioavailability during inflammation. We show that NO consumption by myeloperoxidase Compound I is significant in substrate-rich fluids and is resistant to competitive inhibition by ascorbate. However, thiocyanate effectively inhibits this process and yields hypothiocyanite at the expense of NO consumption. Hypothiocyanite can in turn form NO-consuming radicals, but thiols (albumin, glutathione) readily prevent this. Conversely, where ascorbate is absent, glutathione enhances NO consumption by urate radicals via pathways that yield S-nitrosoglutathione. Theoretical kinetic analyses provide detailed insights into the mechanisms by which ascorbate and thiocyanate exert their protective actions. We conclude that the local depletion of ascorbate and thiocyanate in inflammatory microenvironments (e.g., due to increased metabolism or dysregulated transport) will impair NO bioavailability by exacerbating peroxidase-catalyzed NO consumption.
Collapse
Affiliation(s)
- Martin D Rees
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Rural Clinical School, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sophie L Maiocchi
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology, University of Otago, 8140 Christchurch, New Zealand
| | - Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
38
|
Abstract
Myeloperoxidase (MPO) plays a central role in the innate immune system by generating leukocyte-derived oxidants to combat invading pathogens. These reactive intermediates have been increasingly recognized to be potentially deleterious, causing oxidative injury in inflammatory disease states such as cardiovascular disease. Recent evidence now suggests that circulating MPO can act as a clinical prognostic indicator for patients with cardiovascular disease.
Collapse
|
39
|
Yu M, Zhou H, Zhao J, Xiao N, Roychowdhury S, Schmitt D, Hu B, Ransohoff RM, Harding CV, Hise AG, Hazen SL, DeFranco AL, Fox PL, Morton RE, Dicorleto PE, Febbraio M, Nagy LE, Smith JD, Wang JA, Li X. MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. ACTA ACUST UNITED AC 2014; 211:887-907. [PMID: 24752299 PMCID: PMC4010914 DOI: 10.1084/jem.20131314] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MyD88-dependent GM-CSF production by endothelial cells plays a role in the initiation of obesity-associated inflammation by promoting adipose macrophage recruitment and M1-like polarization. Low-grade systemic inflammation is often associated with metabolic syndrome, which plays a critical role in the development of the obesity-associated inflammatory diseases, including insulin resistance and atherosclerosis. Here, we investigate how Toll-like receptor–MyD88 signaling in myeloid and endothelial cells coordinately participates in the initiation and progression of high fat diet–induced systemic inflammation and metabolic inflammatory diseases. MyD88 deficiency in myeloid cells inhibits macrophage recruitment to adipose tissue and their switch to an M1-like phenotype. This is accompanied by substantially reduced diet-induced systemic inflammation, insulin resistance, and atherosclerosis. MyD88 deficiency in endothelial cells results in a moderate reduction in diet-induced adipose macrophage infiltration and M1 polarization, selective insulin sensitivity in adipose tissue, and amelioration of spontaneous atherosclerosis. Both in vivo and ex vivo studies suggest that MyD88-dependent GM-CSF production from the endothelial cells might play a critical role in the initiation of obesity-associated inflammation and development of atherosclerosis by priming the monocytes in the adipose and arterial tissues to differentiate into M1-like inflammatory macrophages. Collectively, these results implicate a critical MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases.
Collapse
Affiliation(s)
- Minjia Yu
- Department of Immunology, 2 Department of Cellular and Molecular Medicine, 3 Department of Pathobiology, 4 Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Outer-sphere oxidation of Fe(II) in nitrosylmyoglobin by ferricyanide. J Biol Inorg Chem 2014; 19:805-12. [DOI: 10.1007/s00775-014-1112-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
41
|
Awonuga AO, Belotte J, Abuanzeh S, Fletcher NM, Diamond MP, Saed GM. Advances in the Pathogenesis of Adhesion Development: The Role of Oxidative Stress. Reprod Sci 2014; 21:823-836. [PMID: 24520085 DOI: 10.1177/1933719114522550] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the past several years, there has been increasing recognition that pathogenesis of adhesion development includes significant contributions of hypoxia induced at the site of surgery, the resulting oxidative stress, and the subsequent free radical production. Mitochondrial dysfunction generated by surgically induced tissue hypoxia and inflammation can lead to the production of reactive oxygen and nitrogen species as well as antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase which when optimal have the potential to abrogate mitochondrial dysfunction and oxidative stress, preventing the cascade of events leading to the development of adhesions in injured peritoneum. There is a significant cross talk between the several processes leading to whether or not adhesions would eventually develop. Several of these processes present avenues for the development of measures that can help in abrogating adhesion formation or reformation after intraabdominal surgery.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jimmy Belotte
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suleiman Abuanzeh
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA
| | - Michael P Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA, USA
| | - Ghassan M Saed
- Department of Obstetrics and Gynecology, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility, Wayne State University, School of Medicine, Detroit, MI, USA Department of Physiology, Program for Reproductive Sciences, Wayne State University, School of Medicine, Detroit, MI, USA Karmanos Cancer Institute, Molecular Biology and Genetics Program, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
42
|
Myeloperoxidase upregulates endothelin receptor type B expression. J Mol Cell Cardiol 2014; 69:76-82. [PMID: 24417960 DOI: 10.1016/j.yjmcc.2013.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/29/2013] [Accepted: 12/10/2013] [Indexed: 11/23/2022]
Abstract
Neutrophil recruitment and activation are principal events in inflammation. Upon activation neutrophils release myeloperoxidase (MPO), a heme enzyme, which binds to and transcytoses endothelial cells. Whereas the significance of the subendothelial deposition of MPO has evolved as a critical prerequisite for the enzyme's suppression of nitric oxide (NO⋅) bioavailability, the functional consequences of MPO binding to and interaction with endothelial and smooth muscle cells remain poorly understood. Cultured human endothelial cells (HUVECs) were exposed to MPO. Gene expression of the endothelin receptor type B (ETRB), which is critically involved not only in endothelin-1 clearance, but also in endothelin-mediated vasoconstriction, was significantly increased. Real time PCR, Western blotting and immunofluorescence confirmed up-regulation of ETRB in MPO-treated endothelial cells. Inhibition of MPO's enzymatic activity blunted the increase in ETRB protein expression. Treatment of the cells with the MAP kinase inhibitors PD98059 or SB203580 indicates that MPO activates ETRB expression via MAP kinase pathways. On human smooth muscle cells (HAoSMCs), which not only express the endothelin receptor type B (ETRB) but also express the endothelin receptor type A (ETRA), MPO also stimulated ETRB expression as opposed to ETRA expression, which remained unchanged. Functional ex vivo organ bath chamber studies with MPO-incubated rat femoral artery sections revealed increased ETRB agonist dependent constriction. Binding of MPO to endothelial and vascular smooth muscle cells increases expression of the endothelin receptor type B (ETRB) via classical MAP kinase pathways. This suggests that MPO not only affects vasomotion by reducing the bioavailability of vasodilating molecules but also by increasing responsiveness to vasoconstrictors, further advocating for MPO as a central, leukocyte-derived regulator of vascular tone.
Collapse
|
43
|
Kataoka Y, Shao M, Wolski K, Uno K, Puri R, Murat Tuzcu E, Hazen SL, Nissen SE, Nicholls SJ. Myeloperoxidase levels predict accelerated progression of coronary atherosclerosis in diabetic patients: insights from intravascular ultrasound. Atherosclerosis 2013; 232:377-83. [PMID: 24468151 DOI: 10.1016/j.atherosclerosis.2013.11.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE While inflammation has been proposed to contribute to the adverse cardiovascular outcome in diabetic patients, the specific pathways involved have not been elucidated. The leukocyte derived product, myeloperoxidase (MPO), has been implicated in all stages of atherosclerosis. The relationship between MPO and accelerated disease progression observed in diabetic patients has not been studied. METHODS We investigated the relationship between MPO and disease progression in diabetic patients. 881 patients with angiographic coronary artery disease underwent serial evaluation of atherosclerotic burden with intravascular ultrasound. Disease progression in diabetic (n = 199) and non-diabetic (n = 682) patients, stratified by baseline MPO levels was investigated. RESULTS MPO levels were similar in patients with and without diabetes (1362 vs. 1255 pmol/L, p = 0.43). No relationship was observed between increasing quartiles of MPO and either baseline (p = 0.81) or serial changes (p = 0.43) in levels of percent atheroma volume (PAV) in non-diabetic patients. In contrast, increasing MPO quartiles were associated with accelerated PAV progression in diabetic patients (p = 0.03). While optimal control of lipid and the use of high-dose statin were associated with less disease progression, a greater benefit was observed in diabetic patients with lower compared with higher MPO levels at baseline. CONCLUSIONS Increasing MPO levels are associated with greater progression of atherosclerosis in diabetic patients. This finding indicates the potential importance of MPO pathways in diabetic cardiovascular disease.
Collapse
Affiliation(s)
- Yu Kataoka
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Mingyuan Shao
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Kathy Wolski
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Kiyoko Uno
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Rishi Puri
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - E Murat Tuzcu
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stanley L Hazen
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Cell Biology, Cleveland Clinic and the Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Steven E Nissen
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Stephen J Nicholls
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
44
|
Forbes LV, Sjögren T, Auchère F, Jenkins DW, Thong B, Laughton D, Hemsley P, Pairaudeau G, Turner R, Eriksson H, Unitt JF, Kettle AJ. Potent reversible inhibition of myeloperoxidase by aromatic hydroxamates. J Biol Chem 2013; 288:36636-47. [PMID: 24194519 DOI: 10.1074/jbc.m113.507756] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.
Collapse
Affiliation(s)
- Louisa V Forbes
- From the Centre for Free Radical Research, Department of Pathology, University of Otago Christchurch, Christchurch 8140, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol 2013; 1:483-91. [PMID: 24251116 PMCID: PMC3830063 DOI: 10.1016/j.redox.2013.07.006] [Citation(s) in RCA: 709] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress is a common mediator in pathogenicity of established cardiovascular risk factors. Furthermore, it likely mediates effects of emerging, less well-defined variables that contribute to residual risk not explained by traditional factors. Functional oxidative modifications of cellular proteins, both reversible and irreversible, are a causal step in cellular dysfunction. Identifying markers of oxidative stress has been the focus of many researchers as they have the potential to act as an “integrator” of a multitude of processes that drive cardiovascular pathobiology. One of the major challenges is the accurate quantification of reactive oxygen species with very short half-life. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative stress that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue level. Many of these modifications are “functionally silent”. Functional significance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We review selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, further studies are required to examine the utility of the most promising oxidative biomarkers to predict prognosis or response to treatment. Oxidative stress is a common mediator in pathobiology of risk factors for CVD. Oxidative modifications of proteins and lipids alter cellular function. Some oxidative biomarkers have been associated with severity of CVD. Pathophysiologically relevant biomarkers may integrate the effect of risk factors. Utility of oxidative biomarkers to guide prognosis/treatment merits further work.
Collapse
Key Words
- Biomarker
- CVD, cardiovascular disease
- Cardiovascular disease
- GSH, glutathione (reduced)
- Glutathionylation
- H2O2, hydrogen peroxide
- HO2•, hydroperoxyl radical
- HOCl, hypochlorous acid
- IsoP, isoprostane
- MDA, malondialdehyde
- MPO, myeloperoxidase
- NO2, nitrogen dioxide
- O2•−, superoxide
- ONOO−, peroxynitrite
- OxLDL, Oxidized low-density lipoprotein
- Oxidative stress
- Prognosis
- ROS, reactive oxygen species
- TBARS, thiobarbituric acid reacting substance
- •OH, hydroxyl radical
Collapse
Affiliation(s)
- Edwin Ho
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Keyvan Karimi Galougahi
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Ravi Bhindi
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
| | - Gemma A. Figtree
- North Shore Heart Research Group, Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal North Shore Hospital, Sydney, Australia
- Correspondence to: North Shore Heart Research Group, Level 12, Kolling Building, Royal North Shore Hospital, St Leonards, NSW 2065, Australia. Tel.: +61 2 9926 4915; fax: +61 2 9926 6521.
| |
Collapse
|
46
|
Lai WM, Chen CC, Lee JH, Chen CJ, Wang JS, Hou YY, Liou HH, Chen HC, Fu TY, Lee YC, Ger LP. Second primary tumors and myeloperoxidase expression in buccal mucosal squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 116:464-73. [DOI: 10.1016/j.oooo.2013.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/04/2013] [Accepted: 06/14/2013] [Indexed: 11/16/2022]
|
47
|
Maitra D, Shaeib F, Abdulhamid I, Abdulridha RM, Saed GM, Diamond MP, Pennathur S, Abu-Soud HM. Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radic Biol Med 2013; 63:90-8. [PMID: 23624305 PMCID: PMC3863623 DOI: 10.1016/j.freeradbiomed.2013.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 04/01/2013] [Accepted: 04/08/2013] [Indexed: 02/07/2023]
Abstract
Myeloperoxidase (MPO) is a heme-containing enzyme that generates hypochlorous acid (HOCl) from chloride (Cl(-)) and hydrogen peroxide (H₂O₂). It is implicated in the pathology of several chronic inflammatory conditions such as cardiovascular and pulmonary diseases and cancer. Recently we have shown that HOCl can destroy the heme prosthetic group of hemoproteins. Here, we investigated whether the HOCl formed during steady-state catalysis is able to destroy the MPO heme moiety and thereby function as a major source of free iron. UV-visible spectra and H₂O₂-specific electrode measurements recorded during steady-state HOCl synthesis by MPO showed that the degree of MPO heme destruction increased after multiple additions of H₂O₂ (10 µM), precluding the enzyme from functioning at maximum activity (80-90% inhibition). MPO heme destruction occurred only in the presence of Cl(-). Stopped-flow measurements revealed that the HOCl-mediated MPO heme destruction was complex and occurred through transient ferric species whose formation and decay kinetics indicated it participates in heme destruction along with subsequent free iron release. MPO heme depletion was confirmed by the buildup of free iron utilizing the ferrozine assay. Hypochlorous acid, once generated, first equilibrates in the solution as a whole before binding to the heme iron and initiating heme destruction. Eliminating HOCl from the MPO milieu by scavenging HOCl, destabilizing the MPO-Compound I-Cl complex that could be formed during catalysis, and/or inhibiting MPO catalytic activity partially or completely protects MPO from HOCl insults. Collectively, this study elucidates the bidirectional relationship between MPO and HOCl, which highlights the potential role of MPO as a source of free iron.
Collapse
Affiliation(s)
- Dhiman Maitra
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Faten Shaeib
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | | | - Rasha M. Abdulridha
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Ghassan M. Saed
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Georgia Regents University, Augusta, GA 30912, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Husam M. Abu-Soud
- Department of Obstetrics and Gynecology, The C.S. Mott Center for Human Growth and Development, Detroit, MI 48201, USA
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Corresponding author. Fax: 313 577 8554. (H. M. Abu-Soud)
| |
Collapse
|
48
|
Koeth RA, Kalantar-Zadeh K, Wang Z, Fu X, Tang WHW, Hazen SL. Protein carbamylation predicts mortality in ESRD. J Am Soc Nephrol 2013; 24:853-61. [PMID: 23431074 DOI: 10.1681/asn.2012030254] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Traditional risk factors fail to explain the increased risk for cardiovascular morbidity and mortality in ESRD. Cyanate, a reactive electrophilic species in equilibrium with urea, posttranslationally modifies proteins through a process called carbamylation, which promotes atherosclerosis. The plasma level of protein-bound homocitrulline (PBHCit), which results from carbamylation, predicts major adverse cardiac events in patients with normal renal function, but whether this relationship is similar in ESRD is unknown. We quantified serum PBHCit in a cohort of 347 patients undergoing maintenance hemodialysis with 5 years of follow-up. Kaplan-Meier analyses revealed a significant association between elevated PBHCit and death (log-rank P<0.01). After adjustment for patient characteristics, laboratory values, and comorbid conditions, the risk for death among patients with PBHCit values in the highest tertile was more than double the risk among patients with values in the middle tertile (adjusted hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.5-3.9) or the lowest tertile (adjusted HR, 2.3; 95% CI, 1.5-3.7). Including PBHCit significantly improved the multivariable model, with a net reclassification index of 14% (P<0.01). In summary, serum PBHCit, a footprint of protein carbamylation, predicts increased cardiovascular risk in patients with ESRD, supporting a mechanistic link among uremia, inflammation, and atherosclerosis.
Collapse
Affiliation(s)
- Robert A Koeth
- Department of Cellular & Molecular Medicine, Cleveland Clinic, 4500 Euclid Avenue, NC-10, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
49
|
Nussbaum C, Klinke A, Adam M, Baldus S, Sperandio M. Myeloperoxidase: a leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid Redox Signal 2013; 18:692-713. [PMID: 22823200 DOI: 10.1089/ars.2012.4783] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE The heme-enzyme myeloperoxidase (MPO) is one of the major neutrophil bactericidal proteins and is stored in large amounts inside azurophilic granules of neutrophils. Upon cell activation, MPO is released and extracellular MPO has been detected in a wide range of acute and chronic inflammatory conditions. Recent ADVANCES AND CRITICAL ISSUES: Apart from its role during infection, MPO has emerged as a critical modulator of inflammation throughout the last decade and is currently discussed in the initiation and propagation of cardiovascular diseases. MPO-derived oxidants (e.g., hypochlorous acid) interfere with various cell functions and contribute to tissue injury. Recent data also suggest that MPO itself exerts proinflammatory properties independent of its catalytic activity. Despite advances in unraveling the complex action of MPO and MPO-derived oxidants, further research is warranted to determine the precise nature and biological role of MPO in inflammation. FUTURE DIRECTIONS The identification of MPO as a central player in inflammation renders this enzyme an attractive prognostic biomarker and a potential target for therapeutic interventions. A better understanding of the (patho-) physiology of MPO is essential for the development of successful treatment strategies in acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Claudia Nussbaum
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | |
Collapse
|
50
|
Identification of inducible nitric oxide synthase in peripheral blood cells as a mediator of myocardial ischemia/reperfusion injury. Basic Res Cardiol 2012; 107:253. [PMID: 22351077 DOI: 10.1007/s00395-012-0253-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Although the late phase of ischemic preconditioning is known to be mediated by increased inducible nitric oxide synthase (iNOS) activity, controversy persists regarding the role of iNOS in ischemia/reperfusion (I/R) injury and, specifically, whether this protein is protective or detrimental. We hypothesized that iNOS is protective in myocytes but detrimental in inflammatory cells. To test this hypothesis, we created chimeric mice with iNOS-deficient peripheral blood cells by transplanting iNOS knockout (KO) bone marrow in wild-type (WT) mice after lethal irradiation. 2 months later, the mice underwent a 30-min coronary occlusion followed by 24 h of reperfusion. In WT naïve mice (iNOS(+/+) naïve; group I, n = 17), infarct size was 56.9 ± 2.8% of the risk region. In iNOS KO naïve mice with whole-body iNOS deletion (iNOS(-/-) naïve; group II, n = 10), infarct size was comparable to group I (53.4 ± 3.5%). When irradiated WT mice received marrow from WT mice (iNOS(+/+) chimera; group III, n = 10), infarct size was slightly reduced versus group I (44.3 ± 3.2%), indicating that irradiation and/or transplantation slightly decrease I/R injury. However, when WT mice received marrow from iNOS KO mice (iNOS(-/-) chimera; group IV, n = 14), infarct size was profoundly reduced (22.8 ± 2.1%, P < 0.05 vs. group III), indicating that selective deletion of iNOS from peripheral blood cells (with no change in myocardial iNOS content) induces protection against myocardial infarction. Together with our previous work showing the cardioprotective actions of NO donors, iNOS gene therapy, and cardiac-specific overexpression of iNOS, these data support a complex, dual role of iNOS in myocardial infarction (i.e., protective in myocytes but deleterious in blood cells). To our knowledge, this is the first study to identify a critical role of iNOS in peripheral blood cells as a mediator of myocardial I/R injury. The results support heretofore unknown differential actions of iNOS depending on cell source and have important translational implications.
Collapse
|