1
|
Forceville X, Van Antwerpen P, Annane D, Vincent JL. Selenocompounds and Sepsis-Redox Bypass Hypothesis: Part B-Selenocompounds in the Management of Early Sepsis. Antioxid Redox Signal 2022; 37:998-1029. [PMID: 35287478 DOI: 10.1089/ars.2020.8062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Endothelial barrier damage, which is in part caused by excess production of reactive oxygen, halogen and nitrogen species (ROHNS), especially peroxynitrite (ONOO-), is a major event in early sepsis and, with leukocyte hyperactivation, part of the generalized dysregulated immune response to infection, which may even become a complex maladaptive state. Selenoenzymes have major antioxidant functions. Their synthesis is related to the need to limit deleterious oxidant redox cycling by small selenocompounds, which may be of therapeutic cytotoxic interest. Plasma selenoprotein-P is crucial for selenium transport from the liver to the tissues and for antioxidant endothelial protection, especially against ONOO-. Above micromolar concentrations, sodium selenite (Na2SeO3) becomes cytotoxic, with a lower cytotoxicity threshold in activated cells, which has led to cancer research. Recent Advances: Plasma selenium (<2% of total body selenium) is mainly contained in selenoprotein-P, and concentrations decrease rapidly in the early phase of sepsis, because of increased selenoprotein-P binding and downregulation of hepatic synthesis and excretion. At low concentrations, Na2SeO3 acts as a selenium donor, favoring selenoprotein-P synthesis in physiology, but probably not in the acute phase of sepsis. Critical Issues: The cytotoxic effects of Na2SeO3 against hyperactivated leukocytes, especially the most immature forms that liberate ROHNS, may be beneficial, but they may also be harmful for activated endothelial cells. Endothelial protection against ROHNS by selenoprotein-P may reduce Na2SeO3 toxicity, which is increased in sepsis. Future Direction: The combination of selenoprotein-P for endothelial protection and the cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising intervention for early sepsis. Antioxid. Redox Signal. 37, 998-1029.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-surgical Intensive Care Unit, Great Hospital of East Francilien - Meaux site, Meaux, France.,Clinical Investigation Centre (CIC Inserm1414) CHU de Rennes - Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Univesité libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Djillali Annane
- Service de Réanimation Médicale, Hôpital Raymond Poincaré (APHP), Garches, France.,U1173 Lab. of Inflammation & Infection, (Fédération Hospitalo-Universitaire) FHU SEPSIS, Université Paris Saclay-campus (Université de Versailles Saint-Quentin-en-Yvelines) UVSQ, Versailles, France
| | - Jean Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Chung CZ, Krahn N. The selenocysteine toolbox: A guide to studying the 21st amino acid. Arch Biochem Biophys 2022; 730:109421. [DOI: 10.1016/j.abb.2022.109421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
|
3
|
Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain. Methods Enzymol 2022; 662:95-118. [PMID: 35101220 DOI: 10.1016/bs.mie.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selenoproteins containing the rare amino acid selenocysteine (Sec), typically being enzymes utilizing the selenium atom of Sec for promoted catalysis of redox reactions, are challenging to obtain at high amounts in pure form. The technical challenges limiting selenoprotein supply derive from intricacies in their translation, necessitating the recoding of a UGA stop codon to a sense codon for Sec. This, in turn, involves the interactions of a Sec-dedicated elongation factor, either directly or indirectly, with a structure in the selenoprotein-encoding mRNA called a SECIS element (Selenocysteine Insertion Sequence), a dedicated tRNA species for Sec with an anticodon for the UGA, and several accessory enzymes and proteins involved in the selenoprotein synthesis. Here, we describe an alternative method for recombinant selenoprotein production using UAG as the Sec codon in a specific strain of E. coli lacking other UAG codons and lacking the release factor RF1 that normally terminates translation at UAG. We also describe how such recombinant selenoproteins can be purified and further analyzed for final Sec contents. The methodology can be used for production of natural selenoproteins in recombinant form as well as for production of synthetic selenoproteins that may be designed to use the unique biophysical properties of Sec for diverse biotechnological applications.
Collapse
|
4
|
Honda M, Segawa T, Ishikawa K, Maeda M, Saito Y, Kon S. Nephronectin influences EAE development by regulating Th17/Treg balance via reactive oxygen species. Am J Physiol Cell Physiol 2022; 322:C699-C711. [PMID: 35235429 DOI: 10.1152/ajpcell.00376.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Blood levels of the extracellular matrix protein nephronectin (Npnt), a protein critical for kidney development, are elevated in autoimmune experimental encephalitis (EAE) mice, which are a model for multiple sclerosis. We found here that treatment with anti-Npnt antibody directed against the α8β1 integrin-binding site (Npnt-FD antibody) inhibits EAE development. The selenium transporter selenoprotein P (SeP) was identified as a novel Npnt-binding partner. In EAE, Npnt induced SeP and glutathione peroxidase 1 (GPx1) expression, followed by reactive oxygen species (ROS) inhibition in CD4+ T cells; these changes were disturbed by Npnt-FD antibody treatment, which also caused decreased differentiation of interleukin (IL)-17-producing CD4+ T-helper cells (Th17s) and increased differentiation of regulatory T cells (Tregs). Treatment of EAE mice with the ROS scavenger N-acetyl cysteine (NAC) blocked the Npnt-FD antibody-induced decrease in Th17 differentiation and increase in Treg differentiation. In conclusion, the interaction between Npnt and SeP contributes to EAE development by regulating the Th17/Treg balance via the ROS level.
Collapse
Affiliation(s)
- Machiko Honda
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | | | | | | | - Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
5
|
Forceville X, Van Antwerpen P, Preiser JC. Selenocompounds and Sepsis: Redox Bypass Hypothesis for Early Diagnosis and Treatment: Part A-Early Acute Phase of Sepsis: An Extraordinary Redox Situation (Leukocyte/Endothelium Interaction Leading to Endothelial Damage). Antioxid Redox Signal 2021; 35:113-138. [PMID: 33567962 DOI: 10.1089/ars.2020.8063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Sepsis is a health disaster. In sepsis, an initial, beneficial local immune response against infection evolves rapidly into a generalized, dysregulated response or a state of chaos, leading to multiple organ failure. Use of life-sustaining supportive therapies creates an unnatural condition, enabling the complex cascades of the sepsis response to develop in patients who would otherwise die. Multiple attempts to control sepsis at an early stage have been unsuccessful. Recent Advances: Major events in early sepsis include activation and binding of leukocytes and endothelial cells in the microcirculation, damage of the endothelial surface layer (ESL), and a decrease in the plasma concentration of the antioxidant enzyme, selenoprotein-P. These events induce an increase in intracellular redox potential and lymphocyte apoptosis, whereas apoptosis is delayed in monocytes and neutrophils. They also induce endothelial mitochondrial and cell damage. Critical Issues: Neutrophil production increases dramatically, and aggressive immature forms are released. Leukocyte cross talk with other leukocytes and with damaged endothelial cells amplifies the inflammatory response. The release of large quantities of reactive oxygen, halogen, and nitrogen species as a result of the leukocyte respiratory burst, endothelial mitochondrial damage, and ischemia/reperfusion processes, along with the marked decrease in selenoprotein-P concentrations, leads to peroxynitrite damage of the ESL, reducing flow and damaging the endothelial barrier. Future Directions: Endothelial barrier damage by activated leukocytes is a time-sensitive event in sepsis, occurring within hours and representing the first step toward organ failure and death. Reducing or stopping this event is necessary before irreversible damage occurs.
Collapse
Affiliation(s)
- Xavier Forceville
- Medico-Surgical Intensive Care Unit, Great Hospital of East Francilien-Meaux Site, Hôpital Saint Faron, Meaux, France.,Clinical Investigation Center (CIC Inserm 1414), CHU de Rennes, Université de Rennes 1, Rennes, France
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Université libre de Bruxelles (ULB), Bruxelles, Belgium
| | | |
Collapse
|
6
|
Xu XJ, Zhang DG, Zhao T, Xu YH, Luo Z. Characterization and expression analysis of seven selenoprotein genes in yellow catfish Pelteobagrus fulvidraco to dietary selenium levels. J Trace Elem Med Biol 2020; 62:126600. [PMID: 32622174 DOI: 10.1016/j.jtemb.2020.126600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Selenium (Se) appears in the selenoproteins in the form of selenocysteine (Sec) and is important for the growth and development of vertebrates. The present study characterized seven selenoproteins, consisting of the GPX1, GPX3, GPX4, SELENOW, SELENOP, TXNRD2 and TXNRD3 cDNAs in various tissues of yellow catfish, explored their regulation to dietary Se addition. METHODS 3' and 5' RACE PCR were used to clone full-length cDNA sequences of seven selenoprotein genes (GPX1, GPX3, GPX4, SELENOW, SELENOP, TXNRD2 and TXNRD3). Their molecular characterizations were analyzed, including conservative motifs and the SECIS elements. The phylogenetic trees were generated through neighbor-joining (NJ) method with MEGA 6.0 with 1000 bootstrap replications. Quantitative real-time PCR was used to explore their mRNA tissue distribution in the heart, anterior intestine, dorsal muscle, head kidney, gill, liver, brain, spleen and mesenteric fat. Yellow catfish (mixed sex) were fed diets with dietary Se contents at 0.03 (low Se), 0.25 (adequate Se) and 6.39 (high Se) mg Se/kg, respectively, for 12 weeks, and their spleen, kidney, testis and brain were used for the determination of the mRNA levels of the seven selenoproteins. RESULTS The seven selenoproteins had similar domains to their corresponding members of other vertebrates. They were widely expressed in nine tissues, including heart, liver, brain, spleen, head kidney, dorsal muscle, mesenteric fat, anterior intestine and gill, but showed tissue-dependent expression patterns. Dietary Se addition affected the expression of the seven genes in spleen, kidney, testis and brain tissues of yellow catfish. CONCLUSION Taken together, our study demonstrated the characterization, expression and regulation of seven selenoproteins, which increased our understanding of the biological functions of Se and selenoproteins in fish.
Collapse
Affiliation(s)
- Xiao-Jian Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian-Guang Zhang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi-Huan Xu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
7
|
Saito Y. Selenoprotein P as an in vivo redox regulator: disorders related to its deficiency and excess. J Clin Biochem Nutr 2019; 66:1-7. [PMID: 32001950 PMCID: PMC6983434 DOI: 10.3164/jcbn.19-31] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/19/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein P (encoded by SELENOP) contains the essential trace element selenium in the form of selenocysteine, which is an analog of cysteine that contains selenium instead of sulfur. Selenoprotein P is a major selenium-containing protein in human plasma and is mainly synthesized in the liver. It functions as a selenium-transporter to maintain antioxidative selenoenzymes in several tissues, such as the brain and testis, and plays a pivotal role in selenium-metabolism and antioxidative defense. A decrease of selenoprotein P and selenoproteins causes various dysfunctions related to oxidative stress. On the other hand, recent studies indicate that excess selenoprotein P exacerbates glucose metabolism and promotes type 2 diabetes. This review focuses on the biological functions of selenoprotein P, particularly its role in selenium-metabolism and antioxidative defense. Furthermore, the effects of excess selenoprotein P on glucose metabolism, and resulting diseases are described. The development of a therapeutic agent that targets excess selenoprotein P is discussed.
Collapse
Affiliation(s)
- Yoshiro Saito
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Kikuchi N, Satoh K, Satoh T, Yaoita N, Siddique MAH, Omura J, Kurosawa R, Nogi M, Sunamura S, Miyata S, Misu H, Saito Y, Shimokawa H. Diagnostic and Prognostic Significance of Serum Levels of SeP (Selenoprotein P) in Patients With Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:2553-2562. [PMID: 31665907 DOI: 10.1161/atvbaha.119.313267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Despite the recent progress in upfront combination therapy for pulmonary arterial hypertension (PAH), useful biomarkers for the disorder still remain to be developed. SeP (Selenoprotein P) is a glycoprotein secreted from various kinds of cells including pulmonary artery smooth muscle cells to maintain cellular metabolism. We have recently demonstrated that SeP production from pulmonary artery smooth muscle cells is upregulated and plays crucial roles in the pathogenesis of PAH. However, it remains to be elucidated whether serum SeP levels could be a useful biomarker for PAH. Approach and Results: We measured serum SeP levels and evaluated their prognostic impacts in 65 consecutive patients with PAH and 20 controls during follow-up (mean, 1520 days; interquartile range, 1393-1804 days). Serum SeP levels were measured using a newly developed sol particle homogeneous immunoassay. The patients with PAH showed significantly higher serum SeP levels compared with controls. Higher SeP levels (cutoff point, 3.47 mg/L) were associated with the outcome (composite end point of all-cause death and lung transplantation) in patients with PAH (hazard ratio, 4.85 [1.42-16.6]; P<0.01). Importantly, we found that the absolute change in SeP of patients with PAH (ΔSeP) in response to the initiation of PAH-specific therapy significantly correlated with the absolute change in mean pulmonary artery pressure, pulmonary vascular resistance (ΔPVR), and cardiac index (ΔCI; R=0.78, 0.76, and -0.71 respectively, all P<0.0001). Moreover, increase in ΔSeP during the follow-up predicted poor outcome of PAH. CONCLUSIONS Serum SeP is a novel biomarker for diagnosis and assessment of treatment efficacy and long-term prognosis in patients with PAH.
Collapse
Affiliation(s)
- Nobuhiro Kikuchi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Taijyu Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Nobuhiro Yaoita
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Mohammad Abdul Hai Siddique
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Junichi Omura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Ryo Kurosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Masamichi Nogi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Shinichiro Sunamura
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| | - Hirofumi Misu
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan (H.M.)
| | - Yoshiro Saito
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan (Y.S.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., T.S., N.Y., M.A.H.S., J.O., R.K., M.N., S.S., S.M., H.S.)
| |
Collapse
|
9
|
Kikuchi N, Satoh K, Kurosawa R, Yaoita N, Elias-Al-Mamun M, Siddique MAH, Omura J, Satoh T, Nogi M, Sunamura S, Miyata S, Saito Y, Hoshikawa Y, Okada Y, Shimokawa H. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target. Circulation 2019; 138:600-623. [PMID: 29636330 DOI: 10.1161/circulationaha.117.033113] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) are key mechanisms of pulmonary arterial hypertension (PAH). Despite the multiple combination therapy, a considerable number of patients develop severe pulmonary hypertension (PH) because of the lack of diagnostic biomarker and antiproliferative therapies for PASMCs. METHODS Microarray analyses were used to identify a novel therapeutic target for PAH. In vitro experiments, including lung and serum samples from patients with PAH, cultured PAH-PASMCs, and high-throughput screening of 3336 low-molecular-weight compounds, were used for mechanistic study and exploring a novel therapeutic agent. Five genetically modified mouse strains, including PASMC-specific selenoprotein P (SeP) knockout mice and PH model rats, were used to study the role of SeP and therapeutic capacity of the compounds for the development of PH in vivo. RESULTS Microarray analysis revealed a 32-fold increase in SeP in PAH-PASMCs compared with control PASMCs. SeP is a widely expressed extracellular protein maintaining cellular metabolism. Immunoreactivity of SeP was enhanced in the thickened media of pulmonary arteries in PAH. Serum SeP levels were also elevated in patients with PH compared with controls, and high serum SeP predicted poor outcome. SeP-knockout mice ( SeP-/-) exposed to chronic hypoxia showed significantly reduced right ventricular systolic pressure, right ventricular hypertrophy, and pulmonary artery remodeling compared with controls. In contrast, systemic SeP-overexpressing mice showed exacerbation of hypoxia-induced PH. Furthermore, PASMC-specific SeP-/- mice showed reduced hypoxia-induced PH compared with controls, whereas neither liver-specific SeP knockout nor liver-specific SeP-overexpressing mice showed significant differences with controls. Altogether, protein levels of SeP in the lungs were associated with the development of PH. Mechanistic experiments demonstrated that SeP promotes PASMC proliferation and resistance to apoptosis through increased oxidative stress and mitochondrial dysfunction, which were associated with activated hypoxia-inducible factor-1α and dysregulated glutathione metabolism. It is important to note that the high-throughput screening of 3336 compounds identified that sanguinarine, a plant alkaloid with antiproliferative effects, reduced SeP expression and proliferation in PASMCs and ameliorated PH in mice and rats. CONCLUSIONS These results indicate that SeP promotes the development of PH, suggesting that it is a novel biomarker and therapeutic target of the disorder.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/pharmacology
- Apoptosis
- Arterial Pressure/drug effects
- Benzophenanthridines/pharmacology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypoxia/complications
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Isoquinolines/pharmacology
- Male
- Mice, Knockout
- Mitochondria, Muscle/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidative Stress
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Rats, Sprague-Dawley
- Selenoprotein P/metabolism
- Signal Transduction
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Nobuhiro Kikuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
- Research Fellow of Japan Society for the Promotion of Science, Tokyo (N.K., R.K.)
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
- Research Fellow of Japan Society for the Promotion of Science, Tokyo (N.K., R.K.)
| | - Nobuhiro Yaoita
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Md Elias-Al-Mamun
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Mohammad Abdul Hai Siddique
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Junichi Omura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Taijyu Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Masamichi Nogi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Shinichiro Sunamura
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| | - Yoshiro Saito
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan (Y.S.)
| | - Yasushi Hoshikawa
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (Y.H., Y.O.)
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan (Y.H., Y.O.)
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (N.K., K.S., R.K., S.M., N.Y., M.E.-A.-M., M.A.H.S., J.O., T.S., M.N., S.S., H.S.)
| |
Collapse
|
10
|
Mayer K, Mundigl O, Kettenberger H, Birzele F, Stahl S, Pastan I, Brinkmann U. Diphthamide affects selenoprotein expression: Diphthamide deficiency reduces selenocysteine incorporation, decreases selenite sensitivity and pre-disposes to oxidative stress. Redox Biol 2019; 20:146-156. [PMID: 30312900 PMCID: PMC6180344 DOI: 10.1016/j.redox.2018.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/31/2022] Open
Abstract
The diphthamide modification of translation elongation factor 2 is highly conserved in eukaryotes and archaebacteria. Nevertheless, cells lacking diphthamide can carry out protein synthesis and are viable. We have analyzed the phenotypes of diphthamide deficient cells and found that diphthamide deficiency reduces selenocysteine incorporation into selenoproteins. Additional phenotypes resulting from diphthamide deficiency include altered tRNA-synthetase and selenoprotein transcript levels, hypersensitivity to oxidative stress and increased selenite tolerance. Diphthamide-eEF2 occupies the aminoacyl-tRNA translocation site at which UGA either stalls translation or decodes selenocysteine. Its position is in close proximity and mutually exclusive to the ribosomal binding site of release/recycling factor ABCE1, which harbors a redox-sensitive Fe-S cluster and, like diphthamide, is present in eukaryotes and archaea but not in eubacteria. Involvement of diphthamide in UGA-SECIS decoding may explain deregulated selenoprotein expression and as a consequence oxidative stress, NFkB activation and selenite tolerance in diphthamide deficient cells.
Collapse
Affiliation(s)
- Klaus Mayer
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Olaf Mundigl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research & Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Stahl
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ulrich Brinkmann
- Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
11
|
Pohl MAN, Wang T, Pohl T, Sweetman J, Martin SAM, Secombes CJ. Four selenoprotein P genes exist in salmonids: Analysis of their origin and expression following Se supplementation and bacterial infection. PLoS One 2018; 13:e0209381. [PMID: 30571741 PMCID: PMC6301783 DOI: 10.1371/journal.pone.0209381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023] Open
Abstract
The following research was conducted to elucidate the evolution and expression of salmonid selenoprotein P (SelP), a selenoprotein that is unique in having multiple selenocysteine (Sec) residues, following supranutritional selenium supplementation and infection in rainbow trout. We show that in salmonids SelP is present as four paralogues and that the diversification of SelP genes during vertebrate evolution relates to whole genome duplication events. With 17 and 16 selenocysteine residues for rainbow trout (Oncorhynchus mykiss)/Atlantic salmon (Salmo salar) SelPa1 and SelPa2 proteins respectively and 1 or 2 (trout or salmon) and 4 or 3 (trout or salmon) selenocysteine residues for salmonid SelPb1 and SelPb2 proteins respectively, this is the highest number of (predicted) multiple selenocysteine containing SelP proteins reported for any vertebrate species to date. To investigate the effects of selenium form on SelP expression we added different concentrations (1 nM– 10 μM) of organic or inorganic selenium to a trout cell line (RTG-2 cells) and analysed changes in mRNA abundance. We next studied the impact of supplementation on the potential modulation of these transcripts by PAMPs and proinflammatory cytokines in RTG-2 and RTS-11 cells. These experiments revealed that selenium type influenced the responses, and that SelP gene subfunctionalisation was apparent. To get an insight into the expression patterns in vivo we conducted a feeding trial with 2 diets differing in selenium content and 5 weeks later challenged the trout with a bacterial pathogen (Aeromonas salmonicida). Four tissues were analysed for SelP paralogue expression. The results show a significant induction of SelPa1 in gills and intestine following infection in selenium supplemented fish and for SelPa2 in gills. SelPb1 was significantly reduced in head kidney of both diet groups following infection, whilst SelPb2 was significantly upregulated in skin of both diet groups post infection. Overall these findings reveal differential expression profiles for the SelPa/SelPb paralogues in trout, influenced by selenium supply, cell type/tissue and stimulant. The increase of multiple Sec containing SelP proteins in salmonids could indicate an enhanced requirement for selenium in this lineage.
Collapse
Affiliation(s)
- Moritz A. N. Pohl
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (M.A.N.P.); (C.J.S.)
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thitiya Pohl
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - John Sweetman
- Alltech, Springcroft, Mosshill, Brora, United Kingdom
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Christopher J. Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
- * E-mail: (M.A.N.P.); (C.J.S.)
| |
Collapse
|
12
|
Identification of Novel Therapeutic Targets for Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19124081. [PMID: 30562953 PMCID: PMC6321293 DOI: 10.3390/ijms19124081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are fatal diseases; however, their pathogenesis still remains to be elucidated. We have recently screened novel pathogenic molecules and have performed drug discovery targeting those molecules. Pulmonary artery smooth muscle cells (PASMCs) in patients with PAH (PAH-PASMCs) have high proliferative properties like cancer cells, which leads to thickening and narrowing of distal pulmonary arteries. Thus, we conducted a comprehensive analysis of PAH-PASMCs and lung tissues to search for novel pathogenic proteins. We validated the pathogenic role of the selected proteins by using tissue-specific knockout mice. To confirm its clinical significance, we used patient-derived blood samples to evaluate the potential as a biomarker for diagnosis and prognosis. Finally, we conducted a high throughput screening and found inhibitors for the pathogenic proteins.
Collapse
|
13
|
Shetty SP, Copeland PR. The Selenium Transport Protein, Selenoprotein P, Requires Coding Sequence Determinants to Promote Efficient Selenocysteine Incorporation. J Mol Biol 2018; 430:5217-5232. [PMID: 30243837 DOI: 10.1016/j.jmb.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/20/2018] [Accepted: 09/09/2018] [Indexed: 01/30/2023]
Abstract
Selenoproteins are an essential and unique group of proteins in which selenocysteine (Sec) is incorporated in response to a stop codon (UGA). Reprograming of UGA for Sec insertion in eukaryotes requires a cis-acting stem-loop structure in the 3' untranslated region of selenoprotein mRNA and several trans-acting factors. Together these factors are sufficient for Sec incorporation in vitro, but the process is highly inefficient. An additional challenge is the synthesis of selenoprotein P (SELENOP), which uniquely contains multiple UGA codons. Full-length SELENOP expression requires processive Sec incorporation, the mechanism for which is not understood. In this study, we identify core coding region sequence determinants within the SELENOP mRNA that govern SELENOP synthesis. Using 75Se labeling in cells, we determined that the N-terminal coding sequence (upstream of the second UGA) and C-terminal coding sequence context are two independent determinants for efficient synthesis of full-length SELENOP. In addition, the distance between the first UGA and the consensus signal peptide is also critical for efficiency.
Collapse
Affiliation(s)
- Sumangala P Shetty
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Paul R Copeland
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Li Y, Luo J, Xu Q, Hou Y, Jiang P, Sun Y, Lu H, Han B, Zhang J. Characterization of Selenoprotein P cDNA of the Antarctic toothfish Dissostichus mawsoni and its role under cold pressure. Gene 2018; 647:150-156. [PMID: 29329926 DOI: 10.1016/j.gene.2018.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 10/18/2022]
Abstract
Our previous study using comparative genome analysis revealed a significant gene copy number gain of Dissostichus mawsoni selenoprotein P (Dm-SEPP) during the evolutionary radiation of Antarctic notothenioids, suggesting that Dm-SEPP contribute to this process, but the detailed structure and function of this gene product remain unclear. In the present study, the Dm-SEPP cDNA was cloned and characterized. The Dm-SEPP cDNA contains 17 selenocysteines (Sec) encoded by TGA codons and 2 typical SECIS elements located in the 3'-UTR. Evolutionary analysis of the Dm-SEPP gene revealed that it's closely related to the SEPP gene of zebrafish (Danio rerio), showing 51% amino acid similarity. Over-expression of Dm-SEPP could protect mammalian cells under cold pressure, probably via eliminating ROS. Further study showed an increase of endogenous SEPP in zebrafish ZF4 cells under cold pressure, and knockdown of SEPP decreased cell viability, accompanied with increased ROS. Our results suggested a protective role of Dm-SEPP in cold adaptation in Antarctic notothenioids.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Juntao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Qiongqiong Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanwen Hou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Penglei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yutian Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hanxu Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
15
|
Varlamova EG, Novoselov SV. Methods to biosynthesize mammalian selenocysteine-containing proteins in vitro. Mol Biol 2016. [DOI: 10.1134/s0026893316010210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Turanov AA, Everley RA, Hybsier S, Renko K, Schomburg L, Gygi SP, Hatfield DL, Gladyshev VN. Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine. PLoS One 2015; 10:e0140353. [PMID: 26452064 PMCID: PMC4599804 DOI: 10.1371/journal.pone.0140353] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 09/24/2015] [Indexed: 11/27/2022] Open
Abstract
Selenoproteins are a unique group of proteins that contain selenium in the form of selenocysteine (Sec) co-translationally inserted in response to a UGA codon with the help of cis- and trans-acting factors. Mammalian selenoproteins contain single Sec residues, with the exception of selenoprotein P (SelP) that has 7–15 Sec residues depending on species. Assessing an individual’s selenium status is important under various pathological conditions, which requires a reliable selenium biomarker. Due to a key role in organismal selenium homeostasis, high Sec content, regulation by dietary selenium, and availability of robust assays in human plasma, SelP has emerged as a major biomarker of selenium status. Here, we found that Cys is present in various Sec positions in human SelP. Treatment of cells expressing SelP with thiophosphate, an analog of the selenium donor for Sec synthesis, led to a nearly complete replacement of Sec with Cys, whereas supplementation of cells with selenium supported Sec insertion. SelP isolated directly from human plasma had up to 8% Cys inserted in place of Sec, depending on the Sec position. These findings suggest that a change in selenium status may be reflected in both SelP concentration and its Sec content, and that availability of the SelP-derived selenium for selenoprotein synthesis may be overestimated under conditions of low selenium status due to replacement of Sec with Cys.
Collapse
Affiliation(s)
- Anton A. Turanov
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Robert A. Everley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Sandra Hybsier
- Institute for Experimental Endocrinology, Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, United States of America
| | - Dolph L. Hatfield
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115, United States of America
- * E-mail:
| |
Collapse
|
17
|
Gonzalez-Flores JN, Shetty SP, Dubey A, Copeland PR. The molecular biology of selenocysteine. Biomol Concepts 2015; 4:349-65. [PMID: 25436585 DOI: 10.1515/bmc-2013-0007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 01/11/2023] Open
Abstract
Selenium is an essential trace element that is incorporated into 25 human proteins as the amino acid selenocysteine (Sec). The incorporation of this amino acid turns out to be a fascinating problem in molecular biology because Sec is encoded by a stop codon, UGA. Layered on top of the canonical translation elongation machinery is a set of factors that exist solely to incorporate this important amino acid. The mechanism by which this process occurs, put into the context of selenoprotein biology, is the focus of this review.
Collapse
|
18
|
Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic Biol Med 2015; 83:129-38. [PMID: 25668720 DOI: 10.1016/j.freeradbiomed.2015.01.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/09/2015] [Accepted: 01/30/2015] [Indexed: 01/01/2023]
Abstract
Nutritional muscular dystrophy (NMD) of chicks is induced by dietary selenium (Se)/vitamin E (Vit. E) deficiencies and may be associated with oxidative cell damage. To reveal the underlying mechanisms related to the presumed oxidative cell damage, we fed four groups of 1-day-old broiler chicks (n = 40/group) with a basal diet (BD; 10 μg Se/kg; no Vit. E added, -Se -Vit. E) or the BD plus all-rac-α-tocopheryl acetate at 50mg/kg (-Se +Vit. E), Se (as sodium selenite) at 0.3mg/kg (+Se -Vit. E), or both of these nutrients (+Se +Vit. E) for 6 weeks. High incidences of NMD (93%) and mortality (36%) of the chicks were induced by the BD, starting at week 3. Dietary Se deficiency alone also induced muscle fiber rupture and coagulation necrosis in the pectoral muscle of chicks at week 3 and thereafter, with increased (P < 0.05) malondialdehyde, decreased (P < 0.05) total antioxidant capacity, and diminished (P < 0.05) glutathione peroxidase activities in the muscle. To link these oxidative damages of the muscle cells to the Se-deficiency-induced NMD, we first determined gene expression of the potential 26 selenoproteins in the muscle of the chicks at week 2 before the onset of symptoms. Compared with the +Se chicks, the -Se chicks had lower (P < 0.05) muscle mRNA levels of Gpx1, Gpx3, Gpx4, Sepp1, Selo, Selk, Selu, Selh, Selm, Sepw1, and Sep15. The -Se chicks also had decreased (P < 0.05) production of 6 selenoproteins (long-form selenoprotein P (SelP-L), GPx1, GPx4, Sep15, SelW, and SelN), but increased levels (P < 0.05) of the short-form selenoprotein P in muscle at weeks 2 and 4. Dietary Se deficiency elevated (P < 0.05) muscle p53, cleaved caspase 3, cleaved caspase 9, cyclooxygenase 2 (COX2), focal adhesion kinase (FAK), phosphatidylinositol 3-kinase (PI3K), phospho-Akt, nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK), phospho-p38 MAPK, phospho-JNK, and phospho-ERK and decreased (P < 0.05) muscle procaspase 3, procaspase 9, and NF-κB inhibitor α. In conclusion, the downregulation of SelP-L, GPx1, GPx4, Sep15, SelW, and SelN by dietary Se deficiency might account for induced oxidative stress and the subsequent peroxidative damage of chick muscle cells via the activation of the p53/caspase 9/caspase 3, COX2/FAK/PI3K/Akt/NF-κB, and p38 MAPK/JNK/ERK signaling pathways. Metabolism of peroxides and redox regulation are likely to be the mechanisms whereby these selenoproteins prevented the onset of NMD in chicks.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fa-Zheng Ren
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China.
| | - Yun-Yun Jiang
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China
| | - Chen Xiao
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Higher Institution Engineering Research Center for Animal Products, Beijing 100083, China
| | - Xin Gen Lei
- The Innovation Centre of Food Nutrition and Human Health (Beijing), Beijing Laboratory of Food Quality and Safety, and Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Department of Animal Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
19
|
Shetty SP, Shah R, Copeland PR. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P. J Biol Chem 2014; 289:25317-26. [PMID: 25063811 DOI: 10.1074/jbc.m114.590430] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenoproteins are unique as they contain selenium in their active site in the form of the 21st amino acid selenocysteine (Sec), which is encoded by an in-frame UGA stop codon. Sec incorporation requires both cis- and trans-acting factors, which are known to be sufficient for Sec incorporation in vitro, albeit with low efficiency. However, the abundance of the naturally occurring selenoprotein that contains 10 Sec residues (SEPP1) suggests that processive and efficient Sec incorporation occurs in vivo. Here, we set out to study native SEPP1 synthesis in vitro to identify factors that regulate processivity and efficiency. Deletion analysis of the long and conserved 3'-UTR has revealed that the incorporation of multiple Sec residues is inherently processive requiring only the SECIS elements but surprisingly responsive to the selenium concentration. We provide evidence that processive Sec incorporation is linked to selenium utilization and that reconstitution of known Sec incorporation factors in a wheat germ lysate does not permit multiple Sec incorporation events, thus suggesting a role for yet unidentified mammalian-specific processes or factors. The relationship between our findings and the channeling theory of translational efficiency is discussed.
Collapse
Affiliation(s)
- Sumangala P Shetty
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ravi Shah
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Paul R Copeland
- From the Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
20
|
Yin L, Song J, Board PG, Yu Y, Han X, Wei J. Characterization of selenium-containing glutathione transferase zeta1-1 with high GPX activity prepared in eukaryotic cells. J Mol Recognit 2012; 26:38-45. [DOI: 10.1002/jmr.2241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Li Yin
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | - Jian Song
- College of Electronic Science and Engineering; Jilin University; 2699 Qianjin Street; Changchun; 130000; China
| | - Philip G. Board
- Molecular Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research; Australian National University; GPO Box 334; Canberra; 2601; Australia
| | - Yang Yu
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | - Xiao Han
- College of Pharmaceutical Science; Jilin University; 1266 Fujin Road; Changchun; 130021; China
| | | |
Collapse
|
21
|
Kurokawa S, Takehashi M, Tanaka H, Mihara H, Kurihara T, Tanaka S, Hill K, Burk R, Esaki N. Mammalian selenocysteine lyase is involved in selenoprotein biosynthesis. J Nutr Sci Vitaminol (Tokyo) 2012; 57:298-305. [PMID: 22041913 DOI: 10.3177/jnsv.57.298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Selenocysteine lyase (SCL) catalyzes the decomposition of L-selenocysteine to yield L-alanine and selenium by acting exclusively on l-selenocysteine. The X-ray structural analysis of rat SCL has demonstrated how SCL discriminates L-selenocysteine from L-cysteine on the molecular basis. SCL has been proposed to function in the recycling of the micronutrient selenium from degraded selenoproteins containing selenocysteine residues, but the role of SCL in selenium metabolism in vivo remains unclear. We here demonstrate that the (75)Se-labeling efficiency of selenoproteins with (75)Se-labeled selenoprotein P (Sepp1) as a selenium source was decreased in HeLa cells transfected with SCL siRNA as compared to the cells transfected with control siRNA. Immunocytochemical analyses showed high SCL expression in kidney and liver cells, where selenocysteine is recovered from selenoproteins. Mature testes of mice exhibited a specific staining pattern of SCL in spermatids that actively produce selenoproteins. However, SCL was weakly expressed in Sertoli cells, which receive Sepp1 and supply selenium to germ cells. These demonstrate that SCL occurs in the cells requiring selenoproteins, probably to recycle selenium derived from selenoproteins such as Sepp1.
Collapse
Affiliation(s)
- Suguru Kurokawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen H, Jiang L, Ni J, Liu Q, Zhang J. Bioinformatic prediction of selenoprotein genes in the dolphin genome. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-011-4970-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Jiang L, Liu Q, Ni J. In silico identification of the sea squirt selenoproteome. BMC Genomics 2010; 11:289. [PMID: 20459719 PMCID: PMC2874816 DOI: 10.1186/1471-2164-11-289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 05/10/2010] [Indexed: 11/24/2022] Open
Abstract
Background Computational methods for identifying selenoproteins have been developed rapidly in recent years. However, it is still difficult to identify the open reading frame (ORF) of eukaryotic selenoprotein gene, because the TGA codon for a selenocysteine (Sec) residue in the active centre of selenoprotein is traditionally a terminal signal of protein translation. Although the identification of selenoproteins from genomes through bioinformatics methods has been conducted in bacteria, unicellular eukaryotes, insects and several vertebrates, only a few results have been reported on the ancient chordate selenoproteins. Results A gene assembly algorithm SelGenAmic has been constructed and presented in this study for identifying selenoprotein genes from eukaryotic genomes. A method based on this algorithm was developed to build an optimal TGA-containing-ORF for each TGA in a genome, followed by protein similarity analysis through conserved sequence alignments to screen out selenoprotein genes form these ORFs. This method improved the sensitivity of detecting selenoproteins from a genome due to the design that all TGAs in the genome were investigated for its possibility of decoding as a Sec residue. Using this method, eighteen selenoprotein genes were identified from the genome of Ciona intestinalis, leading to its member of selenoproteome up to 19. Among them a selenoprotein W gene was found to have two SECIS elements in the 3'-untranslated region. Additionally, the disulfide bond formation protein A (DsbA) was firstly identified as a selenoprotein in the ancient chordates of Ciona intestinalis, Ciona savignyi and Branchiostoma floridae, while selenoprotein DsbAs had only been found in bacteria and green algae before. Conclusion The method based on SelGenAmic algorithm is capable of identifying eukaryotic selenoprotein genes from their genomes. Application of this method to Ciona intestinalis proves its successes in finding Sec-decoding TGA from large-scale eukaryotic genome sequences, which fills the gap in our knowledge on the ancient chordate selenoproteins.
Collapse
Affiliation(s)
- Liang Jiang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| | | | | |
Collapse
|
24
|
Hondal RJ. Using chemical approaches to study selenoproteins-focus on thioredoxin reductases. Biochim Biophys Acta Gen Subj 2009; 1790:1501-12. [PMID: 19406205 DOI: 10.1016/j.bbagen.2009.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/15/2009] [Accepted: 04/22/2009] [Indexed: 11/29/2022]
Abstract
The study of selenocysteine-containing proteins is difficult due to the problems associated with the heterologous production of these proteins. These problems are due to the intricate recoding mechanism used by cells to translate the UGA codon as a sense codon for selenocysteine. The process is further complicated by the fact that eukaryotes and prokaryotes have different UGA recoding machineries. This review focuses on chemical approaches to produce selenoproteins and study the mechanism of selenoenzymes. The use of intein-mediated peptide ligation is discussed with respect to the production of the mammalian selenoenzymes thioredoxin reductase and selenoprotein R, also known as methionine sulfoxide reductase B1. New methods for removing protecting groups from selenocysteine post-synthesis and methods for selenosulfide/diselenide formation are also reviewed. Chemical approaches have also been used to study the enzymatic mechanism of thioredoxin reductase. The approach divides the enzyme into two modules, a large protein module lacking selenocysteine and a small, synthetic selenocysteine-containing peptide. Study of this semisynthetic enzyme has revealed three distinct enzymatic pathways that depend on the properties of the substrate. The enzyme utilizes a macromolecular mechanism for protein substrates, a second mechanism for small molecule substrates and a third pathway for selenium-containing substrates such as selenocystine.
Collapse
Affiliation(s)
- Robert J Hondal
- Department of Biochemistry, University of Vermont, College of Medicine, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA.
| |
Collapse
|
25
|
Bellinger FP, He QP, Bellinger MT, Lin Y, Raman AV, White LR, Berry MJ. Association of selenoprotein p with Alzheimer's pathology in human cortex. J Alzheimers Dis 2009; 15:465-72. [PMID: 18997300 DOI: 10.3233/jad-2008-15313] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Selenium is known for its antioxidant properties, making selenoproteins candidate molecules for mitigation of neurological disorders in which oxidative stress has been implicated. The selenium transport protein, selenoprotein P, is essential for neuronal survival and function. We sought to determine whether selenoprotein P expression is associated with Alzheimer's disease pathology. We examined postmortem tissue from individuals with the hallmark lesions of Alzheimer's disease and individuals without these lesions. Selenoprotein P immunoreactivity was co-localized with amyloid-beta plaques and neurofibrillary tangles. Dense-core and other non-diffuse amyloid-beta plaques were nearly always associated with selenoprotein P immunopositive cells. Analysis of spatial distribution showed a significant association between amyloid-beta plaques and selenoprotein P. Numerous cells also exhibited immunoreactivity to selenoprotein P and intraneuronal neurofibrillary tangles. Confocal microscopy confirmed co-localization of amyloid-beta protein and selenoprotein P. These findings suggest an association of selenoprotein P with Alzheimer's pathology.
Collapse
Affiliation(s)
- Frederick P Bellinger
- Department of Cell Biology, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kabuyama Y, Oshima K, Kitamura T, Homma M, Yamaki J, Munakata M, Homma Y. Involvement of selenoprotein P in the regulation of redox balance and myofibroblast viability in idiopathic pulmonary fibrosis. Genes Cells 2007; 12:1235-44. [DOI: 10.1111/j.1365-2443.2007.01127.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Moens LN, Smolders R, van der Ven K, van Remortel P, Del-Favero J, De Coen WM. Effluent impact assessment using microarray-based analysis in common carp: a systems toxicology approach. CHEMOSPHERE 2007; 67:2293-304. [PMID: 17267021 DOI: 10.1016/j.chemosphere.2006.09.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/04/2006] [Accepted: 09/27/2006] [Indexed: 05/13/2023]
Abstract
Effluents are a main source of direct and continuous input of pollutants to the aquatic environment, and can cause ecotoxicological effects at different levels of biological organization. Since gene expression responses represent the primary interaction site between environmental contaminants and biota, they provide essential clues to understand how chemical exposure can affect organismal health. The aim of the present study was to investigate the applicability of a microarray approach for unraveling modes of action of whole effluent toxicity and impact assessment. A chronic toxicity test with common carp (Cyprinus carpio) was conducted where fish were exposed to a control and 100% effluent for 21 days under flow-through conditions. Microarray analysis revealed that effluent treatment mainly affected molecular pathways associated with the energy balance of the fish, including changes in carbohydrate and lipid metabolism, as well as digestive enzyme activity. These gene expression responses were in clear agreement with, and provided additional mechanistic information on various cellular and higher level effects observed for the same effluent. Our results demonstrate the benefit of toxicogenomic tools in a "systems toxicology" approach, involving the integration of adverse effects of chemicals and stressors across multiple levels of biological complexity.
Collapse
Affiliation(s)
- Lotte N Moens
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlann 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
Li CL, Nan KJ, Tian T, Sui CG, Liu YF. Selenoprotein P mRNA expression in human hepatic tissues. World J Gastroenterol 2007; 13:2363-8. [PMID: 17511039 PMCID: PMC4147149 DOI: 10.3748/wjg.v13.i16.2363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 02/28/2007] [Accepted: 03/08/2007] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of selenoprotein P mRNA (SePmRNA) in tissues of normal liver, liver cirrhosis and hepatocellular carcinoma (HCC), and its relationship with HCC occurrence and development. METHODS The expression of SePmRNA in tissues of normal liver, liver cirrhosis and HCC were detected by in situ hybridization using a cDNA probe. RESULTS The enzyme digesting products of PBluescript-Human Selenoprotein P were evaluated by electrophoresis. The positive expression of SePmRNA was found in the tissues of normal liver, liver cirrhosis and HCC. The expression of SeP mRNA was found in hepatic interstitial substance, especially in endothelial cells and lymphocytes of vasculature. The positive rate of SePmRNA in normal liver tissue was 84.6% (11/13) and the positive signals appeared in the nucleus and cytoplasm, mostly in the nucleolus, and the staining granules were larger in the nucleolus and around the nucleus. The positive rate of SePmRNA in liver cirrhosis tissue was 45.0% (9/20) and the positive signals were mainly in the nucleolus and cytoplasm, being less around the nucleus and inner nucleus than that in normal liver tissue. The positive rate of SePmRNA in HCC tissue was 30.0% (9/30) and the positive signals were in the cytoplasm, but less in the nucleus. CONCLUSION SePmRNA expression in the tissues of normal liver and HCC is significantly different (84.6% vs 30.0%, P=0.003), suggesting that SeP might play a role in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Chun-Li Li
- Department of Medical Oncology, The First Affiliated Hospital of the School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China.
| | | | | | | | | |
Collapse
|
29
|
Moens LN, Soetaert A, van der Ven K, Del-Favero J, De Coen WM. Use of suppression subtractive hybridization PCR for the development of cDNA arrays for the detection of endocrine disruption in carp (Cyprinus carpio). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2007; 2:18-33. [DOI: 10.1016/j.cbd.2006.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 10/05/2006] [Accepted: 10/13/2006] [Indexed: 09/30/2022]
|
30
|
Stoytcheva Z, Tujebajeva RM, Harney JW, Berry MJ. Efficient incorporation of multiple selenocysteines involves an inefficient decoding step serving as a potential translational checkpoint and ribosome bottleneck. Mol Cell Biol 2006; 26:9177-84. [PMID: 17000762 PMCID: PMC1698516 DOI: 10.1128/mcb.00856-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenocysteine is incorporated into proteins via "recoding" of UGA from a stop codon to a sense codon, a process that requires specific secondary structures in the 3' untranslated region, termed selenocysteine incorporation sequence (SECIS) elements, and the protein factors that they recruit. Whereas most selenoprotein mRNAs contain a single UGA codon and a single SECIS element, selenoprotein P genes encode multiple UGAs and two SECIS elements. We have identified evolutionary adaptations in selenoprotein P genes that contribute to the efficiency of incorporating multiple selenocysteine residues in this protein. The first is a conserved, inefficiently decoded UGA codon in the N-terminal region, which appears to serve both as a checkpoint for the presence of factors required for selenocysteine incorporation and as a "bottleneck," slowing down the progress of elongating ribosomes. The second adaptation involves the presence of introns downstream of this inefficiently decoded UGA which confer the potential for nonsense-mediated decay when factors required for selenocysteine incorporation are limiting. Third, the two SECIS elements in selenoprotein P mRNA function with differing efficiencies, affecting both the rate and the efficiency of decoding different UGAs. The implications for how these factors contribute to the decoding of multiple selenocysteine residues are discussed.
Collapse
Affiliation(s)
- Zoia Stoytcheva
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | |
Collapse
|
31
|
Steinbrenner H, Alili L, Bilgic E, Sies H, Brenneisen P. Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 2006; 40:1513-23. [PMID: 16632112 DOI: 10.1016/j.freeradbiomed.2005.12.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 11/24/2005] [Accepted: 12/20/2005] [Indexed: 01/15/2023]
Abstract
Selenoprotein P (SeP) is a highly glycosylated, selenium-rich plasma protein. Aside from its role as selenium carrier protein, an antioxidative function of SeP has been suggested. Astrocytes, which detoxify reactive oxygen species in the brain, were described as potential target cells of SeP. We investigated the expression of SeP in human astrocytes and its involvement in the protection of these cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage. We show that primary human astrocytes and the human astrocytoma cell line MOG-G-CCM express SeP as an unglycosylated protein, which is not secreted. SeP expression in astrocytes is constitutive. Preincubation of astrocytes with hepatocyte-derived SeP mimicks the protective effect of low-molecular-weight selenocompounds such as sodium selenite or selenomethionine against oxidative damage, shielding astrocytes from t-BHP-induced cytotoxicity. Selenium supplementation of astrocytes counteracts oxidative stress via an increase in expression and activity of the selenoenzyme cytosolic glutathione peroxidase (cGPx). Furthermore, specific downregulation of SeP expression by small interfering RNA decreases cell viability of human astrocytes and makes them more susceptible to t-BHP-induced cytotoxicity. Our results implicate an antioxidant activity of constitutively expressed SeP in selenium-deficient astrocytes, while during adequate selenium supply the enhanced protection against oxidative stress is exerted by cGPx.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
32
|
de Jesus LA, Hoffmann PR, Michaud T, Forry EP, Small-Howard A, Stillwell RJ, Morozova N, Harney JW, Berry MJ. Nuclear assembly of UGA decoding complexes on selenoprotein mRNAs: a mechanism for eluding nonsense-mediated decay? Mol Cell Biol 2006; 26:1795-805. [PMID: 16478999 PMCID: PMC1430236 DOI: 10.1128/mcb.26.5.1795-1805.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recoding of UGA from a stop codon to selenocysteine poses a dilemma for the protein translation machinery. In eukaryotes, two factors that are crucial to this recoding process are the mRNA binding protein of the Sec insertion sequence, SBP2, and the specialized elongation factor, EFsec. We sought to determine the subcellular localization of these selenoprotein synthesis factors in mammalian cells and thus gain insight into how selenoprotein mRNAs might circumvent nonsense-mediated decay. Intriguingly, both EFsec and SBP2 localization differed depending on the cell line but significant colocalization of the two proteins was observed in cells where SBP2 levels were detectable. We identify functional nuclear localization and export signals in both proteins, demonstrate that SBP2 undergoes nucleocytoplasmic shuttling, and provide evidence that SBP2 levels and localization may influence EFsec localization. Our results suggest a mechanism for the nuclear assembly of the selenocysteine incorporation machinery that could allow selenoprotein mRNAs to circumvent nonsense-mediated decay, thus providing new insights into the mechanism of selenoprotein translation.
Collapse
Affiliation(s)
- Lucia A de Jesus
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins contributing to systemic or local thyroid hormone homeostasis. The Se content in endocrine tissues (thyroid, adrenals, pituitary, testes, ovary) is higher than in many other organs. Nutritional Se depletion results in retention, whereas Se repletion is followed by a rapid accumulation of Se in endocrine tissues, reproductive organs, and the brain. Selenoproteins such as thioredoxin reductases constitute the link between the Se metabolism and the regulation of transcription by redox sensitive ligand-modulated nuclear hormone receptors. Hormones and growth factors regulate the expression of selenoproteins and, conversely, Se supply modulates hormone actions. Selenoproteins are involved in bone metabolism as well as functions of the endocrine pancreas and adrenal glands. Furthermore, spermatogenesis depends on adequate Se supply, whereas Se excess may impair ovarian function. Comparative analysis of the genomes of several life forms reveals that higher mammals contain a limited number of identical genes encoding newly detected selenocysteine-containing proteins.
Collapse
Affiliation(s)
- J Köhrle
- Institut für Experimentelle Endokrinologie, Charité, Humboldt Universität zu Berlin, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | |
Collapse
|
34
|
Burk RF, Hill KE. Selenoprotein P: an extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu Rev Nutr 2005; 25:215-35. [PMID: 16011466 DOI: 10.1146/annurev.nutr.24.012003.132120] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selenoprotein P is an abundant extracellular glycoprotein that is rich in selenocysteine. It has two domains with respect to selenium content. The N-terminal domain of the rat protein contains one selenocysteine residue in a UxxC redox motif. This domain also has a pH-sensitive heparin-binding site and two histidine-rich amino acid stretches. The smaller C-terminal domain contains nine selenocysteine and ten cysteine residues. Four isoforms of selenoprotein P are present in rat plasma. They share the same N terminus and amino acid sequence. One isoform is full length and the three others terminate at the positions of the second, third, and seventh selenocysteine residues. Selenoprotein P turns over rapidly in rat plasma with the consequence that approximately 25% of the amount of whole-body selenium passes through it each day. Evidence supports functions of the protein in selenium homeostasis and oxidant defense. Selenoprotein P knockout mice have very low selenium concentrations in the brain, the testis, and the fetus, with severe pathophysiological consequences in each tissue. In addition, those mice waste moderate amounts of selenium in the urine. Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury. The mechanisms of these apparent functions remain speculative and much work on the mechanism of selenoprotein P function lies ahead. Measurement of selenoprotein P in human plasma has shown that it is depressed by selenium deficiency and by cirrhosis. Selenium supplementation of selenium-deficient human subjects showed that glutathione peroxidase activity was optimized before selenoprotein P concentration was optimized, indicating that plasma selenoprotein P is the better index of human selenium nutritional status.
Collapse
Affiliation(s)
- Raymond F Burk
- Division of Gastroenterology, Department of Medicine and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
35
|
|
36
|
Berry MJ, Martin GW, Tujebajeva R, Grundner-Culemann E, Mansell JB, Morozova N, Harney JW. Selenocysteine insertion sequence element characterization and selenoprotein expression. Methods Enzymol 2002; 347:17-24. [PMID: 11898404 DOI: 10.1016/s0076-6879(02)47004-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Marla J Berry
- Thyroid Division, Brigham and Women's Hospital, Harvard Institutes of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Gavin E Arteel
- Laboratory of Hepatobiology and Toxicology, Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
38
|
Abstract
RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.
Collapse
Affiliation(s)
- A M Krichevsky
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Grundner-Culemann E, Martin GW, Tujebajeva R, Harney JW, Berry MJ. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis. J Mol Biol 2001; 310:699-707. [PMID: 11453681 DOI: 10.1006/jmbi.2001.4809] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of translation in eukaryotes is catalyzed by eRF1, the stop codon recognition factor, and eRF3, an eRF1 and ribosome-dependent GTPase. In selenoprotein mRNAs, UGA codons, which typically specify termination, serve an alternate function as sense codons. Selenocysteine incorporation involves a unique tRNA with an anticodon complementary to UGA, a unique elongation factor specific for this tRNA, and cis-acting secondary structures in selenoprotein mRNAs, termed SECIS elements. To gain insight into the interplay between the selenocysteine insertion and termination machinery, we investigated the effects of overexpressing eRF1 and eRF3, and of altering UGA codon context, on the efficiency of selenoprotein synthesis in a transient transfection system. Overexpression of eRF1 does not increase termination at naturally occurring selenocysteine codons. Surprisingly, selenocysteine incorporation is enhanced. Overexpression of eRF3 did not affect incorporation efficiency. Coexpression of both factors reproduced the effects with eRF1 alone. Finally, we show that the nucleotide context immediately upstream and downstream of the UGA codon significantly affects termination to incorporation ratios and the response to eRF overexpression. Implications for the mechanisms of selenocysteine incorporation and termination are discussed.
Collapse
Affiliation(s)
- E Grundner-Culemann
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
40
|
Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN. Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 2001; 276:15330-6. [PMID: 11278576 DOI: 10.1074/jbc.m009861200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian selenocysteine-containing proteins characterized with respect to function are involved in redox processes and exhibit distinct expression patterns and cellular locations. A recently identified 15-kDa selenoprotein (Sep15) has no homology to previously characterized proteins, and its function is not known. Here we report the intracellular localization and identification of a binding partner for this selenoprotein which implicate Sep15 in the regulation of protein folding. The native Sep15 isolated from rat prostate and mouse liver occurred in a complex with a 150-kDa protein. The latter protein was identified as UDP-glucose:glycoprotein glucosyltransferase (UGTR), the endoplasmic reticulum (ER)-resident protein, which was previously shown to be involved in the quality control of protein folding. UGTR functions by glucosylating misfolded proteins, retaining them in the ER until they are correctly folded or transferring them to degradation pathways. To determine the intracellular localization of Sep15, we expressed a green fluorescent protein-Sep15 fusion protein in CV-1 cells, and this protein was localized to the ER and possibly other perinuclear compartments. We determined that Sep15 contained the N-terminal signal peptide that was essential for translocation and that it was cleaved in the mature protein. However, C-terminal sequences of Sep15 were not involved in trafficking and retention of Sep15. The data suggest that the association between Sep15 and UGTR is responsible for maintaining the selenoprotein in the ER. This report provides the first example of the ER-resident selenoprotein and suggests a possible role of the trace element selenium in the quality control of protein folding.
Collapse
Affiliation(s)
- K V Korotkov
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | | | |
Collapse
|
41
|
Rother M, Resch A, Gardner WL, Whitman WB, Böck A. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 2001; 40:900-8. [PMID: 11401697 DOI: 10.1046/j.1365-2958.2001.02433.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
42
|
Abstract
BACKGROUND Selenocysteine incorporation has been reported to be inefficient in all systems studied, including Escherichia coli, baculovirus-insect cell systems, rabbit reticulocyte in vitro translation systems, transiently transfected mammalian cells, and intact animals. Nonetheless, full-length selenoproteins containing up to 17 selenocysteine residues are produced in animals, indicating that the efficiency observed in manipulated systems might not accurately reflect the true efficiency of this process in nature. RESULTS To begin to address this apparent discrepancy, we have examined the polysome profiles of endogenously expressed selenoprotein mRNAs in a mammalian cell line, and compared them with nonselenoprotein mRNAs. We report that three selenoprotein mRNAs, type 1 deiodinase, glutathione peroxidase and selenoprotein P, are under-loaded with ribosomes, based on their predicted open reading frame sizes. The average numbers of ribosomes per mRNA correspond to the sizes predicted by termination at the UGA selenocysteine codons. Appropriate loading on the type 1 deiodinase mRNA is seen following substitution of a cysteine codon for the selenocysteine codon, indicating that the UGA codon confers a translational penalty on the mRNA. Surprisingly, ribosomal loading is also increased by the expression of eukaryotic release factors eRF1 and eRF3. CONCLUSIONS These results suggest that the presence of a selenocysteine codon confers a translational penalty on selenoprotein mRNAs, and that increased levels of release factors may alter the kinetics of termination.
Collapse
Affiliation(s)
- G W Martin
- Thyroid Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
43
|
Kryukov GV, Gladyshev VN. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells 2000; 5:1049-60. [PMID: 11168591 DOI: 10.1046/j.1365-2443.2000.00392.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fish are an important source of selenium in human nutrition and the zebrafish is a potentially useful model organism for the study of selenium metabolism and its role in biology and medicine. Selenium is present in vertebrate proteins in the form of selenocysteine (Sec), the 21st natural amino acid in protein which is encoded by UGA. RESULTS We report here the detection of 18 zebrafish genes for Sec-containing proteins. We found two zebrafish orthologs of human SelT, glutathione peroxidase 1 and glutathione peroxidase 4, and single orthologs of several other selenoproteins. In addition, new zebrafish selenoproteins were identified that were distant homologues of SelP, SelT and SelW, but their direct orthologs in other species are not known. This multiplicity of selenoprotein genes appeared to result from gene and genome duplications, followed by the retention of new selenoprotein genes. We found a zebrafish selenoprotein P gene (designated zSelPa) that contained two Sec insertion sequence (SECIS) elements and encoded a protein containing 17 Sec residues, the largest number of Sec residues found in any known protein. In contrast, a second SelP gene (designated zSelPb) was also identified that contained one SECIS element and encoded a protein with a single Sec. We found that zSelPa could be expressed and secreted by mammalian cells. CONCLUSIONS The occurrence of zSelPa and zSelPb suggested that the function of the N-terminal domain of mammalian SelP proteins may be separated from that of the C-terminal Sec-rich sequence: the N-terminal domain containing the UxxC motif is likely involved in oxidoreduction, whereas the C-terminal portion of the protein may function in selenium transport or storage. Our data also suggest that the utilization of Sec is more common in zebrafish than in previously characterized species, including mammals.
Collapse
Affiliation(s)
- G V Kryukov
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588-0664, USA
| | | |
Collapse
|
44
|
Tujebajeva RM, Ransom DG, Harney JW, Berry MJ. Expression and characterization of nonmammalian selenoprotein P in the zebrafish, Danio rerio. Genes Cells 2000; 5:897-903. [PMID: 11122377 DOI: 10.1046/j.1365-2443.2000.00375.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Selenoprotein P is a protein of considerable intrigue, due to its unusual composition and requirements for its biosynthesis. Whereas most selenoproteins contain a single selenocysteine residue, the human, bovine and rodent selenoprotein P genes encode proteins containing 10-12 selenocysteines. Selenoprotein P genes have, to date, only been reported in mammals, and the function of the protein remains elusive. RESULTS Herein, we report the identification and characterization of nonmammalian selenoprotein P in the zebrafish Danio rerio. Sequencing of the cDNA revealed the presence of 17 selenocysteine codons, the highest number reported in any protein. Two histidine-rich regions present in the mammalian selenoprotein P sequences are conserved in the zebrafish protein, and two SECIS elements are present in the 3' untranslated region. Whole-mount in situ hybridization of zebrafish embryos revealed high levels of expression of selenoprotein P mRNA in fertilized eggs and in the yolk sac of developing embryos. Transient transfection of the cDNA in mammalian cells resulted in efficient expression of the full-length secreted selenoprotein. A single N-glycosylation site is predicted, and shown to be utilized. CONCLUSIONS Discovery of selenoprotein P in the zebrafish opens a previously unavailable avenue for genetic investigation of the functions of this unusual protein.
Collapse
Affiliation(s)
- R M Tujebajeva
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep 2000; 1:158-63. [PMID: 11265756 PMCID: PMC1084265 DOI: 10.1093/embo-reports/kvd033] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Revised: 06/15/2000] [Accepted: 06/28/2000] [Indexed: 11/13/2022] Open
Abstract
Decoding UGA as selenocysteine requires a unique tRNA, a specialized elongation factor, and specific secondary structures in the mRNA, termed SECIS elements. Eukaryotic SECIS elements are found in the 3' untranslated region of selenoprotein mRNAs while those in prokaryotes occur immediately downstream of UGA. Consequently, a single eukaryotic SECIS element can serve multiple UGA codons, whereas prokaryotic SECIS elements only function for the adjacent UGA, suggesting distinct mechanisms for recoding in the two kingdoms. We have identified and characterized the first eukaryotic selenocysteyl-tRNA-specific elongation factor. This factor forms a complex with mammalian SECIS binding protein 2, and these two components function together in selenocysteine incorporation in mammalian cells. Expression of the two functional domains of the bacterial elongation factor-SECIS binding protein as two separate proteins in eukaryotes suggests a mechanism for rapid exchange of charged for uncharged selenocysteyl-tRNA-elongation factor complex, allowing a single SECIS element to serve multiple UGA codons.
Collapse
Affiliation(s)
- R M Tujebajeva
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|