1
|
Balaban Hanoglu S, Harmanci D, Evran S, Timur S. Detection strategies of infectious diseases via peptide-based electrochemical biosensors. Bioelectrochemistry 2024; 160:108784. [PMID: 39094447 DOI: 10.1016/j.bioelechem.2024.108784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.
Collapse
Affiliation(s)
- Simge Balaban Hanoglu
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey.
| | - Duygu Harmanci
- Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey
| | - Serap Evran
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, Bornova, Izmir 35100, Turkey; Central Research Test and Analysis Laboratory, Application and Research Center, Ege University, Bornova, Izmir 35100, Turkey.
| |
Collapse
|
2
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Yaghoobizadeh F, Roayaei Ardakani M, Ranjbar MM, Khosravi M, Galehdari H. Preparation, Purification and Performance Evaluation of Polyclonal Antibody Against SARS-CoV-2 Produced in Rat. Adv Pharm Bull 2023; 13:563-572. [PMID: 37646054 PMCID: PMC10460799 DOI: 10.34172/apb.2023.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Purpose Among all known human coronaviruses, some viruses (e.g., SARS-CoV-2) cause severe pneumonia or even death. With the regard to its spread and the importance of its rapid identification/treatment, and because pAbs are relatively cheap, able to bind to more sites on antigens and even neutralize them, this study was done for the production and purification of anti-SARS-CoV-2 polyclonal antibodies (pAb) in rats. Methods Viral antigen purification was performed by PEG/NaCl precipitation. The efficiency of the sucrose cushion method was also investigated to produce a purer antigen. Immunization was done and antibody purification was performed by ammonium sulfate precipitation (33%), dialysis, and ion-exchange chromatography. Western blotting and enzyme-linked immunosorbent assay (ELISA) were performed to verify the antibody specificity. All data were analyzed by SPSS software. Results The results showed that the amount of concentrated virus increased with the increase of PEG concentration. Moreover, the sucrose cushion method increased its purity. Besides, induction of immune response in rats for pAb production with high titers was reached via these antigens and ELISA/western blot results indicated a suitable antibody-antigen interaction. Additionally, it was shown that ion-exchange chromatography could be a suitable technique for IgG purification. Conclusion Herein, we presented a simple and cheap method for the purification of whole viral particles with relatively high quality. The results verified that these antigens could elicit a good immune response in the rat. The obtained pAbs showed a good specificity toward SARS-CoV-2 antigens. Accordingly, this study proposes a promising method for viral vaccine development.
Collapse
Affiliation(s)
- Fatemeh Yaghoobizadeh
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | - Mohammad Roayaei Ardakani
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | | | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | - Hamid Galehdari
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| |
Collapse
|
4
|
Yaghoobizadeh F, Ardakani MR, Ranjbar MM, Galehdari H, Khosravi M. Expression, purification, and study on the efficiency of a new potent recombinant scFv antibody against the SARS-CoV-2 spike RBD in E. coli BL21. Protein Expr Purif 2023; 203:106210. [PMID: 36473692 PMCID: PMC9719605 DOI: 10.1016/j.pep.2022.106210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Many efforts have been made around the world to combat SARS-CoV-2. Among these are recombinant antibodies considered to be suitable as an alternative for some diagnostics/therapeutics. Based on their importance, this study aimed to investigate the expression, purification, and efficiency of a new potent recombinant scFv in the E. coli BL21 (DE3) system. The expression studies were performed after confirming the scFv cloning into the pET28a vector using specific PCRs. After comprehensive expression studies, a suitable strategy was adopted to extract and purify periplasmic proteins using Ni2+-NTA resin. Besides the purified scFv, the crude bacterial lysate was also used to develop a sandwich ELISA (S-ELISA) for the detection of SARS-CoV-2. The use of PCR, E. coli expression system, western blotting (WB), and S-ELISA confirmed the functionality of this potent scFv. Moreover, the crude bacterial lysate also showed good potential for detecting SARS-CoV-2. This could be decreasing the costs and ease its utilization for large-scale applications. The production of high-quality recombinant proteins is essential for humankind. Moreover, with attention to the more aggressive nature of SARS-CoV-2 than other coronaviruses, the development of an effective detection method is urgent. Based on our knowledge, this study is one of the limited investigations in two fields: (1) The production of anti-SARS-CoV-2 scFv using E. coli [as a cheap heterologous host] in relatively high amounts and with good stability, and (2) Designing a sensitive S-ELISA for its detection. It may also be utilized as potent therapeutics after further investigations.
Collapse
Affiliation(s)
| | | | | | - Hamid Galehdari
- Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| |
Collapse
|
5
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
6
|
Barnwal A, Basu B, Tripathi A, Soni N, Mishra D, Banerjee A, Kumar R, Vrati S, Bhattacharyya J. SARS-CoV-2 Spike Protein-Activated Dendritic Cell-Derived Extracellular Vesicles Induce Antiviral Immunity in Mice. ACS Biomater Sci Eng 2022; 8:5338-5348. [PMID: 36445062 PMCID: PMC9717688 DOI: 10.1021/acsbiomaterials.2c01094] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
The onset and spread of the SARS-CoV-2 virus have created an unprecedented universal crisis. Although vaccines have been developed against the parental SARS-CoV-2, outbreaks of the disease still occur through the appearance of different variants, suggesting a continuous need for improved and effective therapeutic strategies. Therefore, we developed a novel nanovesicle presenting Spike protein on the surface of the dendritic cell-derived extracellular vesicles (DEVs) for use as a potential vaccine platform against SARS-CoV-2. DEVs express peptide/MHC-I (pMHC-I) complexes, CCR-7, on their surface. The immunogenicity and efficacy of the Spike-activated DEVs were tested in mice and compared with free Spike protein. A 1/10 Spike equivalent dose of DEVs showed a superior potency in inducing anti-Spike IgG titers in blood of mice when compared to dendritic cells or free Spike protein treatment. Moreover, DEV-induced sera effectively reduced viral infection by 55-60% within 15 days of booster dose administration. Furthermore, a 1/10 Spike equivalent dose of DEV-treated mice was found to be equally effective in inducing CD19+CD38+ T-cells in the spleen and lymph node; CD8 cells in the bone marrow, spleen, and lymph node; and CD4+CD25+ T-cells in the spleen and lymph node after 90 days of treatment. Thus, our results support the immunogenic nature of DEVs, demonstrating that a low dose of DEVs induces antibodies to inhibit SARS-CoV-2 infection in vitro, therefore warranting further investigations.
Collapse
Affiliation(s)
- Anjali Barnwal
- Centre for Biomedical
Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
- Department
of Biomedical Engineering, All India Institute
of Medical Science, New Delhi 110029, India
| | - Brohmomoy Basu
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Aarti Tripathi
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Naina Soni
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Debasish Mishra
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Arup Banerjee
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rajesh Kumar
- Translational
Health Science & Technology Institute, Faridabad 121001, Haryana, India
| | - Sudhanshu Vrati
- Laboratory
of Virology, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical
Engineering, Indian Institute of Technology
Delhi, New Delhi 110016, India
- Department
of Biomedical Engineering, All India Institute
of Medical Science, New Delhi 110029, India
| |
Collapse
|
7
|
Monoclonal antibody therapeutics for infectious diseases: Beyond normal human immunoglobulin. Pharmacol Ther 2022; 240:108233. [PMID: 35738431 PMCID: PMC9212443 DOI: 10.1016/j.pharmthera.2022.108233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Antibody therapy is effective for treating infectious diseases. Due to the coronavirus disease 2019 (COVID-19) pandemic and the rise of drug-resistant bacteria, rapid development of neutralizing monoclonal antibodies (mAbs) to treat infectious diseases is urgently needed. Using a therapeutic human mAb with the lowest immunogenicity is recommended, because chimera and humanized mAbs are occasionally immunogenic. In order to directly obtain naïve human mAbs, there are three methods: phage display, B cell receptor (BCR) cDNA sequencing of a single cell, and antibody-encoding gene and amino acid sequencing of immortalized cells using memory B cells, which are isolated from human peripheral blood mononuclear cells of healthy, vaccinated, infected, or recovered individuals. After screening against the antigen and performing neutralization assays, a human neutralizing mAb is constructed from the antibody-encoding DNA sequences of these memory B cells. This review describes examples of obtaining human neutralizing mAbs against various infectious diseases using these methods. However, a few of these mAbs have been approved for therapy. Therefore, antigen characterization and evaluation of neutralization activity in vitro and in vivo are indispensable for the development of therapeutic mAbs. These results will accelerate the development of antibody drug as therapeutic agents.
Collapse
|
8
|
Kumar CS, Singh B, Rizvi ZA, Parray HA, Verma JK, Ghosh S, Mukhopadhyay A, Awasthi A, Shrivastava T, Banerjee M. Virus-Like Particles of SARS-CoV-2 as Virus Surrogates: Morphology, Immunogenicity, and Internalization in Neuronal Cells. ACS Infect Dis 2022; 8:2119-2132. [PMID: 36129193 PMCID: PMC9514328 DOI: 10.1021/acsinfecdis.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 01/29/2023]
Abstract
The engineering of virus-like particles (VLPs) is a viable strategy for the development of vaccines and for the identification of therapeutic targets without using live viruses. Here, we report the generation and characterization of quadruple-antigen SARS-CoV-2 VLPs. VLPs were generated by transient transfection of two expression cassettes in adherent HEK293T cells─one cassette containing Mpro for processing of three structural proteins (M, E, and N), and the second cassette expressing the Spike protein. Further characterization revealed that the VLPs retain close morphological and antigenic similarity with the native virus and also bind strongly to the SARS-CoV-2 receptor hACE-2 in an in vitro binding assay. Interestingly, the VLPs were found to internalize into U87-MG cells through cholesterol-rich domains in a dynamin-dependent process. Finally, our results showed that mice immunized with VLPs induce robust humoral and cellular immune responses mediated by enhanced levels of IL-4, IL-17, and IFNγ. Taken together, our results demonstrate that VLPs mimic the native virus and induce a strong immune response, indicating the possible use of these particles as an alternative vaccine candidate against SARS-CoV-2. VLPs can also be effective in mapping the initial stages of virus entry and screening inhibitors.
Collapse
Affiliation(s)
- Chandra Shekhar Kumar
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Balwant Singh
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Zaigham Abbas Rizvi
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
- Immunobiology/Immunology Core Laboratory,
Translational Health Science and Technology Institute
(THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad - Gurgaon Rd,
Expressway, Faridabad, Haryana121001, India
| | - Hilal Ahmad Parray
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| | - Amit Awasthi
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
- Immunobiology/Immunology Core Laboratory,
Translational Health Science and Technology Institute
(THSTI), NCR Biotech Science Cluster 3rd Milestone, Faridabad - Gurgaon Rd,
Expressway, Faridabad, Haryana121001, India
| | - Tripti Shrivastava
- Translational Health Science and
Technology Institute (THSTI), NCR Biotech Science Cluster 3rd Milestone,
Faridabad - Gurgaon Rd, Expressway, Faridabad, Haryana121001,
India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences,
Indian Institute of Technology Delhi, Hauz Khas, New
Delhi110016, India
| |
Collapse
|
9
|
Antoine D, Mohammadi M, McDermott CE, Walsh E, Johnson PA, Wawrousek KE, Wall JG. Isolation of SARS-CoV-2-blocking recombinant antibody fragments and characterisation of their binding to variant spike proteins. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1028186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2. From its initial appearance in Wuhan, China in 2019, it developed rapidly into a global pandemic. In addition to vaccines, therapeutic antibodies play an important role in immediately treating susceptible individuals to lessen severity of the disease. In this study, phage display technology was utilised to isolate human scFv antibody fragments that bind the receptor-binding domain (RBD) of SARS-CoV-2 Wuhan-Hu-1 spike protein. Of eight RBD-binding scFvs isolated, two inhibited interaction of RBD with ACE2 protein on VeroE6 cells. Both scFvs also exhibited binding to SARS-CoV-2 Delta variant spike protein but not to Omicron variant spike protein in a Raman spectroscopy immunotest. The study demonstrates the potential of recombinant antibody approaches to rapidly isolate antibody moieties with virus neutralisation potential.
Collapse
|
10
|
Li H, Zhu B, Li B, Chen L, Ning X, Dong H, Liang J, Yang X, Dong J, Ueda H. Isolation of a human SARS-CoV-2 neutralizing antibody from a synthetic phage library and its conversion to fluorescent biosensors. Sci Rep 2022; 12:15496. [PMID: 36109569 PMCID: PMC9476436 DOI: 10.1038/s41598-022-19699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.
Collapse
Affiliation(s)
- Haimei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Bo Zhu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Baowei Li
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Limei Chen
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xuerao Ning
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hang Dong
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jingru Liang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xueying Yang
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Jinhua Dong
- Weifang Key Laboratory for Antibodies Medicine, School of Life Science and Technology, Weifang Medical University, Weifang, China.
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
- World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
11
|
Garg S, Raj N, Lukose A, Jamwal D, Parray HA, Kumar S, Dhyani S, Jakhar K, Sonar S, Tiwari M, Reema, Mani S, Bhattacharyya S, Sharma C, Shrivastava T, Kumar R. Characterization of a broadly cross reactive tetravalent human monoclonal antibody, recognizing conformational epitopes in receptor binding domain of SARS-CoV-2. 3 Biotech 2022; 12:202. [PMID: 35928502 PMCID: PMC9345016 DOI: 10.1007/s13205-022-03272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
We used human semi-synthetic phage antibody gene libraries to select anti-SARS-CoV-2 RBD scFv antibody fragment and subsequent characterization of this novel tetravalent monoclonal antibody targeting conformational epitopes in the receptor binding domain of SARS-CoV-2. Binding studies suggest that II62 tetravalent antibody cross-reacts with RBD protein of SARS-CoV2 and its different variants of concerns. The epitope mapping data reveals that II62 tetravalent antibody targets an epitope that does not directly interferes with RBD: ACE2 interaction. Neutralization studies with live authentic SARS-CoV2 virus suggests that increase in valency of II62 mAb from monovalent to tetravalent doesn’t perturbate virus interactions with the ACE2 expressing host cells in cytopathic effect-based (CPE) assay.
Collapse
Affiliation(s)
- Sonal Garg
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Nisha Raj
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Asha Lukose
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Deepti Jamwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Hilal Ahmed Parray
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Sandeep Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Samridhi Dhyani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Kamini Jakhar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Sudipta Sonar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Mahima Tiwari
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Reema
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Shailendra Mani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Chandresh Sharma
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India.,Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Tripti Shrivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana 121001 India.,Institute of Advanced Virology, Bio 360 Life Science Park, Trivandrum, India
| |
Collapse
|
12
|
Kumar S, Dutta D, Ravichandiran V, Sukla S. Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. 3 Biotech 2022; 12:227. [PMID: 35982759 PMCID: PMC9383686 DOI: 10.1007/s13205-022-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Debrupa Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Soumi Sukla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| |
Collapse
|
13
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Designing and characterization of a SARS-CoV-2 immunogen with receptor binding motif grafted on a protein scaffold: An epitope-focused vaccine approach. Int J Biol Macromol 2022; 209:1359-1367. [PMID: 35469951 PMCID: PMC9033297 DOI: 10.1016/j.ijbiomac.2022.04.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.
Collapse
|
15
|
Beshnova D, Fang Y, Du M, Sun Y, Du F, Ye J, Chen ZJ, Li B. Computational approach for binding prediction of SARS-CoV-2 with neutralizing antibodies. Comput Struct Biotechnol J 2022; 20:2212-2222. [PMID: 35530743 PMCID: PMC9059344 DOI: 10.1016/j.csbj.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide as a severe pandemic and caused enormous global health and economical damage. Since December 2019, more than 197 million cases have been reported, causing 4.2 million deaths. In the settings of pandemic it is an urgent necessity for the development of an effective COVID-19 treatment. While in-vitro screening of hundreds of antibodies isolated from convalescent patients is challenging due to its high cost, use of computational methods may provide an attractive solution in selecting the top candidates. Here, we developed a computational approach (SARS-AB) for binding prediction of spike protein SARS-CoV-2 with monoclonal antibodies. We validated our approach using existing structures in the protein data bank (PDB), and demonstrated its prediction power in antibody-spike protein binding prediction. We further tested its performance using antibody sequences from the literature where crystal structure is not available, and observed a high prediction accuracy (AUC = 99.6%). Finally, we demonstrated that SARS-AB can be used to design effective antibodies against novel SARS-CoV-2 mutants that might escape the current antibody protections. We believe that SARS-AB can significantly accelerate the discovery of neutralizing antibodies against SARS-CoV-2 and its mutants.
Collapse
Affiliation(s)
- Daria Beshnova
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yan Fang
- Department of Molecular Biology, USA
| | | | - Yehui Sun
- Department of Molecular Biology, USA
| | - Fenghe Du
- Department of Molecular Biology, USA
| | - Jianfeng Ye
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Bo Li
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. NANOSCALE 2022; 14:5942-5959. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Filamentous bacteriophages are natural nanoparticles formed by the self-assembly of structural proteins that have the capability of replication and infection. They are used as a highly efficient vaccine platform to enhance immunogenicity and effectively stimulate the innate and adaptive immune response. Compared with traditional vaccines, phage-based vaccines offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. This review summarizes recent research on phage-based vaccines in virus prevention. In addition, the expression systems of filamentous phage-based virus vaccines and their application principles are discussed. Moreover, the prospect of the prevention of emerging infectious diseases, such as coronavirus 2019 (COVID-19), is also discussed.
Collapse
Affiliation(s)
- Yicun Wang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| | - Min Qian
- Department of Neonatology, The Second Hospital of Jilin University, Changchun 130024, China
| | - Meng Wang
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130024, China.
| |
Collapse
|
17
|
Ge S, Wu R, Zhou T, Liu X, Zhu J, Zhang X. Specific anti-SARS-CoV-2 S1 IgY-scFv is a promising tool for recognition of the virus. AMB Express 2022; 12:18. [PMID: 35150368 PMCID: PMC8840941 DOI: 10.1186/s13568-022-01355-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, a series of vaccines, antibodies and drugs have been developed to combat coronavirus disease 2019 (COVID-19). High specific antibodies are powerful tool for the development of immunoassay and providing passive immunotherapy against SARS-CoV-2 and expected with large scale production. SARS-CoV-2 S1 protein was expressed in E. coli BL21 and purified by immobilized metal affinity chromatography, as antigen used to immunize hens, the specific IgY antibodies were extracted form egg yolk by PEG-6000 precipitation, and the titer of anti-S1 IgY antibody reached 1:10,000. IgY single chain variable fragment antibody (IgY-scFv) was generated by using phage display technology and the IgY-scFv showed high binding sensitivity and capacity to S1 protein of SARS-CoV-2, and the minimum detectable antigen S1 protein concentration was 6 ng/µL. The docking study showed that the multiple epitopes on the IgY-scFv interacted with multiple residues on SARS-CoV-2 S1 RBD to form hydrogen bonds. This preliminary study suggests that IgY and IgY-scFv are suitable candidates for the development of immunoassay and passive immunotherapy for COVID-19 to humans and animals.
Collapse
|
18
|
Cheng YW, Chuang YC, Huang SW, Liu CC, Wang JR. An auto-antibody identified from phenotypic directed screening platform shows host immunity against EV-A71 infection. J Biomed Sci 2022; 29:10. [PMID: 35130884 PMCID: PMC8822709 DOI: 10.1186/s12929-022-00794-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background Enterovirus A71 (EV-A71) is a neurotropic virus which may cause severe neural complications, especially in infants and children. The clinical manifestations include hand-foot-and-mouth disease, herpangina, brainstem encephalitis, pulmonary edema, and other severe neurological diseases. Although there are some vaccines approved, the post-marketing surveillance is still unavailable. In addition, there is no antiviral drugs against EV-A71 available. Methods In this study, we identified a novel antibody that could inhibit viral growth through a human single chain variable fragment (scFv) library expressed in mammalian cells and panned by infection with lethal dose of EV-A71. Results We identified that the host protein α-enolase (ENO1) is the target of this scFv, and anti-ENO1 antibody was found to be more in mild cases than severe EV-A71 cases. Furthermore, we examined the antiviral activity in a mouse model. We found that the treatment of the identified 07-human IgG1 antibody increased the survival rate after virus challenge, and significantly decreased the viral RNA and the level of neural pathology in brain tissue. Conclusions Collectively, through a promising intracellular scFv library expression and screening system, we found a potential scFv/antibody which targets host protein ENO1 and can interfere with the infection of EV-A71. The results indicate that the usage and application of this antibody may offer a potential treatment against EV-A71 infection.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Leadgene Biomedical, Inc., Tainan, Taiwan
| | - Yung-Chun Chuang
- Leadgene Biomedical, Inc., Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Wen Huang
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Tainan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- The Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan. .,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan. .,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan.
| |
Collapse
|
19
|
Computational discovery of binding mode of anti-TRBC1 antibody and predicted key amino acids of TRBC1. Sci Rep 2022; 12:1760. [PMID: 35110642 PMCID: PMC8810837 DOI: 10.1038/s41598-022-05742-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a type of non-Hodgkin lymphoma that progresses aggressively with poor survival rate. CAR T cell targeting T-cell receptor β-chain constant domains 1 (TRBC1) of malignant T cells has been developed recently by using JOVI.1 monoclonal antibody as a template. However, the mode of JOVI.1 binding is still unknown. This study aimed to investigate the molecular interaction between JOVI.1 antibody and TRBC1 by using computational methods and molecular docking. Therefore, the TRBC protein crystal structures (TRBC1 and TRBC2) as well as the sequences of JOVI.1 CDR were chosen as the starting materials. TRBC1 and TRBC2 epitopes were predicted, and molecular dynamic (MD) simulation was used to visualize the protein dynamic behavior. The structure of JOVI.1 antibody was also generated before the binding mode was predicted using molecular docking with an antibody mode. Epitope prediction suggested that the N3K4 region of TRBC1 may be a key to distinguish TRBC1 from TCBC2. MD simulation showed the major different surface conformation in this area between two TRBCs. The JOVI.1-TRBC1 structures with three binding modes demonstrated JOVI.1 interacted TRBC1 at N3K4 residues, with the predicted dissociation constant (Kd) ranging from 1.5 × 108 to 1.1 × 1010 M. The analysis demonstrated JOVI.1 needed D1 residues of TRBC1 for the interaction formation to N3K4 in all binding modes. In conclusion, we proposed the three binding modes of the JOVI.1 antibody to TRBC1 with the new key residue (D1) necessary for N3K4 interaction. This data was useful for JOVI.1 redesign to improve the PTCL-targeting CAR T cell.
Collapse
|
20
|
Ferrara F, Erasmus MF, D'Angelo S, Leal-Lopes C, Teixeira AA, Choudhary A, Honnen W, Calianese D, Huang D, Peng L, Voss JE, Nemazee D, Burton DR, Pinter A, Bradbury ARM. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat Commun 2022; 13:462. [PMID: 35075126 PMCID: PMC8786865 DOI: 10.1038/s41467-021-27799-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of the SARS-CoV-2 pandemic numerous scientific groups have generated antibodies against a single target: the CoV-2 spike antigen. This has provided an unprecedented opportunity to compare the efficacy of different methods and the specificities and qualities of the antibodies generated by those methods. Generally, the most potent neutralizing antibodies have been generated from convalescent patients and immunized animals, with non-immune phage libraries usually yielding significantly less potent antibodies. Here, we show that it is possible to generate ultra-potent (IC50 < 2 ng/ml) human neutralizing antibodies directly from a unique semisynthetic naïve antibody library format with affinities, developability properties and neutralization activities comparable to the best from hyperimmune sources. This demonstrates that appropriately designed and constructed naïve antibody libraries can effectively compete with immunization to directly provide therapeutic antibodies against a viral pathogen, without the need for immune sources or downstream optimization. The most potent neutralizing antibodies are typically generated from convalescent patients and immunized animals. Here, the authors show it is possible to generate highly potent human neutralizing antibodies against the SARS-CoV-2 spike protein directly from a semisynthetic naïve antibody library.
Collapse
Affiliation(s)
| | | | | | - Camila Leal-Lopes
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - André A Teixeira
- Bioscience Division, New Mexico Consortium, Los Alamos, NM, 87544, USA
| | - Alok Choudhary
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - William Honnen
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - David Calianese
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Deli Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Linghan Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - James E Voss
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | - Abraham Pinter
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | | |
Collapse
|
21
|
Rizvi ZA, Dalal R, Sadhu S, Binayke A, Dandotiya J, Kumar Y, Shrivastava T, Gupta SK, Aggarwal S, Tripathy MR, Rathore DK, Yadav AK, Medigeshi GR, Pandey AK, Samal S, Asthana S, Awasthi A. Golden Syrian hamster as a model to study cardiovascular complications associated with SARS-CoV-2 infection. eLife 2022; 11:73522. [PMID: 35014610 PMCID: PMC8794466 DOI: 10.7554/elife.73522] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in the Golden Syrian hamster causes lung pathology that resembles human coronavirus disease (COVID-19). However, extra-pulmonary pathologies associated with SARS-CoV-2 infection and post COVID sequelae remain to be understood. Here we show, using a hamster model, that the early phase of SARS-CoV-2 infection leads to an acute inflammatory response and lung pathologies, while the late phase of infection causes cardiovascular complications (CVC) characterized by ventricular wall thickening associated with increased ventricular mass/ body mass ratio and interstitial coronary fibrosis. Molecular profiling further substantiated our findings of CVC, as SARS-CoV-2-infected hamsters showed elevated levels of serum cardiac Troponin-I (cTnI), cholesterol, low-density lipoprotein and long-chain fatty acid triglycerides. Serum metabolomics profiling of SARS-CoV-2-infected hamsters identified N-acetylneuraminate, a functional metabolite found to be associated with CVC, as a metabolic marker was found to be common between SARS-CoV-2-infected hamsters and COVID-19 patients. Together, we propose hamsters as a suitable animal model to study post-COVID sequelae associated with CVC which could be extended to therapeutic interventions.
Collapse
Affiliation(s)
- Zaigham Abbas Rizvi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Rajdeep Dalal
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Srikanth Sadhu
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Akshay Binayke
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Jyotsna Dandotiya
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Tripti Shrivastava
- Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Sonu Kumar Gupta
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Suruchi Aggarwal
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Manas Ranjan Tripathy
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Deepak Kumar Rathore
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Kumar Yadav
- Non-communicable disease center, Translational Health Science and Technology Institute, Faridabad, India
| | - Guruprasad R Medigeshi
- Infection and Immunology Center, Translational Health Science and Technology Institute, Gurgaon, India
| | - Amit Kumar Pandey
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, Faridabad, India
| | - Shailendra Asthana
- Non-communicable disease centre, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Awasthi
- Immuno-biology Lab, Infection and Immunology centre, Translational Health Science and Technology Institute, Faridabad, India
| |
Collapse
|
22
|
Yuan TZ, Garg P, Wang L, Willis JR, Kwan E, Hernandez AGL, Tuscano E, Sever EN, Keane E, Soto C, Mucker EM, Fouch ME, Davidson E, Doranz BJ, Kailasan S, Aman MJ, Li H, Hooper JW, Saphire EO, Crowe JE, Liu Q, Axelrod F, Sato AK. Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries. MAbs 2022; 14:2002236. [PMID: 34967699 PMCID: PMC8726723 DOI: 10.1080/19420862.2021.2002236] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an evolving global public health crisis in need of therapeutic options. Passive immunization of monoclonal antibodies (mAbs) represents a promising therapeutic strategy capable of conferring immediate protection from SARS-CoV-2 infection. Herein, we describe the discovery and characterization of neutralizing SARS-CoV-2 IgG and VHH antibodies from four large-scale phage libraries. Each library was constructed synthetically with shuffled complementarity-determining region loops from natural llama and human antibody repertoires. While most candidates targeted the receptor-binding domain of the S1 subunit of SARS-CoV-2 spike protein, we also identified a neutralizing IgG candidate that binds a unique epitope on the N-terminal domain. A select number of antibodies retained binding to SARS-CoV-2 variants Alpha, Beta, Gamma, Kappa and Delta. Overall, our data show that synthetic phage libraries can rapidly yield SARS-CoV-2 S1 antibodies with therapeutically desirable features, including high affinity, unique binding sites, and potent neutralizing activity in vitro, and a capacity to limit disease in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/metabolism
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibody Specificity
- Binding Sites, Antibody
- COVID-19/immunology
- COVID-19/metabolism
- COVID-19/prevention & control
- COVID-19/virology
- Cell Surface Display Techniques
- Chlorocebus aethiops
- Disease Models, Animal
- Epitopes
- Female
- Host-Pathogen Interactions
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Immunoglobulin G/pharmacology
- Mesocricetus
- Peptide Library
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Single-Domain Antibodies/genetics
- Single-Domain Antibodies/immunology
- Single-Domain Antibodies/metabolism
- Single-Domain Antibodies/pharmacology
- Spike Glycoprotein, Coronavirus/immunology
- Vero Cells
Collapse
Affiliation(s)
- Tom Z. Yuan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | | | - Linya Wang
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Jordan R. Willis
- IAVI Neutralizing Antibody Center, Scripps Research, La Jolla, CA, USA
| | - Eric Kwan
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | | | - Emily Tuscano
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Emily N. Sever
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Erica Keane
- Neuroscience Research Institute, Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Cinque Soto
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric M. Mucker
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | | | | | | | | | | | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jay W. Hooper
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiang Liu
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Fumiko Axelrod
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| | - Aaron K. Sato
- Twist Biopharma, Twist Bioscience, South San Francisco, CA, USA
| |
Collapse
|
23
|
Perween R, PraveenKumar M, Shrivastava T, Parray HA, Singh V, Singh S, Chiranjivi A, Jakhar K, Sonar S, Tiwari M, Reema, Panchal AK, Sharma C, Rathore DK, Ahamed S, Samal S, Mani S, Bhattacharyya S, Das S, Luthra K, Kumar R. The SARS CoV-2 spike directed non-neutralizing polyclonal antibodies cross-react with Human immunodeficiency virus (HIV-1) gp41. Int Immunopharmacol 2021; 101:108187. [PMID: 34649114 PMCID: PMC8479463 DOI: 10.1016/j.intimp.2021.108187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Cross-reactivity among the two diverse viruses is believed to originate from the concept of antibodies recognizing similar epitopes on the two viral surfaces. Cross-reactive antibody responses have been seen in previous variants of SARS and SARS-CoV-2, but little is known about the cross reactivity with other similar RNA viruses like HIV-1. In the present study, we examined the reactivity the SARS-CoV-2 directed antibodies, via spike, immunized mice sera and demonstrated whether they conferred any cross-reactive neutralization against HIV-1. Our findings show that SARS-CoV-2 spike immunized mice antibodies cross-react with the HIV-1 Env protein. Cross-neutralization among the two viruses is uncommon, suggesting the presence of a non-neutralizing antibody response to conserved epitopes amongst the two viruses. Our results indicate, that SARS-CoV-2 spike antibody cross reactivity is targeted towards the gp41 region of the HIV-1 Env (gp160) protein. Overall, our investigation not only answers a crucial question about the understanding of cross-reactive epitopes of antibodies generated in different viral infections, but also provides critical evidence for developing vaccine immunogens and novel treatment strategies with enhanced efficacy capable of recognising diverse pathogens with similar antigenic features.
Collapse
Affiliation(s)
- Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Murugavelu PraveenKumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Hilal Ahmed Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kamini Jakhar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sudipta Sonar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mahima Tiwari
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Reema
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anil Kumar Panchal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Deepak Kumar Rathore
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahamed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sankar Bhattacharyya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
24
|
Tan TH, Patton E, Munro CA, Corzo-Leon DE, Porter AJ, Palliyil S. Monoclonal Human Antibodies That Recognise the Exposed N and C Terminal Regions of the Often-Overlooked SARS-CoV-2 ORF3a Transmembrane Protein. Viruses 2021; 13:2201. [PMID: 34835009 PMCID: PMC8624585 DOI: 10.3390/v13112201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
ORF3a has been identified as a viroporin of SARS-CoV-2 and is known to be involved in various pathophysiological activities including disturbance of cellular calcium homeostasis, inflammasome activation, apoptosis induction and disruption of autophagy. ORF3a-targeting antibodies may specifically and favorably modulate these viroporin-dependent pathological activities. However, suitable viroporin-targeting antibodies are difficult to generate because of the well-recognized technical challenge associated with isolating antibodies to complex transmembrane proteins. Here we exploited a naïve human single chain antibody phage display library, to isolate binders against carefully chosen ORF3a recombinant epitopes located towards the extracellular N terminal and cytosolic C terminal domains of the protein using peptide antigens. These binders were subjected to further characterization using enzyme-linked immunosorbent assays and surface plasmon resonance analysis to assess their binding affinities to the target epitopes. Binding to full-length ORF3a protein was evaluated by western blot and fluorescent microscopy using ORF3a transfected cells and SARS-CoV-2 infected cells. Co-localization analysis was also performed to evaluate the "pairing potential" of the selected binders as possible alternative diagnostic or prognostic biomarkers for COVID-19 infections. Both ORF3a N and C termini, epitope-specific monoclonal antibodies were identified in our study. Whilst the linear nature of peptides might not always represent their native conformations in the context of full protein, with carefully designed selection protocols, we have been successful in isolating anti-ORF3a binders capable of recognising regions of the transmembrane protein that are exposed either on the "inside" or "outside" of the infected cell. Their therapeutic potential will be discussed.
Collapse
Affiliation(s)
- Tyng Hwey Tan
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Elizabeth Patton
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Dora E. Corzo-Leon
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.A.M.); (D.E.C.-L.)
| | - Andrew J. Porter
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| | - Soumya Palliyil
- Scottish Biologics Facility, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZP, UK; (T.H.T.); (E.P.)
| |
Collapse
|
25
|
Gorchakov AA, Kulemzin SV, Guselnikov SV, Baranov KO, Belovezhets TN, Mechetina LV, Volkova OY, Najakshin AM, Chikaev NA, Chikaev AN, Solodkov PP, Larichev VF, Gulyaeva MA, Markhaev AG, Kononova YV, Alekseyev AY, Shestopalov AM, Yusubalieva GM, Klypa TV, Ivanov AV, Valuev-Elliston VT, Baklaushev VP, Taranin AV. Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discov 2021; 7:96. [PMID: 34667147 PMCID: PMC8526700 DOI: 10.1038/s41421-021-00340-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/24/2021] [Indexed: 12/23/2022] Open
Abstract
In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.
Collapse
Affiliation(s)
- Andrey A Gorchakov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V Kulemzin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Konstantin O Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatyana N Belovezhets
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ludmila V Mechetina
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga Yu Volkova
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander M Najakshin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolai A Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anton N Chikaev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Pavel P Solodkov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Victor F Larichev
- National Research Center of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Marina A Gulyaeva
- Novosibirsk State University, Novosibirsk, Russia
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander G Markhaev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Yulia V Kononova
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Yu Alekseyev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| | - Alexander M Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
- Dagestan State University, Makhachkala, Republic of Dagestan, Russia
| | - Gaukhar M Yusubalieva
- Federal Research and Clinical Center for Specialized Medical Care, FMBA of Russia, Moscow, Russia
| | - Tatiana V Klypa
- Federal Research and Clinical Center for Specialized Medical Care, FMBA of Russia, Moscow, Russia
| | - Alexander V Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir T Valuev-Elliston
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research and Clinical Center for Specialized Medical Care, FMBA of Russia, Moscow, Russia
| | - Alexander V Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
26
|
Esmaeilzadeh A, Rostami S, Yeganeh PM, Tahmasebi S, Ahmadi M. Recent advances in antibody-based immunotherapy strategies for COVID-19. J Cell Biochem 2021; 122:1389-1412. [PMID: 34160093 PMCID: PMC8427040 DOI: 10.1002/jcb.30017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
The emergence of a new acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), the cause of the 2019-nCOV disease (COVID-19), has caused a pandemic and a global health crisis. Rapid human-to-human transmission, even from asymptomatic individuals, has led to the quick spread of the virus worldwide, causing a wide range of clinical manifestations from cold-like symptoms to severe pneumonia, acute respiratory distress syndrome (ARDS), multiorgan injury, and even death. Therefore, using rapid and accurate diagnostic methods to identify the virus and subsequently select appropriate and effective treatments can help improvement of patients and control the pandemic. So far, various treatment regimens along with prophylactic vaccines have been developed to manage COVID-19-infected patients. Among these, antibody-based therapies, including neutralizing antibodies (against different parts of the virus), polyclonal and monoclonal antibodies, plasma therapy, and high-dose intravenous immunoglobulin (IVIG) have shown promising outcomes in accelerating and improving the treatment process of patients, avoiding the viral spreading widely, and managing the pandemic. In the current review paper, different types and applications of therapeutic antibodies in the COVID-19 treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of MedicineZanjan University of Medical SciencesZanjanIran
- Immunotherapy Research and Technology GroupZanjan University of Medical SciencesZanjanIran
| | - Samaneh Rostami
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Pegah M. Yeganeh
- Department of immunology, School of medicineZanjan University of Medical SciencesZanjanIran
| | - Safa Tahmasebi
- Department of Immunology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Majid Ahmadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
27
|
Du L, Yang Y, Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol 2021; 18:2293-2306. [PMID: 34497376 PMCID: PMC8424621 DOI: 10.1038/s41423-021-00752-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initiates the infection process by binding to the viral cellular receptor angiotensin-converting enzyme 2 through the receptor-binding domain (RBD) in the S1 subunit of the viral spike (S) protein. This event is followed by virus-cell membrane fusion mediated by the S2 subunit, which allows virus entry into the host cell. Therefore, the SARS-CoV-2 S protein is a key therapeutic target, and prevention and treatment of coronavirus disease 2019 (COVID-19) have focused on the development of neutralizing monoclonal antibodies (nAbs) that target this protein. In this review, we summarize the nAbs targeting SARS-CoV-2 proteins that have been developed to date, with a focus on the N-terminal domain and RBD of the S protein. We also describe the roles that binding affinity, neutralizing activity, and protection provided by these nAbs play in the prevention and treatment of COVID-19 and discuss the potential to improve nAb efficiency against multiple SARS-CoV-2 variants. This review provides important information for the development of effective nAbs with broad-spectrum activity against current and future SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Xiujuan Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| |
Collapse
|
28
|
Murugavelu P, Perween R, Shrivastava T, Singh V, Ahmad Parray H, Singh S, Chiranjivi AK, Thiruvengadam R, Singh S, Yadav N, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Sharma C, Vishwakarma P, Khatri R, Kumar Panchal A, Das S, Ahmed S, Samal S, Kshetrapal P, Bhatnagar S, Luthra K, Kumar R. Non-neutralizing SARS CoV-2 directed polyclonal antibodies demonstrate cross-reactivity with the HA glycans of influenza virus. Int Immunopharmacol 2021; 99:108020. [PMID: 34426117 PMCID: PMC8318684 DOI: 10.1016/j.intimp.2021.108020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022]
Abstract
The spike protein of the SARS-CoV-2 virus is the foremost target for the designing of vaccines and therapeutic antibodies and also acts as a crucial antigen in the assessment of COVID-19 immune responses. The enveloped viruses; such as SARS-CoV-2, Human Immunodeficiency Virus-1 (HIV-1) and influenza, often hijack host-cell glycosylation pathways and influence pathobiology and immune selection. These glycan motifs can lead to either immune evasion or viral neutralization by the production of cross-reactive antibodies that can lead to antibody-dependent enhancement (ADE) of infection. Potential cross-protection from influenza vaccine has also been reported in COVID-19 infected individuals in several epidemiological studies recently; however, the scientific basis for these observations remains elusive. Herein, we show that the anti-SARS-CoV2 antibodies cross-reacts with the Hemagglutinin (HA) protein. This phenomenon is common to both the sera from convalescent SARS-CoV-2 donors and spike immunized mice, although these antibodies were unable to cross-neutralize, suggesting the presence of a non-neutralizing antibody response. Epitope mapping suggests that the cross-reactive antibodies are targeted towards glycan epitopes of the SARS-CoV-2 spike and HA. Overall, our findings address the cross-reactive responses, although non-neutralizing, elicited against RNA viruses and warrant further studies to investigate whether such non-neutralizing antibody responses can contribute to effector functions such as antibody-dependent cellular cytotoxicity (ADCC) or ADE.
Collapse
Affiliation(s)
- Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ramachandran Thiruvengadam
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Savita Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kamini Jakhar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sudipta Sonar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sankar Bhattacharyya
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Preeti Vishwakarma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Anil Kumar Panchal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Supratik Das
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Pallavi Kshetrapal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shinjini Bhatnagar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
29
|
Johnson AM, Barigye R, Saminathan H. Perspectives on the use and risk of adverse events associated with cytokine-storm targeting antibodies and challenges associated with development of novel monoclonal antibodies for the treatment of COVID-19 clinical cases. Hum Vaccin Immunother 2021; 17:2824-2840. [PMID: 33974497 PMCID: PMC8127167 DOI: 10.1080/21645515.2021.1908060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease 2019 (COVID-19) pandemic that lacks globally accessible effective antivirals or extensively available vaccines. Numerous clinical trials are exploring the applicability of repurposed monoclonal antibodies (mAbs) targeting cytokines that cause adverse COVID-19-related pathologies, and novel mAbs directly targeting SARS-CoV-2. However, comorbidities and the incidence of cytokine storm (CS)-associated pathological complexities in some COVID-19 patients may limit the clinical use of these drugs. Additionally, CS-targeting mAbs have the potential to cause adverse events that restrict their applicability in patients with comorbidities. Novel mAbs targeting SARS-CoV-2 require pharmacological and toxicological characterization before a marketable product becomes available. The affordability of novel mAbs across the global economic spectrum may seriously limit their accessibility. This review presents a perspective on antibody-based research efforts and their limitations for COVID-19.
Collapse
Affiliation(s)
- Aishwarya Mary Johnson
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Robert Barigye
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Hariharan Saminathan
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Mishra N, Kumar S, Singh S, Bansal T, Jain N, Saluja S, Kumar R, Bhattacharyya S, Palanichamy JK, Mir RA, Sinha S, Luthra K. Cross-neutralization of SARS-CoV-2 by HIV-1 specific broadly neutralizing antibodies and polyclonal plasma. PLoS Pathog 2021; 17:e1009958. [PMID: 34559854 PMCID: PMC8494312 DOI: 10.1371/journal.ppat.1009958] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/06/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile.
Collapse
Affiliation(s)
- Nitesh Mishra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- ICGEB-Emory Vaccine Centre Program, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tanu Bansal
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nishkarsh Jain
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sumedha Saluja
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sankar Bhattacharyya
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Riyaz Ahmad Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
31
|
Lou Y, Zhao W, Wei H, Chu M, Chao R, Yao H, Su J, Li Y, Li X, Cao Y, Feng Y, Wang P, Xia Y, Shang Y, Li F, Ge P, Zhang X, Gao W, Song G, Du B, Liang T, Qiu Y, Liu M. Cross-neutralization of RBD mutant strains of SARS-CoV-2 by convalescent patient derived antibodies. Biotechnol J 2021; 16:e2100207. [PMID: 34379353 PMCID: PMC8420279 DOI: 10.1002/biot.202100207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The emergence of COVID-19 pandemic resulted in an urgent need for the development of therapeutic interventions. Of which, neutralizing antibodies play a crucial role in the prevention and resolution of viral infection. METHODS We generated antibody libraries from 18 different COVID-19 recovered patients and screened neutralizing antibodies to SARS-CoV-2 and its mutants. After 3 rounds of panning, 456 positive phage clones were obtained with high affinity to RBD (receptor binding domain). Clones were then reconstituted into whole human IgG for epitope binning assay and all 19 IgG were classified into 6 different epitope groups or Bins. RESULTS Although all antibodies were found to bind RBD, the antibodies in Bin2 had superior inhibitory ability of the interaction between spike protein and angiotensin converting enzyme 2 receptor (ACE2). Most importantly, the antibodies from Bin2 showed stronger binding affinity or ability to mutant RBDs (N501Y, W463R, R408I, N354D, V367F and N354D/D364Y) derived from different SARS-CoV-2 strains as well, suggesting the great potential of these antibodies in preventing infection of SARS-CoV-2 and its mutations. Furthermore, such neutralizing antibodies strongly restricted the binding of RBD to hACE2 overexpressed 293T cells. Consistently, these antibodies effectively neutralized wildtype and more transmissible mutant pseudovirus entry into hACE2 overexpressed 293T cells. In Vero-E6 cells, one of these antibodies can even block the entry of live SARS-CoV-2 into cells at 12.5 nM. DISCUSSION These results indicate that the neutralizing human antibodies from the patient-derived antibody libraries have the potential to fight SARS-CoV-2 and its mutants in this global pandemic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Lou
- State Key Laboratory for diagnosis and treatment of infectious diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenxiang Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,SymRay Biopharma Inc., Shanghai, 200241, China
| | - Haitao Wei
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Min Chu
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.,SymRay Biopharma Inc., Shanghai, 200241, China
| | - Hangping Yao
- State Key Laboratory for diagnosis and treatment of infectious diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Junwei Su
- State Key Laboratory for diagnosis and treatment of infectious diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yanan Li
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Xiulan Li
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Yu Cao
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Yanyan Feng
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Ping Wang
- SymRay Biopharma Inc., Shanghai, 200241, China
| | | | | | - Fengping Li
- SymRay Biopharma Inc., Shanghai, 200241, China
| | - Pingju Ge
- Acrobiosystems Inc., Beijing, 100176, China
| | | | | | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Bing Du
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tingbo Liang
- State Key Laboratory for diagnosis and treatment of infectious diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yunqing Qiu
- State Key Laboratory for diagnosis and treatment of infectious diseases, Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
32
|
Parray HA, Shukla S, Perween R, Khatri R, Shrivastava T, Singh V, Murugavelu P, Ahmed S, Samal S, Sharma C, Sinha S, Luthra K, Kumar R. Inhalation monoclonal antibody therapy: a new way to treat and manage respiratory infections. Appl Microbiol Biotechnol 2021; 105:6315-6332. [PMID: 34423407 PMCID: PMC8380517 DOI: 10.1007/s00253-021-11488-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/23/2022]
Abstract
The route of administration of a therapeutic agent has a substantial impact on its success. Therapeutic antibodies are usually administered systemically, either directly by intravenous route, or indirectly by intramuscular or subcutaneous injection. However, treatment of diseases contained within a specific tissue necessitates a better alternate route of administration for targeting localised infections. Inhalation is a promising non-invasive strategy for antibody delivery to treat respiratory maladies because it provides higher concentrations of antibody in the respiratory airways overcoming the constraints of entry through systemic circulation and uncertainity in the amount reaching the target tissue. The nasal drug delivery route is one of the extensively researched modes of administration, and nasal sprays for molecular drugs are deemed successful and are presently commercially marketed. This review highlights the current state and future prospects of inhaled therapies, with an emphasis on the use of monoclonal antibodies for the treatment of respiratory infections, as well as an overview of their importance, practical challenges, and clinical trial outcomes.Key points• Immunologic strategies for preventing mucosal transmission of respiratory pathogens.• Mucosal-mediated immunoprophylaxis could play a major role in COVID-19 prevention.• Applications of monoclonal antibodies in passive immunisation.
Collapse
Affiliation(s)
- Hilal Ahmad Parray
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shivangi Shukla
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Reshma Perween
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Ritika Khatri
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Vanshika Singh
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Praveenkumar Murugavelu
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Chandresh Sharma
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India
| | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad - Gurgaon Expressway, PO Box # 04, Faridabad, Haryana, 121001, India.
| |
Collapse
|
33
|
Bertoglio F, Fühner V, Ruschig M, Heine PA, Abassi L, Klünemann T, Rand U, Meier D, Langreder N, Steinke S, Ballmann R, Schneider KT, Roth KDR, Kuhn P, Riese P, Schäckermann D, Korn J, Koch A, Chaudhry MZ, Eschke K, Kim Y, Zock-Emmenthal S, Becker M, Scholz M, Moreira GMSG, Wenzel EV, Russo G, Garritsen HSP, Casu S, Gerstner A, Roth G, Adler J, Trimpert J, Hermann A, Schirrmann T, Dübel S, Frenzel A, Van den Heuvel J, Čičin-Šain L, Schubert M, Hust M. A SARS-CoV-2 neutralizing antibody selected from COVID-19 patients binds to the ACE2-RBD interface and is tolerant to most known RBD mutations. Cell Rep 2021; 36:109433. [PMID: 34273271 PMCID: PMC8260561 DOI: 10.1016/j.celrep.2021.109433] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
The novel betacoronavirus severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes a form of severe pneumonia disease called coronavirus disease 2019 (COVID-19). To develop human neutralizing anti-SARS-CoV-2 antibodies, antibody gene libraries from convalescent COVID-19 patients were constructed and recombinant antibody fragments (scFv) against the receptor-binding domain (RBD) of the spike protein were selected by phage display. The antibody STE90-C11 shows a subnanometer IC50 in a plaque-based live SARS-CoV-2 neutralization assay. The in vivo efficacy of the antibody is demonstrated in the Syrian hamster and in the human angiotensin-converting enzyme 2 (hACE2) mice model. The crystal structure of STE90-C11 Fab in complex with SARS-CoV-2-RBD is solved at 2.0 Å resolution showing that the antibody binds at the same region as ACE2 to RBD. The binding and inhibition of STE90-C11 is not blocked by many known emerging RBD mutations. STE90-C11-derived human IgG1 with FcγR-silenced Fc (COR-101) is undergoing Phase Ib/II clinical trials for the treatment of moderate to severe COVID-19.
Collapse
Affiliation(s)
- Federico Bertoglio
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Viola Fühner
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Maximilian Ruschig
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Philip Alexander Heine
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Leila Abassi
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Klünemann
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Ulfert Rand
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Doris Meier
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Nora Langreder
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Stephan Steinke
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Rico Ballmann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Kai-Thomas Schneider
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Philipp Kuhn
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Peggy Riese
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany; Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Dorina Schäckermann
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Janin Korn
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Allan Koch
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - M Zeeshan Chaudhry
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Kathrin Eschke
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Yeonsu Kim
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Susanne Zock-Emmenthal
- Technische Universität Braunschweig, Institut für Genetik, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Marlies Becker
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Margitta Scholz
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Gustavo Marçal Schmidt Garcia Moreira
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Esther Veronika Wenzel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Giulio Russo
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Hendrikus S P Garritsen
- Städtisches Klinikum Braunschweig gGmbH, Celler Str. 38, 38114 Braunschweig, Germany; Fraunhofer Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Sebastian Casu
- Helios Klinikum Salzgitter, Kattowitzer Str. 191, 38226 Salzgitter, Germany
| | - Andreas Gerstner
- Städtisches Klinikum Braunschweig gGmbH, Holwedestraße 16, 38118 Braunschweig, Germany
| | - Günter Roth
- BioCopy GmbH, Elzstrasse 27, 79312 Emmendingen, Germany
| | - Julia Adler
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Jakob Trimpert
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Andreas Hermann
- CORAT Therapeutics GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Thomas Schirrmann
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; CORAT Therapeutics GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany; Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany
| | - Joop Van den Heuvel
- Helmholtz Centre for Infection Research, Department of Structure and Function of Proteins, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Luka Čičin-Šain
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology, Inhoffenstr. 7, 38124 Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), a joint venture of Helmholtz Centre for Infection Research and Medical School, Hannover, Germany
| | - Maren Schubert
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Spielmannstr. 7, 38106 Braunschweig, Germany.
| |
Collapse
|
34
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
35
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
36
|
Shrivastava T, Singh B, Rizvi ZA, Verma R, Goswami S, Vishwakarma P, Jakhar K, Sonar S, Mani S, Bhattacharyya S, Awasthi A, Surjit M. Comparative Immunomodulatory Evaluation of the Receptor Binding Domain of the SARS-CoV-2 Spike Protein; a Potential Vaccine Candidate Which Imparts Potent Humoral and Th1 Type Immune Response in a Mouse Model. Front Immunol 2021; 12:641447. [PMID: 34108961 PMCID: PMC8182375 DOI: 10.3389/fimmu.2021.641447] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
The newly emerged novel coronavirus, SARS-CoV-2, the causative agent of COVID-19 has proven to be a threat to the human race globally, thus, vaccine development against SARS-CoV-2 is an unmet need driving mass vaccination efforts. The receptor binding domain of the spike protein of this coronavirus has multiple neutralizing epitopes and is associated with viral entry. Here we have designed and characterized the SARS-CoV-2 spike protein fragment 330-526 as receptor binding domain 330-526 (RBD330-526) with two native glycosylation sites (N331 and N343); as a potential subunit vaccine candidate. We initially characterized RBD330-526 biochemically and investigated its thermal stability, humoral and T cell immune response of various RBD protein formulations (with or without adjuvant) to evaluate the inherent immunogenicity and immunomodulatory effect. Our result showed that the purified RBD immunogen is stable up to 72 h, without any apparent loss in affinity or specificity of interaction with the ACE2 receptor. Upon immunization in mice, RBD generates a high titer humoral response, elevated IFN-γ producing CD4+ cells, cytotoxic T cells, and robust neutralizing antibodies against live SARS-CoV-2 virus. Our results collectively support the potential of RBD330-526 as a promising vaccine candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Tripti Shrivastava
- Infection and Immunology, Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
A SARS-CoV-2 neutralizing antibody with extensive Spike binding coverage and modified for optimal therapeutic outcomes. Nat Commun 2021; 12:2623. [PMID: 33976198 PMCID: PMC8113581 DOI: 10.1038/s41467-021-22926-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/30/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 pandemic caused by SARS-CoV-2 constitutes a global public health crisis with enormous economic consequences. Monoclonal antibodies against SARS-CoV-2 can provide an important treatment option to fight COVID-19, especially for the most vulnerable populations. In this work, potent antibodies binding to SARS-CoV-2 Spike protein were identified from COVID-19 convalescent patients. Among them, P4A1 interacts directly with and covers majority of the Receptor Binding Motif of the Spike Receptor-Binding Domain, shown by high-resolution complex structure analysis. We further demonstrate the binding and neutralizing activities of P4A1 against wild type and mutant Spike proteins or pseudoviruses. P4A1 was subsequently engineered to reduce the potential risk for Antibody-Dependent Enhancement of infection and to extend its half-life. The engineered antibody exhibits an optimized pharmacokinetic and safety profile, and it results in complete viral clearance in a rhesus monkey model of COVID-19 following a single injection. These data suggest its potential against SARS-CoV-2 related diseases.
Collapse
|
38
|
Yadav N, Vishwakarma P, Khatri R, Siddqui G, Awasthi A, Ahmed S, Samal S. Comparative immunogenicity analysis of intradermal versus intramuscular administration of SARS-CoV-2 RBD epitope peptide-based immunogen In vivo. Microbes Infect 2021; 23:104843. [PMID: 34098108 PMCID: PMC8238661 DOI: 10.1016/j.micinf.2021.104843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
COVID-19 pandemic has caused severe disruption of global health and devastated the socio-economic conditions all over the world. The disease is caused by SARS-CoV-2 virus that belongs to the family of Coronaviruses which are known to cause a wide spectrum of diseases both in humans and animals. One of the characteristic features of the SARS-CoV-2 virus is the high reproductive rate (R0) that results in high transmissibility of the virus among humans. Vaccines are the best option to prevent and control this disease. Though, the traditional intramuscular (IM) route of vaccine administration is one of the effective methods for induction of antibody response, a needle-free self-administrative intradermal (ID) immunization will be easier for SARS-CoV-2 infection containment, as vaccine administration method will limit human contacts. Here, we have assessed the humoral and cellular responses of a RBD-based peptide immunogen when administered intradermally in BALB/c mice and side-by-side compared with the intramuscular immunization route. The results demonstrate that ID vaccination is well tolerated and triggered a significant magnitude of humoral antibody responses as similar to IM vaccination. Additionally, the ID immunization resulted in higher production of IFN-γ and IL-2 suggesting superior cellular response as compared to IM route. Overall, our data indicates immunization through ID route provides a promising alternative approach for the development of self-administrative SARS-CoV-2 vaccine candidates.
Collapse
Affiliation(s)
- Naveen Yadav
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Preeti Vishwakarma
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Ritika Khatri
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Gazala Siddqui
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Amit Awasthi
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Shubbir Ahmed
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Sweety Samal
- Infection and Immunology Laboratory, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
39
|
Min L, Sun Q. Antibodies and Vaccines Target RBD of SARS-CoV-2. Front Mol Biosci 2021; 8:671633. [PMID: 33968996 PMCID: PMC8100443 DOI: 10.3389/fmolb.2021.671633] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/24/2021] [Indexed: 02/05/2023] Open
Abstract
The novel human coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which gives rise to the coronavirus disease 2019 (COVID-19), has caused a serious threat to global public health. On March 11, 2020, the WHO had officially announced COVID-19 as a pandemic. Therefore, it is vital to find effective and safe neutralizing antibodies and vaccines for COVID-19. The critical neutralizing domain (CND) that is contained in the receptor-binding domain (RBD) of the spike protein (S protein) could lead to a highly potent neutralizing antibody response as well as the cross-protection of other strains of SARS. By using RBD as an antigen, many neutralizing antibodies are isolated that are essential to the therapeutics of COVID-19. Furthermore, a subunit vaccine, which is based on the RBD, is expected to be safer than others, thus the RBD in the S protein is a more important target for vaccine development. In this review, we focus on neutralizing antibodies that are targeting RBD as well as the vaccine based on RBD under current development.
Collapse
Affiliation(s)
| | - Qiu Sun
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
40
|
Vishwakarma P, Yadav N, Rizvi ZA, Khan NA, Chiranjivi AK, Mani S, Bansal M, Dwivedi P, Shrivastava T, Kumar R, Awasthi A, Ahmed S, Samal S. Severe Acute Respiratory Syndrome Coronavirus 2 Spike Protein Based Novel Epitopes Induce Potent Immune Responses in vivo and Inhibit Viral Replication in vitro. Front Immunol 2021; 12:613045. [PMID: 33841395 PMCID: PMC8032902 DOI: 10.3389/fimmu.2021.613045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiates infection by attachment of the surface-exposed spike glycoprotein to the host cell receptors. The spike glycoprotein (S) is a promising target for inducing immune responses and providing protection; thus the ongoing efforts for the SARS-CoV-2 vaccine and therapeutic developments are mostly spiraling around S glycoprotein. The matured functional spike glycoprotein is presented on the virion surface as trimers, which contain two subunits, such as S1 (virus attachment) and S2 (virus fusion). The S1 subunit harbors the N-terminal domain (NTD) and the receptor-binding domain (RBD). The RBD is responsible for binding to host-cellular receptor angiotensin-converting enzyme 2 (ACE2). The NTD and RBD of S1, and the S2 of S glycoprotein are the major structural moieties to design and develop spike-based vaccine candidates and therapeutics. Here, we have identified three novel epitopes (20-amino acid peptides) in the regions NTD, RBD, and S2 domains, respectively, by structural and immunoinformatic analysis. We have shown as a proof of principle in the murine model, the potential role of these novel epitopes in-inducing humoral and cellular immune responses. Further analysis has shown that RBD and S2 directed epitopes were able to efficiently inhibit the replication of SARS-CoV-2 wild-type virus in vitro suggesting their role as virus entry inhibitors. Structural analysis revealed that S2-epitope is a part of the heptad repeat 2 (HR2) domain which might have plausible inhibitory effects on virus fusion. Taken together, this study discovered novel epitopes that might have important implications in the development of potential SARS-CoV-2 spike-based vaccine and therapeutics.
Collapse
Affiliation(s)
- Preeti Vishwakarma
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naveen Yadav
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Zaigham Abbas Rizvi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Naseem Ahmed Khan
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Adarsh Kumar Chiranjivi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shailendra Mani
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Manish Bansal
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Prabhanjan Dwivedi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Tripti Shrivastava
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Rajesh Kumar
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Amit Awasthi
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Shubbir Ahmed
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sweety Samal
- Translational Health Science & Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| |
Collapse
|
41
|
Perween R, Ahmed S, Shrivastava T, Parray HA, Singh B, Pindari KS, Sharma C, Shukla S, Sinha S, Panchal AK, Kumar R. A rapid novel strategy for screening of antibody phage libraries for production, purification, and functional characterization of amber stop codons containing single-chain antibody fragments. Biotechnol Prog 2021; 37:e3136. [PMID: 33620776 DOI: 10.1002/btpr.3136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
Phage display antibody (PDA) libraries, allows the rapid isolation and characterization of high specificity monoclonal antibodies for therapeutic and diagnostic applications. However, selection of positive binding clones from synthetic and semi-synthetic libraries has an inherent bias towards clones containing randomly generated amber stop codons, complicating the identification of high affinity binding antibodies. We screened Tomlinson I and J library against receptor binding domain (RBD) of SARS CoV2, eight clones which showed positive binding in phage ELISA, contained one or more amber stop codons in their single-chain antibody fragment (scFv) gene sequences. The presence of amber stop codons within the antibody sequence causes the premature termination of soluble form of scFv expression in nonsuppressor Escherichia coli strain. In the present study, we have used a novel strategy that allows soluble expression of scFvs having amber stop codon in their gene sequences (without phage PIII protein fusion), in the suppressor strain. This strategy of introduction of Ochre (TAA) codon at the junction of scFv and PIII gene, speeds up the initial screening process which is critical for selecting the right scFvs for further studies. Present strategy leads to the identification of a scFv, B8 that binds specifically with nanomolar affinity toward SARS CoV 2 RBD, which otherwise lost in terms of traditional methodology.
Collapse
Affiliation(s)
- Reshma Perween
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shubbir Ahmed
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Tripti Shrivastava
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Hilal A Parray
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Balwant Singh
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Kamal S Pindari
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Chandresh Sharma
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Shivangi Shukla
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Subrata Sinha
- Department of Biochemistry, third floor, All India Institute of Medical Sciences, New Delhi, India
| | - Anil Kumar Panchal
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Rajesh Kumar
- Translational Health Science and Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| |
Collapse
|
42
|
Majumdar S, Verma R, Saha A, Bhattacharyya P, Maji P, Surjit M, Kundu M, Basu J, Saha S. Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Front Genet 2021; 12:637362. [PMID: 33664772 PMCID: PMC7921795 DOI: 10.3389/fgene.2021.637362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.
Collapse
Affiliation(s)
| | - Rohit Verma
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Avishek Saha
- Ubiquitous Analytical Techniques, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | | | - Pradipta Maji
- Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
43
|
Tabll AA, Shahein YE, Omran MM, Elnakib MM, Ragheb AA, Amer KE. A review of monoclonal antibodies in COVID-19: Role in immunotherapy, vaccine development and viral detection. Hum Antibodies 2021; 29:179-191. [PMID: 33998533 DOI: 10.3233/hab-200441] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The harmful COVID-19 pandemic caused by the SARS-CoV-2 coronavirus imposes the scientific community to develop or find conventional curative drugs, protective vaccines, or passive immune strategies rapidly and efficiently. Passive immunity is based on recovering hyper-immune plasma from convalescent patients, or monoclonal antibodies with elevated titer of neutralizing antibodies with high antiviral activity, that have potential for both treatment and prevention. In this review, we focused on researching the potentiality of monoclonal antibodies for the prevention and treatment of COVID-19 infection. Our research review includes antibody-based immunotherapy, using human monoclonal antibodies targeting SARS-CoV-2 viral protein regions, specifically the spike protein regions, and using hyper-immune plasma from convalescent COVID-19 patients, in which monoclonal antibodies act as immunotherapy for the cytokine storm syndrome associated with the COVID-19 infection. In addition, we will demonstrate the role of the monoclonal antibodies in the development of candidate vaccines for SARS-CoV-2. Moreover, the recent progress of the diagnostic mouse monoclonal antibodies' role will be highlighted, as an accurate and rapid diagnostic assay, in the antigen detection of SARS-CoV-2. In brief, the monoclonal antibodies are the potential counter measures that may control SARS-CoV-2, which causes COVID-19 disease, through immunotherapy and vaccine development, as well as viral detection.
Collapse
Affiliation(s)
- Ashraf A Tabll
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Mohamed M Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mostafa M Elnakib
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Ameera A Ragheb
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Khaled E Amer
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| |
Collapse
|
44
|
Abstract
Spurred into action by the COVID-19 pandemic, the global scientific community has, in a short of period of time, made astonishing progress in understanding and combating COVID-19. Given the known human protein machinery for (a) SARS-CoV-2 entry, (b) the host innate immune response, and (c) virus-host interactions (protein-protein and RNA-protein), the potential effects of human genetic variation in this machinery, which may contribute to clinical differences in SARS-CoV-2 pathogenesis and help determine individual risk for COVID-19 infection, are explored. The Genome Aggregation Database (gnomAD) was used to show that several rare germline exome variants of proteins in these pathways occur in the human population, suggesting that carriers of these rare variants (especially for proteins of innate immunity pathways) are at risk for severe symptoms (like the severe symptoms in patients who are known to be rare variant carriers), whereas carriers of other variants could have a protective advantage against infection. The occurrence of genetic variation is thus expected to motivate the experimental probing of natural variants to understand the mechanistic differences in SARS-CoV-2 pathogenesis from one individual to another.
Collapse
Affiliation(s)
- Suvobrata Chakravarty
- Chemistry & Biochemistry, South
Dakota State University, Brookings, South Dakota 57007, United
States
- BioSNTR, Brookings, South
Dakota 57007, United States
| |
Collapse
|