1
|
Tan WB, Chng SS. How Bacteria Establish and Maintain Outer Membrane Lipid Asymmetry. Annu Rev Microbiol 2024; 78:553-573. [PMID: 39270665 DOI: 10.1146/annurev-micro-032521-014507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Gram-negative bacteria build an asymmetric outer membrane (OM), with lipopolysaccharides (LPS) and phospholipids (PLs) occupying the outer and inner leaflets, respectively. This distinct lipid arrangement is widely conserved within the Bacteria domain and confers strong protection against physical and chemical insults. The OM is physically separated from the inner membrane and the cytoplasm, where most cellular resources are located; therefore, the cell faces unique challenges in the assembly and maintenance of this asymmetric bilayer. Here, we present a framework for how gram-negative bacteria initially establish and continuously maintain OM lipid asymmetry, discussing the state-of-the-art knowledge of specialized lipid transport machines that place LPS and PLs directly into their corresponding leaflets in the OM, prevent excess PL accumulation and mislocalization, and correct any lipid asymmetry defects. We critically assess current studies, or the lack thereof, and highlight important future directions for research on OM lipid transport, homeostasis, and asymmetry.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| | - Shu-Sin Chng
- Department of Chemistry and Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore; ,
| |
Collapse
|
2
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
3
|
Nabil-Adam A, Ashour ML, Shreadah MA. Modulation of MAPK/NF-κB Pathway and NLRP3 Inflammasome by Secondary Metabolites from Red Algae: A Mechanistic Study. ACS OMEGA 2023; 8:37971-37990. [PMID: 37867644 PMCID: PMC10586274 DOI: 10.1021/acsomega.3c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023]
Abstract
The pharmacological properties of seaweeds are diverse. No studies have been conducted on the protective effect of Galaxaura oblongata (GOE) against lippopolysaccharide (LPS)-induced inflammation in the brain. This study is divided into three phases, the first of which is the initial phase. In vitro study includes antioxidant, radical scavenging, and anti-inflammatory activities, including cyclooxygenase-1 (COX1), COX2, NO, acetylcholine inhibition, sphingosine kinase 1, tumor necrosis factor α (TNF-α), and interleukin-6, as well as antioxidant and radical-scavenging activities, including 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid. Using LPS-induced acute inflammation, the second phase was conducted in vivo. Antioxidant and anti-inflammatory assays were performed to investigate the protective role of GOE. In addition to the phytochemical analysis, the bioactive content of GOE was also investigated. In vitro results demonstrated the potential of GOE as an antioxidant, anti-inflammatory, and neuroprotective agent. A study using LPS as an induced lung injury and neuroinflammation model confirmed the in vitro results. The GOE significantly reduced inflammatory, oxidative, and neurodegenerative biomarkers based on histopathological and immuno-histochemistry results. Based on computational drug design, four target proteins were approved: nuclear factor κB, mitogen-activated protein kinases, TNF-α, and NLRP3. Using polyphenolic compounds in GOE as ligands demonstrated good alignment and affinity against the three proteins. Finally, the current study offers a new approach to developing drug leads considering GOE's protective and curative roles.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine
Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Alexandria 21556, Egypt
| | - Mohamed L. Ashour
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
- Department
of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P. O. Box
6231, Jeddah 21442, Saudi Arabia
| | - Mohamed Attia Shreadah
- Marine
Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Alexandria 21556, Egypt
| |
Collapse
|
4
|
MacRae MR, Puvanendran D, Haase MAB, Coudray N, Kolich L, Lam C, Baek M, Bhabha G, Ekiert DC. Protein-protein interactions in the Mla lipid transport system probed by computational structure prediction and deep mutational scanning. J Biol Chem 2023; 299:104744. [PMID: 37100290 PMCID: PMC10245069 DOI: 10.1016/j.jbc.2023.104744] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/30/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric bilayer that protects the cell from external stressors, such as antibiotics. The Mla transport system is implicated in the Maintenance of OM Lipid Asymmetry by mediating retrograde phospholipid transport across the cell envelope. Mla uses a shuttle-like mechanism to move lipids between the MlaFEDB inner membrane complex and the MlaA-OmpF/C OM complex, via a periplasmic lipid-binding protein, MlaC. MlaC binds to MlaD and MlaA, but the underlying protein-protein interactions that facilitate lipid transfer are not well understood. Here, we take an unbiased deep mutational scanning approach to map the fitness landscape of MlaC from Escherichia coli, which provides insights into important functional sites. Combining this analysis with AlphaFold2 structure predictions and binding experiments, we map the MlaC-MlaA and MlaC-MlaD protein-protein interfaces. Our results suggest that the MlaD and MlaA binding surfaces on MlaC overlap to a large extent, leading to a model in which MlaC can only bind one of these proteins at a time. Low-resolution cryo-electron microscopy (cryo-EM) maps of MlaC bound to MlaFEDB suggest that at least two MlaC molecules can bind to MlaD at once, in a conformation consistent with AlphaFold2 predictions. These data lead us to a model for MlaC interaction with its binding partners and insights into lipid transfer steps that underlie phospholipid transport between the bacterial inner and OMs.
Collapse
Affiliation(s)
- Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Dhenesh Puvanendran
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Max A B Haase
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York, USA
| | - Ljuvica Kolich
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Cherry Lam
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, Washington, USA; Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA.
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, New York, USA; Department of Microbiology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
5
|
Olaimat AN, Al-Holy MA, Abughoush MH, Daseh L, Al-Nabulsi AA, Osaili TM, Al-Rousan W, Maghaydah S, Ayyash M, Holley RA. Survival of Salmonella enterica and Listeria monocytogenes in date palm paste and syrup at different storage temperatures. J Food Sci 2023. [PMID: 37243359 DOI: 10.1111/1750-3841.16620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
This study aimed to investigate the behavior of Salmonella enterica and Listeria monocytogenes in processed date paste and syrup at different temperatures. Commercial products were inoculated with approximately 6 log CFU/mL of S. enterica or L. monocytogenes and stored at 4, 10, and 24°C for 90 days. S. enterica was able to survive in date products until the end of storage at 4°C. At this temperature, numbers decreased by 2.1 log CFU/g in date paste and by 3.4 log CFU/g in date syrup; however, at 10°C, cells were reduced >4.2 log CFU/g and were undetectable by direct plating in date paste or by enrichment (complete elimination) in syrup. Further, at 24°C, complete elimination of S. enterica was achieved in date paste and syrup by 30 and 7 days, respectively. L. monocytogenes numbers decreased by 1.4, 4.4, and >4.6 log CFU/g in date paste stored at 4, 10, and 24°C for 90 days, respectively. In date syrup, numbers of L. monocytogenes decreased to undetectable levels by 50, 14, and 4 days at 4, 10, and 24°C, respectively, by direct plating and complete elimination was observed at 10 and 24°C by 50 and 30 days of storage, respectively. The initial pH values of date paste and syrup were 4.7 and 4.8, respectively, and remained stable until the end of storage except for L. monocytogenes-inoculated syrup. PRACTICAL APPLICATION: Salmonella enterica and Listeria monocytogenes can easily survive in date paste and syrup particularly at refrigerator temperature, which explains the necessity of preventing the contamination of date products with foodborne pathogens.
Collapse
Affiliation(s)
- Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Murad A Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Mahmoud H Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Lamees Daseh
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Walid Al-Rousan
- Department of Nutrition and Food Processing, Al-Huson University College, Al-Balqa Applied University, Al-Huson, Jordan
| | - Sofyan Maghaydah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Human Nutrition and Dietetics, College of Health Sciences, Abu Dhabi University, Zayed City, Abu Dhabi, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Richard A Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Alam MR, Shahid MA, Alimuzzaman S, Hasan MM, Hoque ME. Electrospun bio-nano hybrid scaffold from collagen, Nigella sativa, and chitosan for skin tissue engineering application. J BIOACT COMPAT POL 2023. [DOI: 10.1177/08839115231162365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The new sophisticated tissue engineering focused on producing nanocomposite with different morphologies for rapid tissue regeneration. In this case, utilizing nanotechnology with the incorporation of bio-based materials have achieved the interest of researchers. This research aims at developing hybrid bio-nano scaffold with collagen (Col), Nigella sativa ( Ns), and chitosan (Cs) by a bi-layered green electrospinning on polyvinyl chloride (PVA) layer in a different ratio for tissue regeneration. Field emission electron microscopy (FE-SEM), fourier transform infrared spectroscopy (FTIR), moisture management properties, tensile properties, antibacterial activity, and wound healing assessment of the fabricated hybrid bio-nano scaffolds were employed to investigate the different properties of hybrid bio-nano scaffolds. The results exhibit that the sample with Col (50%) and Ns (25%), Cs (25%) has good fiber formation with a mean diameter of 381 ± 22 nm. This bio-nano scaffold has a porosity of 78 ± 6.9% and a fast absorbing-slow drying nature for providing a moist environment. The antibacterial zones of inhibition (ZOI) against Staphylococcus aureus and Escherichia coli were 10 ± 1.3 and 8 ± 0.9 mm respectively, and appeared to be adequate to inhibit bacterial action. The wound healing assessment states that 84 ± 3.8% of wound closure occurs in just 10 days, which is quicker (1.5 times) than the duration of a commercial bandage. All of the findings suggest that the bio-nano scaffold could be useful for skin tissue engineering.
Collapse
|
7
|
Surveying membrane landscapes: a new look at the bacterial cell surface. Nat Rev Microbiol 2023:10.1038/s41579-023-00862-w. [PMID: 36828896 DOI: 10.1038/s41579-023-00862-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/26/2023]
Abstract
Recent studies applying advanced imaging techniques are changing the way we understand bacterial cell surfaces, bringing new knowledge on everything from single-cell heterogeneity in bacterial populations to their drug sensitivity and mechanisms of antimicrobial resistance. In both Gram-positive and Gram-negative bacteria, the outermost surface of the bacterial cell is being imaged at nanoscale; as a result, topographical maps of bacterial cell surfaces can be constructed, revealing distinct zones and specific features that might uniquely identify each cell in a population. Functionally defined assembly precincts for protein insertion into the membrane have been mapped at nanoscale, and equivalent lipid-assembly precincts are suggested from discrete lipopolysaccharide patches. As we review here, particularly for Gram-negative bacteria, the applications of various modalities of nanoscale imaging are reawakening our curiosity about what is conceptually a 3D cell surface landscape: what it looks like, how it is made and how it provides resilience to respond to environmental impacts.
Collapse
|
8
|
Modi SK, Gaur S, Sengupta M, Singh MS. Mechanistic insights into nanoparticle surface-bacterial membrane interactions in overcoming antibiotic resistance. Front Microbiol 2023; 14:1135579. [PMID: 37152753 PMCID: PMC10160668 DOI: 10.3389/fmicb.2023.1135579] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Antimicrobial Resistance (AMR) raises a serious concern as it contributes to the global mortality by 5 million deaths per year. The overall impact pertaining to significant membrane changes, through broad spectrum drugs have rendered the bacteria resistant over the years. The economic expenditure due to increasing drug resistance poses a global burden on healthcare community and must be dealt with immediate effect. Nanoparticles (NP) have demonstrated inherent therapeutic potential or can serve as nanocarriers of antibiotics against multidrug resistant (MDR) pathogens. These carriers can mask the antibiotics and help evade the resistance mechanism of the bacteria. The targeted delivery can be fine-tuned through surface functionalization of Nanocarriers using aptamers, antibodies etc. This review covers various molecular mechanisms acquired by resistant bacteria towards membrane modification. Mechanistic insight on 'NP surface-bacterial membrane' interactions are crucial in deciding the role of NP as therapeutic. Finally, we highlight the potential accessible membrane targets for designing smart surface-functionalized nanocarriers which can act as bacteria-targeted robots over the existing clinically available antibiotics. As the bacterial strains around us continue to evolve into resistant versions, nanomedicine can offer promising and alternative tools in overcoming AMR.
Collapse
Affiliation(s)
- Suraj Kumar Modi
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Smriti Gaur
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- Mrittika Sengupta, ;
| | - Manu Smriti Singh
- Department of Biotechnology, Bennett University, Greater Noida, Uttar Pradesh, India
- Centre of Excellence for Nanosensors and Nanomedicine, Bennett University, Greater Noida, Uttar Pradesh, India
- *Correspondence: Manu Smriti Singh, ;
| |
Collapse
|
9
|
Chaudhari R, Singh K, Kodgire P. Biochemical and molecular mechanisms of antibiotic resistance in Salmonella spp. Res Microbiol 2023; 174:103985. [PMID: 35944794 DOI: 10.1016/j.resmic.2022.103985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 01/11/2023]
Abstract
Salmonella is a diverse Gram-negative bacterium that represents the major disease burden worldwide. According to WHO, Salmonella is one of the fourth global causes of diarrhoeal disease. Antibiotic resistance is a worldwide health concern, and Salmonella spp. is one of the microorganisms that can evade the toxicity of antimicrobials via antibiotic resistance. This review aims to deliver in-depth knowledge of the molecular mechanisms and the underlying biochemical alterations perceived in antibiotic resistance in Salmonella. This information will help understand and mitigate the impact of antibiotic-resistant bacteria on humans and contribute to the state-of-the-art research developing newer and more potent antibiotics.
Collapse
Affiliation(s)
- Rahul Chaudhari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Kanika Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Simrol, Khandwa Road, Indore 453552, India.
| |
Collapse
|
10
|
Zeczycki TN, Milton ME, Jung D, Thompson RJ, Jaimes FE, Hondros AD, Palethorpe S, Melander C, Cavanagh J. 2-Aminoimidazole Analogs Target PhoP Altering DNA Binding Activity and Affect Outer Membrane Stability in Gram-Negative Bacteria. Biochemistry 2022; 61:2948-2960. [DOI: 10.1021/acs.biochem.2c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Tonya N. Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Morgan E. Milton
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - David Jung
- Agile Sciences Inc., 617 Hutton Street, Raleigh, North Carolina27606, United States
| | - Richele J. Thompson
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Felicia E. Jaimes
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Alexander D. Hondros
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Samantha Palethorpe
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana46556, United States
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina27834, United States
| |
Collapse
|
11
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Ekiert DC, Coudray N, Bhabha G. Structure and mechanism of the bacterial lipid ABC transporter, MlaFEDB. Curr Opin Struct Biol 2022; 76:102429. [PMID: 35981415 PMCID: PMC9509461 DOI: 10.1016/j.sbi.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.
Collapse
Affiliation(s)
- Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| | - Nicolas Coudray
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Gregorchuk BSJ, Reimer SL, Slipski CJ, Milner KA, Hiebert SL, Beniac DR, Booth TF, Zhanel GG, Bay DC. Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps. Sci Rep 2022; 12:12149. [PMID: 35840757 PMCID: PMC9287405 DOI: 10.1038/s41598-022-15775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Bacterial resistance to the antiseptic chlorhexidine (CHX), is a growing problem, recently shown to be caused by deleterious mutations to the phospholipid transport system component (mlaA) as well as efflux pump overexpression. Comparisons of CHX resistance mechanisms, such as porin deletions (ompCF), and over-expressed efflux pumps (acrB, qacE, aceI), are lacking and may be distinguishable using antiseptic rapid fluorescent dye testing assays. Using E. coli K-12 CHX adapted isolates (CHXR1), gene deletion mutants, and over-expressed transformants the phenotypes of these CHX resistance genes were compared using antimicrobial susceptibility tests (AST), rapid fluorescent propidium iodide dye-based membrane integrity assays (RFDMIA), and scanning electron microscopy (SEM). AST findings showed CHXR1, ΔacrB, ΔompCF, and transformants pCA24N-aceI and pCA24N-mlaA conferred greater (two to fourfold) MIC changes when compared to matched controls. Examination of these mutants/transformants using CHX RFDMIA showed that porin dual-deletions (ΔompCF) and mlaA alterations (ΔmlaA; pCA24N-mlaA, CHXR1) were distinguishable from controls. Results for over-expressed (pMS119EH-aceI) and deleted (ΔacrB) efflux pump RFDMIA could not be distinguished with propidium iodide, only with ethidium bromide, suggesting propidium iodide is better suited for detecting porin and mlaA associated CHX resistance mechanisms. SEM of CHXR1 and unadapted E. coli cells exposed to increasing CHX concentrations revealed that CHX does not visibly damage cell envelope integrity at any tested concentration but did identify elongated CHXR1 cells. ΔmlaA confers similar levels of CHX resistance as efflux overexpression and porin deletions, however, only outer membrane-altering porin and mlaA deletions can be reliably distinguished using RFDMIA.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Carmine J Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kieran A Milner
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
14
|
Sun L, Zhang Y, Cai T, Li X, Li N, Xie Z, Yang F, You X. CrrAB regulates PagP-mediated glycerophosphoglycerol palmitoylation in the outer membrane of Klebsiella pneumoniae. J Lipid Res 2022; 63:100251. [PMID: 35841948 PMCID: PMC9403492 DOI: 10.1016/j.jlr.2022.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates CrrAB activation not only stimulates LPS modification, but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly up-regulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species, and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides (CAMP) resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the outer membrane GP contents of K. pneumoniae through upregulation of PagP, which functions along with LPS to form an outer membrane barrier critical for bacterial survival.
Collapse
Affiliation(s)
- Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youwen Zhang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Hu Z, Chin Y, Huang J, Zhou J, Li G, Hu Y, Yuan C, Chen J. Inhibition of citral nanoemulsion to growth, spoilage ability and AI-2/ luxS quorum sensing system of Shewanella putrefaciens CN-32: A study on bacteriostasis from in vitro culture and gene expression analysis. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives
The bacteriostatic effects of a citral nanoemulsion against Shewanella putrefaciens CN-32 (SHP CN-32) were investigated using in vitro culture and gene expression analysis, for building a potential application in spoilage microorganism control and aquatic products quality maintenance.
Materials and Methods
The SHP CN-32 was treated by prepared citral nanoemulsion when the minimal inhibitory concentration (MIC) was verified. The growth curve, membrane integrity, scanning electron microscope (SEM) observation, biofilm formation and quorum sensing (QS) signaling molecule AI-2 content were evaluated in different MIC treatment groups (0 MIC to 1.00 MIC). The gene expression status of SHP CN-32 in 0 MIC group and 0.50 MIC group were compared using transcriptome sequencing and quantitative PCR.
Results
The in vitro culture revealed that the citral nanoemulsion could inhibit the growth of SHP CN-32 with MIC of about 200 μg/ml. Images from membrane integrity, SEM and biofilm formation suggested significant biological structure damage in bacteria after treatment. Meanwhile, the quorum sensing (QS) signaling molecule AI-2 content showed a decline following the rise of treatment concentration. Transcriptome sequencing and quantitative PCR revealed that the majority genes related diversified functional metabolic pathways of SHP CN-32 were down-regulated at varying degree.
Conclusion
A significant bacteriostasis of citral nanoemulsion against Shewanella putrefaciens CN-32 (SHP CN-32) were verified via the results of growth inhibition, structural destruction, signal molecular decrease and gene expression down-regulation of strains. These synergies significantly affect the characteristic expression of SHP CN-32, revealing the application potential as bacteriostat, QS inhibitor and preservative in aquatic products.
Collapse
Affiliation(s)
- Zhiheng Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Yaoxian Chin
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Jiayin Huang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Jiaying Zhou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Gaoshang Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Yaqin Hu
- College of Food Science and Engineering, Hainan Tropical Ocean University; Yazhou Bay Innovation Institute; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda4-3-5 , Morioka 020-8551, Japan
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing , Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou
| |
Collapse
|
16
|
Physicochemical and Theoretical Characterization of a New Small Non-Metal Schiff Base with a Differential Antimicrobial Effect against Gram-Positive Bacteria. Int J Mol Sci 2022; 23:ijms23052553. [PMID: 35269699 PMCID: PMC8910636 DOI: 10.3390/ijms23052553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/17/2022] Open
Abstract
Searching for adequate and effective compounds displaying antimicrobial activities, especially against Gram-positive bacteria, is an important research area due to the high hospitalization and mortality rates of these bacterial infections in both the human and veterinary fields. In this work, we explored (E)-4-amino-3-((3,5-di-tert-butyl-2-hydroxybenzylidene)amino) benzoic acid (SB-1, harboring an intramolecular hydrogen bond) and (E)-2-((4-nitrobenzilidene)amino)aniline (SB-2), two Schiff bases derivatives. Results demonstrated that SB-1 showed an antibacterial activity determined by the minimal inhibitory concentration (MIC) against Staphylococcus aureus, Enterococcus faecalis, and Bacillus cereus (Gram-positive bacteria involved in human and animal diseases such as skin infections, pneumonia, diarrheal syndrome, and urinary tract infections, among others), which was similar to that shown by the classical antibiotic chloramphenicol. By contrast, this compound showed no effect against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, and Salmonella enterica). Furthermore, we provide a comprehensive physicochemical and theoretical characterization of SB-1 (as well as several analyses for SB-2), including elemental analysis, ESMS, 1H and 13C NMR (assigned by 1D and 2D techniques), DEPT, UV-Vis, FTIR, and cyclic voltammetry. We also performed a computational study through the DFT theory level, including geometry optimization, TD-DFT, NBO, and global and local reactivity analyses.
Collapse
|
17
|
Mandela E, Stubenrauch CJ, Ryoo D, Hwang H, Cohen EJ, Torres VVL, Deo P, Webb CT, Huang C, Schittenhelm RB, Beeby M, Gumbart JC, Lithgow T, Hay ID. Adaptation of the periplasm to maintain spatial constraints essential for cell envelope processes and cell viability. eLife 2022; 11:73516. [PMID: 35084330 PMCID: PMC8824477 DOI: 10.7554/elife.73516] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
The cell envelope of Gram-negative bacteria consists of two membranes surrounding a periplasm and peptidoglycan layer. Molecular machines spanning the cell envelope depend on spatial constraints and load-bearing forces across the cell envelope and surface. The mechanisms dictating spatial constraints across the cell envelope remain incompletely defined. In Escherichia coli, the coiled-coil lipoprotein Lpp contributes the only covalent linkage between the outer membrane and the underlying peptidoglycan layer. Using proteomics, molecular dynamics, and a synthetic lethal screen, we show that lengthening Lpp to the upper limit does not change the spatial constraint but is accommodated by other factors which thereby become essential for viability. Our findings demonstrate E. coli expressing elongated Lpp does not simply enlarge the periplasm in response, but the bacteria accommodate by a combination of tilting Lpp and reducing the amount of the covalent bridge. By genetic screening, we identified all of the genes in E. coli that become essential in order to enact this adaptation, and by quantitative proteomics discovered that very few proteins need to be up- or down-regulated in steady-state levels in order to accommodate the longer Lpp. We observed increased levels of factors determining cell stiffness, a decrease in membrane integrity, an increased membrane vesiculation and a dependance on otherwise non-essential tethers to maintain lipid transport and peptidoglycan biosynthesis. Further this has implications for understanding how spatial constraint across the envelope controls processes such as flagellum-driven motility, cellular signaling, and protein translocation
Collapse
Affiliation(s)
- Eric Mandela
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | | | - David Ryoo
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Eli J Cohen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Pankaj Deo
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Chaille T Webb
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Morgan Beeby
- Department of Life Sciencesa, Imperial College London, London, United Kingdom
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, United States
| | - Trevor Lithgow
- Department of Microbiology, Monash University, Melbourne, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
18
|
Tan WB, Chng SS. Genetic interaction mapping highlights key roles of the Tol-Pal complex. Mol Microbiol 2022; 117:921-936. [PMID: 35066953 DOI: 10.1111/mmi.14882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
The conserved Tol-Pal trans-envelope complex is important for outer membrane (OM) stability and cell division in Gram-negative bacteria. It is proposed to mediate OM constriction during cell division via cell wall tethering. Yet, recent studies suggest the complex has additional roles in OM lipid homeostasis and septal wall separation. How Tol-Pal facilitates all these processes is unclear. To gain insights into its function(s), we applied transposon-insertion sequencing, and report here a detailed network of genetic interactions with the tol-pal locus in Escherichia coli. We found one positive and >20 negative strong interactions based on fitness. Disruption osmoregulated-periplasmic glucan biosynthesis restores fitness and OM barrier function, but not proper division, in tol-pal mutants. In contrast, deleting genes involved in OM homeostasis and cell wall remodeling cause synthetic growth defects in strains lacking Tol-Pal, especially exacerbating OM barrier and/or division phenotypes. Notably, the ΔtolA mutant having additional defects in OM protein assembly (ΔbamB) exhibited severe division phenotypes, even when single mutants divided normally; this highlights the possibility for OM phenotypes to indirectly impact cell division. Overall, our work underscores the intricate nature of Tol-Pal function, and reinforces its key roles in cell wall-OM tethering, cell wall remodeling, and in particular, OM homeostasis.
Collapse
Affiliation(s)
- Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore
| |
Collapse
|
19
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
20
|
Frozen motion: how cryo-EM changes the way we look at ABC transporters. Trends Biochem Sci 2021; 47:136-148. [PMID: 34930672 DOI: 10.1016/j.tibs.2021.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
ATP-binding cassette (ABC) transporters are widely present molecular machines that transfer substrates across the cell membrane. ABC transporters are involved in numerous physiological processes and are often clinical targets. Structural biology is fundamental to obtain the molecular details underlying ABC transporter function and suggest approaches to modulate it. Until recently, X-ray crystallography has been the only method capable of providing high-resolution structures of ABC transporters. However, modern cryo-electron microscopy (cryo-EM) opens entirely new ways of studying these dynamic membrane proteins. Cryo-EM enables analyses of targets that resist X-ray crystallography, challenging multicomponent complexes, and the exploration of conformational dynamics. These unique capacities have turned cryo-EM into the dominant technique for structural studies of membrane proteins, including ABC transporters.
Collapse
|
21
|
ATP disrupts lipid-binding equilibrium to drive retrograde transport critical for bacterial outer membrane asymmetry. Proc Natl Acad Sci U S A 2021; 118:2110055118. [PMID: 34873038 DOI: 10.1073/pnas.2110055118] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
The hallmark of the gram-negative bacterial envelope is the presence of the outer membrane (OM). The OM is asymmetric, comprising lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet; this critical feature confers permeability barrier function against external insults, including antibiotics. To maintain OM lipid asymmetry, the OmpC-Mla system is believed to remove aberrantly localized PLs from the OM and transport them to the inner membrane (IM). Key to the system in driving lipid trafficking is the MlaFEDB ATP-binding cassette transporter complex in the IM, but mechanistic details, including transport directionality, remain enigmatic. Here, we develop a sensitive point-to-point in vitro lipid transfer assay that allows direct tracking of [14C]-labeled PLs between the periplasmic chaperone MlaC and MlaFEDB reconstituted into nanodiscs. We reveal that MlaC spontaneously transfers PLs to the IM transporter in an MlaD-dependent manner that can be further enhanced by coupled ATP hydrolysis. In addition, we show that MlaD is important for modulating productive coupling between ATP hydrolysis and such retrograde PL transfer. We further demonstrate that spontaneous PL transfer also occurs from MlaFEDB to MlaC, but such anterograde movement is instead abolished by ATP hydrolysis. Our work uncovers a model where PLs reversibly partition between two lipid-binding sites in MlaC and MlaFEDB, and ATP binding and/or hydrolysis shift this equilibrium to ultimately drive retrograde PL transport by the OmpC-Mla system. These mechanistic insights will inform future efforts toward discovering new antibiotics against gram-negative pathogens.
Collapse
|
22
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
23
|
YhdP, TamB, and YdbH Are Redundant but Essential for Growth and Lipid Homeostasis of the Gram-Negative Outer Membrane. mBio 2021; 12:e0271421. [PMID: 34781743 PMCID: PMC8593681 DOI: 10.1128/mbio.02714-21] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial cell envelope is the first line of defense and point of contact with the environment and other organisms. Envelope biogenesis is therefore crucial for the survival and physiology of bacteria and is often targeted by antimicrobials. Gram-negative bacteria have a multilayered envelope delimited by an inner and outer membrane (IM and OM, respectively). The OM is a barrier against many antimicrobials because of its asymmetric lipid structure, with phospholipids composing the inner leaflet and lipopolysaccharides (LPS) the outer leaflet. Since lipid synthesis occurs at the IM, phospholipids and LPS are transported across the cell envelope and asymmetrically assembled at the OM during growth. How phospholipids are transported to the OM remains unknown. Recently, the Escherichia coli protein YhdP has been proposed to participate in this process through an unknown mechanism. YhdP belongs to the AsmA-like clan and contains domains homologous to those found in lipid transporters. Here, we used genetics to investigate the six members of the AsmA-like clan of proteins in E. coli. Our data show that YhdP and its paralogs TamB and YdbH are redundant, but not equivalent, in performing an essential function in the cell envelope. Among the AsmA-like paralogs, only the combined loss of YhdP, TamB, and YdbH is lethal, and any of these three proteins is sufficient for growth. We also show that these proteins are required for OM lipid homeostasis and propose that they are the long-sought-after phospholipid transporters that are required for OM biogenesis.
Collapse
|
24
|
Conserved tandem arginines for PbgA/YejM allow Salmonella Typhimurium to regulate LpxC and control lipopolysaccharide biogenesis during infection. Infect Immun 2021; 90:e0049021. [PMID: 34780276 DOI: 10.1128/iai.00490-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterobacteriaceae use the periplasmic domain of the conserved inner membrane protein, PbgA/YejM, to regulate lipopolysaccharide (LPS) biogenesis. Salmonella enterica serovar Typhimurium (S. Typhimurium) relies on PbgA to cause systemic disease in mice and this involves functional interactions with LapB/YciM, FtsH, and LpxC. Escherichia coli PbgA interacts with LapB, an adaptor for the FtsH protease, via the transmembrane segments. LapB and FtsH control proteolysis of LpxC, the rate-limiting LPS biosynthesis enzyme. Lipid A-core, the hydrophobic anchor of LPS molecules, co-crystallizes with PbgA and interacts with residues in the basic region. The model predicts that PbgA-LapB detects periplasmic LPS molecules and prompts FtsH to degrade LpxC. However, the key residues and critical interactions are not defined. We establish that S. Typhimurium uses PbgA to regulate LpxC and define the contribution of two pairs of arginines within the basic region. PbgA R215 R216 form contacts with lipid A-core in the structure and R231 R232 exist in an adjacent alpha helix. PbgA R215 R216 are necessary for S. Typhimurium to regulate LpxC, control lipid-A core biogenesis, promote survival in macrophages, and enhance virulence in mice. In contrast, PbgA R231 R232 are not necessary to regulate LpxC or to control lipid A-core levels, nor are they necessary to promote survival in macrophages or mice. However, residues R231 R232 are critical for infection lethality, and the persistent infection phenotype requires mouse Toll-like receptor four, which detects lipid A. Therefore, S. Typhimurium relies on PbgA's tandem arginines for multiple interconnected mechanisms of LPS regulation that enhance pathogenesis.
Collapse
|
25
|
He Q, Liu Y, Liu D, Guo M. Integration of transcriptomic and proteomic approaches unveils the molecular mechanism of membrane disintegration in Escherichia coli O157:H7 with ultrasonic treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148366. [PMID: 34139494 DOI: 10.1016/j.scitotenv.2021.148366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Ultrasonic disinfection in wastewater treatment has been studied for years at the phenotypic level, while the understanding of the molecular inactivation mechanism is still not clear. Here, the responses of Escherichia coli O157:H7 to ultrasound treatment were investigated using RNA sequencing (RNA-Seq) and tandem mass tags (TMT) based quantitative proteomics methods. The analyses revealed that 770 genes and 201 proteins were significantly changed upon ultrasound treatment. Moreover, the integrated transcriptomic and proteomic analyses uncovered a set of 59 genes or proteins were differentially expressed in ultrasound-treated cells, providing an overview of the cellular responses to ultrasonic field. According to the bioinformatic analyses, genes and proteins that may be involved in lipid asymmetry preservation and outer membrane homeostasis maintenance (including phospholipid metabolism, lipopolysaccharide biosynthesis and transport, and fatty acid metabolism) were specifically up-regulated. Therefore, we proposed that the metabolism disorder of cellular membrane lipids (lipopolysaccharide, phospholipid, and fatty acid included) was one of the main challenges for the bacteria upon ultrasonic stress. In this study, we initially proposed a novel mechanism regarding the ultrasound-induced membrane disintegration from a multi-omics perspective, which may present an important step toward deciphering the molecular inactivation mechanism of ultrasonic field and provide a theoretical foundation for the application of ultrasound technology for the control of waterborne pathogens.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Liu
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
26
|
Carim S, Azadeh AL, Kazakov AE, Price MN, Walian PJ, Lui LM, Nielsen TN, Chakraborty R, Deutschbauer AM, Mutalik VK, Arkin AP. Systematic discovery of pseudomonad genetic factors involved in sensitivity to tailocins. THE ISME JOURNAL 2021; 15:2289-2305. [PMID: 33649553 PMCID: PMC8319346 DOI: 10.1038/s41396-021-00921-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/14/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Tailocins are bactericidal protein complexes produced by a wide variety of bacteria that kill closely related strains and may play a role in microbial community structure. Thanks to their high specificity, tailocins have been proposed as precision antibacterial agents for therapeutic applications. Compared to tailed phages, with whom they share an evolutionary and morphological relationship, bacterially produced tailocins kill their host upon production but producing strains display resistance to self-intoxication. Though lipopolysaccharide (LPS) has been shown to act as a receptor for tailocins, the breadth of factors involved in tailocin sensitivity, and the mechanisms behind resistance to self-intoxication, remain unclear. Here, we employed genome-wide screens in four non-model pseudomonads to identify mutants with altered fitness in the presence of tailocins produced by closely related pseudomonads. Our mutant screens identified O-antigen composition and display as most important in defining sensitivity to our tailocins. In addition, the screens suggest LPS thinning as a mechanism by which resistant strains can become more sensitive to tailocins. We validate many of these novel findings, and extend these observations of tailocin sensitivity to 130 genome-sequenced pseudomonads. This work offers insights into tailocin-bacteria interactions, informing the potential use of tailocins in microbiome manipulation and antibacterial therapy.
Collapse
Affiliation(s)
- Sean Carim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ashley L Azadeh
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Alexey E Kazakov
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Morgan N Price
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lauren M Lui
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Torben N Nielsen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Romy Chakraborty
- Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek K Mutalik
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Adam P Arkin
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
27
|
Kong Q, Pan W, Xu H, Xue Y, Guo B, Meng X, Luo C, Wang T, Zhang S, Yang Y. Design, Synthesis, and Biological Evaluation of Novel Pyrimido[4,5- b]indole Derivatives Against Gram-Negative Multidrug-Resistant Pathogens. J Med Chem 2021; 64:8644-8665. [PMID: 34080858 DOI: 10.1021/acs.jmedchem.1c00621] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Due to the poor permeability across Gram-negative bacterial membranes and the troublesome bacterial efflux mechanism, only a few GyrB/ParE inhibitors with potent activity against Gram-negative pathogens have been reported. Among them, pyrimido[4,5-b]indole derivatives represented by GP-1 demonstrated excellent broad-spectrum antibacterial activity against both Gram-positive and Gram-negative bacteria but were limited by hERG inhibition and poor pharmacokinetics profile. To improve their drug-like properties, we designed a series of novel pyrimido[4,5-b]indole derivatives based on the tricyclic scaffold of GP-1 and the C-7 moiety of acorafloxacin. These efforts have culminated in the discovery of a promising compound 18r with reduced hERG liability and an improved PK profile. Compound 18r exhibited superior broad-spectrum in vitro antibacterial activity compared to GP-1, including a variety of clinical multidrug G- pathogens, especially Acinetobacter baumannii, and the in vivo efficacy was also demonstrated in a neutropenic mouse thigh model of infection with multidrug-resistant A. baumannii.
Collapse
Affiliation(s)
- Qidi Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Pan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Heng Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yaru Xue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bin Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ting Wang
- Department of Microbiology, Sichuan Primed Bio-Tech Group Company, Limited, Chengdu 610041, Sichuan Province, China
| | - Shuhua Zhang
- Department of Microbiology, Sichuan Primed Bio-Tech Group Company, Limited, Chengdu 610041, Sichuan Province, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
28
|
Abstract
The outer membrane of Gram-negative bacteria is essential for their survival in harsh environments and provides intrinsic resistance to many antibiotics. This membrane is remarkable; it is a highly asymmetric lipid bilayer. The inner leaflet of the outer membrane contains phospholipids, whereas the fatty acyl chains attached to lipopolysaccharide (LPS) comprise the hydrophobic portion of the outer leaflet. This lipid asymmetry, and in particular the exclusion of phospholipids from the outer leaflet, is key to creating an almost impenetrable barrier to hydrophobic molecules that can otherwise pass through phospholipid bilayers. It has long been known that these lipids are not made in the outer membrane. It is now believed that conserved multisubunit protein machines extract these lipids after their synthesis is completed at the inner membrane and transport them to the outer membrane. A longstanding question is how the cell builds and maintains this asymmetric lipid bilayer in coordination with the assembly of the other components of the cell envelope. This Review describes the trans-envelope lipid transport systems that have been identified to participate in outer-membrane biogenesis: LPS transport via the Lpt machine, and phospholipid transport via the Mla pathway and several recently proposed transporters.
Collapse
Affiliation(s)
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
29
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Zhou C, Shi H, Zhang M, Zhou L, Xiao L, Feng S, Im W, Zhou M, Zhang X, Huang Y. Structural Insight into Phospholipid Transport by the MlaFEBD Complex from P. aeruginosa. J Mol Biol 2021; 433:166986. [PMID: 33845086 DOI: 10.1016/j.jmb.2021.166986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/27/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria, which consists of lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet, plays a key role in antibiotic resistance and pathogen virulence. The maintenance of lipid asymmetry (Mla) pathway is known to be involved in PL transport and contributes to the lipid homeostasis of the OM, yet the underlying molecular mechanism and the directionality of PL transport in this pathway remain elusive. Here, we reported the cryo-EM structures of the ATP-binding cassette (ABC) transporter MlaFEBD from P. areuginosa, the core complex in the Mla pathway, in nucleotide-free (apo)-, ADP (ATP + vanadate)- and ATP (AMPPNP)-bound states as well as the structures of MlaFEB from E. coli in apo- and AMPPNP-bound states at a resolution range of 3.4-3.9 Å. The structures show that the MlaFEBD complex contains a total of twelve protein molecules with a stoichiometry of MlaF2E2B2D6, and binds a plethora of PLs at different locations. In contrast to canonical ABC transporters, nucleotide binding fails to trigger significant conformational changes of both MlaFEBD and MlaFEB in the nucleotide-binding and transmembrane domains of the ABC transporter, correlated with their low ATPase activities exhibited in both detergent micelles and lipid nanodiscs. Intriguingly, PLs or detergents appeared to relocate to the membrane-proximal end from the distal end of the hydrophobic tunnel formed by the MlaD hexamer in MlaFEBD upon addition of ATP, indicating that retrograde PL transport might occur in the tunnel in an ATP-dependent manner. Site-specific photocrosslinking experiment confirms that the substrate-binding pocket in the dimeric MlaE and the MlaD hexamer are able to bind PLs in vitro, in line with the notion that MlaFEBD complex functions as a PL transporter.
Collapse
Affiliation(s)
- Changping Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Huigang Shi
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Manfeng Zhang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China
| | - Le Xiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China
| | - Shasha Feng
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, PA 18015, USA
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiao Ling Wei Street, Nanjing 210094, China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| | - Yihua Huang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing100101, China.
| |
Collapse
|
31
|
Mass spectrometry informs the structure and dynamics of membrane proteins involved in lipid and drug transport. Curr Opin Struct Biol 2021; 70:53-60. [PMID: 33964676 DOI: 10.1016/j.sbi.2021.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Membrane proteins are important macromolecules that play crucial roles in many cellular and physiological processes. Over the past two decades, the use of mass spectrometry as a biophysical tool to characterise membrane proteins has grown steadily. By capturing these dynamic complexes in the gas phase, many unknown small molecule interactions have been revealed. One particular application of this research has been the focus on antibiotic resistance with considerable efforts being made to understand underlying mechanisms. Here we review recent advances in the application of mass spectrometry that have yielded both structural and dynamic information on the interactions of antibiotics with proteins involved in bacterial cell envelope biogenesis and drug efflux.
Collapse
|
32
|
Evidence for the Mycobacterial Mce4 Transporter Being a Multiprotein Complex. J Bacteriol 2021; 203:JB.00685-20. [PMID: 33649150 DOI: 10.1128/jb.00685-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mycobacteria possess Mce transporters that import lipids and are thought to function analogously to ATP-binding cassette (ABC) transporters. However, whereas ABC transporters import substrates using a single solute-binding protein (SBP) to deliver a substrate to permease proteins in the membrane, mycobacterial Mce transporters have a potential for six SBPs (MceA to MceF) working with a pair of permeases (YrbEA and YrbEB), a cytoplasmic ATPase (MceG), and multiple Mce-associated membrane (Mam) and orphaned Mam (Omam) proteins to transport lipids. In this study, we used the model mycobacterium Mycobacterium smegmatis to study the requirement for individual Mce, Mam, and Omam proteins in Mce4 transport of cholesterol. All of the Mce4 and Mam4 proteins we investigated were required for cholesterol uptake. However, not all Omam proteins, which are encoded by genes outside mce loci, proved to contribute to cholesterol import. OmamA and OmamB were required for cholesterol import, while OmamC, OmamD, OmamE, and OmamF were not. In the absence of any single Mce4, Mam4, or Omam protein that we tested, the abundance of Mce4A and Mce4E declined. This relationship between the levels of Mce4A and Mce4E and these additional proteins suggests a network of interactions that assemble and/or stabilize a multiprotein Mce4 transporter complex. Further support for Mce transporters being multiprotein complexes was obtained by immunoprecipitation-mass spectrometry, in which we identified every single Mce, YrbE, MceG, Mam, and Omam protein with a role in cholesterol transport as associating with Mce4A. This study represents the first time any of these Mce4 transporter proteins has been shown to associate.IMPORTANCE How lipids travel between membranes of diderm bacteria is a challenging mechanistic question because lipids, which are hydrophobic molecules, must traverse a hydrophilic periplasm. This question is even more complex for mycobacteria, which have a unique cell envelope that is highly impermeable to molecules. A growing body of knowledge identifies Mce transporters as lipid importers for mycobacteria. Here, using protein stability experiments and immunoprecipitation-mass spectrometry, we provide evidence for mycobacterial Mce transporters existing as multiprotein complexes.
Collapse
|
33
|
Avila-Calderón ED, Ruiz-Palma MDS, Aguilera-Arreola MG, Velázquez-Guadarrama N, Ruiz EA, Gomez-Lunar Z, Witonsky S, Contreras-Rodríguez A. Outer Membrane Vesicles of Gram-Negative Bacteria: An Outlook on Biogenesis. Front Microbiol 2021; 12:557902. [PMID: 33746909 PMCID: PMC7969528 DOI: 10.3389/fmicb.2021.557902] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
Outer membrane vesicles (OMVs) from Gram-negative bacteria were first described more than 50 years ago. However, the molecular mechanisms involved in biogenesis began to be studied only in the last few decades. Presently, the biogenesis and molecular mechanisms for their release are not completely known. This review covers the most recent information on cellular components involved in OMV biogenesis, such as lipoproteins and outer membrane proteins, lipopolysaccharide, phospholipids, quorum-sensing molecules, and flagella.
Collapse
Affiliation(s)
- Eric Daniel Avila-Calderón
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, CINVESTAV-IPN, México City, Mexico
| | - María Del Socorro Ruiz-Palma
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,División Químico Biológicas, Universidad Tecnológica de Tecámac, Tecámac, Mexico
| | - Ma Guadalupe Aguilera-Arreola
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Norma Velázquez-Guadarrama
- Unidad de Investigación en enfermedades infecciosas, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico
| | - Enrico A Ruiz
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Zulema Gomez-Lunar
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Sharon Witonsky
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Araceli Contreras-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
34
|
Comparative transcriptomic study of Escherichia coli O157:H7 in response to ohmic heating and conventional heating. Food Res Int 2021; 140:109989. [PMID: 33648224 DOI: 10.1016/j.foodres.2020.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/29/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022]
Abstract
In this study, the high-throughput Illumina HiSeq 2000 mRNA sequencing technique was used to investigate the transcriptome response of Escherichia coli O157:H7 exposed to ohmic heating (OH) and water bath heating (WB). Compared to untreated samples, a total of 293, 516, and 498 genes showed differential expression after HVOH (high voltage short time ohmic heating), LVOH (low voltage long time ohmic heating), and WB, respectively. Therefore, LVOH had the potential to cause comparable effects on the transcriptome of E. coli O157:H7 as compared to WB, but not HVOH. These results indicated that additional non-thermal effects were not reflected on transcriptome of E. coli O157:H7 using both HVOH and LVOH, in particular the HVOH. Most of differentially expressed genes involved in information storage and processing, and cellular processes and signaling showed up-regulation whereas most of genes related to the metabolism were down-regulated after HVOH, LVOH, and WB. In addition, more attention needs to be paid to the up-regulation of a large number of virulence genes, which might increase the ability of surviving E. coli O157:H7 to infect host cells after HVOH, LVOH, and WB. This transcriptomic study on the response of E. coli O157:H7 to OH protomes the understanding of inactivation mechanism of OH on the molecular level and opens the door to future studies for OH.
Collapse
|
35
|
Szczepaniak J, Press C, Kleanthous C. The multifarious roles of Tol-Pal in Gram-negative bacteria. FEMS Microbiol Rev 2021; 44:490-506. [PMID: 32472934 PMCID: PMC7391070 DOI: 10.1093/femsre/fuaa018] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
In the 1960s several groups reported the isolation and preliminary genetic mapping of
Escherichia coli strains tolerant towards the
action of colicins. These pioneering studies kick-started two new fields in bacteriology;
one centred on how bacteriocins like colicins exploit the Tol (or more commonly Tol-Pal)
system to kill bacteria, the other on the physiological role of this cell
envelope-spanning assembly. The following half century has seen significant advances in
the first of these fields whereas the second has remained elusive, until recently. Here,
we review work that begins to shed light on Tol-Pal function in Gram-negative bacteria.
What emerges from these studies is that Tol-Pal is an energised system with fundamental,
interlinked roles in cell division – coordinating the re-structuring of peptidoglycan at
division sites and stabilising the connection between the outer membrane and underlying
cell wall. This latter role is achieved by Tol-Pal exploiting the proton motive force to
catalyse the accumulation of the outer membrane peptidoglycan associated lipoprotein Pal
at division sites while simultaneously mobilising Pal molecules from around the cell.
These studies begin to explain the diverse phenotypic outcomes of tol-pal
mutations, point to other cell envelope roles Tol-Pal may have and raise many new
questions.
Collapse
Affiliation(s)
- Joanna Szczepaniak
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Cara Press
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| | - Colin Kleanthous
- Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
36
|
Wilson A, Ruiz N. Transport of lipopolysaccharides and phospholipids to the outer membrane. Curr Opin Microbiol 2021; 60:51-57. [PMID: 33601322 DOI: 10.1016/j.mib.2021.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022]
Abstract
Cells must build and maintain at least one membrane that surrounds essential cellular components and provides structural integrity. Gram-negative bacteria possess an inner membrane, which separates the aqueous cytoplasmic and periplasmic compartments, and an outer membrane, which surrounds the periplasm. The outer membrane is an asymmetric bilayer with phospholipids in its inner leaflet and lipopolysaccharides in its outer leaflet. This structure provides cellular integrity and prevents the entry of many toxic compounds into the cell. Constructing the outer membrane is challenging, since its lipid constituents must be synthesized within the inner membrane, transported across the periplasm, and ultimately assembled into an asymmetric structure. This review highlights major recent advances in our understanding of the mechanism and structure of the intermembrane, multi-protein machine that transports lipopolysaccharide across the cell envelope. Although our understanding of phospholipid transport is very limited, we also provide a brief update on this topic.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Kong Q, Yang Y. Recent advances in antibacterial agents. Bioorg Med Chem Lett 2021; 35:127799. [PMID: 33476772 DOI: 10.1016/j.bmcl.2021.127799] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is a global challenge and the effectiveness of old antibiotics is decreasing. Discovery and development of antibacterial agents have been accelerated to replenish the arsenal of antibiotics which is limited and shrinking. In recent years, significant advances have achieved in the antibacterial area, including new compounds of known classes and new compounds with new mechanisms. This review summarizes these advances and provides perspective on future directions of antibacterial agents.
Collapse
Affiliation(s)
- Qidi Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing 100049, China.
| |
Collapse
|
38
|
Coudray N, Isom GL, MacRae MR, Saiduddin MN, Bhabha G, Ekiert DC. Structure of bacterial phospholipid transporter MlaFEDB with substrate bound. eLife 2020; 9:e62518. [PMID: 33236984 PMCID: PMC7790496 DOI: 10.7554/elife.62518] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
In double-membraned bacteria, phospholipid transport across the cell envelope is critical to maintain the outer membrane barrier, which plays a key role in virulence and antibiotic resistance. An MCE transport system called Mla has been implicated in phospholipid trafficking and outer membrane integrity, and includes an ABC transporter, MlaFEDB. The transmembrane subunit, MlaE, has minimal sequence similarity to other transporters, and the structure of the entire inner-membrane MlaFEDB complex remains unknown. Here, we report the cryo-EM structure of MlaFEDB at 3.05 Å resolution, revealing distant relationships to the LPS and MacAB transporters, as well as the eukaryotic ABCA/ABCG families. A continuous transport pathway extends from the MlaE substrate-binding site, through the channel of MlaD, and into the periplasm. Unexpectedly, two phospholipids are bound to MlaFEDB, suggesting that multiple lipid substrates may be transported each cycle. Our structure provides mechanistic insight into substrate recognition and transport by MlaFEDB.
Collapse
Affiliation(s)
- Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Applied Bioinformatics Laboratories, New York University School of MedicineNew YorkUnited States
| | - Georgia L Isom
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Mark R MacRae
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Mariyah N Saiduddin
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of MedicineNew YorkUnited States
- Department of Microbiology, New York University School of MedicineNew YorkUnited States
| |
Collapse
|
39
|
Veith PD, Gorasia DG, Reynolds EC. Towards defining the outer membrane proteome of Porphyromonas gingivalis. Mol Oral Microbiol 2020; 36:25-36. [PMID: 33124778 DOI: 10.1111/omi.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/18/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic pathogen found in subgingival plaque associated with progressive periodontitis. Proteins associated with the outer membrane (OM) of Gram-negative pathogens are particularly important for understanding virulence and for developing vaccines. The aim of this study was to establish a reliable list of outer membrane associated proteins (Omps) for this organism. Starting with a list of 99 experimentally determined Omps, several bioinformatics tools were used to predict a further 52 proteins, leading to a predicted OM proteome of 151 proteins. The tools used included databases of protein families, prediction of OM β-barrels and structural homology. The list includes 33 T9SS cargo proteins, 43 lipoproteins and 66 OM β-barrel proteins with some overlap between categories. The proteins are discussed both in these structural categories as well as their various functions in OM biogenesis, nutrient acquisition, protein secretion, adhesion and efflux. Proteins that were previously shown to be part of large complexes are highlighted and cross reference is provided to a previous major study of protein localization in P. gingivalis. Finally, proteins were also scored according to their level of conservation within the Bacteroidales taxon. Low scores were shown to correlate with virulence factors and may be predictive of novel virulence factors.
Collapse
Affiliation(s)
- Paul D Veith
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Dhana G Gorasia
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:E623. [PMID: 32961699 PMCID: PMC7558195 DOI: 10.3390/antibiotics9090623] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.
Collapse
Affiliation(s)
- Rachael E. Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - Daniel A. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - J. Mark Sutton
- National Infection Service, Research and Development Institute, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK;
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| |
Collapse
|
41
|
Palmer LD, Minor KE, Mettlach JA, Rivera ES, Boyd KL, Caprioli RM, Spraggins JM, Dalebroux ZD, Skaar EP. Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress. Cell Rep 2020; 32:108129. [PMID: 32905776 PMCID: PMC7519801 DOI: 10.1016/j.celrep.2020.108129] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of ventilator-associated pneumonia and a critical threat due to multidrug resistance. The A. baumannii outer membrane is an asymmetric lipid bilayer composed of inner leaflet glycerophospholipids and outer leaflet lipooligosaccharides. Deleting mlaF of the maintenance of lipid asymmetry (Mla) system causes A. baumannii to become more susceptible to pulmonary surfactants and antibiotics and decreases bacterial survival in the lungs of mice. Spontaneous suppressor mutants isolated from infected mice contain an ISAba11 insertion upstream of the ispB initiation codon, an essential isoprenoid biosynthesis gene. The insertion restores antimicrobial resistance and virulence to ΔmlaF. The suppressor strain increases lipooligosaccharides, suggesting that the mechanism involves balancing the glycerophospholipids/lipooligosaccharides ratio on the bacterial surface. An identical insertion exists in an extensively drug-resistant A. baumannii isolate, demonstrating its clinical relevance. These data show that the stresses bacteria encounter during infection select for genomic rearrangements that increase resistance to antimicrobials.
Collapse
Affiliation(s)
- Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Keaton E Minor
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joshua A Mettlach
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Emilio S Rivera
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Richard M Caprioli
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffrey M Spraggins
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary D Dalebroux
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
42
|
Chi X, Fan Q, Zhang Y, Liang K, Wan L, Zhou Q, Li Y. Structural mechanism of phospholipids translocation by MlaFEDB complex. Cell Res 2020; 30:1127-1135. [PMID: 32884137 PMCID: PMC7784689 DOI: 10.1038/s41422-020-00404-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
In Gram-negative bacteria, phospholipids are major components of the inner membrane and the inner leaflet of the outer membrane, playing an essential role in forming the unique dual-membrane barrier to exclude the entry of most antibiotics. Understanding the mechanisms of phospholipid translocation between the inner and outer membrane represents one of the major challenges surrounding bacterial phospholipid homeostasis. The conserved MlaFEDB complex in the inner membrane functions as an ABC transporter to drive the translocation of phospholipids between the inner membrane and the periplasmic protein MlaC. However, the mechanism of phospholipid translocation remains elusive. Here we determined three cryo-EM structures of MlaFEDB from Escherichia coli in its nucleotide-free and ATP-bound conformations, and performed extensive functional studies to verify and extend our findings from structural analyses. Our work reveals unique structural features of the entire MlaFEDB complex, six well-resolved phospholipids in three distinct cavities, and large-scale conformational changes upon ATP binding. Together, these findings define the cycle of structural rearrangement of MlaFEDB in action, and suggest that MlaFEDB uses an extrusion mechanism to extract and release phospholipids through the central translocation cavity.
Collapse
Affiliation(s)
- Ximin Chi
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qiongxuan Fan
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yuanyuan Zhang
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ke Liang
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Li Wan
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Qiang Zhou
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| | - Yanyan Li
- Center for Infectious Disease Research, Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
43
|
Dadhich R, Kapoor S. Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. J Membr Biol 2020; 253:399-423. [PMID: 32833058 PMCID: PMC7443855 DOI: 10.1007/s00232-020-00135-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
Lipids form an integral, structural, and functional part of all life forms. They play a significant role in various cellular processes such as membrane fusion, fission, endocytosis, protein trafficking, and protein functions. Interestingly, recent studies have revealed their more impactful and critical involvement in infectious diseases, starting with the manipulation of the host membrane to facilitate pathogenic entry. Thereafter, pathogens recruit specific host lipids for the maintenance of favorable intracellular niche to augment their survival and proliferation. In this review, we showcase the lipid-mediated host pathogen interplay in context of life-threatening viral and bacterial diseases including the recent SARS-CoV-2 infection. We evaluate the emergent lipid-centric approaches adopted by these pathogens, while delineating the alterations in the composition and organization of the cell membrane within the host, as well as the pathogen. Lastly, crucial nexus points in their interaction landscape for therapeutic interventions are identified. Lipids act as critical determinants of bacterial and viral pathogenesis by altering the host cell membrane structure and functions.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
- Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
44
|
Jiang X, Tan WB, Shrivastava R, Seow DCS, Chen SL, Guan XL, Chng SS. Mutations in enterobacterial common antigen biosynthesis restore outer membrane barrier function in Escherichia coli tol-pal mutants. Mol Microbiol 2020; 114:991-1005. [PMID: 32808719 DOI: 10.1111/mmi.14590] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/12/2020] [Indexed: 12/27/2022]
Abstract
The outer membrane (OM) is an essential component of the Gram-negative bacterial envelope that protects the cells against external threats. To maintain a functional OM, cells require distinct mechanisms to ensure balance of proteins and lipids in the membrane. Mutations in OM biogenesis and/or homeostasis pathways often result in permeability defects, but how molecular changes in the OM affect barrier function is unclear. Here, we seek potential mechanism(s) that can alleviate permeability defects in Escherichia coli cells lacking the Tol-Pal complex, which accumulate excess PLs in the OM. We identify mutations in enterobacterial common antigen (ECA) biosynthesis that re-establish OM barrier function against large hydrophilic molecules, yet did not restore lipid homeostasis. Furthermore, we demonstrate that build-up of biosynthetic intermediates, but not loss of ECA itself, contributes to the rescue. This suppression of OM phenotypes is unrelated to known effects that accumulation of ECA intermediates have on the cell wall. Finally, we reveal that an unusual diacylglycerol pyrophosphoryl-linked lipid species also accumulates in ECA mutants, and might play a role in the rescue phenotype. Our work provides insights into how OM barrier function can be restored independent of lipid homeostasis, and highlights previously unappreciated effects of ECA-related species in OM biology.
Collapse
Affiliation(s)
- Xiang'Er Jiang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Wee Boon Tan
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore
| | - Rahul Shrivastava
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Deborah Chwee San Seow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Swaine Lin Chen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, Singapore
| |
Collapse
|
45
|
Clairfeuille T, Buchholz KR, Li Q, Verschueren E, Liu P, Sangaraju D, Park S, Noland CL, Storek KM, Nickerson NN, Martin L, Dela Vega T, Miu A, Reeder J, Ruiz-Gonzalez M, Swem D, Han G, DePonte DP, Hunter MS, Gati C, Shahidi-Latham S, Xu M, Skelton N, Sellers BD, Skippington E, Sandoval W, Hanan EJ, Payandeh J, Rutherford ST. Structure of the essential inner membrane lipopolysaccharide-PbgA complex. Nature 2020; 584:479-483. [PMID: 32788728 DOI: 10.1038/s41586-020-2597-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6-9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10-12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery.
Collapse
Affiliation(s)
| | - Kerry R Buchholz
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Qingling Li
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Erik Verschueren
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Peter Liu
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Dewakar Sangaraju
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA, USA
| | - Summer Park
- Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Cameron L Noland
- Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Kelly M Storek
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | | | - Lynn Martin
- BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Trisha Dela Vega
- BioMolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Anh Miu
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Janina Reeder
- Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA
| | - Maria Ruiz-Gonzalez
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Danielle Swem
- Infectious Diseases, Genentech Inc., South San Francisco, CA, USA
| | - Guanghui Han
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Daniel P DePonte
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Cornelius Gati
- Bioscience Division, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Stanford University, Department of Structural Biology, Stanford, CA, USA
| | | | - Min Xu
- Translational Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas Skelton
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Benjamin D Sellers
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA
| | - Elizabeth Skippington
- Bioinformatics & Computational Biology, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Sandoval
- Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, CA, USA
| | - Emily J Hanan
- Discovery Chemistry Departments, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Structural Biology, Genentech Inc., South San Francisco, CA, USA. .,Infectious Diseases, Genentech Inc., South San Francisco, CA, USA.
| | | |
Collapse
|
46
|
Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infect Immun 2020; 88:IAI.00920-19. [PMID: 32253250 DOI: 10.1128/iai.00920-19] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.
Collapse
|
47
|
El-Taboni F, Caseley E, Katsikogianni M, Swanson L, Swift T, Romero-González ME. Fluorescence Spectroscopy Analysis of the Bacteria-Mineral Interface: Adsorption of Lipopolysaccharides to Silica and Alumina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1623-1632. [PMID: 31957449 PMCID: PMC7145363 DOI: 10.1021/acs.langmuir.9b02158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present here a quantification of the sorption process and molecular conformation involved in the attachment of bacterial cell wall lipopolysaccharides (LPSs), extracted from Escherichia coli, to silica (SiO2) and alumina (Al2O3) particles. We propose that interfacial forces govern the physicochemical interactions of the bacterial cell wall with minerals in the natural environment, and the molecular conformation of LPS cell wall components depends on both the local charge at the point of binding and hydrogen bonding potential. This has an effect on bacterial adaptation to the host environment through adhesion, growth, function, and ability to form biofilms. Photophysical techniques were used to investigate adsorption of fluorescently labeled LPS onto mineral surfaces as model systems for bacterial attachment. Adsorption of macromolecules in dilute solutions was studied as a function of pH and ionic strength in the presence of alumina and silica via fluorescence, potentiometric, and mass spectrometry techniques. The effect of silica and alumina particles on bacterial growth as a function of pH was also investigated using spectrophotometry. The alumina and silica particles were used to mimic active sites on the surface of clay and soil particles, which serve as a point of attachment of bacteria in natural systems. It was found that LPS had a high adsorption affinity for Al2O3 while adsorbing weakly to SiO2 surfaces. Strong adsorption was observed at low pH for both minerals and varied with both pH and mineral concentration, likely in part due to conformational rearrangement of the LPS macromolecules. Bacterial growth was also enhanced in the presence of the particles at low pH values. This demonstrates that at a molecular level, bacterial cell wall components are able to adapt their conformation, depending on the solution pH, in order to maximize attachment to substrates and guarantee community survival.
Collapse
Affiliation(s)
- Fateh El-Taboni
- Department
of Chemistry, University of Benghazi, Benghazi Qar Yunis 9480, Libya
| | - Emily Caseley
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Maria Katsikogianni
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Linda Swanson
- Department
of Chemistry, The University of Sheffield, Sheffield S10 2TN, U.K.
| | - Thomas Swift
- School
of Chemistry and Biosciences, University
of Bradford, Bradford BD7 1DP, U.K.
- E-mail: (T.S.)
| | | |
Collapse
|
48
|
Abstract
The bacterial cell envelope is essential for viability, the environmental gatekeeper and first line of defense against external stresses. For most bacteria, the envelope biosynthesis is also the site of action of some of the most important groups of antibiotics. It is a complex, often multicomponent structure, able to withstand the internally generated turgor pressure. Thus, elucidating the architecture and dynamics of the cell envelope is important, to unravel not only the complexities of cell morphology and maintenance of integrity but also how interventions such as antibiotics lead to death. To address these questions requires the capacity to visualize the cell envelope in situ via high-spatial resolution approaches. In recent years, atomic force microscopy (AFM) has brought novel molecular insights into the assembly, dynamics, and functions of bacterial cell envelopes. The ultrafine resolution and physical sensitivity of the technique have revealed a wealth of ultrastructural features that are invisible to traditional optical microscopy techniques or imperceptible in their true physiological state by electron microscopy. Here, we discuss recent progress in our use of AFM imaging for understanding the architecture and dynamics of the bacterial envelope. We survey recent studies that demonstrate the power of the technique to observe isolated membranes and live cells at (sub)nanometer resolution and under physiological conditions and to track in vitro structural dynamics in response to growth or to drugs.
Collapse
|
49
|
|
50
|
Liu C, Ma J, Wang J, Wang H, Zhang L. Cryo-EM Structure of a Bacterial Lipid Transporter YebT. J Mol Biol 2019; 432:1008-1019. [PMID: 31870848 DOI: 10.1016/j.jmb.2019.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
The outer membrane (OM) of Gram-negative bacteria is asymmetric, with lipopolysaccharides (LPSs) on the outer surface and phospholipids (PLs) on the inner surface. This unique organization of OM makes Gram-negative bacteria resistant to many toxic chemicals. How this asymmetric distribution of lipids is maintained has been studied for decades with previous reports of an Mla (Maintenance of OM Lipid Asymmetry) system to be involved. Furthermore, the OM of Gram-negative bacteria is about 20 nm away from inner membrane (IM) where the lipids are synthesized. Therefore, how nascent lipids travel across the periplasmic space and arrive at the inner surface of OM is another interesting question. YebT is a homologue of MlaD in the Mla pathway, but its role in lipid distribution of the OM and IM is largely unknown. Here we report the first high-resolution (~3.0 Å) cryo-EM structure of full-length E. coli YebT in a substrate-bound state. Our structure with details of lipid interaction indicates that YebT is a lipid transporter spanning between IM and OM. We also demonstrate the symmetry mismatch in YebT and the existence of many other conformations of YebT revealing the intrinsic dynamics of this lipid channel. And a brief discussion on possible mechanisms of lipid transport is also included.
Collapse
Affiliation(s)
- Chuan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Jinying Ma
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Hongwei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Li Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| |
Collapse
|