1
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Panda P, Sarohi V, Basak T, Kasturi P. Elucidation of Site-Specific Ubiquitination on Chaperones in Response to Mutant Huntingtin. Cell Mol Neurobiol 2023; 44:3. [PMID: 38102300 DOI: 10.1007/s10571-023-01446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Huntington's disease (HD) is one of the prominent neurodegenerative diseases, characterized by the progressive decline of neuronal function, due to the accumulation and aggregation of misfolded proteins. Pathological progression of HD is hallmarked by the aberrant aggregation of the huntingtin protein (HTT) and subsequent neurotoxicity. Molecular chaperones (heat shock proteins, HSPs) play a pivotal role in maintaining proteostasis by facilitating protein refolding, degradation, or sequestration to limit the accumulation of misfolded proteins during neurotoxicity. However, the role of post-translational modifications such as ubiquitination among HSPs during HD is less known. In this study, we aimed to elucidate HSPs ubiquitin code in the context of HD pathogenesis. In a comprehensive proteomic analysis, we identified site-specific ubiquitination events in HSPs associated with HTT in HD-affected brain regions. To assess the impact of ubiquitination on HSPs during HD, we quantified the abundance of ubiquitinated lysine sites in both the rat cortex/striatum and in the mouse primary cortical neurons. Strikingly, we observed highly tissue-specific alterations in the relative ubiquitination levels of HSPs under HD conditions, emphasizing the importance of spatial perturbed post-translational modifications (PTMs) in shaping disease pathology. These ubiquitination events, combined with other PTMs on HSPs, are likely to influence the phase transitions of HTT. In conclusion, our study uncovered differential site-specific ubiquitination of molecular chaperones and offers a comprehensive view of the intricate relationship between protein aggregation, and PTMs in the context of Huntington's disease.
Collapse
Affiliation(s)
- Prajnadipta Panda
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vivek Sarohi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Prasad Kasturi
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
3
|
Dietary and nutraceutical-based therapeutic approaches to combat the pathogenesis of Huntington’s disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
4
|
Label-free photothermal disruption of cytotoxic aggregates rescues pathology in a C. elegans model of Huntington's disease. Sci Rep 2021; 11:19732. [PMID: 34611196 PMCID: PMC8492664 DOI: 10.1038/s41598-021-98661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer’s, Parkinson’s and Huntington’s diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.
Collapse
|
5
|
AgDD System: A Chemical Controllable Protein Aggregates in Cells. Methods Mol Biol 2021. [PMID: 34228296 DOI: 10.1007/978-1-0716-1441-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
There are increasing evidence and growing interest in the relationship between protein aggregates/phase separation and various human diseases, especially neurodegenerative diseases. However, we do not entirely comprehend how aggregates generate or the clearance network of chaperones, proteasomes, ubiquitin ligases, and other factors interact with aggregates. Here, we describe chemically controllable systems compose with a genetically engineered cell and a small drug that enables us to rapidly induce protein aggregates' formation by withdrawing the small molecule. This trigger does not activate global stress responses induced by stimuli, such as proteasome inhibitors or heat shock. This method can produce aggregates in a specific compartment and diverse experimental systems, including live animals.
Collapse
|
6
|
Hervás R, Oroz J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int J Mol Sci 2020; 21:ijms21239186. [PMID: 33276458 PMCID: PMC7730194 DOI: 10.3390/ijms21239186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.
Collapse
Affiliation(s)
- Rubén Hervás
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Javier Oroz
- Rocasolano Institute for Physical Chemistry, Spanish National Research Council (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-915619400
| |
Collapse
|
7
|
San Gil R, Cox D, McAlary L, Berg T, Walker AK, Yerbury JJ, Ooi L, Ecroyd H. Neurodegenerative disease-associated protein aggregates are poor inducers of the heat shock response in neuronal cells. J Cell Sci 2020; 133:jcs.243709. [PMID: 32661089 DOI: 10.1242/jcs.243709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Protein aggregates that result in inclusion formation are a pathological hallmark common to many neurodegenerative diseases, including amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. Under conditions of cellular stress, activation of the heat shock response (HSR) results in an increase in the levels of molecular chaperones and is a first line of cellular defence against inclusion formation. It remains to be established whether neurodegenerative disease-associated proteins and inclusions are themselves capable of inducing an HSR in neuronal cells. To address this, we generated a neuroblastoma cell line that expresses a fluorescent reporter protein under conditions of heat shock transcription factor 1 (HSF1)-mediated HSR induction. We show that the HSR is not induced by exogenous treatment with aggregated forms of recombinant α-synuclein or the G93A mutant of superoxide dismutase-1 (SOD1G93A) nor intracellular expression of SOD1G93A or a pathogenic form of polyglutamine-expanded huntingtin (Htt72Q). These results suggest that pathogenic proteins evade detection or impair induction of the HSR in neuronal cells. A failure of protein aggregation to induce an HSR might contribute to the development of inclusion pathology in neurodegenerative diseases.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Dezerae Cox
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3052, Australia
| | - Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, St Lucia, QLD 4072, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
8
|
Sunchu B, Riordan RT, Yu Z, Almog I, Dimas-Munoz J, Drake AC, Perez VI. Aggresome-Like Formation Promotes Resistance to Proteotoxicity in Cells from Long-Lived Species. J Gerontol A Biol Sci Med Sci 2020; 75:1439-1447. [PMID: 32515471 PMCID: PMC7357592 DOI: 10.1093/gerona/glaa069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 11/13/2022] Open
Abstract
The capacity of cells to maintain proteostasis declines with age, causing rapid accumulation of damaged proteins and protein aggregates, which plays an important role in age-related disease etiology. While our group and others have identified that proteostasis is enhanced in long-lived species, there are no data on whether this leads to better resistance to proteotoxicity. We compared the sensitivity of cells from long- (naked mole rat [NMR]) and short- (Mouse) lived species to proteotoxicity, by measuring the survival of fibroblasts under polyglutamine (polyQ) toxicity, a well-established model of protein aggregation. Additionally, to evaluate the contribution of proteostatic mechanisms to proteotoxicity resistance, we down-regulated a key protein of each mechanism (autophagy-ATG5; ubiquitin-proteasome-PSMD14; and chaperones-HSP27) in NMR fibroblasts. Furthermore, we analyzed the formation and subcellular localization of inclusions in long- and short-lived species. Here, we show that fibroblasts from long-lived species are more resistant to proteotoxicity than their short-lived counterparts. Surprisingly, this does not occur because the NMR cells have less polyQ82 protein aggregates, but rather they have an enhanced capacity to handle misfolded proteins and form protective perinuclear and aggresome-like inclusions. All three proteostatic mechanisms contribute to this resistance to polyQ toxicity but autophagy has the greatest effect. Overall, our data suggest that the resistance to proteotoxicity observed in long-lived species is not due to a lower level of protein aggregates but rather to enhanced handling of the protein aggregates through the formation of aggresome-like inclusions, a well-recognized protective mechanism against proteotoxicty.
Collapse
Affiliation(s)
- Bharath Sunchu
- Linus Pauling Institute, Oregon State University, Corvallis
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| | - Ruben T Riordan
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis
| | - Ido Almog
- Linus Pauling Institute, Oregon State University, Corvallis
| | - Jovita Dimas-Munoz
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| | - Andrew C Drake
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis
| |
Collapse
|
9
|
Davis AK, Pratt WB, Lieberman AP, Osawa Y. Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell Mol Life Sci 2020; 77:977-996. [PMID: 31552448 PMCID: PMC7137528 DOI: 10.1007/s00018-019-03302-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
The polyglutamine (polyQ) diseases are a group of nine fatal, adult-onset neurodegenerative disorders characterized by the misfolding and aggregation of mutant proteins containing toxic expansions of CAG/polyQ tracts. The heat shock protein 90 and 70 (Hsp90/Hsp70) chaperone machinery is a key component of cellular protein quality control, playing a role in the regulation of folding, aggregation, and degradation of polyQ proteins. The ability of Hsp70 to facilitate disaggregation and degradation of misfolded proteins makes it an attractive therapeutic target in polyQ diseases. Genetic studies have demonstrated that manipulation of Hsp70 and related co-chaperones can enhance the disaggregation and/or degradation of misfolded proteins in models of polyQ disease. Therefore, the development of small molecules that enhance Hsp70 activity is of great interest. However, it is still unclear if currently available Hsp70 modulators can selectively enhance disaggregation or degradation of misfolded proteins without perturbing other Hsp70 functions essential for cellular homeostasis. This review discusses the multifaceted role of Hsp70 in protein quality control and the opportunities and challenges Hsp70 poses as a potential therapeutic target in polyQ disease.
Collapse
Affiliation(s)
- Amanda K Davis
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - William B Pratt
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Yoichi Osawa
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Kong KYE, Hung TNF, Man PHM, Wong TN, Cheng T, Jin DY. Post-transcriptional negative feedback regulation of proteostasis through the Dis3 ribonuclease and its disruption by polyQ-expanded Huntingtin. Nucleic Acids Res 2019; 47:10040-10058. [PMID: 31428776 PMCID: PMC6821268 DOI: 10.1093/nar/gkz722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/17/2022] Open
Abstract
When proteostasis is disrupted by stresses such as heat shock, the heat stress response will be stimulated, leading to up-regulation of molecular chaperones by transcriptional activation and mRNA stabilization for restoring proteostasis. Although the mechanisms for their transcriptional activation have been clearly defined, how chaperone mRNAs are stabilized remains largely unknown. Starting by exploring the coupling between the apparently unrelated RNA degradation and protein quality control (PQC) systems, we show that the Dis3 ribonuclease, catalytic subunit of the RNA exosome required for RNA degradation, suppresses PQC activity in unstressed cells by degrading mRNAs encoding the Hsp70 cofactors Sis1, Ydj1 and Fes1, as well as some other chaperones or PQC factors, thereby limiting their protein expression. Dis3 is stabilized through its binding to Sis1 and the Hsp70s Ssa1/2. Upon heat stress, loss of Sis1 and Ssa1/2 availability triggers Dis3 ubiquitination and degradation, leading to stabilization of those chaperone mRNAs originally targeted by Dis3. We further demonstrate that polyQ-expanded huntingtin delays Dis3 degradation during heat stress and thus hinders chaperone mRNA stabilization. Our findings not only reveal a post-transcriptional negative feedback loop for maintaining proteostasis, but also uncover a mechanism that contributes to the impaired heat stress response in Huntington's disease.
Collapse
Affiliation(s)
- Ka-Yiu Edwin Kong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | | | | | - Tin-Ning Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Tao Cheng
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Kielar C, Morton AJ. Early Neurodegeneration in R6/2 Mice Carrying the Huntington's Disease Mutation with a Super-Expanded CAG Repeat, Despite Normal Lifespan. J Huntingtons Dis 2019; 7:61-76. [PMID: 29480204 DOI: 10.3233/jhd-170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a > 440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Jiang Y, Berg MD, Genereaux J, Ahmed K, Duennwald ML, Brandl CJ, Lajoie P. Sfp1 links TORC1 and cell growth regulation to the yeast SAGA‐complex component Tra1 in response to polyQ proteotoxicity. Traffic 2019; 20:267-283. [DOI: 10.1111/tra.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Matthew D. Berg
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Julie Genereaux
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of BiochemistryThe University of Western Ontario London Ontario Canada
| | - Khadija Ahmed
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| | - Martin L. Duennwald
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
- Department of Pathology and Laboratory MedicineThe University of Western Ontario London Ontario Canada
| | | | - Patrick Lajoie
- Department of Anatomy and Cell BiologyThe University of Western Ontario London Ontario Canada
| |
Collapse
|
13
|
Sedaghatmehr M, Thirumalaikumar VP, Kamranfar I, Marmagne A, Masclaux-Daubresse C, Balazadeh S. A regulatory role of autophagy for resetting the memory of heat stress in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1054-1064. [PMID: 30136402 DOI: 10.1111/pce.13426] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 05/19/2023]
Abstract
As sessile life forms, plants are repeatedly confronted with adverse environmental conditions, which can impair development, growth, and reproduction. During evolution, plants have established mechanisms to orchestrate the delicate balance between growth and stress tolerance, to reset cellular biochemistry once stress vanishes, or to keep a molecular memory, which enables survival of a harsher stress that may arise later. Although there are several examples of memory in diverse plants species, the molecular machinery underlying the formation, duration, and resetting of stress memories is largely unknown so far. We report here that autophagy, a central self-degradative process, assists in resetting cellular memory of heat stress (HS) in Arabidopsis thaliana. Autophagy is induced by thermopriming (moderate HS) and, intriguingly, remains high long after stress termination. We demonstrate that autophagy mediates the specific degradation of heat shock proteins at later stages of the thermorecovery phase leading to the accumulation of protein aggregates after the second HS and a compromised heat tolerance. Autophagy mutants retain heat shock proteins longer than wild type and concomitantly display improved thermomemory. Our findings reveal a novel regulatory mechanism for HS memory in plants.
Collapse
Affiliation(s)
- Mastoureh Sedaghatmehr
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Venkatesh P Thirumalaikumar
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| | - Iman Kamranfar
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
| | - Anne Marmagne
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Celine Masclaux-Daubresse
- Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Salma Balazadeh
- Department of Molecular Biology, University of Potsdam, Institute of Biochemistry and Biology, Potsdam, Golm, Germany
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Golm, Germany
| |
Collapse
|
14
|
Pinho BR, Reis SD, Hartley RC, Murphy MP, Oliveira JMA. Mitochondrial superoxide generation induces a parkinsonian phenotype in zebrafish and huntingtin aggregation in human cells. Free Radic Biol Med 2019; 130:318-327. [PMID: 30389496 PMCID: PMC6340810 DOI: 10.1016/j.freeradbiomed.2018.10.446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 01/21/2023]
Abstract
Superoxide generation by mitochondria respiratory complexes is a major source of reactive oxygen species (ROS) which are capable of initiating redox signaling and oxidative damage. Current understanding of the role of mitochondrial ROS in health and disease has been limited by the lack of experimental strategies to selectively induce mitochondrial superoxide production. The recently-developed mitochondria-targeted redox cycler MitoParaquat (MitoPQ) overcomes this limitation, and has proven effective in vitro and in Drosophila. Here we present an in vivo study of MitoPQ in the vertebrate zebrafish model in the context of Parkinson's disease (PD), and in a human cell model of Huntington's disease (HD). We show that MitoPQ is 100-fold more potent than non-targeted paraquat in both cells and in zebrafish in vivo. Treatment with MitoPQ induced a parkinsonian phenotype in zebrafish larvae, with decreased sensorimotor reflexes, spontaneous movement and brain tyrosine hydroxylase (TH) levels, without detectable effects on heart rate or atrioventricular coordination. Motor phenotypes and TH levels were partly rescued with antioxidant or monoaminergic potentiation strategies. In a HD cell model, MitoPQ promoted mutant huntingtin aggregation without increasing cell death, contrasting with the complex I inhibitor rotenone that increased death in cells expressing either wild-type or mutant huntingtin. These results show that MitoPQ is a valuable tool for cellular and in vivo studies of the role of mitochondrial superoxide generation in redox biology, and as a trigger or co-stressor to model metabolic and neurodegenerative disease phenotypes.
Collapse
Affiliation(s)
- Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
15
|
Neuroprotection by Heat Shock Factor-1 (HSF1) and Trimerization-Deficient Mutant Identifies Novel Alterations in Gene Expression. Sci Rep 2018; 8:17255. [PMID: 30467350 PMCID: PMC6250741 DOI: 10.1038/s41598-018-35610-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Heat shock factor-1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins by stimulating the transcription of genes encoding heat shock proteins (HSPs). This stimulatory action depends on the association of trimeric HSF1 to sequences within HSP gene promoters. However, we recently described that HSF-AB, a mutant form of HSF1 that is incapable of either homo-trimerization, association with HSP gene promoters, or stimulation of HSP expression, protects neurons just as efficiently as wild-type HSF1 suggesting an alternative neuroprotective mechanism that is activated by HSF1. To gain insight into the mechanism by which HSF1 and HSF1-AB protect neurons, we used RNA-Seq technology to identify transcriptional alterations induced by these proteins in either healthy cerebellar granule neurons (CGNs) or neurons primed to die. When HSF1 was ectopically-expressed in healthy neurons, 1,211 differentially expressed genes (DEGs) were identified with 1,075 being upregulated. When HSF1 was expressed in neurons primed to die, 393 genes were upregulated and 32 genes were downregulated. In sharp contrast, HSF1-AB altered expression of 13 genes in healthy neurons and only 6 genes in neurons under apoptotic conditions, suggesting that the neuroprotective effect of HSF1-AB may be mediated by a non-transcriptional mechanism. We validated the altered expression of 15 genes by QPCR. Although other studies have conducted RNA-Seq analyses to identify HSF1 targets, our study performed using primary neurons has identified a number of novel targets that may play a special role in brain maintenance and function.
Collapse
|
16
|
Chen JY, Parekh M, Seliman H, Bakshinskaya D, Dai W, Kwan K, Chen KY, Liu AYC. Heat shock promotes inclusion body formation of mutant huntingtin (mHtt) and alleviates mHtt-induced transcription factor dysfunction. J Biol Chem 2018; 293:15581-15593. [PMID: 30143534 PMCID: PMC6177601 DOI: 10.1074/jbc.ra118.002933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
PolyQ-expanded huntingtin (mHtt) variants form aggregates, termed inclusion bodies (IBs), in individuals with and models of Huntington's disease (HD). The role of IB versus diffusible mHtt in neurotoxicity remains unclear. Using a ponasterone (PA)-inducible cell model of HD, here we evaluated the effects of heat shock on the appearance and functional outcome of Htt103QExon1-EGFP expression. Quantitative image analysis indicated that 80-90% of this mHtt protein initially appears as "diffuse" signals in the cytosol, with IBs forming at high mHtt expression. A 2-h heat shock during the PA induction reduced the diffuse signal, but greatly increased mHtt IB formation in both cytosol and nucleus. Dose- and time-dependent mHtt expression suggested that nucleated polymerization drives IB formation. RNA-mediated knockdown of heat shock protein 70 (HSP70) and heat shock cognate 70 protein (HSC70) provided evidence for their involvement in promoting diffuse mHtt to form IBs. Reporter gene assays assessing the impacts of diffuse versus IB mHtt showed concordance of diffuse mHtt expression with the repression of heat shock factor 1, cAMP-responsive element-binding protein (CREB), and NF-κB activity. CREB repression was reversed by heat shock coinciding with mHtt IB formation. In an embryonic striatal neuron-derived HD model, the chemical chaperone sorbitol similarly promoted the structuring of diffuse mHtt into IBs and supported cell survival under stress. Our results provide evidence that mHtt IB formation is a chaperone-supported cellular coping mechanism that depletes diffusible mHtt conformers, alleviates transcription factor dysfunction, and promotes neuron survival.
Collapse
Affiliation(s)
- Justin Y Chen
- From the Department of Cell Biology and Neuroscience and
| | - Miloni Parekh
- From the Department of Cell Biology and Neuroscience and
| | - Hadear Seliman
- From the Department of Cell Biology and Neuroscience and
| | | | - Wei Dai
- From the Department of Cell Biology and Neuroscience and
| | - Kelvin Kwan
- From the Department of Cell Biology and Neuroscience and
| | - Kuang Yu Chen
- Department of Chemistry and Chemical Biology, Rutgers State University of New Jersey, Piscataway, New Jersey 08854
| | - Alice Y C Liu
- From the Department of Cell Biology and Neuroscience and
| |
Collapse
|
17
|
Di Gregorio SE, Duennwald ML. Yeast as a model to study protein misfolding in aged cells. FEMS Yeast Res 2018; 18:4996350. [DOI: 10.1093/femsyr/foy054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Sonja E Di Gregorio
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Martin L Duennwald
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
18
|
Higgins R, Kabbaj MH, Hatcher A, Wang Y. The absence of specific yeast heat-shock proteins leads to abnormal aggregation and compromised autophagic clearance of mutant Huntingtin proteins. PLoS One 2018; 13:e0191490. [PMID: 29346421 PMCID: PMC5773196 DOI: 10.1371/journal.pone.0191490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/05/2018] [Indexed: 11/25/2022] Open
Abstract
The functionality of a protein depends on its correct folding, but newly synthesized proteins are susceptible to aberrant folding and aggregation. Heat shock proteins (HSPs) function as molecular chaperones that aid in protein folding and the degradation of misfolded proteins. Trinucleotide (CAG) repeat expansion in the Huntingtin gene (HTT) results in the expression of misfolded Huntingtin protein (Htt), which contributes to the development of Huntington’s disease. We previously found that the degradation of mutated Htt with polyQ expansion (Htt103QP) depends on both ubiquitin proteasome system and autophagy. However, the role of heat shock proteins in the clearance of mutated Htt remains poorly understood. Here, we report that cytosolic Hsp70 (Ssa family), its nucleotide exchange factors (Sse1 and Fes1), and a Hsp40 co-chaperone (Ydj1) are required for inclusion body formation of Htt103QP proteins and their clearance via autophagy. Extended induction of Htt103QP-GFP leads to the formation of a single inclusion body in wild-type yeast cells, but mutant cells lacking these HSPs exhibit increased number of Htt103QP aggregates. Most notably, we detected more aggregated forms of Htt103QP in sse1Δ mutant cells using an agarose gel assay. Increased protein aggregates are also observed in these HSP mutants even in the absence Htt103QP overexpression. Importantly, these HSPs are required for autophagy-mediated Htt103QP clearance, but are less critical for proteasome-dependent degradation. These findings suggest a chaperone network that facilitates inclusion body formation of misfolded proteins and the subsequent autophagic clearance.
Collapse
Affiliation(s)
- Ryan Higgins
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Marie-Helene Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Alexa Hatcher
- College of Nursing, Florida State University, Tallahassee, Florida, United States of America
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
19
|
Scior A, Buntru A, Arnsburg K, Ast A, Iburg M, Juenemann K, Pigazzini ML, Mlody B, Puchkov D, Priller J, Wanker EE, Prigione A, Kirstein J. Complete suppression of Htt fibrilization and disaggregation of Htt fibrils by a trimeric chaperone complex. EMBO J 2017; 37:282-299. [PMID: 29212816 DOI: 10.15252/embj.201797212] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG trinucleotide repeat in the huntingtin gene (HTT). Molecular chaperones have been implicated in suppressing or delaying the aggregation of mutant Htt. Using in vitro and in vivo assays, we have identified a trimeric chaperone complex (Hsc70, Hsp110, and J-protein) that completely suppresses fibrilization of HttExon1Q48 The composition of this chaperone complex is variable as recruitment of different chaperone family members forms distinct functional complexes. The trimeric chaperone complex is also able to resolubilize Htt fibrils. We confirmed the biological significance of these findings in HD patient-derived neural cells and on an organismal level in Caenorhabditis elegans Among the proteins in this chaperone complex, the J-protein is the concentration-limiting factor. The single overexpression of DNAJB1 in HEK293T cells is sufficient to profoundly reduce HttExon1Q97 aggregation and represents a target of future therapeutic avenues for HD.
Collapse
Affiliation(s)
- Annika Scior
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | | | - Kristin Arnsburg
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | - Anne Ast
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Manuel Iburg
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | - Katrin Juenemann
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | - Maria Lucia Pigazzini
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany.,Charité - Universitätsmedizin and NeuroCure Cluster of Excellence, Berlin, Germany
| | - Barbara Mlody
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | - Janine Kirstein
- Leibniz-Institute for Molecular Pharmacology (FMP) im Forschungsverbund Berlin, Berlin, Germany
| |
Collapse
|
20
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
21
|
De Smet F, Saiz Rubio M, Hompes D, Naus E, De Baets G, Langenberg T, Hipp MS, Houben B, Claes F, Charbonneau S, Delgado Blanco J, Plaisance S, Ramkissoon S, Ramkissoon L, Simons C, van den Brandt P, Weijenberg M, Van England M, Lambrechts S, Amant F, D'Hoore A, Ligon KL, Sagaert X, Schymkowitz J, Rousseau F. Nuclear inclusion bodies of mutant and wild-type p53 in cancer: a hallmark of p53 inactivation and proteostasis remodelling by p53 aggregation. J Pathol 2017; 242:24-38. [PMID: 28035683 DOI: 10.1002/path.4872] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
Abstract
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Frederik De Smet
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium.,Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA
| | - Mirian Saiz Rubio
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Daphne Hompes
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Evelyne Naus
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Greet De Baets
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Tobias Langenberg
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Bert Houben
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Filip Claes
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Sarah Charbonneau
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Javier Delgado Blanco
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Stephane Plaisance
- Nucleomics Core, Flanders Institute for Biotechnology (VIB), Leuven, Belgium
| | - Shakti Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Colinda Simons
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Piet van den Brandt
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Matty Weijenberg
- Department of Epidemiology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Manon Van England
- Department of Pathology - GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Frederic Amant
- Department of Obstetrics and Gynaecology, Division of Gynaecological Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium.,Centre for Gynaecological Oncology Amsterdam, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - André D'Hoore
- Department of Abdominal Surgery, University Hospitals Gasthuisberg, Leuven, Belgium
| | - Keith L Ligon
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,The Broad Institute, Cambridge, MA, USA.,Department of Pathology, Division of Neuropathology, Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Children's Hospital Boston, Boston, MA, USA
| | - Xavier Sagaert
- Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Frederic Rousseau
- The Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
22
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
23
|
Modulation of Molecular Chaperones in Huntington’s Disease and Other Polyglutamine Disorders. Mol Neurobiol 2016; 54:5829-5854. [DOI: 10.1007/s12035-016-0120-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 12/20/2022]
|
24
|
Bhadra AK, Das E, Roy I. Protein aggregation activates erratic stress response in dietary restricted yeast cells. Sci Rep 2016; 6:33433. [PMID: 27633120 PMCID: PMC5025734 DOI: 10.1038/srep33433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account.
Collapse
Affiliation(s)
- Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
25
|
FitzGerald P, Sun N, Shibata B, Hess JF. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis 2016; 22:970-89. [PMID: 27559293 PMCID: PMC4975932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 08/04/2016] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For this reason, both proteins have been considered robust markers of fiber cell differentiation. We report here that both proteins are also expressed in the mouse lens epithelium, but only after 5 weeks of age. METHODS Localization of CP49 was achieved with immunocytochemical probing of wild-type, CP49 knockout, filensin knockout, and vimentin knockout mice, in sections and in the explanted lens epithelium, at the light microscope and electron microscope levels. The relationship between CP49 and other cytoskeletal elements was probed using fluorescent phalloidin, as well as with antibodies to vimentin, GFAP, and α-tubulin. The relationship between CP49 and the aggresome was probed with antibodies to γ-tubulin, ubiquitin, and HDAC6. RESULTS CP49 and filensin were expressed in the mouse lens epithelium, but only after 5 weeks of age. At the light microscope level, these two proteins colocalize to a large tubular structure, approximately 7 × 1 μm, which was typically present at one to two copies per cell. This structure is found in the anterior and anterolateral lens epithelium, including the zone where mitosis occurs. The structure becomes smaller and largely undetectable closer to the equator where the cell exits the cell cycle and commits to fiber cell differentiation. This structure bears some resemblance to the aggresome and is reactive with antibodies to HDAC6, a marker for the aggresome. However, the structure does not colocalize with antibodies to γ-tubulin or ubiquitin, also markers for the aggresome. The structure also colocalizes with actin but appears to largely exclude vimentin and α-tubulin. In the CP49 and filensin knockouts, this structure is absent, confirming the identity of CP49 and filensin in this structure, and suggesting a requirement for the physiologic coassembly of CP49 and filensin. CONCLUSIONS CP49 and filensin have been considered robust markers for mouse lens fiber cell differentiation. The data reported here, however, document both proteins in the mouse lens epithelium, but only after 5 weeks of age, when lens epithelial growth and mitotic activity have slowed. Because of this, CP49 and filensin must be considered markers of differentiation for both fiber cells and the lens epithelium in the mouse. In addition, to our knowledge, no other protein has been shown to emerge so late in the development of the mouse lens epithelium, suggesting that lens epithelial differentiation may continue well into post-natal life. If this structure is related to the aggresome, it is a rare, or perhaps unique example of a large, stable aggresome in wild-type tissue.
Collapse
|
26
|
Bersuker K, Brandeis M, Kopito RR. Protein misfolding specifies recruitment to cytoplasmic inclusion bodies. J Cell Biol 2016; 213:229-41. [PMID: 27114501 PMCID: PMC5084276 DOI: 10.1083/jcb.201511024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/21/2016] [Indexed: 12/17/2022] Open
Abstract
Inclusion bodies (IBs) containing aggregated disease-associated proteins and polyubiquitin (poly-Ub) conjugates are universal histopathological features of neurodegenerative diseases. Ub has been proposed to target proteins to IBs for degradation via autophagy, but the mechanisms that govern recruitment of ubiquitylated proteins to IBs are not well understood. In this paper, we use conditionally destabilized reporters that undergo misfolding and ubiquitylation upon removal of a stabilizing ligand to examine the role of Ub conjugation in targeting proteins to IBs that are composed of an N-terminal fragment of mutant huntingtin, the causative protein of Huntington's disease. We show that reporters are excluded from IBs in the presence of the stabilizing ligand but are recruited to IBs after ligand washout. However, we find that Ub conjugation is not necessary to target reporters to IBs. We also report that forced Ub conjugation by the Ub fusion degradation pathway is not sufficient for recruitment to IBs. Finally, we find that reporters and Ub conjugates are stable at IBs. These data indicate that compromised folding states, rather than conjugation to Ub, can specify recruitment to IBs.
Collapse
Affiliation(s)
- Kirill Bersuker
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Michael Brandeis
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
27
|
Yang J, Hao X, Cao X, Liu B, Nyström T. Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. eLife 2016; 5. [PMID: 27033550 PMCID: PMC4868537 DOI: 10.7554/elife.11792] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a neurological disorder caused by polyglutamine expansions in mutated Huntingtin (mHtt) proteins, rendering them prone to form inclusion bodies (IB). We report that in yeast, such IB formation is a factor-dependent process subjected to age-related decline. A genome-wide, high-content imaging approach, identified the E3 ubiquitin ligase, Ltn1 of the ribosome quality control complex (RQC) as a key factor required for IB formation, ubiquitination, and detoxification of model mHtt. The failure of ltn1∆ cells to manage mHtt was traced to another RQC component, Tae2, and inappropriate control of heat shock transcription factor, Hsf1, activity. Moreover, super-resolution microscopy revealed that mHtt toxicity in RQC-deficient cells was accompanied by multiple mHtt aggregates altering actin cytoskeletal structures and retarding endocytosis. The data demonstrates that spatial sequestration of mHtt into IBs is policed by the RQC-Hsf1 regulatory system and that such compartmentalization, rather than ubiquitination, is key to mHtt detoxification. DOI:http://dx.doi.org/10.7554/eLife.11792.001 Huntington’s disease is a neurological disease that is caused by mutations in the gene that encodes a protein called Htt. Individuals with this mutation gradually lose neurons as they age, resulting in declines in muscle coordination and mental abilities. The mutant Htt proteins tend to form clumps inside cells, but it is not clear if these clumps are the cause of the disease symptoms or whether they have a protective effect. Yang et al. used yeast as a model to investigate whether the mutant Htt proteins need other molecules to allow them to form clumps. The experiments identified several new molecules that are required for mutated Htt to form clumps. Some of these are components of a system called the Ribosome Quality Control (RQC) complex, which monitors newly made proteins and labels abnormal ones for destruction. However, Yang et al.’s findings suggest that the RQC complex regulates the formation of Htt clumps through a different pathway involving a protein called heat shock factor 1. In this case, cells would need to fine-tune heat shock factor 1 activity to make mutant Htt proteins clump together to protect cells from damage. Future experiments should expand Yang et al.’s findings to animal models of Huntington’s disease and identify which other molecules contribute to the formation of Htt clumps. One challenge will be to find out why older neurons fail to form clumps of Htt proteins, and whether this can be overcome by drugs that boost the activity of the molecules that Yang et al. identified. DOI:http://dx.doi.org/10.7554/eLife.11792.002
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xiuling Cao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
28
|
Bott LC, Badders NM, Chen KL, Harmison GG, Bautista E, Shih CCY, Katsuno M, Sobue G, Taylor JP, Dantuma NP, Fischbeck KH, Rinaldi C. A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum Mol Genet 2016; 25:1979-1989. [PMID: 26962150 DOI: 10.1093/hmg/ddw073] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA, also known as Kennedy's disease) is one of nine neurodegenerative disorders that are caused by expansion of polyglutamine-encoding CAG repeats. Intracellular accumulation of abnormal proteins in these diseases, a pathological hallmark, is associated with defects in protein homeostasis. Enhancement of the cellular proteostasis capacity with small molecules has therefore emerged as a promising approach to treatment. Here, we characterize a novel curcumin analog, ASC-JM17, as an activator of central pathways controlling protein folding, degradation and oxidative stress resistance. ASC-JM17 acts on Nrf1, Nrf2 and Hsf1 to increase the expression of proteasome subunits, antioxidant enzymes and molecular chaperones. We show that ASC-JM17 ameliorates toxicity of the mutant androgen receptor (AR) responsible for SBMA in cell, fly and mouse models. Knockdown of the Drosophila Nrf1 and Nrf2 ortholog cap 'n' collar isoform-C, but not Hsf1, blocks the protective effect of ASC-JM17 on mutant AR-induced eye degeneration in flies. Our observations indicate that activation of the Nrf1/Nrf2 pathway is a viable option for pharmacological intervention in SBMA and potentially other polyglutamine diseases.
Collapse
Affiliation(s)
- Laura C Bott
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA, Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden,
| | - Nisha M Badders
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ke-Lian Chen
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - George G Harmison
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elaine Bautista
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Gen Sobue
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Carlo Rinaldi
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
The Crowded Cytosol. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
30
|
Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12:20. [PMID: 26543490 PMCID: PMC4634585 DOI: 10.1186/s12979-015-0046-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Sandro Dattilo
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Cesare Mancuso
- />Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Guido Koverech
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Paola Di Mauro
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Maria Laura Ontario
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | | | - Antonino Petralia
- />Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Luigi Maiolino
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Agostino Serra
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Edward J. Calabrese
- />Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Vittorio Calabrese
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
31
|
Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 2015; 14:759-80. [PMID: 26338154 PMCID: PMC4628595 DOI: 10.1038/nrd4593] [Citation(s) in RCA: 294] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, which are collectively known as amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacological and genetic evidence now supports protein aggregation as the cause of postmitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation and of the structure-activity relationships underlying proteotoxicity is needed to develop future disease-modifying therapies.
Collapse
Affiliation(s)
- Yvonne S. Eisele
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Cecilia Monteiro
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Colleen Fearns
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra E. Encalada
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - R. Luke Wiseman
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
32
|
Lamech LT, Haynes CM. The unpredictability of prolonged activation of stress response pathways. J Cell Biol 2015; 209:781-7. [PMID: 26101215 PMCID: PMC4477854 DOI: 10.1083/jcb.201503107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered.
Collapse
Affiliation(s)
- Lilian T Lamech
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
33
|
Abstract
Many human diseases, particularly neurodegenerative diseases, are associated with protein misfolding. Cellular protein quality control includes all processes that ensure proper protein folding and thus prevent the toxic consequences of protein misfolding. The heat shock response (HSR) and the unfolded protein response (UPR) are major stress response pathways within protein quality control that antagonize protein misfolding in the cytosol and the endoplasmic reticulum, respectively. Huntington's disease is an inherited neurodegenerative disease caused by the misfolding of an abnormally expanded polyglutamine (polyQ) region in the protein huntingtin (Htt), polyQHtt. Using Huntington's disease as a paradigm, I review here the central role of both the HSR and the UPR in defining the toxicity associated with polyQHtt in Huntington's disease. These findings may begin to unravel a previously unappreciated cooperation between different stress response pathways in cells expressing misfolded proteins and consequently in neurodegenerative diseases.
Collapse
|
34
|
Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 2014; 12:e1001998. [PMID: 25406061 PMCID: PMC4236052 DOI: 10.1371/journal.pbio.1001998] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Darren M. Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jiansong Tong
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marion Bouchecareilh
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ning Wang
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Theo Seeley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Johanna F. Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Dan Garza
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Lawrence Drew
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Lymphocyte repertoire selection and intracellular self/non-self-discrimination: historical overview. Immunol Cell Biol 2014; 93:297-304. [PMID: 25385066 DOI: 10.1038/icb.2014.96] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/19/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023]
Abstract
Immunological self/non-self-discrimination is conventionally seen as an extracellular event, involving interactions been receptors on T cells pre-educated to discriminate and peptides bound to major histocompatibility complex proteins (pMHCs). Mechanisms by which non-self peptides might first be sorted intracellularly to distinguish them from the vast excess of self-peptides have long been called for. Recent demonstrations of endogenous peptide-specific clustering of pMHCs on membrane rafts are indicative of intracellular enrichment before surface display. The clustering could follow the specific aggregation of a foreign protein that exceeded its solubility limit in the crowded intracellular environment. Predominantly entropy-driven, this homoaggregation would colocalize identical peptides, thus facilitating their collective presentation. Concentrations of self-proteins are fine-tuned over evolutionary time to avoid this. Disparate observations, such as pyrexia and female susceptibility to autoimmune disease, can be explained in terms of the need to cosegregate cognate pMHC complexes internally before extracellular display.
Collapse
|
36
|
Hemme D, Veyel D, Mühlhaus T, Sommer F, Jüppner J, Unger AK, Sandmann M, Fehrle I, Schönfelder S, Steup M, Geimer S, Kopka J, Giavalisco P, Schroda M. Systems-wide analysis of acclimation responses to long-term heat stress and recovery in the photosynthetic model organism Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:4270-97. [PMID: 25415976 PMCID: PMC4277220 DOI: 10.1105/tpc.114.130997] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 05/19/2023]
Abstract
We applied a top-down systems biology approach to understand how Chlamydomonas reinhardtii acclimates to long-term heat stress (HS) and recovers from it. For this, we shifted cells from 25 to 42°C for 24 h and back to 25°C for ≥8 h and monitored abundances of 1856 proteins/protein groups, 99 polar and 185 lipophilic metabolites, and cytological and photosynthesis parameters. Our data indicate that acclimation of Chlamydomonas to long-term HS consists of a temporally ordered, orchestrated implementation of response elements at various system levels. These comprise (1) cell cycle arrest; (2) catabolism of larger molecules to generate compounds with roles in stress protection; (3) accumulation of molecular chaperones to restore protein homeostasis together with compatible solutes; (4) redirection of photosynthetic energy and reducing power from the Calvin cycle to the de novo synthesis of saturated fatty acids to replace polyunsaturated ones in membrane lipids, which are deposited in lipid bodies; and (5) when sinks for photosynthetic energy and reducing power are depleted, resumption of Calvin cycle activity associated with increased photorespiration, accumulation of reactive oxygen species scavengers, and throttling of linear electron flow by antenna uncoupling. During recovery from HS, cells appear to focus on processes allowing rapid resumption of growth rather than restoring pre-HS conditions.
Collapse
Affiliation(s)
- Dorothea Hemme
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Daniel Veyel
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Timo Mühlhaus
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Frederik Sommer
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Jessica Jüppner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Ann-Katrin Unger
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Michael Sandmann
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Ines Fehrle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Stephanie Schönfelder
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Martin Steup
- Institut für Biochemie und Biologie, Universität Potsdam, D-14476 Potsdam-Golm, Germany
| | - Stefan Geimer
- Zellbiologie/Elektronenmikroskopie, Universität Bayreuth, D-95440 Bayreuth, Germany
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Molekulare Biotechnologie and Systembiologie, TU Kaiserslautern, D-67663 Kaiserslautern, Germany Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
37
|
Hipp MS, Park SH, Hartl FU. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol 2014; 24:506-14. [DOI: 10.1016/j.tcb.2014.05.003] [Citation(s) in RCA: 449] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 12/27/2022]
|
38
|
The Chaperone Grp78 in Protein Folding Disorders of the Nervous System. Neurochem Res 2014; 40:329-35. [DOI: 10.1007/s11064-014-1405-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023]
|
39
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
40
|
Ryno LM, Genereux J, Naito T, Morimoto RI, Powers ET, Shoulders MD, Wiseman RL. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol 2014; 9:1273-83. [PMID: 24689980 PMCID: PMC4076015 DOI: 10.1021/cb500062n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/01/2014] [Indexed: 01/18/2023]
Abstract
The heat shock response is an evolutionarily conserved, stress-responsive signaling pathway that adapts cellular proteostasis in response to pathologic insult. In metazoans, the heat shock response primarily functions through the posttranslational activation of heat shock factor 1 (HSF1), a stress-responsive transcription factor that induces the expression of cytosolic proteostasis factors including chaperones, cochaperones, and folding enzymes. HSF1 is a potentially attractive therapeutic target to ameliorate pathologic imbalances in cellular proteostasis associated with human disease, although the underlying impact of stress-independent HSF1 activation on cellular proteome composition remains to be defined. Here, we employ a highly controllable, ligand-regulated HSF1 that activates HSF1 to levels compatible with those that could be achieved using selective small molecule HSF1 activators. Using a combination of RNAseq and quantitative proteomics, we define the impact of stress-independent HSF1 activation on the composition of the cellular proteome. We show that stress-independent HSF1 activation selectively remodels cytosolic proteostasis pathways without globally influencing the composition of the cellular proteome. Furthermore, we show that stress-independent HSF1 activation decreases intracellular aggregation of a model polyglutamine-containing protein and reduces the cellular toxicity of environmental toxins like arsenite that disrupt cytosolic proteostasis. Collectively, our results reveal a proteome-level view of stress-independent HSF1 activation, providing a framework to establish therapeutic approaches to correct pathologic imbalances in cellular proteostasis through the selective targeting of HSF1.
Collapse
Affiliation(s)
- Lisa M. Ryno
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Joseph
C. Genereux
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tadasuke Naito
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard I. Morimoto
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew D. Shoulders
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - R. Luke Wiseman
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
41
|
Shiber A, Breuer W, Ravid T. Flow Cytometric Quantification and Characterization of Intracellular Protein Aggregates in Yeast. Prion 2014. [DOI: 10.4161/pri.32233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
42
|
Shiber A, Breuer W, Ravid T. Flow cytometric quantification and characterization of intracellular protein aggregates in yeast. Prion 2014; 8:276-84. [PMID: 25482598 PMCID: PMC4601222 DOI: 10.4161/19336896.2014.968445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 06/19/2014] [Accepted: 07/31/2014] [Indexed: 02/02/2023] Open
Abstract
The sequestration of misfolded proteins into aggregates is an integral pathway of the protein quality control network that becomes particularly prominent during proteotoxic stress and in various pathologies. Methods for systematic analysis of cellular aggregate content are still largely limited to fluorescence microscopy and to separation by biochemical techniques. Here, we describe an alternative approach, using flow cytometric analysis, applied to protein aggregates released from their intracellular milieu by mild lysis of yeast cells. Protein aggregates were induced in yeast by heat shock or by chaperone deprivation and labeled using GFP- or mCherry-tagged quality control substrate proteins and chaperones. The fluorescence-labeled aggregate particles were distinguishable from cell debris by flow cytometry. The assay was used to quantify the number of fluorescent aggregates per μg of cell lysate protein and for monitoring changes in the cellular content and properties of aggregates, induced by stress. The results were normalized to the frequencies of fluorescent reporter expression in the cell population, allowing quantitative comparison. The assay also provided a quantitative measure of co-localization of aggregate components, such as chaperones and quality control substrates, within the same aggregate particle. This approach may be extended by fluorescence-activated sorting and isolation of various protein aggregates, including those harboring proteins associated with conformation disorders.
Collapse
Affiliation(s)
- Ayala Shiber
- Department of Biological Chemistry; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - William Breuer
- Department of Biological Chemistry; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| | - Tommer Ravid
- Department of Biological Chemistry; Institute of Life Sciences; Hebrew University of Jerusalem; Jerusalem, Israel
| |
Collapse
|