1
|
MicroRNA-216a Promotes Endothelial Inflammation by Smad7/I κB α Pathway in Atherosclerosis. DISEASE MARKERS 2020; 2020:8864322. [PMID: 33282009 PMCID: PMC7688351 DOI: 10.1155/2020/8864322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023]
Abstract
Background The endothelium is the first line of defence against harmful microenvironment risks, and microRNAs (miRNAs) involved in vascular inflammation may be promising therapeutic targets to modulate atherosclerosis progression. In this study, we aimed to investigate the mechanism by which microRNA-216a (miR-216a) modulated inflammation activation of endothelial cells. Methods. A replicative senescence model of human umbilical vein endothelial cells (HUVECs) was established, and population-doubling levels (PDLs) were defined during passages. PDL8 HUVECs were transfected with miR-216a mimics/inhibitor or small interfering RNA (siRNA) of SMAD family member 7 (Smad7). Real-time PCR and Western blot assays were performed to detect the regulatory role of miR-216a on Smad7 and NF-κB inhibitor alpha (IκBα) expression. The effect of miR-216a on adhesive capability of HUVECs to THP-1 cells was examined. MiR-216a and Smad7 expression in vivo were measured using human carotid atherosclerotic plaques of the patients who underwent carotid endarterectomy (n = 41). Results Luciferase assays showed that Smad7 was a direct target of miR-216a. Smad7 mRNA expression, negatively correlated with miR-216a during endothelial aging, was downregulated in senescent PDL44 cells, compared with young PDL8 HUVECs. MiR-216a markedly increased endothelial inflammation and adhesive capability to monocytes in PDL8 cells by promoting the phosphorylation and degradation of IκBα and then activating NF-κB signalling pathway. The effect of miR-216a on endothelial cells was consistent with that blocked Smad7 by siRNAs. When inhibiting endogenous miR-216a, the Smad7/IκBα expression was rescued, which led to decreased endothelial inflammation and monocytes recruitment. In human carotid atherosclerotic plaques, Smad7 level was remarkably decreased in high miR-216a group compared with low miR-216a group. Moreover, miR-216a was negatively correlated with Smad7 and IκBα levels and positively correlated with interleukin 1 beta (IL1β) expression in vivo. Conclusion In summary, our findings suggest a new mechanism of vascular endothelial inflammation involving Smad7/IκBα signalling pathway in atherosclerosis.
Collapse
|
2
|
Amada E, Fukuda K, Kumagai K, Kawakubo H, Kitagawa Y. Soluble recombinant human thrombomodulin suppresses inflammation-induced gastrointestinal tumor growth in a murine peritonitis model. Mol Cell Biochem 2020; 475:195-203. [PMID: 32767229 DOI: 10.1007/s11010-020-03872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) and transforming growth factor β (TGF-β) are believed to play key roles in both postoperative pro-inflammatory and anti-inflammatory responses of malignancies. Recombinant human thrombomodulin (rTM) is implied to inhibit the interaction between TGF-β and Tregs. The aim of this study is to evaluate the antitumor effects of rTM against gastrointestinal tumors under systemic inflammation. Mice were subjected to cecal ligation and puncture and percutaneous allogeneic tumor implantation. rTM were introduced by percutaneous injection into the abdominal cavity. The effects of rTM were evaluated by weight of implanted tumor, proportion of Tregs in peripheral blood lymphocytes (PBL) and tumor infiltrating lymphocytes (TIL) and temporal evaluation of serum cytokines. The effect of rTM was also evaluated on the in vitro differentiation of naïve T cells into induced Tregs induced by TGF-β and interleukin (IL) -2. rTM significantly inhibited the proliferation of the implanted tumor cells in an inflammation-dependent manner. rTM also reduced the fractions of regulatory T cells and induced regulatory T cells among both PBL and TIL. Temporal evaluation of serum cytokine levels in the model mice showed that rTM significantly suppressed the increases in the serum levels of IL-2 and TGF-β. An in vitro differentiation assay revealed that rTM inhibited the differentiation of naïve T cells into Tregs triggered by IL-2- and TGF-β. rTM has suppressive effects on inflammation-induced gastrointestinal tumor growth by suggestively affecting differentiation of Tregs.
Collapse
Affiliation(s)
- En Amada
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Koshi Kumagai
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, Japan.
| | - Hirofumi Kawakubo
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
3
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Inhibition of thiol isomerase activity diminishes endothelial activation of plasminogen, but not of protein C. Thromb Res 2015; 135:748-53. [PMID: 25700620 DOI: 10.1016/j.thromres.2015.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 01/14/2015] [Accepted: 01/31/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Cell surface thiol isomerase enzymes, principally protein disulphide isomerase (PDI), have emerged as important regulators of platelet function and tissue factor activation via their action on allosteric disulphide bonds. Allosteric disulphides are present in other haemostasis-related proteins, and we have therefore investigated whether thiol isomerase inhibition has any influence on two endothelial activities relevant to haemostatic regulation, namely activation of protein C and activation of plasminogen, with subsequent fibrinolysis. MATERIALS AND METHODS The study was performed using the human microvascular endothelial cell line HMEC-1. Thiol isomerase gene expression was measured by RT-PCR and activation of protein C and plasminogen by cell-based assays using chromogenic substrates S2366 and S2251, respectively. Cell mediated fibrinolysis was measured by monitoring absorbance at 405 nm following fibrin clot formation on the surface of HMEC-1 monolayers. RESULTS AND CONCLUSIONS A variety of thiol isomerase enzymes, including PDI, were expressed by HMEC-1 cells and thiol reductase activity detectable on the cell surface was inhibited by both RL90 anti-PDI antibody and by the PDI inhibitor quercetin-3-rutinoside (rutin). In cell-based assays, activation of plasminogen, but not of protein C, was inhibited by RL90 antibody and, to a lesser extent, by rutin. Fibrin clot lysis occurring on a HMEC-1 monolayer was also significantly slowed by RL90 antibody and by rutin, but RL90-mediated inhibition was abolished in the presence of exogenous tissue plasminogen activator (tPA). We conclude that thiol isomerases, including PDI, are involved in fibrinolytic regulation at the endothelial surface, although not via a direct action on tPA. These findings broaden understanding of haemostatic regulation by PDI, and may aid in development of novel anti-thrombotic therapeutic strategies targeted via the fibrinolysis system.
Collapse
|
5
|
Liu XX, Liu KY, Li P, Han S, Peng XD, Shen L. Adiponectin is expressed in the pancreas of high-fat-diet-fed mice and protects pancreatic endothelial function during the development of type 2 diabetes. DIABETES & METABOLISM 2014; 40:363-72. [PMID: 24986510 DOI: 10.1016/j.diabet.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/15/2014] [Accepted: 05/18/2014] [Indexed: 11/19/2022]
Abstract
AIM Adiponectin levels in skeletal muscle and adipose tissue have been reported to be involved in insulin resistance in rats fed with a high-fat diet (HFD). Our objective was to explore whether adiponectin is also expressed in the pancreas and what its potential role is during the development of type 2 diabetes (T2D) in outbred CD-1 mice. METHODS Male 4-week-old outbred CD-1 mice were fed an HFD to induce a polygenic model of human T2D. Adiponectin expression was examined in mouse pancreas by quantitative real-time polymerase chain reaction (qPCR), western blots and immunofluorescence analyses. Human umbilical vein endothelium cells (HUVECs) were transfected with an adiponectin-expressing lentivirus to determine the effect of adiponectin on angiogenic function in vitro. RESULTS Feeding mice an HFD for 9weeks resulted in constant hyperglycaemia, obesity, impaired glucose tolerance and insulin resistance. Additional hyperinsulinaemia emerged in mice fed an HFD for 18weeks. Interestingly, aberrant expression of adiponectin was detectable in the pancreatic vascular endothelial cells (VECs) of mice fed with an HFD, but not in mice fed with regular chow (RC). Expression levels of pancreatic adiponectin varied during the development of T2D. This extraordinary expression of adiponectin in pancreatic VECs played a role in protecting endothelial function against potential damage by HFD. Our in vitro study has demonstrated that adiponectin promotes angiogenic function. CONCLUSION These results reveal for the first time that adiponectin is expressed in pancreatic VECs of HFD-fed mice during the development of T2D as a protective adaptation in response to the HFD.
Collapse
Affiliation(s)
- X-X Liu
- Department of Cell Biology, Peking University Health Science Center, Beijing 100191, China
| | - K-Y Liu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - P Li
- Department of Cell Biology, Peking University Health Science Center, Beijing 100191, China
| | - S Han
- Department of Cell Biology, Peking University Health Science Center, Beijing 100191, China
| | - X-D Peng
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - L Shen
- Department of Cell Biology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
6
|
Huang Q, Liu L, Liu CH, Shao F, Xie F, Zhang CH, Hu SY. Expression of Smad7 in cholangiocarcinoma: prognostic significance and implications for tumor metastasis. Asian Pac J Cancer Prev 2013; 13:5161-5. [PMID: 23244128 DOI: 10.7314/apjcp.2012.13.10.5161] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There are few molecular markers known to predict cholangiocarcinoma (CCA) prognosis. Smad7 has a certain relationship with epithelial-mesenchymal transition (EMT), but its relevance to CCA in unclear. Therefore expression and clinical significance of Smad7 in CCA was the focus of this study. METHODS Expression of Smad7, E-cadherin and vimentin was assessed in 41 patients with CCA by immunohistochemistry and analyzed for associations with clinical parameters. RESULTS Smad7 and vimentin expression in the CCA tissue was dramatically higher than that in adjacent tissues. In addition, Smad7, vimentin and E-cadherin expression was significantly associated with CCA lymph node metastasis and perineural invasion(P ≤ 0.05), but not other factors, such as gender, age, tumor location, tumor type and tumor differentiation degree (P>0.05). The overall survival and relapse-free survival rate was significantly higher in patients with negative Smad7 expression than those with positive Smad7 expression. CONCLUSION EMT phenomena may occur in the process of CCA invasion and metastasis. Smad7, which was highly expressed in CCA, may be considered to be one feedback regulator in late stages and could have potential as a prognostic indicator for clinical assessment.
Collapse
Affiliation(s)
- Qiang Huang
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Suzuki T, Yano Y, Sakamoto M, Uemura M, Yasuma T, Onishi Y, Sasaki R, Matsumoto K, Hayashi T, Maruyama-Furuta N, Akatsuka H, Gabazza EC, Sumida Y, Takei Y. Correlation of circulating dehydroepiandrosterone with activated protein C generation and carotid intima-media thickness in male patients with type 2 diabetes. Diabet Med 2012; 29:e41-6. [PMID: 22248365 DOI: 10.1111/j.1464-5491.2012.03573.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Dehydroepiandrosterone exerts a protective effect against cardiovascular diseases. However, the relationship of dehydroepiandrosterone with the anticoagulant factor activated protein C, generated by the thrombin-thrombomodulin complex on vascular endothelial cells, remains unknown. This study aimed at studying the relationship between dehydroepiandrosterone and activated protein C generation in patients with Type 2 diabetes. METHODS Sixty-two male patients with Type 2 diabetes were enrolled in this study. Data obtained from 40 healthy male subjects were used as controls. The plasma levels of dehydroepiandrosterone, the activated protein C-protein C inhibitor complex, high-sensitivity C-reactive protein and monocyte chemoattractant protein-1 were measured by enzyme immunoassays. Carotid intima-media thickness was measured by ultrasonography. RESULTS The plasma levels of dehydroepiandrosterone (5.15 ± 2.81 vs. 3.76 ± 2.16 ng/ml; P < 0.005) and the activated protein C-protein C inhibitor complex (1.90 ± 1.07 vs. 1.02 ± 0.51 ng/ml; P < 0.001) were significantly lower in patients with diabetes than in normal subjects. Univariate analysis showed a significant correlation of the plasma level of dehydroepiandrosterone with that of the activated protein C-protein C inhibitor complex (r = 0.48, P < 0.001), high-sensitivity C-reactive protein (r = -0.30, P < 0.05) and with the mean intima-media thickness (r = -0.28, P < 0.05) in patients with diabetes. Stepwise multiple regression analysis showed that the plasma level of dehydroepiandrosterone is significantly correlated with the plasma levels of the activated protein C-protein C inhibitor complex (F = 18.06) and high-sensitivity C-reactive protein (F = 4.94). There was no correlation between the plasma levels of dehydroepiandrosterone and monocyte chemoattractant protein-1. CONCLUSIONS These results suggest that lower circulating levels of dehydroepiandrosterone are associated with decreased activated protein C generation and higher intima-media thickness in patients with Type 2 diabetes.
Collapse
Affiliation(s)
- T Suzuki
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34:107-25. [PMID: 21805323 DOI: 10.1007/s00281-011-0282-8] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/20/2011] [Indexed: 12/30/2022]
Abstract
The goal is to provide an extensive review of the physiologic role of thrombomodulin (TM) in maintaining vascular homeostasis, with a focus on its anti-inflammatory properties. Data were collected from published research. TM is a transmembrane glycoprotein expressed on the surface of all vascular endothelial cells. Expression of TM is tightly regulated to maintain homeostasis and to ensure a rapid and localized hemostatic and inflammatory response to injury. By virtue of its strategic location, its multidomain structure and complex interactions with thrombin, protein C (PC), thrombin activatable fibrinolysis inhibitor (TAFI), complement components, the Lewis Y antigen, and the cytokine HMGB1, TM exhibits a range of physiologically important anti-inflammatory, anti-coagulant, and anti-fibrinolytic properties. TM is an essential cofactor that impacts on multiple biologic processes. Alterations in expression of TM and its partner proteins may be manifest by inflammatory and thrombotic disorders. Administration of soluble forms of TM holds promise as effective therapies for inflammatory diseases, and infections and malignancies that are complicated by disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Edward M Conway
- Division of Hematology-Oncology, Department of Medicine, Centre for Blood Research (CBR), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Inhibition of transforming growth factor-β restores endothelial thromboresistance in vein grafts. J Vasc Surg 2011; 54:1117-1123.e1. [PMID: 21803524 DOI: 10.1016/j.jvs.2011.04.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 04/08/2011] [Accepted: 04/14/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thrombosis is a major cause of the early failure of vein grafts (VGs) implanted during peripheral and coronary arterial bypass surgeries. Endothelial expression of thrombomodulin (TM), a key constituent of the protein C anticoagulant pathway, is markedly suppressed in VGs after implantation and contributes to local thrombus formation. While stretch-induced paracrine release of transforming growth factor-β (TGF-β) is known to negatively regulate TM expression in heart tissue, its role in regulating TM expression in VGs remains unknown. METHODS Changes in relative mRNA expression of major TGF-β isoforms were measured by quantitative polymerase chain reaction (qPCR) in cultured human saphenous vein smooth muscle cells (HSVSMCs) subjected to cyclic stretch. To determine the effects of paracrine release of TGF-β on endothelial TM mRNA expression, human saphenous vein endothelial cells (HSVECs) were co-cultured with stretched HSVSMCs in the presence of 1D11, a pan-neutralizing TGF-β antibody, or 13C4, an isotype-control antibody. Groups of rabbits were then administered 1D11 or 13C4 and underwent interpositional grafting of jugular vein segments into the carotid circulation. The effect of TGF-β inhibition on TM gene expression was measured by qPCR; protein C activating capacity and local thrombus formation were measured by in situ chromogenic substrate assays; and VG remodeling was assessed by digital morphometry. RESULTS Cyclic stretch induced TGF-β(1) expression in HSVSMCs by 1.9 ± 0.2-fold (P < .001) without significant change in the expressions of TGF-β(2) and TGF-β(3). Paracrine release of TGF-β(1) by stretched HSVSMCs inhibited TM expression in stationary HSVECs placed in co-culture by 57 ± 12% (P = .03), an effect that was abolished in the presence of 1D11. Similarly, TGF-β(1) was the predominant isoform induced in rabbit VGs 7 days after implantation (3.5 ± 0.4-fold induction; P < .001). TGF-β(1) protein expression localized predominantly to the developing neointima and coincided with marked suppression of endothelial TM expression (16% ± 2% of vein controls; P < .03), a reduction in situ activated protein C (APC)-generating capacity (53% ± 9% of vein controls; P = .001) and increased local thrombus formation (3.7 ± 0.8-fold increase over vein controls; P < .01). External stenting of VGs to limit vessel distension significantly reduced TGF-β(1) induction and TM downregulation. Systemic administration of 1D11 also effectively prevented TM downregulation, preserved APC-generating capacity, and reduced local thrombus in rabbit VGs without observable effect on neointima formation and other morphometric parameters 6 weeks after implantation. CONCLUSION TM downregulation in VGs is mediated by paracrine release of TGF-β(1) caused by pressure-induced vessel stretch. Systemic administration of an anti-TGF-β antibody effectively prevented TM downregulation and preserved local thromboresistance without negative effect on VG remodeling.
Collapse
|
10
|
Vu DM, Masuda H, Yokoyama TA, Fujimura S, Kobori M, Ito R, Sawada K, Saito A, Asahara T. CD133+Endothelial Progenitor Cells as a Potential Cell Source for a Bioartificial Glomerulus. Tissue Eng Part A 2009; 15:3173-82. [DOI: 10.1089/ten.tea.2009.0050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Duc M. Vu
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Haruchika Masuda
- Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tun A. Yokoyama
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Satoshi Fujimura
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Michiru Kobori
- Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Rie Ito
- Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Kaichiro Sawada
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Akira Saito
- Division of Nephrology and Metabolism, Department of Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Takayuki Asahara
- Department of Regenerative Medicine, Division of Basic Clinical Science, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
11
|
|
12
|
Sambuceti G, Morbelli S, Vanella L, Kusmic C, Marini C, Massollo M, Augeri C, Corselli M, Ghersi C, Chiavarina B, Rodella LF, L'Abbate A, Drummond G, Abraham NG, Frassoni F. Diabetes impairs the vascular recruitment of normal stem cells by oxidant damage, reversed by increases in pAMPK, heme oxygenase-1, and adiponectin. Stem Cells 2009; 27:399-407. [PMID: 19038792 PMCID: PMC2729677 DOI: 10.1634/stemcells.2008-0800] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Atherosclerosis progression is accelerated in diabetes mellitus (DM) by either direct endothelial damage or reduced availability and function of endothelial progenitor cells (EPCs). Both alterations are related to increased oxidant damage. AIM We examined if DM specifically impairs vascular signaling, thereby reducing the recruitment of normal EPCs, and if increases in antioxidant levels by induction of heme oxygenase-1 (HO-1) can reverse this condition. METHODS Control and diabetic rats were treated with the HO-1 inducer cobalt protoporphyrin (CoPP) once a week for 3 weeks. Eight weeks after the development of diabetes, EPCs harvested from the aorta of syngenic inbred normal rats and labeled with technetium-99m-exametazime were infused via the femoral vein to estimate their blood clearance and aortic recruitment. Circulating endothelial cells (CECs) and the aortic expression of thrombomodulin (TM), CD31, and endothelial nitric oxide synthase (eNOS) were used to measure endothelial damage. RESULTS DM reduced blood clearance and aortic recruitment of EPCs. Both parameters were returned to control levels by CoPP treatment without affecting EPC kinetics in normal animals. These abnormalities of EPCs in DM were paralleled by reduced serum adiponectin levels, increased numbers of CECs, reduced endothelial expression of phosphorylated eNOS, and reduced levels of TM, CD31, and phosphorylated AMP-activated protein kinase (pAMPK). CoPP treatment restored all of these parameters to normal levels. CONCLUSION Type II DM and its related oxidant damage hamper the interaction between the vascular wall and normal EPCs by mechanisms that are, at least partially, reversed by the induction of HO-1 gene expression, adiponectin, and pAMPK levels.
Collapse
Affiliation(s)
- Gianmario Sambuceti
- Department of Internal Medicine, University of Genoa, S. Martino Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Gupta A, Gerlitz B, Richardson MA, Bull C, Berg DT, Syed S, Galbreath EJ, Swanson BA, Jones BE, Grinnell BW. Distinct functions of activated protein C differentially attenuate acute kidney injury. J Am Soc Nephrol 2008; 20:267-77. [PMID: 19092124 DOI: 10.1681/asn.2008030294] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Administration of activated protein C (APC) protects from renal dysfunction, but the underlying mechanism is unknown. APC exerts both antithrombotic and cytoprotective properties, the latter via modulation of protease-activated receptor-1 (PAR-1) signaling. We generated APC variants to study the relative importance of the two functions of APC in a model of LPS-induced renal microvascular dysfunction. Compared with wild-type APC, the K193E variant exhibited impaired anticoagulant activity but retained the ability to mediate PAR-1-dependent signaling. In contrast, the L8W variant retained anticoagulant activity but lost its ability to modulate PAR-1. By administering wild-type APC or these mutants in a rat model of LPS-induced injury, we found that the PAR-1 agonism, but not the anticoagulant function of APC, reversed LPS-induced systemic hypotension. In contrast, both functions of APC played a role in reversing LPS-induced decreases in renal blood flow and volume, although the effects on PAR-1-dependent signaling were more potent. Regarding potential mechanisms for these findings, APC-mediated PAR-1 agonism suppressed LPS-induced increases in the vasoactive peptide adrenomedullin and infiltration of iNOS-positive leukocytes into renal tissue. However, the anticoagulant function of APC was responsible for suppressing LPS-induced stimulation of the proinflammatory mediators ACE-1, IL-6, and IL-18, perhaps accounting for its ability to modulate renal hemodynamics. Both variants reduced active caspase-3 and abrogated LPS-induced renal dysfunction and pathology. We conclude that although PAR-1 agonism is solely responsible for APC-mediated improvement in systemic hemodynamics, both functions of APC play distinct roles in attenuating the response to injury in the kidney.
Collapse
Affiliation(s)
- Akanksha Gupta
- Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0444, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsumoto K, Yano Y, Gabazza EC, Araki R, Bruno NE, Suematsu M, Akatsuka H, Katsuki A, Taguchi O, Adachi Y, Sumida Y. Inverse correlation between activated protein C generation and carotid atherosclerosis in Type 2 diabetic patients. Diabet Med 2007; 24:1322-8. [PMID: 17971179 DOI: 10.1111/j.1464-5491.2007.02289.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Activated protein C (APC) is a key regulator of the clotting system and immune responses. We studied the relationship between the degree of atherosclerosis as measured by the intima-media thickness (IMT) of carotid artery and APC generation in Type 2 diabetic patients. METHODS Eighty-seven Type 2 diabetic patients and 35 control subjects participated. APC generation was assessed by the plasma APC-protein C inhibitor complex (APC-PCI) levels and the mean IMT of carotid artery was measured by ultrasonography. The plasma levels of the thrombin-anti-thromobin complex (TAT) and platelet-derived growth factor (PDGF) were measured by enzyme-linked immunoassays. RESULTS Plasma TAT levels were significantly higher in diabetic patients [2.03 (1.12, 2.56) ng/ml, median (25th, 75th percentile)] compared with control subjects [0.85 (0.55, 2.08) ng/ml, P < 0.01]. Plasma APC-PCI levels were significantly lower in diabetic patients [0.93 (0.74, 1.22) ng/ml], than in control subjects [1.66 (1.25, 2.36) ng/ml, P < 0.001]. The mean IMT was significantly increased in diabetic patients (0.881 +/- 0.242 mm; mean +/- sd) compared with control subjects (0.669 +/- 0.140 mm; P < 0.01). Univariate analysis showed a significant and inverse correlation between plasma APC-PCI levels and mean IMT (r = -0.32, P < 0.005), and multivariate regression analysis confirmed the independent correlation (P < 0.05). Moreover, plasma APC-PCI levels significantly and inversely correlated with plasma PDGF levels in diabetic patients (r = -0.30, P < 0.01). CONCLUSIONS These results suggest that decreased APC generation is associated with vascular atherosclerotic changes in Type 2 diabetic patients.
Collapse
Affiliation(s)
- K Matsumoto
- Department of Diabetes and Endocrinology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Scaldaferri F, Sans M, Vetrano S, Graziani C, De Cristofaro R, Gerlitz B, Repici A, Arena V, Malesci A, Panes J, Grinnell BW, Danese S. Crucial role of the protein C pathway in governing microvascular inflammation in inflammatory bowel disease. J Clin Invest 2007; 117:1951-60. [PMID: 17557119 PMCID: PMC1884689 DOI: 10.1172/jci31027] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/30/2007] [Indexed: 02/06/2023] Open
Abstract
Endothelial protein C receptor (EPCR) and thrombomodulin (TM) are expressed at high levels in the resting microvasculature and convert protein C (PC) into its activated form, which is a potent anticoagulant and antiinflammatory molecule. Here we provide evidence that in Crohn disease (CD) and ulcerative colitis (UC), the 2 major forms of inflammatory bowel disease (IBD), there was loss of expression of endothelial EPCR and TM, which in turns caused impairment of PC activation by the inflamed mucosal microvasculature. In isolated human intestinal endothelial cells, administration of recombinant activated PC had a potent antiinflammatory effect, as demonstrated by downregulated cytokine-dependent cell adhesion molecule expression and chemokine production as well as inhibited leukocyte adhesion. In vivo, administration of activated PC was therapeutically effective in ameliorating experimental colitis as evidenced by reduced weight loss, disease activity index, and histological colitis scores as well as inhibited leukocyte adhesion to the inflamed intestinal vessels. The results suggest that the PC pathway represents a new system crucially involved in governing intestinal homeostasis mediated by the mucosal microvasculature. Restoring the PC pathway may represent a new therapeutic approach to suppress intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Franco Scaldaferri
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Miquel Sans
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Stefania Vetrano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Cristina Graziani
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Raimondo De Cristofaro
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Bruce Gerlitz
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Alessandro Repici
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Vincenzo Arena
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Alberto Malesci
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Julian Panes
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Brian W. Grinnell
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| | - Silvio Danese
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Clinico Humanitas, Rozzano, Italy.
Institute of Internal Medicine, Catholic University, Rome, Italy.
Department of Gastroenterology, Hospital Clinic y Provincial, Barcelona, Spain.
Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana, USA.
Department of Pathology, Catholic University, Rome, Italy
| |
Collapse
|
17
|
Peterson SJ, Husney D, Kruger AL, Olszanecki R, Ricci F, Rodella LF, Stacchiotti A, Rezzani R, McClung JA, Aronow WS, Ikehara S, Abraham NG. Long-term treatment with the apolipoprotein A1 mimetic peptide increases antioxidants and vascular repair in type I diabetic rats. J Pharmacol Exp Ther 2007; 322:514-20. [PMID: 17488882 DOI: 10.1124/jpet.107.119479] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, enhances the ability of high-density lipoprotein to protect low-density lipoprotein (LDL) against oxidation in atherosclerotic disease. Using a rat model of type I diabetes, we investigated whether chronic use of D-4F would lead to up-regulation of heme oxygenase (HO)-1, endothelial cell marker (CD31(+)), and thrombomodulin (TM) expression and increase the number of endothelial progenitor cells (EPCs). Sprague-Dawley rats were rendered diabetic with streptozotocin (STZ) and either D-4F or vehicle was administered, by i.p. injection, daily for 6 weeks (100 microg/100 g b.wt.). HO activity was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart and aorta by 29 and 31% (p < 0.05 and p < 0.49), respectively. Long-term D-4F treatment also caused a significant increase in TM and CD31(+) expression. D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31(+) loss. In conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase in TM and CD31(+), the antioxidant and anti-inflammatory properties, and confers robust vascular protection in this animal model of type 1 diabetes.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Aorta/enzymology
- Aorta/metabolism
- Apolipoprotein A-I/administration & dosage
- Apolipoprotein A-I/pharmacology
- Apolipoprotein A-I/therapeutic use
- Blood Glucose/metabolism
- Body Weight/drug effects
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiopathology
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase-1/metabolism
- Kidney/enzymology
- Lipoproteins, LDL/blood
- Liver/enzymology
- Male
- Myocardium/enzymology
- Nitric Oxide Synthase Type III/metabolism
- Oxidative Stress/drug effects
- Platelet Endothelial Cell Adhesion Molecule-1/metabolism
- Rats
- Rats, Sprague-Dawley
- Stem Cells/metabolism
- Stem Cells/pathology
- Thrombomodulin/metabolism
- Time Factors
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gupta A, Berg DT, Gerlitz B, Sharma GR, Syed S, Richardson MA, Sandusky G, Heuer JG, Galbreath EJ, Grinnell BW. Role of protein C in renal dysfunction after polymicrobial sepsis. J Am Soc Nephrol 2007; 18:860-7. [PMID: 17301189 DOI: 10.1681/asn.2006101167] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Protein C (PC) plays an important role in vascular function, and acquired deficiency during sepsis is associated with increased mortality in both animal models and in clinical studies. This study explored the consequences of PC suppression on the kidney in a cecal ligation and puncture model of polymicrobial sepsis. This study shows that a rapid drop in PC after sepsis is strongly associated with an increase in blood urea nitrogen, renal pathology, and expression of known markers of renal injury, including neutrophil gelatinase-associated lipocalin, CXCL1, and CXCL2. The endothelial PC receptor, which is required for the anti-inflammatory and antiapoptotic activity of activated PC (APC), was significantly increased after cecal ligation and puncture as well as in the microvasculature of human kidneys after injury. Treatment of septic animals with APC reduced blood urea nitrogen, renal pathology, and chemokine expression and dramatically reduced the induction of inducible nitric oxide synthase and caspase-3 activation in the kidney. The data demonstrate a clear link between acquired PC deficiency and renal dysfunction in sepsis and suggest a compensatory upregulation of the signaling receptor. Moreover, these data suggest that APC treatment may be effective in reducing inflammatory and apoptotic insult during sepsis-induced acute renal failure.
Collapse
Affiliation(s)
- Akanksha Gupta
- Biotechnology Discovery Research, Eli-Lilly Research Laboratories, Lilly Corporate Center, 355 East Merrill Street, DC# 0434, Lilly & Company, Indianapolis, Indiana 462225, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kapur NK, Deming CB, Kapur S, Bian C, Champion HC, Donahue JK, Kass DA, Rade JJ. Hemodynamic Modulation of Endocardial Thromboresistance. Circulation 2007; 115:67-75. [PMID: 17190863 DOI: 10.1161/circulationaha.106.640698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Patients with heart failure are at increased risk for thromboembolic events, including stroke. Historically attributed to blood stasis, little is known about the adverse effects of elevated chamber filling pressure on endocardial function, which could predispose to intracardiac thrombus formation.
Methods and Results—
We investigated changes in the expression of thrombomodulin, a key component of the anticoagulant protein C pathway, in rats subjected to acute atrial pressure overload caused by aortic banding. Acute elevation of left atrial filling pressure, without an associated decline in ventricular systolic function, caused a 70% inhibition of atrial endocardial thrombomodulin expression and resulted in increased local thrombin generation. Targeted restoration of atrial thrombomodulin expression with adenovirus-mediated gene transfer successfully reduced thrombin generation to baseline levels. In vitro co-culture studies revealed that thrombomodulin downregulation is caused by the paracrine release of transforming growth factor-β from cardiac connective tissue in response to mechanical stretch. This was confirmed in vivo by administration of a neutralizing transforming growth factor-β antibody, which effectively prevented thrombomodulin downregulation during acute pressure overload.
Conclusions—
These findings suggest that increased hemodynamic load adversely affects endocardial function and is a potentially important contributor to thromboembolus formation in heart failure.
Collapse
Affiliation(s)
- Navin K Kapur
- Division of Cardiology, Johns Hopkins School of Medicine, 600 N. Wolfe St, Baltimore, MD 21287, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yan ZM, Fan ZP, Du J, Hua H, Xu YY, Wang SL. A novel mutation in ALK-1 causes hereditary hemorrhagic telangiectasia type 2. J Dent Res 2006; 85:705-10. [PMID: 16861286 DOI: 10.1177/154405910608500804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal-dominant bleeding disorder and has two variants, HHT1 and HHT2, associated with mutations in the ENG and ALK-1 genes, respectively. We identified one Chinese HHT2 family to investigate the pathogenic gene and its possible mechanism of action by mutation screening and functional study. One substitution mutation (1717C>T) in exon 10 of the ALK-1 was found by sequencing of all exons of ENG and ALK-1 and caused a R479X mutation in the ALK-1 protein. ALK-1 mRNA and plasma thrombomodulin were measured by real-time quantitative PCR and ELISA, respectively. There was no significant difference in the expression levels of ALK-1 mRNA between patients and healthy individuals. A significantly higher level of thrombomodulin was found in HHT patients. These findings indicate that the mutation causes truncation of the ALK-1 protein at the post-transcriptional level; the plasma thrombomodulin may provide an easy diagnostic indicator in HHT patients.
Collapse
Affiliation(s)
- Z M Yan
- Department of Oral Medicine, Peking University School of Stomatology, 22 South Zhong Guan Cun Street, Beijing 100081, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA, Balasubramanian V, García-Cardeña G, Jain MK. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 2005; 96:e48-57. [PMID: 15718498 DOI: 10.1161/01.res.0000159707.05637.a1] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The vascular endothelium maintains blood fluidity by inhibiting blood coagulation, inhibiting platelet aggregation, and promoting fibrinolysis. Endothelial cells lose these nonthrombogenic properties on exposure to proinflammatory stimuli. We recently identified the Kruppel-like factor KLF2 as a novel regulator of endothelial proinflammatory activation. Here it is found that KLF2 differentially regulates key factors involved in maintaining an antithrombotic endothelial surface. Overexpression of KLF2 strongly induced thrombomodulin (TM) and endothelial nitric oxide synthase (eNOS) expression and reduced plasminogen activator inhibitor-1 (PAI-1) expression. Furthermore, overexpression of KLF2 inhibited the cytokine-mediated induction of tissue factor (TF). In contrast, siRNA mediated knockdown of KLF2 reduced antithrombotic gene expression while inducing the expression of pro-coagulant factors. The functional importance of KLF2 was verified by in vitro clotting assays. By comparison to control infected cells, KLF2 overexpression increased blood clotting time as well as flow rates under basal and inflammatory conditions. In contrast, siRNA-mediated knockdown of KLF2 reduced blood clotting time and flow rates. These observations identify KLF2 as a novel transcriptional regulator of endothelial thrombotic function. The full text of this article is available online at http://circres.ahajournals.org.
Collapse
Affiliation(s)
- Zhiyong Lin
- Program in Cardiovascular Transcriptional Biology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Berg DT, Myers LJ, Richardson MA, Sandusky G, Grinnell BW. Smad6s regulates plasminogen activator inhibitor-1 through a protein kinase C-beta-dependent up-regulation of transforming growth factor-beta. J Biol Chem 2005; 280:14943-7. [PMID: 15716278 DOI: 10.1074/jbc.c400579200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a serpin class protease inhibitor that plays a central role in the regulation of vascular function and tissue remodeling by modulating thrombosis, inflammation, and the extracellular matrix. A central mediator controlling PAI-1 is transforming growth factor-beta (TGF-beta), which induces its expression and promotes fibrosis. We have found that a unique member of the Smad family of signal transduction molecules, Smad6s, modulates the expression of PAI-1. Overexpression of Smad6s in endothelial cells increases promoter activity and PAI-1 secretion, and an antisense to Smad6s suppresses the induction of PAI-1 by TGF-beta. The effect of Smad6s on the PAI-1 promoter appeared to be the result of increase binding of the forkhead winged helix factor FoxD1 to a TGF-beta-responsive element. Furthermore, the effect of Smad6s on PAI-1 up-regulation and on FoxD1 binding was found to result from up-regulation of TGF-beta and could be inhibited by the blocking TGF-beta signaling with Smad7. The ability of Smad6s to regulate the TGF-beta promoter and subsequent PAI-1 induction was suppressed by a selective protein kinase C-beta (PKC-beta) inhibitor. Consistent with the in vitro data, we found that increased Smad6s in diseased vessels correlated with increased TGF-beta and PAI-1 levels. Overall, our results demonstrate that the level of Smad6s can alter the level of TGF-beta and the subsequent induction of PAI-1 via a FoxD1 transcription site. Furthermore, our data suggest that this process, which is up-regulated in diseased vessels, can be modulated by the inhibition of PKC-beta.
Collapse
Affiliation(s)
- David T Berg
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | | | | | |
Collapse
|
23
|
Kim YH, Lee HS, Lee HJ, Hur K, Kim WH, Bang YJ, Kim SJ, Lee KU, Choe KJ, Yang HK. Prognostic significance of the expression of Smad4 and Smad7 in human gastric carcinomas. Ann Oncol 2004; 15:574-80. [PMID: 15033661 DOI: 10.1093/annonc/mdh131] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) modulates the growth and function of many cells, including those with malignant transformation. Smad proteins have been identified as major components in the intracellular signaling of TGF-beta family members. PATIENTS AND METHODS To clarify the correlations between clinicopathologic profiles and the patient's survival, the expression of common mediator Smad (Smad4) and inhibitory Smad (Smad7) were evaluated immunohistochemically in 304 consecutive gastric carcinomas using the tissue array method. RESULTS Positive Smad4 expression was observed in 266 (87.5%) tumors and positive Smad7 expression in 98 (32.2%) tumors. The prognosis of patients with a Smad4-positive tumor was significantly better than that of the patients with a negative tumor. The survival rate was significantly higher in patients with negative Smad7 expression than those with positive Smad7 expression. In subgroup analysis according to TNM (tumour-node-metastasis) stage, both Smad4 and Smad7 showed most significant prognostic differences in stage I gastric cancer patients. Multivariate analysis indicated that tumor size, depth of invasion, lymph node metastasis and Smad7 expression were independent prognostic factors. CONCLUSION Enhanced expression of the TGF-beta signaling inhibitor Smad7 may present one of the novel mechanisms of TGF-beta resistance in human gastric carcinomas.
Collapse
Affiliation(s)
- Y H Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol 2004; 24:1374-83. [PMID: 15178554 DOI: 10.1161/01.atv.0000134298.25489.92] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Late in the 18th century, William Hewson recognized that the formation of a clot is characteristic of many febrile, inflammatory diseases (Owen C. A History of Blood Coagulation. Rochester, Minnesota: Mayo Foundation; 2001). Since that time, there has been steady progress in our understanding of coagulation and inflammation, but it is only in the past few decades that the molecular mechanisms linking these 2 biologic systems have started to be delineated. Most of these can be traced to the vasculature, where the systems most intimately interact. Thrombomodulin (TM), a cell surface-expressed glycoprotein, predominantly synthesized by vascular endothelial cells, is a critical cofactor for thrombin-mediated activation of protein C (PC), an event further amplified by the endothelial cell protein C receptor (EPCR). Activated PC (APC), in turn, is best known for its natural anticoagulant properties. Recent evidence has revealed that TM, APC, and EPCR have activities that impact not only on coagulation but also on inflammation, fibrinolysis, and cell proliferation. This review highlights recent insights into the diverse functions of this complex multimolecular system and how its components are integrated to maintain homeostasis under hypercoagulable and/or proinflammatory stress conditions. Overall, the described advances underscore the usefulness of elucidating the relevant molecular pathways that link both systems for the development of novel therapeutic and diagnostic targets for a wide range of inflammatory diseases.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- The Center for Transgene Technology and Gene Therapy, University of Leuven and the Flanders Interuniversity Institute for Biotechnology (VIB), Belgium
| | | | | |
Collapse
|
25
|
Abstract
The objective of this study was to review the mechanisms by which thrombomodulin (TM) may modulate inflammation. The data were taken from published research performed by other laboratories and our own experimental results. TM is a transmembrane glycoprotein receptor and cofactor for thrombin in the protein C anticoagulant system. Recent studies have revealed that TM has activities, both dependent and independent of either protein C or thrombin, that affect biological systems beyond the coagulation pathway. This review highlights recent insights, provided by in vitro and in vivo analyses, into how the unique structural domains of TM effectively modify coagulation, fibrinolysis, and inflammation in health and disease. A paradigm is presented to describe how these apparently distinct functions are integrated to maintain homeostasis under stress conditions. Finally, we explore the potential diagnostic and therapeutic utility of dissecting out the structure-function correlates of TM. We conclude that TM plays a central role in regulating not only hemostasis but also inflammation, thus providing a close link between these processes. Elucidation of the molecular mechanisms by which TM functions will likely provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Flanders Interuniversity Institute for Biotechnology and the Center for Transgene Technology and Gene Therapy, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
26
|
Kuga H, Morisaki T, Nakamura K, Onishi H, Noshiro H, Uchiyama A, Tanaka M, Katano M. Interferon-gamma suppresses transforming growth factor-beta-induced invasion of gastric carcinoma cells through cross-talk of Smad pathway in a three-dimensional culture model. Oncogene 2003; 22:7838-47. [PMID: 14586410 DOI: 10.1038/sj.onc.1207046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We reconstituted a three-dimensional gastric carcinoma model similar to invasive gastric carcinoma tissue. This model consists of a human gastric carcinoma cell line, GCTM-1, a human fibroblast cell line, TIG-1-20, and transforming growth factor-beta (TGF-beta)-containing type I collagen gel. Using this model, we were able to observe the growth of the two cell types, especially carcinoma cell invasive growth, in real time for more than 30 days. TGF-beta and TIG-1-20 were essential for GCTM-1 invasive growth and proliferation, respectively. TGF-beta induced the enhanced expression of matrix metalloproteinase 9 (MMP9) and urokinase-type plasminogen activator (uPA) in GCTM-1 at both the protein and enzymatic activity levels. The TGF-beta-induced invasion of GCTM-1 was inhibited by MMP9- or uPA-antisense (AS) oligonucleotide transfection to GCTM-1. When exogenous interferon-gamma (IFN-gamma) was added to this model, TGF-beta-dependent GCTM-1 invasion was significantly inhibited, concomitant with the decreased expression of MMP9 and uPA. The intracellular signal transduction of Smad was examined to analyse the mechanism of the inhibitory effect of IFN-gamma. TGF-beta accelerated the phosphorylation of Smad2/3 and nuclear translocation of the Smad2/3-Smad4 complex in GCTM-1, but these TGF-beta-induced effects were significantly inhibited by IFN-gamma-induced Smad7 expression. When GCTM-1 was cotransfected with AS oligonucleotide of Smad2 and Smad3, the TGF-beta-induced invasion of GCTM-1 disappeared. In addition, the inhibitory effect of IFN-gamma on TGF-beta-dependent GCTM-1 invasion vanished by the AS oligonucleotide of Smad7 transfection. These results indicate that IFN-gamma inhibits TGF-beta-dependent GCTM-1 invasion through cross-talk in the Smad pathway. IFN-gamma may be a new therapeutic tool for TGF-beta-expressed invasive carcinomas.
Collapse
Affiliation(s)
- Hirotaka Kuga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|