1
|
Mitra A, Bhakta K, Kar A, Roy A, Mohid SA, Ghosh A, Ghosh A. Insight into the biochemical and cell biological function of an intrinsically unstructured heat shock protein, Hsp12 of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2023; 24:1063-1077. [PMID: 37434353 PMCID: PMC10423329 DOI: 10.1111/mpp.13350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 07/13/2023]
Abstract
Small heat shock proteins (sHsps) play diverse roles in the stress response and maintenance of cellular functions. The Ustilago maydis genome codes for few sHsps. Among these, Hsp12 has previously been demonstrated to be involved in the pathogenesis of the fungus by our group. In the present study we further investigated the biological function of the protein in the pathogenic development of U. maydis. Analysis of the primary amino acid sequence of Hsp12 in combination with spectroscopic methods to analyse secondary protein structures revealed an intrinsically disordered nature of the protein. We also carried out detailed analysis on the protein aggregation prevention activity associated with Hsp12. Our data suggest Hsp12 has trehalose-dependent protein aggregation prevention activity. Through assaying the interaction of Hsp12 with lipid membranes in vitro we also showed the ability of U. maydis Hsp12 to induce stability in lipid vesicles. U. maydis hsp12 deletion mutants exhibited defects in the endocytosis process and delayed completion of the pathogenic life cycle. Therefore, U. maydis Hsp12 contributes to the pathogenic development of the fungus through its ability to relieve proteotoxic stress during infection as well as its membrane-stabilizing function.
Collapse
Affiliation(s)
- Aroni Mitra
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | - Ankita Kar
- Division of Plant BiologyBose InstituteKolkataIndia
| | - Anisha Roy
- Division of Plant BiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
2
|
Becerra-Hernández LV, Escobar-Betancourt MI, Pimienta-Jiménez HJ, Buriticá E. Crystallin Alpha-B Overexpression as a Possible Marker of Reactive Astrogliosis in Human Cerebral Contusions. Front Cell Neurosci 2022; 16:838551. [PMID: 35360493 PMCID: PMC8963874 DOI: 10.3389/fncel.2022.838551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The pathophysiology of traumatic brain injury (TBI) has not yet been fully elucidated. Crystallin alpha-B (CRYAB) is a molecular chaperone that apparently tries to stabilize the rapid thickening of the intermediate filaments of glial fibrillary acidic protein (GFAP) during the process of reactive astrogliosis in response to TBI. Previous analyses of the gene expression profile in human brain contusion tissue showed us an exacerbated CRYAB overexpression. Here, we used 3, 3’-diaminobenzidine (DAB) immunohistochemistry and immunofluorescence to verify CRYAB overexpression and to describe its expression and distribution in samples of contused cortical tissue derived from emergency decompressive surgery after severe TBI. The histological expression of CRYAB was mainly seen in subcortical white matter astrocytes of injured tissue. Most of the cells that overexpressed GFAP in the analyzed tissue also overexpressed CRYAB, a finding corroborated by the co-localization of the two markers. The only difference was the presence of a few pyramidal neurons that expressed CRYAB in layer V of the cerebral cortex. The selective vulnerability of layer V of the cerebral cortex during TBI could explain the expression of CRYAB in neurons of this cortical layer. Our results indicate a parallel behavior in the cellular expression of CRYAB and GFAP during the subacute response to TBI. These results lead us to postulate CRYAB as a possible marker of reactive astrogliosis in contused cortical tissue.
Collapse
|
3
|
Kim J, Lee YJ, Won JY. Molecular Mechanisms of Retinal Pigment Epithelium Dysfunction in Age-Related Macular Degeneration. Int J Mol Sci 2021; 22:ijms222212298. [PMID: 34830181 PMCID: PMC8624542 DOI: 10.3390/ijms222212298] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelium (RPE), situated upon Bruch’s membrane, plays multiple roles in the ocular system by interacting with photoreceptors and. Therefore, dysfunction of the RPE causes diseases related to vision loss, such as age-related macular degeneration (AMD). Despite AMD being a global cause of blindness, the pathogenesis remains unclear. Understanding the pathogenesis of AMD is the first step for its prevention and treatment. This review summarizes the common pathways of RPE dysfunction and their effect in AMD. Potential treatment strategies for AMD based on targeting the RPE have also been discussed.
Collapse
Affiliation(s)
- Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Yeo Jin Lee
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Korea;
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Korea
- Correspondence:
| |
Collapse
|
4
|
De Maio A, Hightower L. The interaction of heat shock proteins with cellular membranes: a historical perspective. Cell Stress Chaperones 2021; 26:769-783. [PMID: 34478113 PMCID: PMC8413713 DOI: 10.1007/s12192-021-01228-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
The interaction of heat shock proteins (HSP) with cellular membranes has been an enigmatic process, initially observed by morphological studies, inferred during the purification of HSP70s, and confirmed after the detection of these proteins on the surface of cancer cells and their insertion into artificial lipid bilayers. Today, the association of several HSP with lipid membranes is well established. However, the mechanisms for membrane insertion have been elusive. There is conclusive evidence indicating that HSP70s have a great selectivity for negatively charged phospholipids, whereas other HSP have a broader spectrum of lipid specificity. HSP70 also oligomerizes upon membrane insertion, forming ion conductance channels. The functional role of HSP70 lipid interactions appears related to membrane stabilization that may play a role during cell membrane biogenesis. They could also play a role as membrane chaperones as well as during endocytosis, microautophagy, and signal transduction. Moreover, HSP membrane association is a key component in the extracellular export of these proteins. The presence of HSP70 on the surface of cancer cells and its interaction with lysosome membranes have been envisioned as potential therapeutic targets. Thus, the biology and function of HSP membrane association are reaching a new level of excitement. This review is an attempt to preserve the recollection of the pioneering contributions of many investigators that have participated in this endeavor.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns, and Acute Care Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
- Center for Investigations of Health and Education Disparities, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Lawrence Hightower
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48:1043-1056. [PMID: 32710488 PMCID: PMC7754492 DOI: 10.1111/ceo.13834] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023]
Abstract
Age‐related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non‐exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress‐induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.
Collapse
Affiliation(s)
- Shreya Somasundaran
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
6
|
Marcos AT, Amorós D, Muñoz-Cabello B, Galán F, Rivas Infante E, Alcaraz-Mas L, Navarro-Pando JM. A novel dominant mutation in CRYAB gene leading to a severe phenotype with childhood onset. Mol Genet Genomic Med 2020; 8:e1290. [PMID: 32420686 PMCID: PMC7434720 DOI: 10.1002/mgg3.1290] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 11/24/2022] Open
Abstract
Background αB‐crystallin is a promiscuous protein involved in numerous cell functions. Mutations in CRYAB have been found in patients with different pathological phenotypes that are not properly understood. Patients can present different diseases like cataracts, muscle weakness, myopathy, cardiomyopathy, respiratory insufficiency or dysphagia, but also a variable combination of these pathologies has been found. These mutations can show either autosomal dominant or recessive mode of inheritance and variable penetrance and expressivity. This is the first report of congenital cataracts and myopathy described in childhood due to a CRYAB mutation with autosomal dominant mode of inheritance. Methods The whole exome sequence was subjected to phenotype‐driven analysis and a novel variant in CRYAB was detected: c.514delG, p.(Ala172ProfsTer14). The mutation was located in the C‐terminal domain of the protein, which is essential for chaperone activity. The deduced protein was analyzed searching for alterations of the relevant physico‐chemical properties described for this domain. A muscle biopsy was also tested for CRYAB with immunohistochemical and histoenzymatic techniques. Results CRYAB displayed a mild immunoreactivity in the subsarcolemmal compartment with no pathological sarcoplasmic accumulation. It agrees with an alteration of the physico‐chemical properties predicted for the C‐terminal domain: hydrophobicity, stiffness, and isomerization. Conclusions The described mutation leads to elongation of the protein at the carboxi‐terminal domain (CTD) with altered properties, which are essential for solubility and activity. It suggests that can be the cause of the severe conditions observed in this patient.
Collapse
Affiliation(s)
- Ana T Marcos
- Unidad de Genética, INEBIR (Instituto para el estudio de la Biología de la Reproducción Humana), Seville, Spain.,Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico, Santander, Spain.,FUNIBER (Fundación Universitaria Iberoamericana), Barcelona, Spain
| | - Diego Amorós
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | | | - Francisco Galán
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | | | - Luis Alcaraz-Mas
- BioArray, Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - José M Navarro-Pando
- Unidad de Genética, INEBIR (Instituto para el estudio de la Biología de la Reproducción Humana), Seville, Spain.,Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico, Santander, Spain.,FUNIBER (Fundación Universitaria Iberoamericana), Barcelona, Spain
| |
Collapse
|
7
|
De Maio A, Cauvi DM, Capone R, Bello I, Egberts WV, Arispe N, Boelens W. The small heat shock proteins, HSPB1 and HSPB5, interact differently with lipid membranes. Cell Stress Chaperones 2019; 24:947-956. [PMID: 31338686 PMCID: PMC6717221 DOI: 10.1007/s12192-019-01021-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/24/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu. Several mechanisms have been proposed, including direct interaction with the plasma membrane or their release within extracellular vesicles (ECV). HSPB1 (Hsp27), which belongs to the small hsp family, was detected within the membrane of ECV released from stressed HepG2 cells. To further investigate this finding, we studied the interaction of HSPB1 with lipid membranes using liposomes. We found that HSPB1 interacted with liposomes made of palmitoyl oleoyl phosphatidylserine (POPS), palmitoyl oleoyl phosphatidylcholine (POPC), and palmitoyl oleoyl phosphatidylglycerol (POPG), with different characteristics. Another member of the small hsp family, HSPB5 (αB-crystallin), has also been detected within ECV released from HeLa cells transfected with this gene. This protein was found to interact with liposomes as well, but differently than HSPB1. To address the regions interacting with the membrane, proteoliposomes were digested with proteinase K and the protected domains within the liposomes were identified by mass spectroscopy. We observed that large parts of HSPB1 and HSPB5 were embedded within the liposomes, particularly the alpha-crystallin domain. These observations suggest that the interaction with lipid membranes may be part of the mechanisms of export of these proteins.
Collapse
Affiliation(s)
- Antonio De Maio
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
- Department of Neurosciences, Division of Trauma, Critical Care, Burns and Acute, School of Medicine, University of California San Diego, La Jolla, CA 92093 USA
| | - David M. Cauvi
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Ricardo Capone
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Ivan Bello
- Department of Surgery, Division of Trauma, Critical Care, Burns and Acute Care Surgery, School of Medicine, University of California San Diego, 9500 Gilman Drive, #0739, La Jolla, CA 92093-0739 USA
| | - Wilma Vree Egberts
- Department of Biomolecular Chemistry, Institute for Molecules and Materials and Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nelson Arispe
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| | - Wilbert Boelens
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University, Bethesda, MD 20814 USA
| |
Collapse
|
8
|
Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L. Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther 2019; 12:4129-4139. [PMID: 31239701 PMCID: PMC6553995 DOI: 10.2147/ott.s201799] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/07/2019] [Indexed: 01/18/2023] Open
Abstract
CRYAB is a member of the small heat shock protein family, first discovered in the lens of the eye, and involved in various diseases, such as eye and heart diseases and even cancers, for example, breast cancer, lung cancer, prostate cancer, and ovarian cancer. In addition, CRYAB proteins are involved in a variety of signaling pathways including apoptosis, inflammation, and oxidative stress. This review summarizes the recent progress concerning the role of CRYAB in signaling pathways and diseases. Therefore, the role of CRYAB in signaling pathways and cancers is urgently needed. This article reviews the regulation of CRYAB in the apoptotic inflammatory signaling pathway and its role in cancers progression and as a key role in anti-cancer therapy targeting CRYAB in an effort to improve outcomes for patients with metastatic disease.
Collapse
Affiliation(s)
- JunFei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - JiaLi Wu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - WenFeng Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - ZhongWei Chen
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| | - LiShan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, People's Republic of China
| |
Collapse
|
9
|
Andley UP, Tycksen E, McGlasson-Naumann BN, Hamilton PD. Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract. PLoS One 2018; 13:e0190817. [PMID: 29338044 PMCID: PMC5770019 DOI: 10.1371/journal.pone.0190817] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
The mammalian eye lens expresses a high concentration of crystallins (α, β and γ-crystallins) to maintain the refractive index essential for lens transparency. Crystallins are long-lived proteins that do not turnover throughout life. The structural destabilization of crystallins by UV exposure, glycation, oxidative stress and mutations in crystallin genes leads to protein aggregation and development of cataracts. Several destabilizing mutations in crystallin genes are linked with human autosomal dominant hereditary cataracts. To investigate the mechanism by which the α-crystallin mutations Cryaa-R49C and Cryab-R120G lead to cataract formation, we determined whether these mutations cause an altered expression of specific transcripts in the lens at an early postnatal age by RNA-seq analysis. Using knock-in mouse models previously generated in our laboratory, in the present work, we identified genes that exhibited altered abundance in the mutant lenses, including decreased transcripts for Clic5, an intracellular water channel in Cryaa-R49C heterozygous mutant lenses, and increased transcripts for Eno1b in Cryab-R120G heterozygous mutant lenses. In addition, RNA-seq analysis revealed increased histones H2B, H2A, and H4 gene expression in Cryaa-R49C mutant lenses, suggesting that the αA-crystallin mutation regulates histone expression via a transcriptional mechanism. Additionally, these studies confirmed the increased expression of histones H2B, H2A, and H4 by proteomic analysis of Cryaa-R49C knock-in and Cryaa;Cryab gene knockout lenses reported previously. Taken together, these findings offer additional insight into the early transcriptional changes caused by Cryaa and Cryab mutations associated with autosomal dominant human cataracts, and indicate that the transcript levels of certain genes are affected by the expression of mutant α-crystallin in vivo.
Collapse
Affiliation(s)
- Usha P. Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Eric Tycksen
- Genome Technology Access Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Brittney N. McGlasson-Naumann
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul D. Hamilton
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Gangalum RK, Bhat AM, Kohan SA, Bhat SP. Inhibition of the Expression of the Small Heat Shock Protein αB-Crystallin Inhibits Exosome Secretion in Human Retinal Pigment Epithelial Cells in Culture. J Biol Chem 2016; 291:12930-42. [PMID: 27129211 DOI: 10.1074/jbc.m115.698530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/15/2023] Open
Abstract
Exosomes carry cell type-specific molecular cargo to extracellular destinations and therefore act as lateral vectors of intercellular communication and transfer of genetic information from one cell to the other. We have shown previously that the small heat shock protein αB-crystallin (αB) is exported out of the adult human retinal pigment epithelial cells (ARPE19) packaged in exosomes. Here, we demonstrate that inhibition of the expression of αB via shRNA inhibits exosome secretion from ARPE19 cells indicating that exosomal cargo may have a role in exosome biogenesis (synthesis and/or secretion). Sucrose density gradient fractionation of the culture medium and cellular extracts suggests continued synthesis of exosomes but an inhibition of exosome secretion. In cells where αB expression was inhibited, the distribution of CD63 (LAMP3), an exosome marker, is markedly altered from the normal dispersed pattern to a stacked perinuclear presence. Interestingly, the total anti-CD63(LAMP3) immunofluorescence in the native and αB-inhibited cells remains unchanged suggesting continued exosome synthesis under conditions of impaired exosome secretion. Importantly, inhibition of the expression of αB results in a phenotype of the RPE cell that contains an increased number of vacuoles and enlarged (fused) vesicles that show increased presence of CD63(LAMP3) and LAMP1 indicating enhancement of the endolysosomal compartment. This is further corroborated by increased Rab7 labeling of this compartment (RabGTPase 7 is known to be associated with late endosome maturation). These data collectively point to a regulatory role for αB in exosome biogenesis possibly via its involvement at a branch point in the endocytic pathway that facilitates secretion of exosomes.
Collapse
Affiliation(s)
| | - Ankur M Bhat
- From the Jules Stein Eye Institute, Geffen School of Medicine
| | - Sirus A Kohan
- Brain Research Institute, UCLA, Los Angeles, California 90095
| | - Suraj P Bhat
- From the Jules Stein Eye Institute, Geffen School of Medicine, Brain Research Institute, UCLA, Los Angeles, California 90095 Molecular Biology Institute and
| |
Collapse
|
11
|
Alpha crystallins in the retinal pigment epithelium and implications for the pathogenesis and treatment of age-related macular degeneration. Biochim Biophys Acta Gen Subj 2015; 1860:258-68. [PMID: 26026469 DOI: 10.1016/j.bbagen.2015.05.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/13/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND αA- and αB crystallins are principal members of the small heat shock protein family and elicit both a cell protective function and a chaperone function. α-Crystallins have been found to be prominent proteins in normal and pathological retina emphasizing the importance for in-depth understanding of their function and significance. SCOPE OF REVIEW Retinal pigment epithelial cells (RPE) play a vital role in the pathogenesis of age-related macular degeneration (AMD). This review addresses a number of cellular functions mediated by α-crystallins in the retina. Prominent expression of αB crystallin in mitochondria may serve to protect cells from oxidative injury. αB crystallin as secretory protein via exosomes can offer neuroprotection to adjacent RPE cells and photoreceptors. The availability of chaperone-containing minipeptides of αB crystallin could prove to be a valuable new tool for therapeutic treatment of retinal disorders. MAJOR CONCLUSIONS α-Crystallins are expressed in cytosol and mitochondria of RPE cells and are regulated during oxygen-induced retinopathy and during development. α-Crystallins protect RPE from oxidative-and ER stress-induced injury and autophagy. αB-Crystallin is a modulator of angiogenesis and vascular endothelial growth factor. αB Crystallin is secreted via exosomal pathway. Minichaperone peptides derived from αB Crystallin prevent oxidant induced cell death and have therapeutic potential. GENERAL SIGNIFICANCE Overall, this review summarizes several novel properties of α-crystallins and their relevance to maintaining normal retinal function. In particular, the use of α-crystallin derived peptides is a promising therapeutic strategy to combat retinal diseases such as AMD. This article is part of a Special Issue entitled Crystallin biochemistry in health and disease.
Collapse
|
12
|
Makiyama T, Nakamura H, Nagasaka N, Yamashita H, Honda T, Yamaguchi N, Nishida A, Murayama T. Trafficking of Acetyl-C16-Ceramide-NBD with Long-Term Stability and No Cytotoxicity into the Golgi Complex. Traffic 2015; 16:476-92. [DOI: 10.1111/tra.12265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Tomohiko Makiyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Nobuo Nagasaka
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Hisahiro Yamashita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Takuya Honda
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Atsushi Nishida
- Laboratory of Organic Chemistry, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences; Chiba University; Chiba 260-8675 Japan
| |
Collapse
|
13
|
Nahomi RB, Huang R, Nandi SK, Wang B, Padmanabha S, Santhoshkumar P, Filipek S, Biswas A, Nagaraj RH. Acetylation of lysine 92 improves the chaperone and anti-apoptotic activities of human αB-crystallin. Biochemistry 2013; 52:8126-38. [PMID: 24128140 DOI: 10.1021/bi400638s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
αB-Crystallin is a chaperone and an anti-apoptotic protein that is strongly expressed in many tissues, including the lens, retina, heart, and kidney. In the human lens, several lysine residues in αB-crystallin are acetylated. We have previously shown that such acetylation is predominant at lysine 92 (K92) and lysine 166 (K166). We have investigated the effect of lysine acetylation on the structure and functions of αB-crystallin by the specific introduction of an N(ε)-acetyllysine (AcK) mimic at K92. The introduction of AcK slightly altered the secondary and tertiary structures of the protein. The introduction of AcK also resulted in an increase in the molar mass and hydrodynamic radius of the protein, and the protein became structurally more open and more stable than the native protein. The acetyl protein acquired higher surface hydrophobicity and exhibited 25-55% higher chaperone activity than the native protein. The acetyl protein had more client protein binding per subunit of the protein and higher binding affinity relative to that of the native protein. The acetyl protein was at least 20% more effective in inhibiting chemically induced apoptosis than the native protein. Molecular modeling suggests that acetylation of K92 makes the "α-crystallin domain" more hydrophobic. Together, our results reveal that the acetylation of a single lysine residue in αB-crystallin makes the protein structurally more stable and improves its chaperone and anti-apoptotic activities. Our findings suggest that lysine acetylation of αB-crystallin is an important chemical modification for enhancing αB-crystallin's protective functions in the eye.
Collapse
Affiliation(s)
- Rooban B Nahomi
- Department of Ophthalmology and Visual Sciences and ‡Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, Qiu SJ, Fan J, Zhou J. αB-crystallin complexes with 14-3-3ζ to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 2013; 57:2235-47. [PMID: 23316005 DOI: 10.1002/hep.26255] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED The overall survival of patients with hepatocellular carcinoma (HCC) remains poor, and the molecular pathogenesis remains incompletely defined in HCC. Here we report that increased expression of αB-Crystallin in human HCC predicts poor survival and disease recurrence after surgery. Multivariate analysis identifies αB-Crystallin expression as an independent predictor for postoperative recurrence and overall survival. We show that elevated expression of αB-Crystallin promotes HCC progression in vivo and in vitro. We demonstrate that αB-Crystallin overexpression fosters HCC progression by inducing epithelial-mesenchymal transition (EMT) in HCC cells through activation of the extracellular-regulated protein kinase (ERK) cascade, which can counteract the effect of sorafenib. αB-Crystallin complexes with and elevates 14-3-3ζ protein, leading to up-regulation of ERK1/2 activity. Moreover, overexpression of αB-Crystallin in HCC cells induces EMT progression through an ERK1/2/Fra-1/slug signaling pathway. Clinically, our data reveal that overexpression of both αB-Crystallin and 14-3-3ζ correlates with the HCC poorest survival outcomes, and sorafenib response is impaired in patients with αB-Crystallin overexpression. CONCLUSION These data suggest that the αB-Crystallin-14-3-3ζ complex acts synergistically to promote HCC progression by constitutively activating ERK signaling. This study reveals αB-Crystallin as a potential therapeutic target for HCC and a biomarker for predicting sorafenib treatment response. (HEPATOLOGY 2013).
Collapse
Affiliation(s)
- Xiao-Yong Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jing Z, Gangalum RK, Lee JZ, Mock D, Bhat SP. Cell-type-dependent access of HSF1 and HSF4 to αB-crystallin promoter during heat shock. Cell Stress Chaperones 2013; 18:377-87. [PMID: 23264262 PMCID: PMC3631099 DOI: 10.1007/s12192-012-0386-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/18/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022] Open
Abstract
Epithelial cells and fibroblasts both express heat shock transcription factors, HSF1 and HSF4, yet they respond to heat shock differentially. For example, while HSP70 is induced in both cell types, the small heat shock protein, αB-crystallin gene (CRYAB) that contains a canonical heat shock promoter, is only induced in fibroblasts. A canonical heat shock promoter contains three or more inverted repeats of the pentanucleotide 5'-nGAAn-3' that make the heat shock element. It is known that, in vitro, promoter architecture (the order and spacing of these repeats) impacts the interaction of various heat shock transcription factors (HSFs) with the heat shock promoter, but in vivo relevance of these binding preferences so far as the expression is concerned is poorly understood. In this report, we first establish cell-type-dependent differential expression of CRYAB in four established cell lines and then working with adult human retinal pigment epithelial cells and NIH3T3 fibroblasts and employing chromatin immunoprecipitation, attempt to relate expression to promoter occupancy by HSF1 and HSF4. We show that HSF4 occupies only CRYAB and not HSP70 promoter in epithelial cells, while HSF1 occupies only HSP70 promoter in both cell types, and cryab promoter, only in heat shocked fibroblasts; HSF4, on the other hand, is never seen on these two promoters in NIH3T3 fibroblasts. This comparative analysis with CRYAB and HSP70 demonstrates that differential heat shock response is controlled by cell-type-dependent access of HSFs (HSF1 and HSF4) to specific promoters, independent of the promoter architecture.
Collapse
Affiliation(s)
- Zhe Jing
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Rajendra K. Gangalum
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Josh Z. Lee
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Dennis Mock
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
| | - Suraj P. Bhat
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, CA 90095 USA
- />Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
16
|
Ahmedli NB, Gribanova Y, Njoku CC, Naidu A, Young A, Mendoza E, Yamashita CK, Özgül RK, Johnson JE, Fox DA, Farber DB. Dynamics of the rhomboid-like protein RHBDD2 expression in mouse retina and involvement of its human ortholog in retinitis pigmentosa. J Biol Chem 2013; 288:9742-9754. [PMID: 23386608 DOI: 10.1074/jbc.m112.419960] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The novel rhomboid-like protein RHBDD2 is distantly related to rhomboid proteins, a group of highly specialized membrane-bound proteases that catalyze regulated intramembrane proteolysis. In retina, RHBDD2 is expressed from embryonic stages to adulthood, and its levels show age-dependent changes. RHBDD2 is distinctly abundant in the perinuclear region of cells, and it localizes to their Golgi. A glycine zipper motif present in one of the transmembrane domains of RHBDD2 is important for its packing into the Golgi membranes. Its deletion causes dislodgment of RHBDD2 from the Golgi. A specific antibody against RHBDD2 recognizes two forms of the protein, one with low (39 kDa; RHBDD2(L)) and the other with high (117 kDa; RHBDD2H) molecular masses in mouse retinal extracts. RHBDD2(L) seems to be ubiquitously expressed in all retinal cells. In contrast, RHBDD2H seems to be present only in the outer segments of cone photoreceptors and may correspond to a homotrimer of RHBDD2(L). This protein consistently co-localizes with S- and M-types of cone opsins. We identified a homozygous mutation in the human RHBDD2 gene, R85H, that co-segregates with disease in affected members of a family with autosomal recessive retinitis pigmentosa. Our findings suggest that the RHBDD2 protein plays important roles in the development and normal function of the retina.
Collapse
Affiliation(s)
| | | | - Collins C Njoku
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Akash Naidu
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | - Alejandra Young
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | | | | | - Riza Köksal Özgül
- Department of Molecular Biology, Hacettepe University, 06230 Beytepe-Ankara, Turkey
| | - Jerry E Johnson
- Department of Natural Sciences, University of Houston-Downtown, Houston, Texas 77002
| | - Donald A Fox
- College of Optometry, University of Houston, Houston, Texas 77004; Department of Biology and Biochemistry, University of Houston, Houston, Texas 77004; Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, Texas 77004
| | - Debora B Farber
- Jules Stein Eye Institute, UCLA, Los Angeles, California 90095; Molecular Biology Institute, UCLA, Los Angeles, California 90095; Brain Research Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
17
|
Gangalum RK, Horwitz J, Kohan SA, Bhat SP. αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens. J Biol Chem 2012; 287:42407-16. [PMID: 23071119 DOI: 10.1074/jbc.m112.414854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens.
Collapse
Affiliation(s)
- Rajendra K Gangalum
- Jules Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, California 90095-70019, USA
| | | | | | | |
Collapse
|
18
|
Bhat SP, Gangalum RK. Secretion of αB-Crystallin via exosomes: New clues to the function of human retinal pigment epithelium. Commun Integr Biol 2012; 4:739-41. [PMID: 22446542 DOI: 10.4161/cib.17610] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
αB-crystallin (αB) is an archetypical small heat shock protein whose physiological function is not clearly defined. The interest in this protein arises from its well-established but poorly understood association with a myriad of neurodegenerative diseases, cancer and cardiomyopathies. The discovery of the secretion of αB from human adult retinal pigment epithelial cells (ARPE19) via exosomes not only points to the involvement of this protein in lateral transfer of information between cells in the visual system but also to the status of this protein as a potential ligand that may activate or modulate immune and stress responses, normal growth and oncogenic pathways. Retinal pigment epithelium (RPE) is a single layer of polarized cells that supports photoreceptor physiology and function. We have initiated investigations on understanding the origin of the elevated levels of αB in extracellular sub-retinal proteolipid deposits (known as "drusen") associated with the death of photoreceptor neurons in age-related macular degeneration (AMD). Here we discuss the potential implications of the presence and transport of αB in exosomes across cell membranes in RPE.
Collapse
Affiliation(s)
- Suraj P Bhat
- Jules Stein Eye Institute, Brain Research Institute, Molecular Biology Institute, Geffen School of Medicine, University of California; Los Angeles, CA US
| | | |
Collapse
|
19
|
Purification of BAC DNA for high-efficiency transgenesis. Biotechniques 2012; 51:335-6, 338. [PMID: 22054546 DOI: 10.2144/000113763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/09/2011] [Indexed: 11/23/2022] Open
Abstract
An unresolved bottleneck in bacterial artificial chromosome (BAC) transgenesis is low efficiency generation of founder mice because of suboptimal quality of the manipulated BAC DNA. Using mini-gel electrophoresis and electro-elution that circumvents CsCl(2) centrifugation, column chromatography, and resin purifications, we have used RECOCHIP, a commercially available dialysis cassette for the purification of BAC DNA that generates transgenic founders with up to 80% efficiency.
Collapse
|
20
|
Gangalum RK, Atanasov IC, Zhou ZH, Bhat SP. AlphaB-crystallin is found in detergent-resistant membrane microdomains and is secreted via exosomes from human retinal pigment epithelial cells. J Biol Chem 2011; 286:3261-9. [PMID: 21097504 PMCID: PMC3030331 DOI: 10.1074/jbc.m110.160135] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/15/2010] [Indexed: 12/22/2022] Open
Abstract
αB-crystallin (αB) is known as an intracellular Golgi membrane-associated small heat shock protein. Elevated levels of this protein have been linked with a myriad of neurodegenerative pathologies including Alzheimer disease, multiple sclerosis, and age-related macular degeneration. The membrane association of αB has been known for more than 3 decades, yet its physiological import has remained unexplained. In this investigation we show that αB is secreted from human adult retinal pigment epithelial cells via microvesicles (exosomes), independent of the endoplasmic reticulum-Golgi protein export pathway. The presence of αB in these lipoprotein structures was confirmed by its susceptibility to digestion by proteinase K only when exosomes were exposed to Triton X-100. Transmission electron microscopy was used to localize αB in immunogold-labeled intact and permeabilized microvesicles. The saucer-shaped exosomes, with a median diameter of 100-200 nm, were characterized by the presence of flotillin-1, α-enolase, and Hsp70, the same proteins that associate with detergent-resistant membrane microdomains (DRMs), which are known to be involved in their biogenesis. Notably, using polarized adult retinal pigment epithelial cells, we show that the secretion of αB is predominantly apical. Using OptiPrep gradients we demonstrate that αB resides in the DRM fraction. The secretion of αB is inhibited by the cholesterol-depleting drug, methyl β-cyclodextrin, suggesting that the physiological function of this protein and the regulation of its export through exosomes may reside in its association with DRMs/lipid rafts.
Collapse
Affiliation(s)
| | | | - Z. Hong Zhou
- the California NanoSystems Institute, and
- the Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095
| | - Suraj P. Bhat
- From the Jules Stein Eye Institute
- the Geffen School of Medicine, Brain Research Institute and Molecular Biology Institute
| |
Collapse
|
21
|
Launay N, Tarze A, Vicart P, Lilienbaum A. Serine 59 phosphorylation of {alpha}B-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 2010; 285:37324-32. [PMID: 20841355 DOI: 10.1074/jbc.m110.124388] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small heat shock protein (sHSP) αB-crystallin is a new oncoprotein in breast carcinoma that predicts poor clinical outcome in breast cancer. However, although several reports have demonstrated that phosphorylation of sHSPs modify their structural and functional properties, the significance of αB-crystallin phosphorylation in cancer cells has not yet been investigated. In this study, we have characterized the phosphorylation status of αB-crystallin in breast epithelial carcinoma cells line MCF7 submitted to anti-cancer agents like vinblastine. We have showed that the main phosphorylation site of αB-crystallin in response to vinblastine is serine 59 and determined a correlation between this post-translational modification and higher apoptosis level. The overexpression of the serine 59 "pseudophosphorylated" mutant (S59E) induces a significant increase in the apoptosis level of vinblastine-treated MCF7 cells. In contrast, overexpression of wild-type αB-crystallin or "nonphosphorylatable" mutant (S59A) result in a resistance to this microtubule-depolymerizing agent, while inhibition of endogenous levels of αB-crystallin by expression of shRNA lowers it. Analyzing further the molecular mechanism of this phenomenon, we report for the first time that phosphorylated αB-crystallin preferentially interacts with Bcl-2, an anti-apoptotic protein, and this interaction prevents the translocation of Bcl-2 to mitochondria. Hence, this study identifies serine 59 phosphorylation as an important key in the down-regulation of αB-crystallin anti-apoptotic function in breast cancer and suggests new strategies to improve anti-cancer treatments.
Collapse
Affiliation(s)
- Nathalie Launay
- Unité de Biologie Fonctionnelle et Adaptative BFA EAC4413, Université Paris 7 Denis Diderot/CNRS, Laboratoire Stress et Pathologies du Cytosquelette, 4 rue Marie-Andrée Lagroua Weill-Hallé 75250 Paris Cedex 13, France
| | | | | | | |
Collapse
|
22
|
Goplen D, Bougnaud S, Rajcevic U, Bøe SO, Skaftnesmo KO, Voges J, Enger PØ, Wang J, Tysnes BB, Laerum OD, Niclou S, Bjerkvig R. αB-crystallin is elevated in highly infiltrative apoptosis-resistant glioblastoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1618-28. [PMID: 20813964 DOI: 10.2353/ajpath.2010.090063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously established two distinct glioma phenotypes by serial xenotransplantation of human glioblastoma (GBM) biopsies in nude rats. These tumors undergo a gradual transition from a highly invasive nonangiogenic to a less-invasive angiogenic phenotype. In a protein screen to identify molecular markers associated with the infiltrative phenotype, we identified α-basic-crystallin (αBc), a small heat-shock protein with cytoprotective properties. Its increased expression in the infiltrative phenotype was validated by immunohistochemistry and Western blots, confirming its identity to be tumor-derived and not from the host. Stereotactic human GBM biopsies taken from MRI-defined areas verified stronger αBc expression in the infiltrative edge compared to the tumor core. Cell migration assays and immunofluorescence staining showed αBc to be expressed by migrating cells in vitro. To determine αBc function, we altered its expression levels. αBc siRNA depletion caused a loss of migrating tumor cells from biopsy spheroids and delayed monolayer wound closure. In contrast, glioma cell migration in a Boyden chamber assay was unaffected by either αBc knockdown or overexpression, indicating that αBc is not functionally linked to the cell migration machinery. However, after siRNA αBc depletion, a significant sensitization of cells to various apoptotic inducers was observed (actinomycin, tumor necrosis factor α, and TNF-related apoptosis-inducing ligand [TRAIL]). In conclusion, αBc is overexpressed by highly migratory glioma cells where it plays a functional role in apoptosis resistance.
Collapse
Affiliation(s)
- Dorota Goplen
- Department of Oncology and Medical Physics, Haukeland University Hospital, Jonas Lies vei 91, 5009 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kumar PA, Reddy GB. Modulation of alpha-crystallin chaperone activity: a target to prevent or delay cataract? IUBMB Life 2009; 61:485-95. [PMID: 19391162 DOI: 10.1002/iub.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cataract, loss of eye lens transparency, is the leading cause of blindness worldwide. alpha-Crystallin, initially known as one of the major structural proteins of the eye lens, is composed of two homologous subunits alphaA- and alphaB-crystallins. It is convincingly established now that alpha-crystallin functions like a chaperone and plays a decisive role in the maintenance of eye lens transparency. The functional ability of alpha-crystallin subunits is to act in cooperation as molecular chaperones to prevent the cellular aggregation and/or inactivation of client proteins under variety of stress conditions. However, chaperone-like activity of alpha-crystallin could be deteriorated or lost during aging or under certain clinical conditions because of various genetic and environmental factors. This review will focus specifically on relevance of alpha-crystallin chaperone function to lens transparency. In particular, we reviewed the studies that demonstrate the modulation of alpha-crystallin chaperone-like activity and discussed the possibility of chaperone-like activity of alpha-crystallin as a potential target to prevent or delay the cataractogenesis.
Collapse
Affiliation(s)
- Pasupulati Anil Kumar
- Biochemistry Division, National Institute of Nutrition, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
24
|
Dougherty ST, Walker SE, Davis PD, Dougherty GJ. The Novel Vascular Disrupting Agent ANG501 Induces Cell Cycle Arrest and Enhances Endothelial Cell Sensitivity to Radiation. CANCER GROWTH AND METASTASIS 2009. [DOI: 10.4137/cgm.s2596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The efficacy of approaches in which vascular disrupting agents (VDA) are used in combination with conventional chemotherapy and/or radiation therapy in the treatment of cancer might be improved if there were a better understanding of the cellular and molecular changes induced in normal and malignant cells as a result of VD A exposure. Toward this goal, murine endothelial cells were treated in vitro with ANG501, a novel stilbene VDA developed in our laboratory, and alterations in gene expression determined by genome-wide microarray analysis and subsequently confirmed by Western blot analysis. Among the genes that were shown to be induced upon brief exposure to non-cytotoxic doses of ANG501 were several involved in the control of cell cycle progression and apoptosis, including p21Wafl and the heat shock/stress proteins hsp25, hsp70 and anti-B-crystallin. Reflecting such induction, functional studies confirmed that normal cell cycling is temporarily inhibited following treatment with ANG501 such that the majority of cells accumulate at the radiation-sensitive G2/M phase of the cell cycle at 6 hr. The effects were transient and by 24 hr normal cell cycling had largely resumed. Combination experiments confirmed that endothelial cells treated 6 hr previously with ANG501 were more readily killed by radiation. Importantly, significant effects were evident at clinically relevant radiation doses. Taken together these findings emphasize the need to consider the radiosensitizing activity of VD As when developing therapies in which these promising compounds are used in combination with radiation.
Collapse
Affiliation(s)
- Shona T. Dougherty
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
| | - Sean E. Walker
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
| | | | - Graeme J. Dougherty
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, U.S.A
- Angiogene Pharmaceuticals Ltd., Oxford, United Kingdom
| |
Collapse
|
25
|
Gangalum RK, Bhat SP. AlphaB-crystallin: a Golgi-associated membrane protein in the developing ocular lens. Invest Ophthalmol Vis Sci 2009; 50:3283-90. [PMID: 19218604 DOI: 10.1167/iovs.08-3052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE All crystallins have non-crystallin catalytic functions. Because catalytic functions do not require large concentrations of protein, as are seen in the lens, there is a perception of dichotomy in the catalytic/physiological function of crystallins within and outside the lens. The status of alphaB-crystallin, a ubiquitously expressed small heat shock protein (and a crystallin) in the ocular lens, was investigated. METHODS Discontinuous sucrose density gradients were used for fractionation of Golgi membranes and vesicles. Light microscopy and confocal microscopy were used for immunolocalization in cultured cells and the native lens. RESULTS alphaB-crystallin is highly organized, as indicated by its polar presence in the apical Golgi in lens epithelium and in the perinuclear Golgi streaks in differentiating lens fiber cells. Assessment of the distribution of alphaB-crystallin in Golgi-enriched and vesicular fractions (characterized by the presence of Golgi membrane protein GM130 and vesicle coat protein gammaCOP) in the developing lens reveal a gradual transition from Golgi to vesicular fraction, concomitant with the appearance of alphaB-crystallin as a "soluble" protein. CONCLUSIONS These data demonstrate that alphaB-crystallin, known to be a soluble protein, starts life as a Golgi-associated membrane protein in the fetal and early postnatal lens and that the developmentally controlled physical state of the Golgi determines the status of this protein in the lens. These findings also show the similarity in the localization/physiological function of alphaB-crystallin within and outside the ocular lens and suggest that non-crystallin/catalytic function is an innate component of the expression of a crystallin in the lens.
Collapse
Affiliation(s)
- Rajendra K Gangalum
- Jules Stein Eye Institute, Geffen School of Medicine, University of California School of Medicine, Los Angeles, California, USA
| | | |
Collapse
|
26
|
Marks DL, Bittman R, Pagano RE. Use of Bodipy-labeled sphingolipid and cholesterol analogs to examine membrane microdomains in cells. Histochem Cell Biol 2008; 130:819-32. [PMID: 18820942 PMCID: PMC3922293 DOI: 10.1007/s00418-008-0509-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2008] [Indexed: 01/28/2023]
Abstract
Much evidence has accumulated to show that cellular membranes such as the plasma membrane, contain multiple "microdomains" of differing lipid and protein composition and function. These domains are sometimes enriched in cholesterol and sphingolipids and are believed to be important structures for the regulation of many biological and pathological processes. This review focuses on the use of fluorescent (Bodipy) labeled analogs of sphingolipids and cholesterol to study such domains. We discuss the similarities between the behavior of Bodipy-cholesterol and natural cholesterol in artificial bilayers and in cultured cells, and the use of Bodipy-sphingolipid analogs to visualize membrane domains in living cells based on the concentration-dependent monomer-excimer fluorescence properties of the Bodipy-fluorophore. The use of Bodipy-D-erythro-lactosylceramide is highlighted for detection of domains on the plasma membrane and endosome membranes, and the importance of the sphingolipid stereochemistry in modulating domain formation is discussed. Finally, we suggest that Bodipy-sphingolipids may be useful in future studies to examine the relationship between membrane domains at the cell surface and domains enriched in other lipids and proteins on the inner leaflet of the plasma membrane.
Collapse
Affiliation(s)
- David L. Marks
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
| | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College, The City University of New York, Flushing, NY 11367, USA
| | - Richard E. Pagano
- Thoracic Diseases Research Unit, Department of Medicine, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Stabile 8, 200 First Street, SW, Rochester, MN 55905-0001, USA
| |
Collapse
|
27
|
Andley UP. The lens epithelium: focus on the expression and function of the alpha-crystallin chaperones. Int J Biochem Cell Biol 2007; 40:317-23. [PMID: 18093866 DOI: 10.1016/j.biocel.2007.10.034] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 09/05/2007] [Accepted: 10/26/2007] [Indexed: 12/13/2022]
Abstract
Lens epithelial cells are the parental cells responsible for growth and development of the transparent ocular lens. Many elegant investigations into their biology have focused on the factors that initiate and regulate lens epithelial cell differentiation. Because they serve key transport and cell maintenance functions throughout life, and are the primary source of metabolic activity in the lens, mechanisms to maintain lens epithelial cell integrity and survival are critical for lens transparency. The molecular chaperones alpha-crystallins are abundant proteins synthesized in the differentiated lens fiber cell cytoplasm. However, their expression in lens epithelial cells has only been appreciated very recently. Besides their important roles in the refractive and light focusing properties of the lens, alpha-crystallins have been implicated in a number of non-refractive pathways including those involving stress response, apoptosis and cell survival. The most convincing evidence for their importance in the lens epithelium has been shown by studies on the properties of lens epithelial cells from alphaA and alphaB-crystallin gene knockout mice. Novel combination of genetics, cell and molecular biology should lead to a greater understanding of how lens epithelial cells proliferate, differentiate and survive.
Collapse
Affiliation(s)
- Usha P Andley
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Ghosh JG, Shenoy AK, Clark JI. Interactions between Important Regulatory Proteins and Human αB Crystallin. Biochemistry 2007; 46:6308-17. [PMID: 17487982 DOI: 10.1021/bi700149h] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein pin arrays assessed interactions between alphaB crystallin and 12 regulatory proteins, including EGF, FGF-2, IGF-1, NGF-beta, TGF-beta, VEGF, insulin, beta-catenin, caspase-3, caspase-8, Bcl-2, and Bcl-xL, which are important in cellular differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis. FGF-2, NGF-beta, VEGF, insulin, and beta-catenin had strong interactions with human alphaB crystallin peptides, and the alphaB crystallin interactive sequences for these proteins were identified. The seven remaining proteins (EGF, IGF-1, TGF-beta, caspase-3, caspase-8, BCl-2, and Bcl-xL) did not interact with alphaB crystallin. The alphaB crystallin sequences that interacted with FGF-2, NGF-beta, VEGF, insulin, and beta-catenin overlapped with sequences that selectively interact with partially unfolded proteins, suggesting a common function for alphaB crystallin in chaperone activity and the regulation of cell growth and differentiation. Chaperone assays conducted with full-length alphaB crystallin and synthetic alphaB crystallin peptides confirmed the ability of alphaB crystallin to protect against the aggregation of FGF-2 and VEGF, suggesting that alphaB crystallin protects these proteins against unfolding and aggregation under conditions of stress. This is the first report in which sequences involved in interactions with regulatory proteins, including FGF-2, NGF-beta, VEGF, insulin, and beta-catenin, were identified in a small heat shock protein.
Collapse
Affiliation(s)
- Joy G Ghosh
- Biomolecular Structure and Design, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | |
Collapse
|
29
|
Santhoshkumar P, Sharma KK. Conserved F84 and P86 residues in alphaB-crystallin are essential to effectively prevent the aggregation of substrate proteins. Protein Sci 2007; 15:2488-98. [PMID: 17075130 PMCID: PMC2242417 DOI: 10.1110/ps.062338206] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Previously, we have shown that residues 73-92 (sequence DRFSVNLDVKHFSPEELKVK) in alphaB-crystallin are involved in preventing the formation of light scattering aggregates by substrate proteins. In this study, we made single substitutions of three conserved amino acid residues (H83 --> A, F84 --> G, and P86 --> A) and a nonconserved amino acid residue (K90 --> C) in the functional region of alphaB-crystallin and evaluated their role in anti-aggregation activity. Mutation of conserved residues led to changes in intrinsic tryptophan intensity, bis-ANS binding, and in the secondary and tertiary structures. The H83A mutation led to a twofold increase in molar mass, while the other mutants did not produce significant changes in the molar mass when compared to that of wild-type protein. The chaperone-like activity of the H83A mutant was enhanced by 15%-20%, and the chaperone-like activity of F84G and P86A mutants was reduced by 50%-65% when compared to the chaperone-like activity of wild-type alphaB-crystallin. The substitution of the nonconserved residue (K90 --> C) did not induce an appreciable change in the structure and function of the mutant protein. Fluorescence resonance energy transfer (FRET) assay demonstrated that destabilized ADH interacted near the K90 region in alphaB-crystallin. The data show that F84 and P86 residues are essential for alphaB-crystallin to effectively prevent the aggregation of substrate proteins. This study further supports the involvement of the residues in the 73-92 region of alphaB-crystallin in substrate protein binding and chaperone-like action.
Collapse
|
30
|
Abstract
Crystallins are the predominant structural proteins in the lens that are evolutionarily related to stress proteins. They were first discovered outside the vertebrate eye lens by Bhat and colleagues in 1989 who found alphaB-crystallin expression in the retina, heart, skeletal muscles, skin, brain and other tissues. With the advent of microarray and proteome analysis, there is a clearer demonstration that crystallins are prominent proteins both in the normal retina and in retinal pathologies, emphasizing the importance of understanding crystallin functions outside of the lens. There are two main crystallin gene families: alpha-crystallins, and betagamma-crystallins. alpha-crystallins are molecular chaperones that prevent aberrant protein interactions. The chaperone properties of alpha-crystallin are thought to allow the lens to tolerate aging-induced deterioration of the lens proteins without showing signs of cataracts until older age. alpha-crystallins not only possess chaperone-like activity in vitro, but can also remodel and protect the cytoskeleton, inhibit apoptosis, and enhance the resistance of cells to stress. Recent advances in the field of structure-function relationships of alpha-crystallins have provided the first clues to their underlying roles in tissues outside the lens. Proteins of the betagamma-crystallin family have been suggested to affect lens development, and are also expressed in tissues outside the lens. The goal of this paper is to highlight recent work with lens epithelial cells from alphaA- and alphaB-crystallin knockout mice. The use of lens epithelial cells suggests that crystallins have important cellular functions in the lens epithelium and not just the lens fiber cells as previously thought. These studies may be directly relevant to understanding the general cellular functions of crystallins.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
31
|
Kumar PA, Haseeb A, Suryanarayana P, Ehtesham NZ, Reddy GB. Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch Biochem Biophys 2005; 444:77-83. [PMID: 16309625 DOI: 10.1016/j.abb.2005.09.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 09/12/2005] [Accepted: 09/13/2005] [Indexed: 12/20/2022]
Abstract
alpha-Crystallin, a predominant protein of the ocular lens, is composed of two subunits, alphaA and alphaB. Of these, alphaB-crystallin has been shown to present widely in non-lenticular tissues while alphaA-crystallin is largely lens-specific. Although, expression of alphaB-crystallin is elevated under various stress and pathological conditions, yet its physiological significance remained unknown. Some studies suggest that the expression of alphaB-crystallin gene is related to oxidative stress. Persistent hyperglycemia during uncontrolled diabetes is known to cause oxidative stress, which has been implicated in various secondary complications of diabetes. Hence, expression of alphaA- and alphaB-crystallins in various tissues of streptozotocin (STZ)-induced diabetic Wistar-NIN rats was investigated by RT-PCR and immunoblotting. While expression of alphaB-crystallin was noted in the wide range of tissues examined in the study, alphaA-crystallin expression was detected only in lens and retina. Interestingly, alphaB-crystallin expression was elevated in lens, heart, muscle, and brain, but decreased in adipose tissue of diabetic rats compared to control rats. alphaA-Crystallin expression was increased in retina of diabetic rat. Increased oxidative stress appears to be a major stimulus for the enhanced expression of alphaA- and alphaB-crystallins in the tissues of diabetic rats and elevated expression of alpha-crystallin may have a protective role against metabolic stress. Interestingly, feeding of curcumin, a dietary antioxidant, to diabetic rats attenuated the enhanced expression of alphaB-crystallin. The results indicate that elevated expression of alpha-crystallins in some tissues may have implications in pathophysiology of diabetic complications.
Collapse
Affiliation(s)
- P Anil Kumar
- National Institute of Nutrition, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
32
|
Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 2005; 15:608-17. [PMID: 16202602 DOI: 10.1016/j.tcb.2005.09.004] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 08/12/2005] [Accepted: 09/20/2005] [Indexed: 02/06/2023]
Abstract
Intermediate filament proteins (IFs) maintain cell and tissue integrity, based on evidence of their polymerization and mechanical properties, abundance and disease-associated phenotypes. This 'traditional' function is now augmented by organelle-related and protein-targeting roles. Mitochondrial location and function depend on intact IFs, as demonstrated for desmin, keratins and neurofilaments. Golgi positioning is regulated by several IFs, and endosomal/lysosomal protein distribution by vimentin. IFs dramatically affect nuclear function and shape and play a role in subcellular and membrane targeting of proteins. These functions have been noted in tissues but in some cases only in cell culture. The IF-related organelle-specific and protein-targeting roles, which are likely interrelated, provide functions beyond cell scaffolding and integrity and contribute to the cytoprotective and tissue-specific functions of IF proteins.
Collapse
Affiliation(s)
- Diana M Toivola
- Palo Alto VA Medical Center, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
33
|
den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC. Nuclear import of {alpha}B-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 2005; 280:37139-48. [PMID: 16129694 DOI: 10.1074/jbc.m504106200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation modulates the functioning of alphaB-crystallin as a molecular chaperone. We here explore the role of phosphorylation in the nuclear import and cellular localization of alphaB-crystallin in HeLa cells. Inhibition of nuclear export demonstrated that phosphorylation of alphaB-crystallin is required for import into the nucleus. As revealed by mutant analysis, phosphorylation at Ser-59 is crucial for nuclear import, and phosphorylation at Ser-45 is required for speckle localization. Co-immunoprecipitation experiments suggested that the import of alphaB-crystallin is possibly regulated by its phosphorylation-dependent interaction with the survival motor neuron (SMN) protein, an important factor in small nuclear ribonucleoprotein nuclear import and assembly. This interaction was supported by co-localization of endogenous phosphorylated alphaB-crystallin with SMN in nuclear structures. The cardiomyopathy-causing alphaB-crystallin mutant R120G was found to be excessively phosphorylated, which disturbed SMN interaction and nuclear import, and resulted in the formation of cytoplasmic inclusions. Like for other protein aggregation disorders, hyperphosphorylation appears as an important aspect of the pathogenicity of alphaB-crystallin R120G.
Collapse
Affiliation(s)
- John den Engelsman
- Department of Biochemistry 161, Nijmegen Center for Molecular Life Sciences, Radboud University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Chae KS, Oh KS, Dryer SE. Growth Factors Mobilize Multiple Pools ofKCaChannels in Developing Parasympathetic Neurons: Role of ADP-Ribosylation Factors and Related Proteins. J Neurophysiol 2005; 94:1597-605. [PMID: 15843480 DOI: 10.1152/jn.00296.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In developing ciliary ganglion (CG) neurons, movement of functional large-conductance (BK type) Ca2+-activated K+( KCa) channels to the cell surface is stimulated by the endogenous growth factors TGFβ1 and β-neuregulin-1 (NRG1). Here we show that a brief NRG1 treatment (0.5–1.5 h) mobilizes KCachannels in a post-Golgi compartment, but longer treatments (>3.5 h) mobilize KCachannels located in the endoplasmic reticulum or Golgi apparatus. Specifically, the effects of 3.5 h NRG1 treatment were completely blocked by treatments that disrupt Golgi apparatus function. These include inhibition of microtubules, or inhibition of the ADP-ribosylation factor-1 (ARF1) system by brefeldin A, by over-expression of dominant-negative ARF1, or over-expression of an ARF1 GTPase-activating protein that blocks ARF1 cycling between GTP- and GDP-bound states. These treatments had no effect on stimulation of KCaevoked by 1.5 h treatment with NRG1, indicating that short-term responses to NRG1 do not require an intact Golgi apparatus. By contrast, both the acute and sustained effects of NRG1 were inhibited by treatments that block trafficking processes that occur close to the plasma membrane. Thus mobilization of KCawas blocked by treatments than inhibit ADP-ribosylation factor-6 (ARF6) signaling, including overexpression of dominant-negative ARF6, dominant-negative ARNO, or dominant-negative phospholipase D1. TGFβ1, the effects of which on KCaare much slower in onset, is unable to selectively mobilize channels in the post-Golgi pool, and its effects on KCaare completely blocked by inhibition of microtubules, Golgi function and also by plasma membrane ARF6 and phospholipase D1 signaling.
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | | | |
Collapse
|
35
|
Lee FY, Kast-Woelbern HR, Chang J, Luo G, Jones SA, Fishbein MC, Edwards PA. Alpha-crystallin is a target gene of the farnesoid X-activated receptor in human livers. J Biol Chem 2005; 280:31792-800. [PMID: 16012168 DOI: 10.1074/jbc.m503182200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.
Collapse
Affiliation(s)
- Florence Y Lee
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Maddala R, Rao VP. α-Crystallin localizes to the leading edges of migrating lens epithelial cells. Exp Cell Res 2005; 306:203-15. [PMID: 15878345 DOI: 10.1016/j.yexcr.2005.01.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 01/21/2005] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
Abstract
alpha-crystallin (alphaA and alphaB) is a major lens protein, which belongs to the small heat-shock family of proteins and binds to various cytoskeletal proteins including actin, vimentin and desmin. In this study, we investigated the cellular localization of alphaA and alphaB-crystallins in migrating epithelial cells isolated from porcine lens. Immunofluorescence localization and confocal imaging of alphaB-crystallin in confluent and in migrating subconfluent cell cultures revealed a distinct pattern of subcellular distribution. While alphaB-crystallin localization was predominantly cytoplasmic in confluent cultures, it was strongly localized to the leading edges of cell membrane or the lamellipodia in migrating cells. In accordance with this pattern, we found abundant levels of alphaB-crystallin in membrane fractions compared to cytosolic and nuclear fractions in migrating lens epithelial cells. alphaA-crystallin, which has 60% sequence identity to alphaB-crystallin, also exhibited a distribution profile localizing to the leading edge of the cell membrane in migrating lens epithelial cells. Localization of alphaB-crystallin to the lamellipodia appears to be dependent on phosphorylation of residue serine-59. An inhibitor of p38 MAP kinase (SB202190), but not the ERK kinase inhibitor PD98059, was found to diminish localization of alphaB-crystallin to the lamellipodia, and this effect was found to be associated with reduced levels of Serine-59 phosphorylated alphaB-crystallin in SB202190-treated migrating lens epithelial cells. alphaB-crystallin localization to the lamellipodia was also altered by the treatment with RGD (Arg-Ala-Asp) peptide, dominant negative N17 Rac1 GTPase, cytochalasin D and Src kinase inhibitor (PP2), but not by the Rho kinase inhibitor Y-27632 or the myosin II inhibitor, blebbistatin. Additionally, in migrating lens epithelial cells, alphaB-crystallin exhibited a clear co-localization with the actin meshwork, beta-catenin, WAVE-1, a promoter of actin nucleation, Abi-2, a component of WAVE-1 protein complex and Arp3, a protein of the actin nucleation complex, suggesting potential interactions between alphaB-crystallin and regulatory proteins involved in actin dynamics and cell adhesion. This is the first report demonstrating specific localization of alphaA and alphaB-crystallins to the lamellipodia in migrating lens epithelial cells and our findings indicate a potential role for alpha-crystallin in actin dynamics during cell migration.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Fan GH, Qi C, Chen SD. Heat shock proteins reduce toxicity of 1-methyl-4-phenylpyridinium ion in SK-N-SH cells. J Neurosci Res 2005; 82:551-62. [PMID: 16235253 DOI: 10.1002/jnr.20656] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathology of Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. However, the pathogenesis of PD remains unclear. Heat shock proteins (HSPs) have many functions, including inhibition of apoptosis and necrosis, protection from oxidative stress, and maintenance of the mitochondrial membrane potential, that are related to neurodegenerative diseases. 1-Methyl-4-phenylpyridinium ion (MPP(+)) is a neurotoxin that selectively inhibits the mitochondrial functions of DA neurons in the substantia nigra. MPP(+) administration is accepted as a model for PD. In the present study, we found that MPP(+) induced a concentration- and time-dependent decrease in cell viability. Lower concentrations of MPP(+) induced mainly early apoptosis, and, as the concentration increased, the number of late apoptotic and necrotic cells significantly increased. However, treated by heat shock preconditioning or transfection with HDJ-1, a homologue of human Hsp40, cells showed marked improvement in viability after exposure to the same concentrations of MPP(+). Compared with heat shock, HDJ-1 appeared to improve cell viability obviously. Similarly, HDJ-1 elicited significantly stronger protective effects against apoptosis and necrosis. In addition, HDJ-1 transfection maintained more injured cells in early apoptotic stages and inhibited the occurrence of late apoptotic/necrotic events. Heat shock and HDJ-1 both ameliorated MPP(+)-induced cytotoxicity by maintaining the mitochondrial membrane potential and reducing reactive oxygen species (ROS). Therefore, the effects of HSPs, such as reducing apoptosis and necrosis, preserving mitochondrial functions and decreasing oxidative stress, may bring a novel approach for PD therapy.
Collapse
Affiliation(s)
- Guo-Hua Fan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Second Medical University, China
| | | | | |
Collapse
|