1
|
Shbailat SJ, Aslan IO. The Expression of Proteases and the Oligopeptide Transporter PepT1 in the Yolk Sac Membrane, Proventriculus, and Small Intestine During the Development of Anas platyrhynchos domestica Embryo. BIOLOGY 2024; 13:989. [PMID: 39765655 PMCID: PMC11726728 DOI: 10.3390/biology13120989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/21/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
The role of the yolk sac membrane (YSM) and digestive tract in the processing of egg yolk proteins during embryogenesis is unexplored in the duck Anas platyrhynchos domestica. Here, we investigated in the duck embryo the function of the YSM, proventriculus, and small intestine in protein digestion and uptake. We tested the expression of aminopeptidase N (APN) and the oligopeptide transporter PepT1 as well as the expression of cathepsin B (CTSB) and cathepsin D (CTSD) lysosomal genes in the YSM during incubation days 12, 14, 16-18, 20, 22, 24, 26, and 28 (the day of hatch). Also, we examined embryonic duck pepsinogen (EDPg) expression in the proventriculus and APN and PepT1 expression in the small intestine. In the YSM, CTSD expression was weak compared to that of CTSB, and the expression of CTSB, APN, and PepT1 reached its maximum on day 24 and decreased afterwards. In the proventriculus, EDPg expression peaked on days 17 to 20 and decreased thereafter. The APN and PepT1 expression levels were highest in the jejunum and ileum and reached their maximum on day 28. Our results suggest that the YSM plays a role in the degradation and uptake of the peptides that are digested by the activated yolk proteases, and it also functions in the lysosomal digestion of yolk lipoproteins. Furthermore, the proventriculus is possibly involved in the digestion of yolk proteins. Finally, the jejunum and ileum appear to be the primary sites for peptide digestion and absorption at the end of the incubation.
Collapse
Affiliation(s)
- Seba Jamal Shbailat
- Department of Biology and Biotechnology, Faculty of Science, Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | | |
Collapse
|
2
|
Chacón CF, Parachú Marcó MV, Poletta GL, Siroski PA. Lipid metabolism in crocodilians: A field with promising applications in the field of ecotoxicology. ENVIRONMENTAL RESEARCH 2024; 252:119017. [PMID: 38704009 DOI: 10.1016/j.envres.2024.119017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
In the last years, lipid physiology has become an important research target for systems biology applied to the field of ecotoxicology. Lipids are not only essential components of biological membranes, but also participate in extra and intracellular signaling processes and as signal transducers and amplifiers of regulatory cascades. Particularly in sauropsids, lipids are the main source of energy for reproduction, growth, and embryonic development. In nature, organisms are exposed to different stressors, such as parasites, diseases and environmental contaminants, which interact with lipid signaling and metabolic pathways, disrupting lipid homeostasis. The system biology approach applied to ecotoxicological studies is crucial to evaluate metabolic regulation under environmental stress produced by xenobiotics. In this review, we cover information of molecular mechanisms that contribute to lipid metabolism homeostasis in sauropsids, specifically in crocodilian species. We focus on the role of lipid metabolism as a powerful source of energy and its importance during oocyte maturation, which has been increasingly recognized in many species, but information is still scarce in crocodiles. Finally, we highlight priorities for future research on the influence of environmental stressors on lipid metabolism, their potential effect on the reproductive system and thus on the offspring, and their implications on crocodilians conservation.
Collapse
Affiliation(s)
- C F Chacón
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina.
| | - M V Parachú Marcó
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| | - G L Poletta
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Toxicología, Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N, 3000, Santa Fe, Argentina
| | - P A Siroski
- Laboratorio de Ecología Molecular Aplicada (LEMA), Instituto de Ciencias Veterinarias del Litoral- Consejo Nacional de Investigaciones Científicas y Técnicas (ICiVet Litoral-CONICET/UNL), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina; Proyecto Yacaré (MAyCC, Gob. de Santa Fe), Av. Aristóbulo del Valle 8700, 3000, Santa Fe, Argentina
| |
Collapse
|
3
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
4
|
Tung CT, Lin HJ, Lin CW, Mersmann HJ, Ding ST. The role of dynamin in absorbing lipids into endodermal epithelial cells of yolk sac membranes during embryonic development in Japanese quail. Poult Sci 2021; 100:101470. [PMID: 34624771 PMCID: PMC8503669 DOI: 10.1016/j.psj.2021.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2020] [Revised: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Endodermal epithelial cells (EECs) within the yolk sac membrane (YSM) of avian embryos are responsible for the absorption and utilization of lipids. The lipids in the yolk are mostly composed of very low density lipoprotein (VLDL), uptake mainly depends on clathrin-mediated endocytosis (CME). The CME relies on vesicle formation through the regulation of dynamin (DNM). However, it is still unclear whether DNMs participate in avian embryonic development. We examined mRNA expression levels of several genes involved in lipid transportation and utilization in YSM during Japanese quail embryonic development using qPCR. The mRNA levels of DNM1 and DNM3 were elevated at incubation d 8 and 10 before the increase of SOAT1, CIDEA, CIDEC, and APOB mRNA's. The elevated gene expression suggested the increased demand for DNM activity might be prior to cholesteryl ester production, lipid storage, and VLDL transport. Hinted by the result, we further investigated the role of DNMs in the embryonic development of Japanese quail. A DNM inhibitor, dynasore, was injected into fertilized eggs at incubation d 3. At incubation d 10, the dynasore-injected embryo showed increased embryonic lethality compared to control groups. Thus, the activity of DNMs was essential for the embryonic development of Japanese quail. The activities of DNMs were also verified by the absorptions of fluorescent VLDL (DiI-yVLDL) in EECs. Fluorescent signals in EECs were decreased significantly after treatment with dynasore. Finally, EECs were pretreated with S-Nitroso-L-glutathione (GSNO), a DNM activator, for 30 min; this increased the uptake of DiI-yVLDL. In conclusion, DNMs serve a critical role in mediating lipid absorption in YSM. The activity of DNMs was an integral part of development in Japanese quail. Our results suggest enhancing lipid transportation through an increase of DNM activity may improve avian embryonic development.
Collapse
Affiliation(s)
- Cheng-Ting Tung
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Han-Jen Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Harry John Mersmann
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei City 106, Taiwan, R.O.C.; Institute of Biotechnology, National Taiwan University, Taipei City 106, Taiwan, R.O.C..
| |
Collapse
|
5
|
Guo B, Yan L, Lei M, Dai Z, Shi Z. Wider Angle Egg Turning during Incubation Enhances Yolk Utilization and Promotes Goose Embryo Development. Animals (Basel) 2021; 11:2485. [PMID: 34573451 PMCID: PMC8466811 DOI: 10.3390/ani11092485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/21/2021] [Indexed: 12/21/2022] Open
Abstract
We aimed to investigate how wide-angle turning of eggs during incubation affected yolk utilization and the associated molecular mechanism, along with improved goose embryonic development. In total, 1152 eggs (mean weight: 143.33 ± 5.43 g) were divided equally and incubated in two commercial incubators with tray turning angles adjusted differently, to either 50° or 70°. Following incubation under the standard temperature and humidity level, turning eggs by 70° increased embryonic days 22 (E22), embryo mass, gosling weight at hatching, and egg hatchability, but reduced E22 yolk mass compared with those after turning eggs by 50°. Lipidomic analyses of the yolk revealed that egg turning at 70° reduced the concentrations of 17 of 1132 detected total lipids, including diglycerides, triglycerides, and phospholipids. Furthermore, the 70° egg turning upregulated the expression of genes related to lipolysis and fat digestion enzymes, such as lipase, cathepsin B, and prosaposin, as well as apolipoprotein B, apolipoprotein A4, very low-density lipoprotein receptor, low-density lipoprotein receptor-related protein 2, and thrombospondin receptor, which are genes involved in lipid transportation. Thus, a 70° egg turning angle during incubation enhances yolk utilization through the upregulation of lipolysis and fat digestion-related gene expression, thereby promoting embryonic development and improving egg hatchability and gosling quality.
Collapse
Affiliation(s)
| | | | | | | | - Zhendan Shi
- Laboratory of Animal Improvement and Reproduction, Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (B.G.); (L.Y.); (M.L.); (Z.D.)
| |
Collapse
|
6
|
Givisiez PEN, Moreira Filho ALB, Santos MRB, Oliveira HB, Ferket PR, Oliveira CJB, Malheiros RD. Chicken embryo development: metabolic and morphological basis for in ovo feeding technology. Poult Sci 2020; 99:6774-6782. [PMID: 33248593 PMCID: PMC7705034 DOI: 10.1016/j.psj.2020.09.074] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2020] [Revised: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Broiler embryonic development depends on the nutrients that are available in the egg, which includes mostly water, lipids, and proteins. Carbohydrates represent less than 1%, and free glucose only 0.3%, of the total nutrients. Considering that energy requirements increase during incubation and metabolism is shifted toward the use of glycogen stores and gluconeogenesis from amino acids, extensive muscle protein degradation in the end of incubation can compromise chick development in the initial days after hatch. Significant prehatch changes occur in embryonic metabolism to parallel the rapid embryonic development. Oral consumption of the amniotic fluid begins around 17 d of incubation and promotes rapid development of the intestinal mucosa, which is characterized by morphological changes and increased expression and activity of enzymes and transporters. Furthermore, ingested substrates are stored as nutritional reserves to be used during hatching and in the first week after hatch. At hatch, this limited-nutrient store is directed to the functional development of the gastrointestinal tract to enable assimilation of exogenous nutrients. In ovo feeding is an alternative to deliver essential nutrients to chick embryos at this critical and challenging phase. The improved nutritional status and physiological changes triggered by in ovo feeding can resonate throughout the entire rearing period with significant health and economic gains. The present review addresses the main changes in metabolism and intestinal development throughout incubation, and also addresses scientific advances, limitations and future perspectives associated with the use of in ovo feeding that has been regarded as an important technology by the poultry industry.
Collapse
Affiliation(s)
| | | | - Maylane R B Santos
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Heraldo B Oliveira
- Department of Animal Science, Federal University of Pernambuco, Recife, Brazil
| | - Peter R Ferket
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| | - Celso J B Oliveira
- Department of Animal Science, Federal University of Paraiba, Areia, Brazil
| | - Ramon D Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, USA
| |
Collapse
|
7
|
Rezaee MS, Liebhart D, Hess C, Hess M, Paudel S. Bacterial Infection in Chicken Embryos and Consequences of Yolk Sac Constitution for Embryo Survival. Vet Pathol 2020; 58:71-79. [PMID: 33016240 DOI: 10.1177/0300985820960127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Bacterial infections in chicken eggs often cause mortality of embryos and clinical consequences in chicks but the pathological mechanism is unclear. We investigated the pathological changes and bacterial growth kinetics in dead and live embryos following infection with 2 Escherichia coli strains with a different clinical background and with 1 Salmonella Enteritidis strain. In 2 experiments, 12-day-old embryos were infected via the allantoic sac with 100 µl of 1 to 5 × 102 CFU/ml of one of the bacteria. In experiment 1, only dead embryos were sampled until 4 days postinfection (dpi), and surviving embryos were sampled at 5 dpi. In experiment 2, sampling was performed in dead and killed embryos sequentially at 1, 2, 3, and 4 dpi. The bacteria showed varying pathogenicity in embryos. The yolk sacs of dead embryos showed congestion, inflammation, damaged blood vessels, and abnormal endodermal epithelial cells. Such lesions were absent in the yolk sacs of negative control embryos and in those of embryos that survived infection. The livers and hearts of dead embryos showed congestion and lysed erythrocytes with no morphological changes in hepatocytes or myocardial cells. All bacteria multiplied rapidly in the yolks of infected embryos, although this did not predict survival. However, the livers of dead embryos contained significantly higher bacterial loads than the livers of the embryos that survived infection. The results provide evidence that lesions in the yolk sac, which have been neglected to date, coincide with embryonic mortality, underlining the importance of healthy yolk sacs for embryo survival.
Collapse
Affiliation(s)
| | | | - Claudia Hess
- 27260University of Veterinary Medicine, Vienna, Austria
| | - Michael Hess
- 27260University of Veterinary Medicine, Vienna, Austria
| | - Surya Paudel
- 27260University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
8
|
Quercetin Improving Lipid Metabolism by Regulating Lipid Metabolism Pathway of Ileum Mucosa in Broilers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8686248. [PMID: 33014279 PMCID: PMC7520004 DOI: 10.1155/2020/8686248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/04/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
This study is aimed at evaluating the regulatory mechanism of quercetin on lipid metabolism in the ileum of broilers to better understand these pathways decreasing abdominal fat. 480 chickens were randomly divided into 4 groups (control, 0.02% quercetin, 0.04% quercetin, and 0.06% quercetin). Breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 d of age. Serum was obtained by centrifuging blood samples from the jugular vein (10 ml) to determine high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), leptin, and adiponectin using ELISA. About 5 g of the ileum was harvested and immediately frozen in liquid nitrogen for RNA-seq. Then, the confirmation of RNA-seq results by the Real-Time Quantitative PCR (RT-qPCR) method was evaluated using Pearson's correlation. Compared with control, abdominal fat percentage was significantly decreased with increasing quercetin supplementation, and the best result was obtained at 0.06% dietary quercetin supplementation (P < 0.01). Breast muscle percentage was significantly decreased at 0.02% quercetin (P < 0.01), and thigh muscle percentage tended to increase (P = 0.078). Meanwhile, 0.04% and 0.06% quercetin significantly decreased TG (P < 0.01), TC (P < 0.01), and LDL content (P < 0.05) in serum. Serum leptin and adiponectin contents were significantly increased by 0.04% and 0.06% dietary quercetin supplementation, compared with the control (P < 0.01). Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to identify differently expressed genes and lipid metabolism pathways. Quercetin decreased abdominal fat percentage through regulating fat digestion and absorption, glycerophospholipid metabolism, AMPK signaling pathway, fatty acid degradation, and cholesterol metabolism.
Collapse
|
9
|
Onbaşilar EE, Erdoğan M, Erol S, Kahraman M, Güngör ÖF. Comparison of Some Relative Gene Expressions in the Yolk Sac Membrane and Small Intestine of the Embryos in the Layer Hybrid and Pure Breeds. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2018-0727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - S Erol
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| | - M Kahraman
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| | - ÖF Güngör
- Republic of Turkey Ministry of Food Agriculture and Livestock, Turkey
| |
Collapse
|
10
|
Schneider WJ. Lipid transport to avian oocytes and to the developing embryo. J Biomed Res 2015; 30:174-80. [PMID: 26585559 PMCID: PMC4885163 DOI: 10.7555/jbr.30.20150048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022] Open
Abstract
Studies of receptor-mediated lipoprotein metabolic pathways in avian species have revealed that physiological intricacies of specific cell types are highly analogous to those in mammals. A prime example for the power of comparative studies across different animal kingdoms, elucidated in the chicken, is that the expression of different lipoprotein receptors in somatic cells and oocytes are the key to oocyte growth. In avian species, yolk precursor transport from the hen's liver to rapidly growing oocytes and the subsequent transfer of yolk nutrients via the yolk sac to the developing embryo are highly efficient processes. Oocytes grow from a diameter of 5 mm to 2.5-3 cm in only 7 days, and the yolk sac transfers nutrients from the yolk stored in the mature oocyte to the embryo within just 2 weeks. The underlying key transport mechanism is receptor-mediated endocytosis of macromolecules, i.e., of hepatically synthesized yolk precursors for oocyte growth, and of mature yolk components for embryo nutrition, respectively. Recently, the receptors involved, as well as the role of lipoprotein synthesis in the yolk sac have been identified. As outlined here, lipoprotein degradation/resynthesis cycles and the expression of lipoprotein receptors are not only coordinated with the establishment of the follicular architecture embedding the oocyte, but also with the generation of the yolk sac vasculature essential for nutrient transfer to the embryo.
Collapse
Affiliation(s)
- Wolfgang J Schneider
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University and Biocenter Vienna, Austria.
| |
Collapse
|
11
|
Yadgary L, Wong EA, Uni Z. Temporal transcriptome analysis of the chicken embryo yolk sac. BMC Genomics 2014; 15:690. [PMID: 25141977 PMCID: PMC4246430 DOI: 10.1186/1471-2164-15-690] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022] Open
Abstract
Background The yolk sac (YS) is an extra-embryonic tissue that surrounds the yolk and absorbs, digests and transports nutrients during incubation of the avian embryo as well as during early term mammalian embryonic development. Understanding YS functions and development may enhance the efficient transfer of nutrients and optimize embryo development. To identify temporal large-scale patterns of gene expression and gain insights into processes and mechanisms in the YS, we performed a transcriptome study of the YS of chick embryos on embryonic days (E) E13, E15, E17, E19, and E21 (hatch). Results 3547 genes exhibited a significantly changed expression across days. Clustering and functional annotation of these genes as well as histological sectioning of the YS revealed that we monitored two cell types: the epithelial cells and the erythropoietic cells of the YS. We observed a significant up-regulation of epithelial genes involved in lipid transport and metabolism between E13 and E19. YS epithelial cells expressed a vast array of lipoprotein receptors and fatty acid transporters. Several lysosomal genes (CTSA, PSAP, NPC2) and apolipoproteins genes (apoA1, A2, B, C3) were among the highest expressed, reflecting the intensive digestion and re-synthesis of lipoproteins in YS epithelial cells. Genes associated with cytoskeletal structure were down-regulated between E17 and E21 supporting histological evidence of a degradation of YS epithelial cells towards hatch. Expression patterns of hemoglobin synthesis genes indicated a high erythropoietic capacity of the YS between E13 and E15, which decreased towards hatch. YS histological sections confirmed these results. We also observed that YS epithelial cells expressed high levels of genes coding for plasma carrier proteins (ALB, AFP, LTF, TTR), normally produced by the liver. Conclusions Here we expand current knowledge on developmental, nutritional and molecular processes in the YS. We demonstrate that in the final week of chick embryonic development, the YS plays different roles to support or replace the functions of several organs that have not yet reached their full functional capacity. The YS has a similar functional role as the intestine in digestion and transport of nutrients, the liver in producing plasma carrier proteins and coagulation factors, and the bone marrow in synthesis of blood cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-690) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Zehava Uni
- Department of Animal Science, The Robert H, Smith Faculty of Agriculture, Food and Environment, The Hebrew University, 76100 Rehovot, Israel.
| |
Collapse
|
12
|
Eresheim C, Plieschnig J, Ivessa NE, Schneider WJ, Hermann M. Expression of microsomal triglyceride transfer protein in lipoprotein-synthesizing tissues of the developing chicken embryo. Biochimie 2014; 101:67-74. [PMID: 24394625 PMCID: PMC4008936 DOI: 10.1016/j.biochi.2013.12.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/25/2013] [Accepted: 12/21/2013] [Indexed: 12/01/2022]
Abstract
In contrast to mammals, in the chicken major sites of lipoprotein synthesis and secretion are not only the liver and intestine, but also the kidney and the embryonic yolk sac. Two key components in the assembly of triglyceride-rich lipoproteins are the microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). We have analyzed the expression of MTP in the embryonic liver, small intestine, and kidney, and have studied the expression of MTP in, and the secretion of apoB from, the developing yolk sac (YS). Transcript and protein levels of MTP increase during embryogenesis in YS, liver, kidney, and small intestine, and decrease in YS, embryonic liver, and kidney after hatching. In small intestine, the MTP mRNA level rises sharply during the last trimester of embryo development (after day 15), while MTP protein is detectable only after hatching (day 21). In the YS of 15- and 20-day old embryos, apoB secretion was detected by pulse-chase metabolic radiolabeling experiments and subsequent immunoprecipitation. Taken together, our data reveal the importance of coordinated production of MTP and apoB in chicken tissues capable of secreting triglyceride-rich lipoproteins even before hatching. MTP is expressed in liver, small intestine, and kidney of chicken embryos. MTP is expressed in the chicken yolk sac. ApoB is secreted from the chicken yolk sac. Embryonic tissues contribute to the lipoprotein pool of the developing chick.
Collapse
Affiliation(s)
- Christine Eresheim
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Julia Plieschnig
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - N Erwin Ivessa
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Marcela Hermann
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria.
| |
Collapse
|
13
|
Yadgary L, Kedar O, Adepeju O, Uni Z. Changes in yolk sac membrane absorptive area and fat digestion during chick embryonic development. Poult Sci 2013; 92:1634-40. [DOI: 10.3382/ps.2012-02886] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
14
|
Zhang S, Wang Z, Wang H. Maternal immunity in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:72-78. [PMID: 22387589 DOI: 10.1016/j.dci.2012.02.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/23/2011] [Revised: 12/23/2011] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
Both innate and adaptive immune-relevant factors are transferred from mother to offspring in fishes. These maternally-transferred factors include IgM, lysozymes, lectin, cathelicidin and complement components. Recently, yolk proteins, phosvitin and lipovitellin, have been shown to be maternally-transferred factors, functioning in the defense of teleost larvae against pathogens. Among these factors, the mode of action of complement components and yolk proteins has been explored, whereas that of all the other factors remains elusive. At present, the transfer mechanisms of maternally-derived immune factors are largely unknown although those of IgM and yolk protein transmission from mother to offspring have been reported in some fishes. Maternal transfer of immunity is affected by many elements, including biological factors, such as age and maturation, and environmental conditions experienced by brood fish, such as pathogens and nutritional supply. Practically, the manipulation of maternal immunity transfer can be used to enhance the survival rate of fish larvae.
Collapse
Affiliation(s)
- Shicui Zhang
- Institute of Evolution and Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | | | | |
Collapse
|
15
|
Bauer R, Plieschnig JA, Finkes T, Riegler B, Hermann M, Schneider WJ. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem 2012; 288:1088-98. [PMID: 23209291 DOI: 10.1074/jbc.m112.393090] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
During chicken yolk sac (YS) growth, mesodermal cells in the area vasculosa follow the migrating endodermal epithelial cell (EEC) layer in the area vitellina. Ultimately, these cells form the vascularized YS that functions in nutrient transfer to the embryo. How and when EECs, with their apical aspect directly contacting the oocytic yolk, acquire the ability to take up yolk macromolecules during the vitellina-to-vasculosa transition has not been investigated. In addressing these questions, we found that with progressive vascularization, the expression level in EECs of the nutrient receptor triad, LRP2-cubilin-amnionless, changes significantly. The receptor complex, competent for uptake of yolk proteins, is produced by EECs in the area vasculosa but not in the area vitellina. Yolk components endocytosed by LRP2-cubilin-amnionless, preformed and newly formed lipid droplets, and yolk-derived very low density lipoprotein, shown to be efficiently endocytosed and lysosomally processed by EECs, probably provide substrates for resynthesis and secretion of nutrients, such as lipoproteins. In fact, as directly demonstrated by pulse-chase experiments, EECs in the vascularized, but not in the avascular, region efficiently produce and secrete lipoproteins containing apolipoprotein A-I (apoA-I), apoB, and/or apoA-V. In contrast, perilipin 2, a lipid droplet-stabilizing protein, is produced exclusively by the EECs of the area vitellina. These data suggest a differentiation process that orchestrates the vascularization of the developing YS with the induction of yolk uptake and lipoprotein secretion by EECs to ensure embryo nutrition.
Collapse
Affiliation(s)
- Raimund Bauer
- Department of Medical Biochemistry, Medical University of Vienna, Max F. Perutz Laboratories, Dr. Bohr Gasse 9/2, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
16
|
Zheng A, Liu G, Zhang Y, Hou S, Chang W, Zhang S, Cai H, Chen G. Proteomic analysis of liver development of lean Pekin duck (Anas platyrhynchos domestica). J Proteomics 2012; 75:5396-413. [PMID: 22771313 DOI: 10.1016/j.jprot.2012.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/19/2022]
Abstract
The liver plays vital roles in digestion, metabolism and immune defense. To elucidate the molecular mechanism of nutrient metabolism and antioxidation of lean Pekin duck liver from hatching to slaughter, the proteome changes were investigated using 2-DE, MS, quantitative real-time PCR and bioinformatics. A total of 59 differentially expressed proteins were identified. Proteins involved in transportation were highly up-regulated in newborn ducks whereas 37 proteins associated with metabolism, defense and antioxidation were up-regulated in adult ducks. The over-expression of proteins at the last developmental stage presumably occurs to fulfill the needs of multiple functions of the liver. However, the over-expressed proteins related to transportation during the first developmental stage are involved in maintaining the high basal metabolism of newborn ducks. The functional enrichment analysis also confirmed these results. Furthermore, the protein interaction network predicted 28 proteins acting as key nodes for liver development. The validated expression between proteins and genes provides us target genes for future genetic analyses to improve the health and performance of these ducks. These significant advanced proteome data expand our knowledge on the physiology of the duck liver, thereby providing a potentially valuable foundation for molecular breeding to enhance feed efficiency and immunity and for optimizing the feeding strategy.
Collapse
Affiliation(s)
- Aijuan Zheng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yadgary L, Uni Z. Yolk sac carbohydrate levels and gene expression of key gluconeogenic and glycogenic enzymes during chick embryonic development. Poult Sci 2012; 91:444-53. [DOI: 10.3382/ps.2011-01669] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
|
18
|
Yalçın S, Bağdatlioğlu N, Babacanoğlu E. Effect of maternal corticosterone on utilisation of residual yolk sac fatty acids by developing broiler embryo. Br Poult Sci 2011; 52:264-72. [PMID: 21491250 DOI: 10.1080/00071668.2010.549669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
Abstract
1. Increased concentrations of maternal corticosterone are deposited into egg yolk under stress conditions. This experiment investigated the effect of maternal corticosterone on yolk and yolk sac fatty acid profiles of eggs and developing broiler embryos. 2. At 42 weeks of age, 200 broiler breeder females were randomly divided into two groups: maternal corticosterone (MC): 2 mg/hen/d of corticosterone dissolved in 1 mL of 99% ethanol and mixed in the individual daily feed for a 14 d period, and control: 1 mL of ethanol added to the individual daily feed. Hens were inseminated, and eggs were collected daily from d 3 of corticosterone feeding to d 14 and incubated. Fatty acid profiles of egg yolk and yolk sac were analysed before incubation and at 12, 14, 18 and 21 d of incubation. 3. Yolk corticosterone concentrations were greater in MC eggs. Before incubation, eggs from MC had lower DHA (22 : 6 n-3) but higher stearic (18 : 0) and dihomo-gamma linolenic (20 : 3 n-6 Cis 8,11,14) acid content compared with the control. 4. Higher concentrations of stearic (18 : 0), elaidic (18 : 1 tr n-9), eicosenoic (20 : 1 n-9), eicosadienoic (20 : 2 n-6), dihomo-gamma linoleic (20 : 3 n-6) and arachidonic (20 : 4 n-6) acids and lower concentrations of myristic (14 : 0), palmitoleic (16 : 1 n-7), linoleic (18 : 2 n-6) and DHA (22 : 6 n-3) were found at different periods of incubation in the residual yolk sac of MC than from controls. 5. The results suggest that the preferentially selective absorption of fatty acids is related to specific tissue requirements.
Collapse
Affiliation(s)
- S Yalçın
- Ege University, Faculty of Agriculture, Department of Animal Science, 35100 Izmir.
| | | | | |
Collapse
|
19
|
Yadgary L, Cahaner A, Kedar O, Uni Z. Yolk sac nutrient composition and fat uptake in late-term embryos in eggs from young and old broiler breeder hens. Poult Sci 2010; 89:2441-52. [PMID: 20952708 DOI: 10.3382/ps.2010-00681] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we examined the composition, amount, and uptake of yolk nutrients [fat, protein, water, and carbohydrates (COH)] during incubation of eggs from 30- and 50-wk-old broiler breeder hens. Eggs were sampled at embryonic d 0 (fresh eggs), 13, 15, 17, 19, and 21 (hatch). Egg, embryo, yolk content, and yolk sac membrane were weighed, and the yolk sac (YS; i.e., yolk content + yolk sac membrane) composition was analyzed. From 30 to 50 wk of age, the albumen weight increased by 13.3%, whereas the yolk increased by more than 40%. The proportion of fat in the fresh yolk of the 30-wk-old group was 23.8% compared with 27.4% in the 50-wk-old group, whereas the proportion of protein was 17.9% compared with 15.6%, respectively. During incubation, results indicated that water and protein infiltrated from other egg compartments to the YS. Accordingly, the calculated change in the content of water and protein between fresh yolk and sampled YS does not represent the true uptake of these components from the YS to the embryo, and only fat uptake from the YS can be accurately estimated. By embryonic d 15, fat uptake relative to embryo weight was lower in the 30-wk-old group than in the 50-wk-old group. However, by embryonic d 21, embryos of both groups reached similar relative fat uptake, suggesting that to hatch, embryos must attain a certain amount of fat as a source of energy for the hatching process. The amount of COH in the YS increased similarly during incubation in eggs from hens of both ages, reaching a peak at embryonic d 19, suggesting COH synthesis in the YS. At hatch, the amount of protein, water, and COH in the residual YS, relative to the weight of the yolk-free chick, was similar in eggs from young and old hens. However, chicks from the younger hens had less fat in the YS for their immediate posthatch nutrition compared with those from the older hens.
Collapse
Affiliation(s)
- L Yadgary
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University, Rehovot, Israel
| | | | | | | |
Collapse
|
20
|
Sato M, Furuse M. 3-Hydroxy-3-Methylglutaryl CoA Reductase Inhibitor Retards Chicken Embryonic Growth. JOURNAL OF APPLIED ANIMAL RESEARCH 2009. [DOI: 10.1080/09712119.2009.9707020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/15/2022]
|
21
|
Lawniczak CJ, Teece MA. Lipid metabolism during embryonic development of the common snapping turtle, Chelydra serpentina. Comp Biochem Physiol B Biochem Mol Biol 2009; 153:73-80. [DOI: 10.1016/j.cbpb.2009.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/27/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 10/21/2022]
|
22
|
Yang P, Liu Z, Wang H, Tian J, Li Y, Zong Y, Qu S. Enhanced activity of very low density lipoprotein receptor II promotes SGC7901 cell proliferation and migration. Life Sci 2009; 84:402-8. [DOI: 10.1016/j.lfs.2008.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2008] [Revised: 11/26/2008] [Accepted: 12/21/2008] [Indexed: 10/21/2022]
|
23
|
Karcher DM, Fleming-Waddell JN, Applegate TJ. Developmental changes in insulin-like growth factor (IGF)-I and -II mRNA abundance in extra-embryonic membranes and small intestine of avian embryos. Growth Horm IGF Res 2009; 19:31-42. [PMID: 18632292 DOI: 10.1016/j.ghir.2008.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/21/2007] [Revised: 04/15/2008] [Accepted: 05/27/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Numerous researchers have evaluated the insulin-like growth factors (IGF) influence on mammalian fetal development. Although IGF has been explored in the avian system, questions remain on the role of IGF in avian development. Therefore, the current study evaluated the mRNA abundance of IGF in the amnion and allantoic membranes and developing small intestine in the chicken, duck, and turkey during the incubation and post-hatch period. DESIGN Broiler, duck, and turkey eggs were incubated with small intestinal, allantoic, and amniotic membranes collected in the final days of incubation and 1 week post-hatch. RNA was extracted using Trizol and qRT-PCR was utilized to compare differences during embryo development within and across species. RESULTS The expression of the IGF mRNA varied between species in the final days of incubation in the amniotic and allantoic membranes. The turkey had higher (0.38-1.72 log) transcript abundance of IGF-I and IGF-II in the amnion and allantois compared to the chicken and duck. Evaluating the mRNA abundance within the chicken duodenum, jejunum, and ileum, the duodenum had the lowest expression of IGF-I and IGF-II (P<0.05) at day -4 of incubation compared to the jejunum and ileum. Focusing on differences in jejunal IGF expression among the three species, the turkey had the lowest IGF-I abundance at day -4 of incubation and highest IGF-I abundance at day of hatch (P<0.05). Transcript abundance of both IGF-II and IGF-R was highest in the turkey at day of hatch and day 1 post-hatch compared to the duck and chicken. The whole tissue versus the mucosal expression of the IGF mRNA abundance was evaluated during the post-hatch period. Duodenal, jejunal, and ileal segments had higher IGF-I transcript abundance (P<0.05) at day 1, day 3, and day of hatch, respectively. No differences were observed between segment and mucosa for IGF-II in the post-hatch period. The duodenal and jejunal mucosa IGF-R transcript abundance was greater (P<0.05) at day of hatch compared to the intestinal segment. The duck IGF mRNA in the jejunal mucosa was higher than the whole segment and decreased from day of hatch to day 3 post-hatch while the IGF mRNA abundance increased in the whole segment during the same time period. The turkey IGF-I transcript abundance decreased in both the segment and mucosa following hatch while the IGF-II mRNA expression increased by 1.5 logs from hatch to day 1 post-hatch. CONCLUSION The transcript abundance of the IGF axis in the extra-embryonic membranes and gastrointestinal tissue of the developing chicken, duck, and turkey are influenced by embryonic age and species. A better understanding of the IGF axis in the small intestine during embryonic development may allow for increasing the optimal growth of both the gastrointestinal tract and the neonate.
Collapse
Affiliation(s)
- D M Karcher
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
24
|
Saarela J, Jung G, Hermann M, Nimpf J, Schneider WJ. The patatin-like lipase family in Gallus gallus. BMC Genomics 2008; 9:281. [PMID: 18549477 PMCID: PMC2435558 DOI: 10.1186/1471-2164-9-281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2008] [Accepted: 06/12/2008] [Indexed: 01/04/2023] Open
Abstract
Background In oviparous species, genes encoding proteins with functions in lipid remodeling, such as specialized lipases, may have evolved to facilitate the assembly and utilization of yolk lipids by the embryo. The mammalian gene family of patatin-like phospholipases (PNPLAs) has received significant attention, but studies in other vertebrates are lacking; thus, we have begun investigations of PNPLA genes in the chicken (Gallus gallus). Results We scanned the draft chicken genome using human PNPLA sequences, and performed PCR to amplify and sequence orthologous cDNAs. Full-length cDNA sequences of galline PNPLA2/ATGL, PNPLA4, -7, -8, -9, and the activator protein CGI-58, as well as partial cDNA sequences of avian PNPLA1, -3, and -6 were obtained. The high degree of sequence identities (~50 to 80%) between the avian and human orthologs suggests conservation of important enzymatic functions. Quantitation by qPCR of the transcript levels of PNPLAs and CGI-58 in 21 tissues indicates that expression patterns and levels diverge greatly between species. A particularly interesting tissue in which certain PNPLAs may contribute to physiological specialization is the extraembryonic yolk sac. Conclusion Knowledge about the exact in-vivo functions of PNPLAs in any system is still sparse. Thus, studies about the temporal expression patterns and functions of the enzymes identified here, and of other already known extracellular lipases and co-factors, in the yolk sac and embryonic tissues during embryogenesis are called for. Based on the information obtained, further studies are anticipated to provide important insights of the roles of PNPLAs in the yolk sac and embryo development.
Collapse
Affiliation(s)
- Jani Saarela
- The Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/2, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
25
|
Koch JM, Moritz JS, Lay DC, Wilson ME. Effect of melengestrol acetate as an alternative to induce molting in hens on the expression of yolk proteins and turnover of oviductal epithelium. Anim Reprod Sci 2006; 102:14-23. [PMID: 17092663 DOI: 10.1016/j.anireprosci.2006.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/04/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
Inducing hens to molt increases egg quality, egg production and extends the productive life of hens. It has been previously demonstrated that melengestrol acetate (MGA), an orally active progestin, decreased gonadotropic support for the ovary, which decreased the steroidogenic support for the oviduct and resulted in the cessation of lay. Estradiol produced by the theca cells of small follicles stimulates the production of the yolk proteins vitellogenin II and apolipoprotein II by the liver and supports the oviductal epithelial cells. The objective of the present experiment was to determine gene expression for yolk proteins and oviductal epithelial cell turn-over in response to a MGA-induced molt. Hy-Line W-36 laying hens were fed either 0 or 8mg MGA per day for 28 days in a balanced diet and then returned to a standard layer ration until day 36. Four birds per treatment on days 1, 8, 16, 28 and 36 were euthanized and the liver was removed and snap frozen in liquid nitrogen until RNA was extracted. Expression of vitellogenin II and apolipoprotein II genes was determined using real-time RT-PCR. A portion of the magnum was removed to determine proliferation and programmed cell death for secretory and ciliated luminal epithelium. Vitellogenin II and apolipoprotein II gene expression was reduced in hens fed 8mg MGA compared to those fed 0mg MGA. There was no effect of day on gene expression of either yolk protein. Cell proliferation was increased in the ciliated epithelial cells of the oviduct in hens receiving 8mg MGA compared to those receiving 0mg. However, programmed cell death of the ciliated epithelial cells was not different between controls and MGA treatment. Programmed cell death and proliferation increased in the secretory epithelial cells in hens receiving 8mg MGA compared to controls. Therefore, utilizing MGA as an alternative method to induce molt results in some, but not all, of the physiological changes previously described for hens molted by feed withdrawal. These findings lead us to suggest that some of the observed physiological changes resulting from feed withdrawal are required to increase egg quality and egg production following molt and other changes are not necessary, but are just a result of nutrient deprivation.
Collapse
Affiliation(s)
- J M Koch
- Division of Animal and Veterinary Science, Davis College of Agriculture, Forestry and Consumer Sciences, West Virginia University, Morgantown, WV, United States
| | | | | | | |
Collapse
|
26
|
Marza E, Barthe C, André M, Villeneuve L, Hélou C, Babin PJ. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn 2005; 232:506-18. [PMID: 15614773 DOI: 10.1002/dvdy.20251] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The microsomal triglyceride transfer protein (MTP) large subunit is required for the assembly and secretion of apolipoprotein B-containing lipoproteins. We have found a zebrafish mtp homologous gene coding a protein with 54% identity with human MTP large subunit with the most conserved regions distributed in the corresponding predicted alpha-helical and C- and A-sheet domains. In situ hybridizations showed that zebrafish mtp transcripts were distributed in the yolk syncytial layer during early embryogenesis and in anterior intestine and liver from 48 hr postfertilization onward. Real-time quantitative RT-PCR confirmed the developmental regulation and tissue-specificity of mtp expression. A significant pretranslational up-regulation of mtp expression was observed in the anterior intestine after feeding. The nutritional regulation of zebrafish mtp expression observed in the anterior intestine supports the notion that this protein, similar to mammalian MTP large subunit, could be a factor implicated directly or indirectly in large lipid droplets accumulation observed in the fish enterocyte after feeding.
Collapse
Affiliation(s)
- Esther Marza
- Laboratoire Génomique et Physiologie des Poissons, UMR 1067 NUAGE INRA-IFREMER, Université Bordeaux 1, 33405 Talence Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Chen T, Wu F, Chen FM, Tian J, Qu S. Variations of very low-density lipoprotein receptor subtype expression in gastrointestinal adenocarcinoma cells with various differentiations. World J Gastroenterol 2005; 11:2817-21. [PMID: 15884130 PMCID: PMC4305924 DOI: 10.3748/wjg.v11.i18.2817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
AIM: This study is aimed at investigating the expression and possible significances of very low-density lipoprotein receptor (VLDLR) subtypes in gastroenteric adenocarcinoma tissues and cells with various differentiations.
METHODS: Thirty-one cases of gastroenteric carcinoma/adjacent normal tissues were enrolled in the study, which were diagnosed and classified by the clinicopathological diagnosis. The expression of VLDLR subtypes was detected in gastroenteric carcinoma/adjacent normal tissues and three various differentiated human gastric adenocarcinoma cell lines (MKN28, SGC7901 and MKN45) by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis.
RESULTS: Two VLDLR subtypes, namely, type II VLDLR and type I VLDLR, were found to express changes in gastroenteric carcinoma tissues, their adjacent normal tissue, and gastric adenocarcinoma cell lines as well. Type II VLDLR is predominantly expressed in poorly- or moderately-differentiated gastroenteric carcinoma tissues and gastric adenocarcinoma cell lines, whereas type I VLDLR is mainly detected in well-differentiated intestinal carcinoma tissues and gastric adenocarcinoma cells compared with the adjacent normal tissues.
CONCLUSION: The results suggested that the variations of the VLDLR subtype expression might be correlated with the progress and differentiation of gastroenteric carcinoma.
Collapse
Affiliation(s)
- Tao Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | |
Collapse
|
28
|
Jossin Y. Neuronal migration and the role of reelin during early development of the cerebral cortex. Mol Neurobiol 2005; 30:225-51. [PMID: 15655250 DOI: 10.1385/mn:30:3:225] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2004] [Accepted: 04/29/2004] [Indexed: 11/11/2022]
Abstract
During development, neurons migrate to the cortex radially from periventricular germinative zones as well as tangentially from ganglionic eminences. The vast majority of cortical neurons settle radially in the cortical plate. Neuronal migration requires an exquisite regulation of leading edge extension, nuclear translocation (nucleokinesis), and retraction of trailing processes. During the past few years, several genes and proteins have been identified that are implicated in neuronal migration. Many have been characterized by reference to known mechanisms of neuronal and non-neuronal cell migration in culture; however, probably the most interesting have been identified by gene inactivation or modification in mice and by positional cloning of brain malformation genes in humans and mice. Although it is impossible to provide a fully integrated view, some patterns clearly emerge and are the subject of this article. Specific emphasis is placed on three aspects: first, the role of the actin treadmill, with cyclic formation of filopodial and lamellipodial extensions, in relation to surface events that occur at the leading edge of radially migrating neurons; second, the regulation of microtubule dynamics, which seems to play a key role in nucleokinesis; and third, the mechanisms by which the extracellular protein Reelin regulates neuronal positioning at the end of migration.
Collapse
Affiliation(s)
- Yves Jossin
- Developmental Neurobiology Unit, University of Louvain Medical School, Brussels, Belgium.
| |
Collapse
|
29
|
Speake BK, Deans EA. Biosynthesis of oleic, arachidonic and docosahexaenoic acids from their C18 precursors in the yolk sac membrane of the avian embryo. Comp Biochem Physiol B Biochem Mol Biol 2004; 138:407-14. [PMID: 15325342 DOI: 10.1016/j.cbpc.2004.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 11/23/2022]
Abstract
The yolk sac membrane (YSM) of the chicken embryo is known to express delta-9 and delta-6 desaturase activities, suggesting that biosynthesis of the unsaturated fatty acids 18:1n-9, 20:4n-6 and 22:6n-3 might occur during the transfer of yolk lipids across the YSM. If so, this biosynthesis could help to satisfy the demands of the embryonic tissues for these unsaturates. To assess the ability of the YSM to perform these conversions, pieces of the tissue were incubated in vitro with the precursor fatty acids, 14C-18:0, 14C-18:2n-6 or 14C-18:3n-3, and the recovery of radioactivity in the respective products, 18:1n-9, 20:4n-6 and 22:6n-3, was determined. After 4 h of continuous incubation, radioactivity from these precursors was incorporated primarily into triacylglycerol and phospholipid of the tissue pieces. Only small proportions (0.3-4.7%) of this incorporated radioactivity were, however, recovered as 18:1n-9, 20:4n-6 or 22:6n-3. The majority of the incorporated label was retained in the form of the precursor fatty acids. After a 1-h pulse incubation with the 14C precursors, followed by a 3-h chase incubation in the absence of exogenous label, the conversion of incorporated radioactivity to the end product unsaturates was again relatively low (0.5-8.1%). Thus, although conversions of the precursors to the end product fatty acids were detectable in this system, the biosynthesis of these unsaturates is apparently a quantitatively minor pathway in the YSM. Nevertheless, since the amount of 18:2n-6 in the yolk lipids far exceeds that of 20:4n-6, the conversion of even a small proportion of the former to the latter fatty acid could significantly increase the supply of 20:4n-6 to the embryonic tissues.
Collapse
Affiliation(s)
- Brian K Speake
- Lipid Laboratory, Avian Science Research Centre, SAC, Auchincruive, Ayr KA6 5HW, Scotland, UK.
| | | |
Collapse
|
30
|
Sato N, Kawamura K, Fukuda J, Honda Y, Sato T, Tanikawa H, Kodama H, Tanaka T. Expression of LDL receptor and uptake of LDL in mouse preimplantation embryos. Mol Cell Endocrinol 2003; 202:191-4. [PMID: 12770750 DOI: 10.1016/s0303-7207(03)00082-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study is to address the role of low-density lipoprotein (LDL) on mouse preimplantation embryos. METHODS The temporal expression of low-density lipoprotein receptor (LDLR) and side-chain cleavage cytochrome P450 (P450scc) mRNAs in mouse oocytes and preimplantation embryos up to the hatched blastocyst stage were analyzed by RT-PCR and nested PCR techniques. Simultaneously, the expression of LDLR in the protein level was analyzed by fluorescent immunohistochemistory at oocyte, 4-cell embryo and blastocyst. Uptake of LDL was analyzed using the LDL labeled with the fluorescent probe DiO. RESULTS LDLR mRNA was detected at oocyte, 8-cell, morula, blastocyst and hatched blastocyst stages. P450scc mRNA was detected at oocyte, 1-cell, 2-cell, 4-cell, blastocyst and hatched blastocyst stages. LDLR protein was detected in blastocyst. P450scc protein was detected in oocyte, 4-cell, and blastocyst. LDL-DiO was taken into embryo at blastocyst stage and this uptake was competitively suppressed by excess unlabeled LDL. CONCLUSIONS It is suggested from the present study that LDLR may play an essential role in uptake of exogenous LDL into blastocyst stage and cholesterol derived from LDL may be the source of steroid hormone synthesis.
Collapse
Affiliation(s)
- N Sato
- Department of Obstetrics and Gynecology, Akita University School of Medicine, Hondo 1-1-1, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Metabolism of carbohydrate and fat was examined in the hatching chick by introduction of 14C labeled oleic acid, triolein, or glucose to the gastrointestinal tract or to the yolk sac. Label in plasma and exhaled air samples were determined over a 12-h period. The activity-time curves could be fitted to double exponential equations, and rate constants for appearance and disappearance of label were calculated. Following injection to the yolk, oleic acid and triolein label showed rapid appearance in the circulation and rapid utilization. The rate of appearance of oleic acid and triolein in the circulation from the gastrointestinal tract was high at hatch and did not change with age. However, the rate constant for disappearance from the plasma increased with age and after 6 d posthatch disappearance curves fluctuated with little decline over 12 h. Following the introduction of labeled lipids more label was found in acylglycerides with time after injection but age had no effect. Lipids introduced via the yolk sac were present in higher proportions in fractions corresponding to low-density lipoprotein (LDL) than lipids introduced via the gastrointestinal tract. Glucose appearance in the circulation from the gastrointestinal tract was low at hatch and increased more than two-fold by 3 d posthatch. The rate constant for disappearance of glucose from the circulation did not change with age. It appears that lipoproteins synthesized maternally or in yolk transport lipids at hatch, but their concentration decreases posthatch, and this could reduce utilization of circulating lipids. Uptake of glucose increases after hatch, thus, allowing glucose to become a major source of energy as the yolk lipids are depleted.
Collapse
Affiliation(s)
- D Sklan
- Faculty of Agriculture, Hebrew University, Rehovot, Israel, 76-100.
| |
Collapse
|