1
|
Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, Lin D, Gu M, Zhou X, Li HS, Watowich SS, Jain A, Yun Jung S, Qin J, Cheng X, Sun SC. Preventing abnormal NF-κB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29:474-485. [PMID: 31086255 DOI: 10.1038/s41422-019-0174-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
NF-κB, a family of transcription factors regulating diverse biological processes including immune responses, is activated by canonical and noncanonical pathways based on degradation of IκBα and processing of the IκB-like protein p100, respectively. Although p100 responds to noncanonical NF-κB stimuli for processing, it does not undergo degradation, but rather becomes accumulated, along with canonical NF-κB activation. We show here that the stability of p100 is tightly controlled by a deubiquitinase, Otub1. Otub1 deficiency not only promotes signal-induced p100 processing and noncanonical NF-κB activation but also causes steady-state p100 degradation, leading to aberrant NF-κB activation in the canonical pathway. B-cell-conditional deletion of Otub1 results in B-cell hyperplasia, antibody hyper-production, and lupus-like autoimmunity. Otub1-deficient B cells display aberrantly activated phenotypes and overproduce the cytokine IL-6, contributing to autoimmunity induction. Thus, maintenance of p100 stability by Otub1 serves as an unusual mechanism of NF-κB regulation that prevents autoimmunity.
Collapse
Affiliation(s)
- Yanchuan Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Jin-Young Yang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaoping Xie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Zuliang Jie
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Lingyun Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jianhong Shi
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Daniel Lin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Meidi Gu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Xiaofei Zhou
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Haiyan S Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Stephanie S Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Qin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuhong Cheng
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX, 77030, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Badreddin A, Fady Y, Attia H, Hafez M, Khairallah A, Johar D, Bernstein L. What role does the stress response have in congestive heart failure? J Cell Physiol 2017; 233:2863-2870. [PMID: 28493471 DOI: 10.1002/jcp.26003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/10/2017] [Indexed: 01/10/2023]
Abstract
This review is concerned with cardiac malfunction as a result of an imbalance in protein proteostasis, the homeostatic balance between protein removal and regeneration in a long remodeling process involving the endoplasmic reticulum (ER) and the unfolded protein response (UPR). The importance of this is of special significance with regard to cardiac function as a high energy requiring muscular organ that has a high oxygen requirement and is highly dependent on mitochondria. The importance of mitochondria is not only concerned with high energy dependence on mitochondrial electron transport, but it also has a role in the signaling between the mitochondria and the ER under stress. Proteins made in the ER are folded as a result of sulfhydryl groups (-SH) and attractive and repulsive reactions in the tertiary structure. We discuss how this matters with respect to an imbalance between muscle breakdown and repair in a stressful environment, especially as a result of oxidative and nitrosative byproducts of mitochondrial activity. The normal repair is a remodeling, but under this circumstance, the cell undergoes or even lysosomal "self eating" autophagy, or even necrosis instead of apoptosis. We shall discuss the relationship of the UPR pathway to chronic congestive heart failure (CHF).
Collapse
Affiliation(s)
- Ahmed Badreddin
- Department of Cardiothoracic Surgery, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Youssef Fady
- Department of Cardiac Surgery, Cardiac Surgery Center Sultan Qaboos Hospital, Salalah, Dhofar, Sultanate of Oman, Salalah, Oman
| | - Hamdy Attia
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Hafez
- Kasr Al'Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Khairallah
- Medical Research Division, Department of Pharmacology, National Research Centre, Dokki, Cairo, Egypt
| | - Dina Johar
- Faculty of Women for Arts, Sciences, and Education, Department of Biochemistry and Nutrition, Ain Shams University, Heliopolis, Cairo, Egypt.,Max Rady Faculty of Health Sciences, Department of Physiology and Pathophysiology, Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
3
|
Shah MV, Zhang R, Loughran TP. Never say die: survival signaling in large granular lymphocyte leukemia. ACTA ACUST UNITED AC 2010; 9 Suppl 3:S244-53. [PMID: 19778848 DOI: 10.3816/clm.2009.s.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Large granular lymphocyte (LGL) leukemia is a rare disorder of mature cytotoxic T or natural killer cells. Large granular lymphocyte leukemia is characterized by the accumulation of cytotoxic cells in blood and infiltration in the bone marrow, liver, and spleen. Herein, we review clinical features of LGL leukemia. We focus our discussion on known survival signals believed to play a role in the pathogenesis of LGL leukemia and their potential therapeutic implications.
Collapse
|
4
|
Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol 2009; 10:1089-95. [PMID: 19734906 PMCID: PMC2748822 DOI: 10.1038/ni.1777] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/01/2009] [Indexed: 11/08/2022]
Abstract
Toll-like receptors (TLRs) are pivotal in innate immunity and inflammation. Here we show that genetic deficiency in Peli1, an E3 ubiquitin ligase, attenuated the induction of proinflammatory cytokines by ligands of TLR3 and TLR4 and rendered mice resistant to septic shock. Peli1 was required for TLR3-induced activation of IkappaB kinase (IKK) and its 'downstream' target, transcription factor NF-kappaB, but was dispensable for IKK-NF-kappaB activation induced by several other TLRs and the interleukin 1 (IL-1) receptor. Notably, Peli1 bound to and ubiquitinated RIP1, a signaling molecule that mediates IKK activation induced by the TLR3 and TLR4 adaptor TRIF. Our findings suggest that Peli1 is a ubiquitin ligase needed for the transmission of TRIF-dependent TLR signals.
Collapse
|
5
|
Zhang M, Jin W, Zhou X, Yu J, Lee AJ, Sun SC. Deregulation of Tpl2 and NF-kappaB signaling and induction of macrophage apoptosis by the anti-depressant drug lithium. Cell Signal 2008; 21:559-66. [PMID: 19159680 DOI: 10.1016/j.cellsig.2008.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Lithium is an anti-depressant drug that also possesses immunomodulatory functions. The anti-inflammatory effect of lithium is thought to involve activation of the transcription factor CREB, although the underlying mechanism is incompletely understood. We show here that in macrophages lithium stimulates Tpl2, a MAP kinase kinase kinase (MAP3K) known to mediate activation of extracellular signal regulated kinase (ERK) and the downstream target CREB. Lithium activates Tpl2 by inducing degradation of p105, an NF-kappaB precursor protein that functions as a physiological inhibitor of Tpl2. This novel function of lithium does not involve inhibition of a well-characterized lithium target, GSK3beta, since other known GSK3beta inhibitors do not induce p105 degradation or Tpl2 activation. Lithium also promotes the activation of Tpl2 and ERK by the TLR4 ligand LPS. On the other hand, prolonged incubation of macrophages with lithium results in dramatic loss of p105 and inhibition of LPS-stimulated NF-kappaB activation. Consequently, lithium both attenuates LPS-mediated pro-inflammatory gene induction and induces apoptosis in macrophages. These results provide novel insight into the anti-inflammatory function of lithium.
Collapse
Affiliation(s)
- Minying Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, United States
| | | | | | | | | | | |
Collapse
|
6
|
Chamoux E, Houde N, L'Eriger K, Roux S. Osteoprotegerin decreases human osteoclast apoptosis by inhibiting the TRAIL pathway. J Cell Physiol 2008; 216:536-42. [PMID: 18338379 DOI: 10.1002/jcp.21430] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Osteoprotegerin (OPG) is a secreted decoy receptor that recognizes RANKL, and blocks the interaction between RANK and RANKL, leading to the inhibition of osteoclast differentiation and activation. As OPG is a major inhibitor of bone resorption, we wondered whether OPG could modulate osteoclast survival/apoptosis. Osteoclast apoptosis was evaluated by adding various doses of OPG to human osteoclast cultures obtained from cord blood monocytes. Surprisingly, apoptosis decreased after adding the OPG. We hypothesized that OPG may block its second ligand, TRAIL, which is involved in osteoclast apoptosis. We showed that osteoclasts expressed TRAIL, and that TRAIL levels in the culture medium dose-dependently decreased in presence of OPG, as did the level of activated caspase-8 in osteoclasts. In addition, the expression of TRAIL by osteoclasts was not affected in the presence of OPG. Our findings suggest that OPG inhibits osteoclast apoptosis, at least in part, by binding and thus inhibiting endogenously produced TRAIL in human osteoclast cultures. TRAIL could be an autocrine factor for the regulation of osteoclast survival/apoptosis.
Collapse
Affiliation(s)
- Estelle Chamoux
- Division of Rheumatology, Department of Medicine, Sherbrooke University, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
7
|
Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang M, You J, Sun SC. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest 2008; 118:1858-66. [PMID: 18382763 DOI: 10.1172/jci34257] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 02/13/2008] [Indexed: 12/12/2022] Open
Abstract
Osteoclastogenesis is a tightly regulated biological process, and deregulation can lead to severe bone disorders such as osteoporosis. The regulation of osteoclastic signaling is incompletely understood, but ubiquitination of TNF receptor-associated factor 6 (TRAF6) has recently been shown to be important in mediating this process. We therefore investigated the role of the recently identified deubiquitinating enzyme CYLD in osteoclastogenesis and found that mice with a genetic deficiency of CYLD had aberrant osteoclast differentiation and developed severe osteoporosis. Cultured osteoclast precursors derived from CYLD-deficient mice were hyperresponsive to RANKL-induced differentiation and produced more and larger osteoclasts than did controls upon stimulation. We assessed the expression pattern of CYLD and found that it was drastically upregulated during RANKL-induced differentiation of preosteoclasts. Furthermore, CYLD negatively regulated RANK signaling by inhibiting TRAF6 ubiquitination and activation of downstream signaling events. Interestingly, we found that CYLD interacted physically with the signaling adaptor p62 and thereby was recruited to TRAF6. These findings establish CYLD as a crucial negative regulator of osteoclastogenesis and suggest its involvement in the p62/TRAF6 signaling axis.
Collapse
Affiliation(s)
- Wei Jin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jewett A, Teruel A, Romero M, Head C, Cacalano N. Rapid and potent induction of cell death and loss of NK cell cytotoxicity against oral tumors by F(ab')2 fragment of anti-CD16 antibody. Cancer Immunol Immunother 2008; 57:1053-66. [PMID: 18188563 PMCID: PMC11030859 DOI: 10.1007/s00262-007-0437-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Freshly isolated untreated NK cells undergo rapid apoptosis and lose their cytotoxic function upon the addition of F(ab')2 fragment of anti-CD16 antibodies. Loss of NK cell cytotoxic function after treatment with F(ab')2 fragment of anti-CD16 antibody can be seen against K562 and UCLA-2 oral tumor cells when either added immediately in the co-cultures of NK cells with the tumor cells or after pre-treatment of NK cells with the antibody before their addition to the tumor cells. Addition of Interleukin-2 (IL-2) in combination with anti-CD16 antibody to NK cells delayed the induction of DNA fragmentation in NK cells, and even though decreased cytotoxicity could still be observed against K562 and UCLA-2 oral tumors when compared to IL-2 alone treated NK cells, the cytotoxicity levels remained relatively higher and approached those obtained by untreated NK cells in the absence of antibody treatment. No increases in IFN-gamma, Granzymes A and B, Perforin and TRAIL genes could be seen in NK cells treated with anti-CD16 antibody. Neither secretion of IFN-gamma nor increased expression of CD69 activation antigen could be observed after the treatment of NK cells with anti-CD16 antibody. Furthermore, IL-2 mediated increase in CD69 surface antigens was down-modulated by anti-CD16 antibody. Finally, the addition of anti-CD16 antibody to co-cultures of NK cells with tumor target cells was not inhibitory for the secretion of VEGF by oral tumor cells, unlike those co-cultured with untreated or IL-2 treated NK cells. Thus, binding and triggering of CD16 receptor on NK cells may enhance oral tumor survival and growth by decreased ability of NK cells to suppress VEGF secretion or induce tumor cell death during the interaction of NK cells with oral tumor cells.
Collapse
MESH Headings
- Antibodies/chemistry
- Antibodies/immunology
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/pathology
- Cell Death
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- DNA Fragmentation
- GPI-Linked Proteins
- Humans
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/pharmacology
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lectins, C-Type
- Receptors, IgG/immunology
- Tongue Neoplasms/immunology
- Tongue Neoplasms/pathology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Dental Research Institute, UCLA School of Dentistry, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
9
|
TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 2008; 133:415-26. [PMID: 18455983 DOI: 10.1016/j.cell.2008.03.026] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 11/13/2007] [Accepted: 03/03/2008] [Indexed: 12/25/2022]
Abstract
Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.
Collapse
|
10
|
Harhaj NS, Sun SC, Harhaj EW. Activation of NF-κB by the Human T Cell Leukemia Virus Type I Tax Oncoprotein Is Associated with Ubiquitin-dependent Relocalization of IκB Kinase. J Biol Chem 2007; 282:4185-92. [PMID: 17145747 DOI: 10.1074/jbc.m611031200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia. HTLV-1 encodes a trans-activating protein, Tax, which is largely responsible for the oncogenic properties of the virus. Tax promotes T cell transformation by deregulating the activity of various cellular factors, including the transcription factor NF-kappaB. Tax activates the IkappaB kinase (IKK) via physical interaction with the regulatory subunit, IKKgamma, although it is unknown precisely how Tax activates the IKK complex. Here we show that Tax modulates the cellular localization of the IKK complex. The IKKs relocalize from a broad distribution in the cytoplasm to concentrated perinuclear "hot spots" in both HTLV-1-transformed lines and in Tax-expressing Jurkat cells. Relocalization of IKK is not observed with Tax mutants unable to activate NF-kappaB, suggesting that only activated forms of IKK are relocalized. However, relocalization of IKK is strictly dependent on Tax expression because it does not occur in ATL cell lines that lack Tax expression or in Jurkat cells treated with phorbol 12-myristate 13-acetate and ionomycin. Furthermore, IKKgamma is required for redistribution because cells lacking IKKgamma were unable to relocalize IKKalpha upon expression of Tax. We also find that Tax ubiquitination likely regulates IKK relocalization because mutation of three critical lysine residues in Tax renders it unable to relocalize IKK and activate the canonical and noncanonical NF-kappaB pathways. Finally, we have observed that the perinuclear IKK in Tax-expressing cells colocalizes with the Golgi, and disruption of Golgi with either nocodazole or brefeldin A leads to a redistribution of IKK to the cytoplasm. Together, these results demonstrate that Tax induces relocalization of the IKK complex in a ubiquitin-dependent manner, and dynamic changes in the subcellular localization of the IKK complex may be critical for Tax function.
Collapse
Affiliation(s)
- Nicole S Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami, Miller School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
11
|
Castaneda F, Rosin-Steiner S. Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways. Int J Med Sci 2006; 3:160-7. [PMID: 17088943 PMCID: PMC1633825 DOI: 10.7150/ijms.3.160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 10/25/2006] [Indexed: 12/11/2022] Open
Abstract
As we previously demonstrated in human hepatocellular carcinoma (HepG2) cells, ethanol at low concentration triggers the Fas apoptotic pathway. However, its role in other intracellular signaling pathways remains unknown. Therefore, the aim of the present study was to evaluate the role of low concentration of ethanol on different intracellular signaling pathways. For this purpose, HepG2 cells were treated with 1 mM ethanol for 10 min and the phosphorylation state of protein kinases was determined. In addition, the mRNA levels of transcription factors and genes associated with the Fas apoptotic pathway were determined. Our data demonstrated that ethanol-induced phosphorylation of protein kinases modulates both anti-apoptotic and pro-apoptotic mechanisms in HepG2 cells. Pro-apoptosis resulted mainly from the strong inhibition of the G-protein couple receptor signaling pathway. Moreover, the signal transduction initiated by ethanol-induced protein kinases phosphorylation lead to increased expression of the transcription factors with subsequent expression of genes associated with the Fas apoptotic pathway (Fas receptor, Fas ligand, FADD and caspase 8). These results indicate that low concentration of ethanol exert their effect by predominant activation of pro-apoptotic events that can be divided in two phases. An early phase characterized by a rapid transient effect on protein kinases phosphorylation, after 10 min exposure, with subsequent increased expression of transcription factors for up to 6 hr. This early phase is followed by a second phase associated with increased gene expression that began after 6 hr and persisted for more than 24 hr. This information provided a novel insight into the mechanisms of action of ethanol (1mM) in human hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Francisco Castaneda
- Laboratory for Molecular Pathobiochemistry and Clinical Research, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | | |
Collapse
|
12
|
Jewett A, Cacalano NA, Head C, Teruel A. Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells. Clin Cancer Res 2006; 12:1994-2003. [PMID: 16609008 DOI: 10.1158/1078-0432.ccr-05-2306] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Down-modulation of CD16 (FcgammaRIII) receptors and loss of natural killer (NK) cell function have been observed in oral cancer patients. However, neither the mechanisms nor the significance of the decrease in CD16 receptors have been fully understood. The cytotoxic activity and survival of NK cells are negatively regulated by antibodies directed against CD16 surface receptor. The addition of anti-CD94 antibody in combination with either F(ab')(2) fragment or intact anti-CD16 antibody to NK cells resulted in significant inhibition of NK cell cytotoxic function and induction of apoptosis in resting human peripheral blood NK cells. Addition of interleukin-2 to anti-CD16 and/or anti-CD94 antibody-treated NK cells significantly inhibited apoptosis and increased the function of NK cells. There was a significant increase in tumor necrosis factor-alpha (TNF-alpha) but not IFN-gamma secretion in NK cells treated either with anti-CD16 antibody alone or in combination with anti-CD94 antibodies. Consequently, the addition of anti-TNF-alpha antibody partially inhibited apoptosis of NK cells mediated by the combination of anti-CD94 and anti-CD16 antibodies. Increase in apoptotic death of NK cells also correlated with an increase in type 2 inflammatory cytokines and in the induction of chemokines. Thus, we conclude that binding of antibodies to CD16 and CD94 NK cell receptors induces death of the NK cells and signals for the release of chemokines.
Collapse
Affiliation(s)
- Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology and Division of Oral Biology and Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | | | |
Collapse
|
13
|
Babu G, Waterfield M, Chang M, Wu X, Sun SC. Deregulated activation of oncoprotein kinase Tpl2/Cot in HTLV-I-transformed T cells. J Biol Chem 2006; 281:14041-7. [PMID: 16565081 DOI: 10.1074/jbc.m512375200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase Tpl2/Cot is encoded by a protooncogene that is cis-activated by retroviral insertion in murine T cell lymphomas. It has remained unclear whether this oncoprotein kinase is mutated or post-translationally activated in human cancer cells. We have shown here that Tpl2/Cot is constitutively activated in human leukemia cell lines transformed by the human T cell leukemia virus type I (HTLV-I). The kinase activity of Tpl2/Cot is normally suppressed through its physical interaction with an inhibitor, the NF-kappaB1 precursor protein p105. Interestingly, a large pool of Tpl2/Cot is liberated from p105 and exhibits constitutive kinase activity in HTLV-I-transformed T cells. In contrast to its labile property in normal cells, the pathologically activated Tpl2/Cot is remarkably stable. Further, whereas the physiological activation of Tpl2/Cot involves its long isoform, the HTLV-activated Tpl2/Cot is predominantly the short isoform. We have also shown that the HTLV-I-encoded Tax protein is able to activate Tpl2/Cot in transfected cells. Finally, Tpl2/Cot participates in the activation of NF-kappaB by Tax. These findings indicate that deregulated activation of Tpl2/Cot may occur in human cancer cells.
Collapse
Affiliation(s)
- Geetha Babu
- Department of Microbiology and Immunology, Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
14
|
Mittal A, Papa S, Franzoso G, Sen R. NF-kappaB-dependent regulation of the timing of activation-induced cell death of T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:2183-9. [PMID: 16455974 DOI: 10.4049/jimmunol.176.4.2183] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
One of the mechanisms by which activated T cells die is activation-induced cell death (AICD). This pathway requires persistent stimulation via the TCR and engagement of death receptors. We found that TCR stimulation led to transient nuclear accumulation of the NF-kappaB component p65/RelA. In contrast, nuclear c-Rel levels remained high even after extended periods of activation. Loss of nuclear p65/RelA correlated with the onset of AICD, suggesting that p65/RelA target genes may maintain cell viability. Quantitative RNA analyses showed that three of several putative NF-kappaB-dependent antiapoptotic genes were expressed with kinetics that paralleled nuclear expression of p65/RelA. Of these three, ectopic expression only of Gadd45beta protected significantly against AICD, whereas IEX-1 and Bcl-x(L) were much less effective. We propose that the timing of AICD, and thus the length of the effector phase, are regulated by transient expression of a subset of p65/RelA-dependent antiapoptotic genes.
Collapse
Affiliation(s)
- Akanksha Mittal
- Rosensteil Research Center and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
15
|
Guo LL, Xiao S, Guo Y. Activation of transcription factors NF-kappaB and AP-1 and their relations with apoptosis-associated proteins in hepatocellular carcinoma. World J Gastroenterol 2005; 11:3860-5. [PMID: 15991283 PMCID: PMC4504886 DOI: 10.3748/wjg.v11.i25.3860] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the distribution pattern of transcription factors NF-κB and AP-1 and their relations with the expression of apoptosis associated-proteins Fas/FasL and ICH-1L/S in human hepatocellular carcinoma (HCC).
METHODS: We performed in situ hybridization and immunohistochemical techniques for NF-κB, AP-1, Fas/FasL and ICH-1 in 40 cases of human HCC along with corresponding nontumoral tissues and 7 cases of normal liver tissues.
RESULTS: Twenty-two (55%) and 25 (62.5%) of 40 cases for NF-κB and AP-1 were presented for nuclear or both nuclear and cytoplastic staining respectively, while less cases were presented for only cytoplastic staining for NF-κB (18%) and AP-1 (10%) in adjacent nontumoral tissues and negative staining in normal liver tissues. There was no statistically significant difference of NF-κB or AP-1 activation between well differentiated tumors and poorly differentiated tumors (P > 0.05). NF-κB activity is positively corresponded to AP-1 activation. The expression of ICH-1L/S was associated with the activation of NF-κB and AP-1 (P < 0.05), but no significant relationship was found between Fas/FasL and NF-κB or AP-1(P > 0.05).
CONCLUSION: Activation of both NF-κB and AP-1 may be required for ICH-1L/S-induced apoptosis in HCC, but not for Fas/FasL-mediated apoptosis. NF-κB and AP-1 may play important roles in the pathogenesis of human HCC.
Collapse
Affiliation(s)
- Lin-Lang Guo
- University of California, Davis Cancer Center, Suite 2300, Research Building III, 4645 Second Avenue, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
16
|
Reiley W, Zhang M, Wu X, Granger E, Sun SC. Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase gamma-dependent phosphorylation. Mol Cell Biol 2005; 25:3886-95. [PMID: 15870263 PMCID: PMC1087725 DOI: 10.1128/mcb.25.10.3886-3895.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Tumor suppressor CYLD is a deubiquitinating enzyme (DUB) that inhibits the ubiquitination of key signaling molecules, including tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). However, how the function of CYLD is regulated remains unknown. Here we provide evidence that inducible phosphorylation of CYLD is an important mechanism of its regulation. Under normal conditions, CYLD dominantly suppresses the ubiquitination of TRAF2. In response to cellular stimuli, CYLD undergoes rapid and transient phosphorylation, which is required for signal-induced TRAF2 ubiquitination and activation of downstream signaling events. Interestingly, the CYLD phosphorylation requires IkappaB kinase gamma (IKKgamma) and can be induced by IKK catalytic subunits. These findings suggest that CYLD serves as a novel target of IKK and that the site-specific phosphorylation of CYLD regulates its signaling function.
Collapse
Affiliation(s)
- William Reiley
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
17
|
Harhaj EW, Harhaj NS, Grant C, Mostoller K, Alefantis T, Sun SC, Wigdahl B. Human T cell leukemia virus type I Tax activates CD40 gene expression via the NF-kappa B pathway. Virology 2005; 333:145-58. [PMID: 15708600 DOI: 10.1016/j.virol.2004.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 10/16/2004] [Accepted: 12/04/2004] [Indexed: 11/25/2022]
Abstract
The human T cell leukemia virus type I (HTLV-I) is an oncogenic retrovirus that is etiologically linked to the genesis of adult T cell leukemia (ATL) as well as HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Emerging evidence suggests that the pathogenicity of HTLV-I involves deregulated activation of immune cells, especially T lymphocytes, although the underlying mechanism remains unclear. In this study, we demonstrate that HTLV-I Tax induces the aberrant expression of CD40, a member of the tumor necrosis factor receptor (TNFR) family that plays an important role in lymphocyte activation and differentiation. In a panel of HTLV-I-transformed T cell lines analyzed, CD40 expression was highly elevated compared to HTLV-I-negative T cells. Using Tax mutants and a genetically manipulated T cell system, we demonstrated that Tax-induced CD40 expression required the NF-kappaB signaling pathway. In addition, ligation of CD40 on T cells with recombinant CD40L elicited NF-kappaB activation, suggesting that the CD40 pathway is intact and may participate in a positive regulatory loop in T cells. CD40 ligation strongly synergized with Tax to activate NF-kappaB, suggesting that CD40 signals may costimulate Tax-mediated NF-kappaB activation, particularly when Tax is expressed at low levels. Collectively, these results indicate that CD40 is a novel Tax-regulated gene, and the regulation of CD40 by Tax may play a role in cellular activation and HTLV-I-induced disease pathogenesis.
Collapse
Affiliation(s)
- Edward W Harhaj
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, The University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Morrison MD, Reiley W, Zhang M, Sun SC. An atypical tumor necrosis factor (TNF) receptor-associated factor-binding motif of B cell-activating factor belonging to the TNF family (BAFF) receptor mediates induction of the noncanonical NF-kappaB signaling pathway. J Biol Chem 2005; 280:10018-24. [PMID: 15644327 DOI: 10.1074/jbc.m413634200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BAFF receptor (BAFFR) is a member of the TNF receptor (TNFR) superfamily that regulates the survival and maturation of B cells. BAFFR exerts its signaling function by inducing activation of NF-kappaB, although the underlying mechanism has not been well defined. By using a chimeric BAFFR, we show that BAFFR preferentially induces the noncanonical NF-kappaB signaling pathway. This specific function of BAFFR is mediated by a sequence motif, PVPAT, which is homologous to the TRAF-binding site (PVQET) present in CD40, a TNFR known to induce both the canonical and noncanonical NF-kappaB pathways. Mutation of this putative TRAF-binding motif within BAFFR abolishes its interaction with TRAF3 as well as its ability to induce noncanonical NF-kappaB. Interestingly, modification of the PVPAT sequence to the typical TRAF-binding sequence, PVQET, is sufficient to render the BAFFR capable of inducing strong canonical NF-kappaB signaling. Further, this functional acquisition of the modified BAFFR is associated with its stronger and more rapid association with TRAF3. These findings suggest that the PVPAT sequence of BAFFR not only functions as a key signaling motif of BAFFR but also determines its signaling specificity in the induction of the noncanonical NF-kappaB pathway.
Collapse
Affiliation(s)
- Matthew D Morrison
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
19
|
Reiley W, Zhang M, Sun SC. Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem 2004; 279:55161-7. [PMID: 15496400 DOI: 10.1074/jbc.m411049200] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
CYLD is a tumor suppressor that is mutated in familial cylindromatosis, an autosomal dominant predisposition to multiple tumors of the skin appendages. Recent studies suggest that transfected CYLD has deubiquitinating enzyme activity and inhibits the activation of transcription factor NF-kappaB. However, the role of endogenous CYLD in regulating cell signaling remains poorly defined. Here we report a critical role for CYLD in negatively regulating the c-Jun NH(2)-terminal kinase (JNK). CYLD knockdown by RNA interference results in hyper-activation of JNK by diverse immune stimuli, including tumor necrosis factor-alpha, interleukin-1, lipopolysaccharide, and an agonistic anti-CD40 antibody. The JNK-inhibitory function of CYLD appears to be specific for immune receptors because the CYLD knockdown has no significant effect on stress-induced JNK activation. Consistently, CYLD negatively regulates the activation of MKK7, an upstream kinase known to mediate JNK activation by immune stimuli. We further demonstrate that CYLD also negatively regulates IkappaB kinase, although this function of CYLD is seen in a receptor-dependent manner. These findings identify the JNK signaling pathway as a major downstream target of CYLD and suggest a receptor-dependent role of CYLD in regulating the IkappaB kinase pathway.
Collapse
Affiliation(s)
- William Reiley
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
20
|
Lu H, Pise-Masison CA, Linton R, Park HU, Schiltz RL, Sartorelli V, Brady JN. Tax relieves transcriptional repression by promoting histone deacetylase 1 release from the human T-cell leukemia virus type 1 long terminal repeat. J Virol 2004; 78:6735-43. [PMID: 15194748 PMCID: PMC421680 DOI: 10.1128/jvi.78.13.6735-6743.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Expression of human T-cell leukemia virus type 1 (HTLV-1) is regulated by the viral transcriptional activator Tax. Tax activates viral transcription through interaction with the cellular transcription factor CREB and the coactivators CBP/p300. In this study, we have analyzed the role of histone deacetylase 1 (HDAC1) on HTLV-1 gene expression from an integrated template. First we show that trichostatin A, an HDAC inhibitor, enhances Tax expression in HTLV-1-transformed cells. Second, using a cell line containing a single-copy HTLV-1 long terminal repeat, we demonstrate that overexpression of HDAC1 represses Tax transactivation. Furthermore, a chromatin immunoprecipitation assay allowed us to analyze the interaction of transcription factors, coactivators, and HDACs with the basal and activated HTLV-1 promoter. We demonstrate that HDAC1 is associated with the inactive, but not the Tax-transactivated, HTLV-1 promoter. In vitro and in vivo glutathione S-transferase-Tax pull-down and coimmunoprecipitation experiments demonstrated that there is a direct physical association between Tax and HDAC1. Importantly, biotinylated chromatin pull-down assays demonstrated that Tax inhibits and/or dissociates the binding of HDAC1 to the HTLV-1 promoter. Our results provide evidence that Tax interacts directly with HDAC1 and regulates binding of the repressor to the HTLV-1 promoter.
Collapse
Affiliation(s)
- Hanxin Lu
- Virus Tumor Biology Section, Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Liao G, Zhang M, Harhaj EW, Sun SC. Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 2004; 279:26243-50. [PMID: 15084608 DOI: 10.1074/jbc.m403286200] [Citation(s) in RCA: 374] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The NF-kappaB family of transcription factors plays a pivotal role in regulation of diverse biological processes, including immune responses, cell growth, and apoptosis. Activation of NF-kappaB is mediated by both canonical and noncanonical signaling pathways. Although the canonical pathway has been extensively studied, the mechanism mediating the noncanonical pathway is still poorly understood. Recent studies have identified the NF-kappaB-inducing kinase (NIK) as a key component of the noncanonical pathway of NF-kappaB activation; however, how the signaling function of NIK is regulated remains unknown. We report here that one important mechanism of NIK regulation is through its dynamic interaction with the tumor necrosis factor receptor-associated factor 3 (TRAF3). TRAF3 physically associates with NIK via a specific sequence motif located in the N-terminal region of NIK; this molecular interaction appears to target NIK for degradation by the proteasome. Interestingly, induction of noncanonical NF-kappaB signaling by extracellular signals involves degradation of TRAF3 and the concomitant enhancement of NIK expression. These results suggest that induction of noncanonical NF-kappaB signaling may involve the rescue of NIK from TRAF3-mediated negative regulation.
Collapse
Affiliation(s)
- Gongxian Liao
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
22
|
Choi BM, Pae HO, Jeong YR, Oh GS, Jun CD, Kim BR, Kim YM, Chung HT. Overexpression of heme oxygenase (HO)-1 renders Jurkat T cells resistant to fas-mediated apoptosis: involvement of iron released by HO-1. Free Radic Biol Med 2004; 36:858-71. [PMID: 15019971 DOI: 10.1016/j.freeradbiomed.2004.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 12/29/2003] [Accepted: 01/09/2004] [Indexed: 11/16/2022]
Abstract
We recently demonstrated that heme oxygenase (HO)-1 is constitutively expressed in human CD4+CD25+ regulatory T cells and induced by anti-CD28 or anti-CD28/anti-CD3 stimulation, even in CD4+CD25- responder T cells. To study the effects of HO-1 expression on lymphocyte survival, we transfected the HO-1 gene or induced the gene to express HO-1 protein with cobalt protoporphyrin (CoPP) in Jurkat T cells. Consistently, anti-Fas antibody triggered apoptotic cell death in wild-type Jurkat T cells. Surprisingly, however, HO-1-overexpressing Jurkat T cells showed strong resistance to Fas-mediated apoptosis. In contrast, abrogation of HO-1 expression by antisense oligomer against HO-1 gene from CoPP-treated cells or depletion of iron by desferrioxamine from HO-1-transfected cells abolished the resistance. In addition, exogenously added iron rendered wild-type Jurkat T cells resistant. The resistance involved IkappaB kinase (IKK) activation via iron-induced reactive oxygen species formation, NF-kappaB activation by activated IKK, and c-FLIP expression by activated NF-kappaB. Primary CD4+ T cells induced by CoPP to express HO-1 also showed more resistance to Fas-mediated apoptosis than untreated cells. Our findings suggest that HO-1 plays a critical and nonredundant role in Fas-mediated activation-induced cell death of T lymphocytes.
Collapse
Affiliation(s)
- Byung-Min Choi
- Genomic Research Center for Immune Disorders and Department of Microbiology and Immunology, Wonkwang University School of Medicine, Iksan, Chonbuk, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chopra DP, Menard RE, Januszewski J, Mattingly RR. TNF-α-mediated apoptosis in normal human prostate epithelial cells and tumor cell lines. Cancer Lett 2004; 203:145-54. [PMID: 14732222 DOI: 10.1016/j.canlet.2003.09.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we compared the role of TNF-alpha in the regulation of growth and apoptosis in normal human prostate epithelial cells (NP) and prostate tumor cell lines PC3 and LNCap. The NP and PC3 cells were resistant whereas the LNCap cell line was highly sensitive to TNF-alpha induced growth arrest and apoptosis. The resistance of NP and PC3 cells was mediated via an NF-kB survival pathway as treatment of resistant cells with TNF-alpha was accompanied by phosphorylation of I-kBalpha and translocation of NF-kB to the nucleus. TNF-alpha did not induce phosphorylation of I-kB in the sensitive LNCap cells. The sensitivity of LNCap cells involved a cysteine protease cascade as Z-VAD-CH2 F reversed the sensitivity of LNCap cells and induced resistance to TNF-alpha. The differences in susceptibilities to TNF-alpha induced apoptosis of NP and certain prostate tumor cells offer intriguing possibilities for the treatment of prostate cancer without affecting the normal prostate tissue.
Collapse
Affiliation(s)
- Dharam P Chopra
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
24
|
Au-Yeung KKW, Woo CWH, Sung FL, Yip JCW, Siow YL, O K. Hyperhomocysteinemia activates nuclear factor-kappaB in endothelial cells via oxidative stress. Circ Res 2003; 94:28-36. [PMID: 14630727 DOI: 10.1161/01.res.0000108264.67601.2c] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. Our previous studies demonstrated an important interaction between nuclear factor-kappaB (NF-kappaB) activation and homocysteine (Hcy)-induced chemokine expression in vascular smooth muscle cells and macrophages. The objective of the present study was to investigate the in vivo effect of hyperhomocysteinemia on NF-kappaB activation and the underlying mechanism of Hcy-induced NF-kappaB activation in endothelial cells. Hyperhomocysteinemia was induced in Sprague-Dawley rats after 4 weeks of a high-methionine diet. The activated form of NF-kappaB and increased level of superoxide anions were detected in the endothelium of aortas isolated from hyperhomocysteinemic rats. The underlying mechanism of Hcy-induced NF-kappaB activation was investigated in human umbilical cord vein endothelial cells and in human aortic endothelial cells. Incubation of cells with Hcy (100 micromol/L) activated IkappaB kinases (IKKalpha and IKKbeta), leading to phosphorylation and subsequent degradation of IkappaBalpha. As a consequence, NF-kappaB nuclear translocation, enhanced NF-kappaB/DNA binding activity, and increased transcriptional activity occurred. Additional analysis revealed a marked elevation of superoxide anion levels in Hcy-treated cells. Treatment of cells with a superoxide anion scavenger (polyethylene glycol-superoxide dismutase) or IkappaB kinase inhibitor (prostaglandin A(1)) could prevent Hcy-induced activation of IKK kinases and NF-kappaB in endothelial cells. In conclusion, these results suggest that Hcy-induced superoxide anion production may play a potential role for NF-kappaB activation in the early stages of atherosclerosis in the vascular wall via activation of IkappaB kinases.
Collapse
Affiliation(s)
- Kathy K W Au-Yeung
- National Centre for Agri-Food Research in Medicine, Department of Animal Science, University of Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M, Balestrieri E, De Smaele E, Franzoso G, Mastino A. Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappaB. J Biol Chem 2003; 278:36059-67. [PMID: 12844494 DOI: 10.1074/jbc.m306198200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signals involved in protection against apoptosis by herpes simplex virus 1 (HSV-1) were investigated. Using U937 monocytoid cells as an experimental model, we have demonstrated that HSV-1 rendered these cells resistant to Fas-induced apoptosis promptly after infection. UV-inactivated virus as well as the envelope glycoprotein D (gD) of HSV-1, by itself, exerted a protective effect on Fas-induced apoptosis. NF-kappaB was activated by gD, and protection against Fas-mediated apoptosis by gD was abolished in cells stably transfected with a dominant negative mutant I-kappaBalpha, indicating that NF-kappaB activation plays a role in the antiapoptotic activity of gD in our experimental model. Moreover, NF-kappaB-dependent protection against Fas-mediated apoptosis was associated with decreased levels of caspase-8 activity and with the up-regulation of intracellular antiapoptotic proteins.
Collapse
Affiliation(s)
- M Antonietta Medici
- Department of Microbiological, Genetic and Molecular Sciences, Salita Sperone 31, University of Messina, 98166 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cvijic ME, Xiao G, Sun SC. Study of T-cell signaling by somatic cell mutagenesis and complementation cloning. J Immunol Methods 2003; 278:293-304. [PMID: 12957416 DOI: 10.1016/s0022-1759(03)00191-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Somatic cell mutagenesis is a powerful genetic approach used in dissection of signal transduction pathways in mammalian cells. Here we describe a method that has been successfully used to identify and analyze components of the NF-kappaB signaling pathway in Jurkat T cells using the combination of somatic cell mutagenesis and a complementation cloning strategy. By treating Jurkat T cells with the chemical mutagen ICR191, mutant T-cell lines can be selected that have a deficiency in a given biological response or in the expression of a particular selectable marker. Mutant phenotypes can be rescued by retroviral-mediated delivery of cDNA libraries and subsequent selection of rescued cell clones by flow cytometric cell sorting. Cell lines reverting back to the wild-type phenotype due to the ectopic expression of the exogenous gene can then be evaluated by functional assays. The gene rendering the reversion of the mutant phenotype may be isolated by PCR using library vector-specific primers. Clearly, creation of a somatic cell genetic system can yield exciting new advances in deciphering signal transduction events by discovery of novel pathway participants.
Collapse
Affiliation(s)
- Mary Ellen Cvijic
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
28
|
Waterfield MR, Zhang M, Norman LP, Sun SC. NF-kappaB1/p105 regulates lipopolysaccharide-stimulated MAP kinase signaling by governing the stability and function of the Tpl2 kinase. Mol Cell 2003; 11:685-94. [PMID: 12667451 DOI: 10.1016/s1097-2765(03)00070-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NF-kappaB family of transcription factors plays a pivotal role in regulation of immune and inflammatory responses. NF-kappaB is known to function by binding to the kappaB enhancer and directly activating target gene transcription. Here we demonstrate another function of NF-kappaB, in which the nfkappab1 gene product p105 regulates MAP kinase signaling triggered by the bacterial component lipopolysaccharide. p105 exerts this signaling function by controlling the stability and function of an upstream kinase, Tpl2. In macrophages, Tpl2 forms a stable and inactive complex with p105, and activation of Tpl2 involves its dissociation from p105 and subsequent degradation. Thus, p105 functions as a physiological partner and inhibitor of Tpl2, which provides an example of how a transcription factor component regulates upstream signaling events.
Collapse
Affiliation(s)
- Michael R Waterfield
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
29
|
Baumann B, Bohnenstengel F, Siegmund D, Wajant H, Weber C, Herr I, Debatin KM, Proksch P, Wirth T. Rocaglamide derivatives are potent inhibitors of NF-kappa B activation in T-cells. J Biol Chem 2002; 277:44791-800. [PMID: 12237314 DOI: 10.1074/jbc.m208003200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crude extracts from different Aglaia species are used as anti-inflammatory remedies in the traditional medicine of several countries from Southeast Asia. Because NF-kappaB transcription factors represent key regulators of genes involved in immune and inflammatory responses, we supposed that the anti-inflammatory effects of Aglaia extracts are mediated by the inhibition of NF-kappaB activity. Purified compounds of Aglaia species, namely 1H-cyclopenta[b]benzofuran lignans of the rocaglamide type as well as one aglain congener were tested for their ability to inhibit NF-kappaB activity. We show that a group of rocaglamides represent highly potent and specific inhibitors of tumor necrosis factor-alpha (TNFalpha) and phorbol 12-myristate 13-acetate (PMA)-induced NF-kappaB-dependent reporter gene activity in Jurkat T cells with IC(50) values in the nanomolar range. Some derivatives are less effective, and others are completely inactive. Rocaglamides are able to suppress the PMA-induced expression of NF-kappaB target genes and sensitize leukemic T cells to apoptosis induced by TNFalpha, cisplatin, and gamma-irradiation. The suppression of NF-kappaB activation correlated with the inhibition of induced IkappaB(alpha) degradation and IkappaB(alpha) kinase activation. The level of interference was determined and found to be localized upstream of the IkappaB kinase complex but downstream of the TNF receptor-associated protein 2. Our data suggest that rocaglamide derivatives could serve as lead structures in the development of anti-inflammatory and tumoricidal drugs.
Collapse
Affiliation(s)
- Bernd Baumann
- Department of Physiological Chemistry, Ulm University, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shimizu H, Matsuguchi T, Fukuda Y, Nakano I, Hayakawa T, Takeuchi O, Akira S, Umemura M, Suda T, Yoshikai Y. Toll-like receptor 2 contributes to liver injury by Salmonella infection through Fas ligand expression on NKT cells in mice. Gastroenterology 2002; 123:1265-77. [PMID: 12360487 DOI: 10.1053/gast.2002.36006] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Toll-like receptors (TLRs) for bacterial constitutes are expressed not only by phagocytes but also by some subsets of T cells. We previously reported that natural killer T cells (NKT cells) play an important role in liver injury induced by Salmonella infection. In the present study, we investigated whether TLRs on NKT cells are involved in Salmonella-induced liver injury. METHODS Gene expression of TLR2 was examined in sorted natural killer, NKT, and T cells from livers of naive mice by the reverse-transcription polymerase chain reaction method. Serum alanine aminotransferase level and FasL expression on liver lymphocytes were examined in TLR2-deficient (TLR2(-/-)) and FasL-deficient gld/gld mice before and after intraperitoneal inoculation of Salmonella choleraesuis 31N-1 using an enzyme-linked immunosorbent assay and flow cytometry. RESULTS TLR2 gene was abundantly expressed by NKT cells freshly isolated from naive mice. FasL expression on liver NKT cells increased in TLR2(+/-) mice but not in TLR2(-/-) mice after Salmonella infection. Serum alanine aminotransferase level was significantly lower in the TLR2(-/-) and gld/gld mice than in the control mice after infection. CONCLUSIONS TLR2 may contribute to liver injury induced by Salmonella infection via FasL induction on liver NKT cells.
Collapse
MESH Headings
- Animals
- Cytokines/genetics
- Drosophila Proteins
- Fas Ligand Protein
- Female
- Flow Cytometry
- Gene Expression/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Liver/immunology
- Liver/microbiology
- Liver/pathology
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/metabolism
- Salmonella Infections, Animal/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Toll-Like Receptor 2
- Toll-Like Receptors
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Laboratory of Host Defense and Germfree Life, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Qi X, Williams M, Shi Y, Keegan AD. Overexpression of insulin receptor substrate-1, but not insulin receptor substrate-2, protects a T cell hybridoma from activation-induced cell death. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6215-23. [PMID: 12055235 DOI: 10.4049/jimmunol.168.12.6215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The insulin receptor substrate (IRS) family of signaling molecules is expressed in lymphocytes, although their functions in these cells is largely unknown. To investigate the role of IRS in the protection of T cells from activation-induced cell death (AICD), we transfected the T cell hybridoma A1.1, which is IL-4 responsive but lacks expression of IRS family members with cDNA encoding IRS1 or IRS2. Stimulation of these clones with immobilized anti-CD3-induced expression of CD69 to the same level as the parental A1.1 cells. However, the A1.1 IRS1-expressing cells were markedly resistant to AICD, while the A1.1 IRS2-expressing cells were not. Inhibition of phosphatidylinositol 3'-kinase in the A1.1 IRS1-expressing cells did not abrogate their resistance to AICD. Fas mRNA was induced similarly by anti-CD3 in A1.1, A1.1 IRS1-expressing, and A1.1 IRS2-expressing cells. However, induction of Fas ligand (FasL) mRNA and functional FasL protein was delayed and decreased in IRS1-expressing cells, but not in IRS2-expressing cells. The induction of transcription from a 500-bp FasL promoter and a minimal 16-mer early growth response element linked to luciferase was also impaired in the IRS1-expressing cells. These results suggest that overexpression of IRS1, but not IRS2, protects A1.1 cells from AICD by diminishing FasL transcription through a pathway that is independent of the tyrosine phosphorylation of IRS1 and phosphatidylinositol 3'-kinase activity.
Collapse
Affiliation(s)
- Li Li
- Department of Immunology, Jerome Holland Laboratories, American Red Cross, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
32
|
Chen F, Shi X. Intracellular signal transduction of cells in response to carcinogenic metals. Crit Rev Oncol Hematol 2002; 42:105-21. [PMID: 11923072 DOI: 10.1016/s1040-8428(01)00211-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Epidemiological and animal studies suggest that several metals and metal-containing compounds are potent mutagens and carcinogens. These metals include chromium, arsenic, vanadium, nickel, and others. During the last two decades, chemical and cellular studies have contributed enormously to our understanding of the mechanisms of metal-induced pathophysiological processes. Although each of these metals is unique in its mechanism of action, some common signaling molecules, such as reactive oxygen species (ROS), may be shared by many of the carcinogenic metals. New techniques are now available to reveal the mechanisms of carcinogenesis in precise molecular terms. In this review, we focused our attentions on carcinogenic metal-induced signal transduction pathways leading to the activation of NF-kappaB, cell apoptosis and cell cycle progression, three crucial steps or events involved in the transformation and carcinogenesis. This review summarizes current knowledge and our recent studies concerning intracellular signal transduction pathways initiated by carcinogenic metals and the cross-talk that occurs among these pathways in cells in response to metals.
Collapse
Affiliation(s)
- Fei Chen
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | |
Collapse
|
33
|
Cippitelli M, Fionda C, Di Bona D, Di Rosa F, Lupo A, Piccoli M, Frati L, Santoni A. Negative regulation of CD95 ligand gene expression by vitamin D3 in T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1154-66. [PMID: 11801650 DOI: 10.4049/jimmunol.168.3.1154] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fas (APO-1/CD95) and its ligand (FasL/CD95L) are cell surface proteins whose interaction activates apoptosis of Fas-expressing targets. In T lymphocytes, the Fas/FasL system regulates activation-induced cell death, a fundamental mechanism for negative selection of immature T cells in the thymus and for maintenance of peripheral tolerance. Aberrant expression of Fas and FasL has also been implicated in diseases in which the lymphocyte homeostasis is compromised, and several studies have described the pathogenic functions of Fas and FasL in vivo, particularly in the induction/regulation of organ-specific autoimmune diseases. The 1,25(OH)(2)D(3) is a secosteroid hormone that activates the nuclear receptor vitamin D(3) receptor (VDR), whose immunosuppressive activities have been well studied in different models of autoimmune disease and in experimental organ transplantation. We and others have recently described the molecular mechanisms responsible for the negative regulation of the IFN-gamma and IL-12 genes by 1,25(OH)(2)D(3) in activated T lymphocytes and macrophages/dendritic cells. In this study, we describe the effect of 1,25(OH)(2)D(3) on the activation of the fasL gene in T lymphocytes. We show that 1,25(OH)(2)D(3) inhibits activation-induced cell death, fasL mRNA expression, and that 1,25(OH)(2)D(3)-activated VDR represses fasL promoter activity by a mechanism dependent on the presence of a functional VDR DNA-binding domain and ligand-dependent transcriptional activation domain (AF-2). Moreover, we identified a minimal region of the promoter containing the transcription start site and a noncanonical c-Myc-binding element, which mediates this repression. These results place FasL as a novel target for the immunoregulatory activities of 1,25(OH)(2)D(3), and confirm the interest for a possible pharmacological use of this molecule and its derivatives.
Collapse
MESH Headings
- Animals
- Cell Death/drug effects
- Cell Death/immunology
- Cholecalciferol/pharmacology
- Cytotoxicity, Immunologic/drug effects
- Cytotoxicity, Immunologic/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Down-Regulation/immunology
- Fas Ligand Protein
- Humans
- Hybridomas/cytology
- Hybridomas/drug effects
- Hybridomas/immunology
- Immunosuppressive Agents/pharmacology
- Jurkat Cells
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Point Mutation
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- Protein Structure, Tertiary/drug effects
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/physiology
- Regulatory Sequences, Nucleic Acid/drug effects
- Regulatory Sequences, Nucleic Acid/immunology
- Sequence Deletion/immunology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Marco Cippitelli
- Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Thomas KW, Monick MM, Staber JM, Yarovinsky T, Carter AB, Hunninghake GW. Respiratory syncytial virus inhibits apoptosis and induces NF-kappa B activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 2002; 277:492-501. [PMID: 11687577 DOI: 10.1074/jbc.m108107200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory syncytial virus (RSV) infects airway epithelial cells, resulting in cell death and severe inflammation through the induction of NF-kappaB activity and inflammatory cytokine synthesis. Both NF-kappaB activity and apoptosis regulation have been linked to phosphatidylinositol 3-kinase (PI 3-K) and its downstream effector enzymes, AKT and GSK-3. This study evaluates the role of PI 3-K and its downstream mediators in apoptosis and inflammatory gene induction during RSV infection of airway epithelial cells. Whereas RSV infection alone did not produce significant cytotoxicity until 24-48 h following infection, simultaneous RSV infection and exposure to LY294002, a blocker of PI 3-K activity, resulted in cytotoxicity within 12 h. Furthermore, we found that RSV infection during PI 3-K blockade resulted in apoptosis by examining DNA fragmentation, DNA labeling by terminal dUTP nick-end labeling assay, and poly(ADP-ribose) polymerase cleavage by Western blotting. RSV infection produced an increase in the phosphorylation state of AKT, GSK-3, and the p85 regulatory subunit of PI 3-K. The activation of PI 3-K by RSV and its inhibition by LY294002 was confirmed in direct PI 3-K activity assays. Further evidence for the central role of a pathway involving PI 3-K and AKT in preserving cell viability during RSV infection was established by the observation that constitutively active AKT transfected into A549 cells prevented the cytotoxicity and apoptosis of combined RSV and LY294002 treatment. Finally, both PI 3-K inhibition by LY294002 and AKT inhibition by transfection of a dominant negative enzyme blocked RSV-induced NF-kappaB transcriptional activity. These data demonstrate that anti-apoptotic signaling and NF-kappaB activation by RSV are mediated through activation of PI 3-K-dependent pathways. Blockade of PI 3-K activation resulted in rapid, premature apoptosis and inhibition of RSV-stimulated NF-kappaB-dependent gene transcription.
Collapse
Affiliation(s)
- Karl W Thomas
- Department of Internal Medicine, University of Iowa College of Medicine and Veterans Administration Medical Center, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M, Sun SC. Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001; 20:6805-15. [PMID: 11726516 PMCID: PMC125766 DOI: 10.1093/emboj/20.23.6805] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
IkappaB kinase (IKK) is a key mediator of NF-kappaB activation induced by various immunological signals. In T cells and most other cell types, the primary target of IKK is a labile inhibitor of NF-kappaB, IkappaBalpha, which is responsible for the canonical NF-kappaB activation. Here, we show that in T cells infected with the human T-cell leukemia virus (HTLV), IKKalpha is targeted to a novel signaling pathway that mediates processing of the nfkappab2 precursor protein p100, resulting in active production of the NF-kappaB subunit, p52. This pathogenic action is mediated by the HTLV-encoded oncoprotein Tax, which appears to act by physically recruiting IKKalpha to p100, triggering phosphorylation-dependent ubiquitylation and processing of p100. These findings suggest a novel mechanism by which Tax modulates the NF-kappaB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shao-Cong Sun
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
Corresponding author e-mail:
| |
Collapse
|
36
|
Siegmund D, Hausser A, Peters N, Scheurich P, Wajant H. Tumor necrosis factor (TNF) and phorbol ester induce TNF-related apoptosis-inducing ligand (TRAIL) under critical involvement of NF-kappa B essential modulator (NEMO)/IKKgamma. J Biol Chem 2001; 276:43708-12. [PMID: 11557763 DOI: 10.1074/jbc.m106421200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that tumor necrosis factor (TNF) and phorbol 12-myristate 13-acetate (PMA) induce TNF-related apoptosis-inducing ligand (TRAIL) in T cells. In cells deficient for NF-kappaB essential modulator (NEMO)/IKKgamma, an essential component of the NF-kappaB-inducing I-kappaB kinase (IKK) complex, induction of TRAIL expression was completely abrogated but was recovered in cells restored for IKKgamma expression. In cells deficient for receptor-interacting protein expression TNF, but not PMA-induced TRAIL expression was blocked. Inhibition of protein synthesis with cycloheximide blocked PMA, but not TNF-induced up-regulation of TRAIL. As both TNF and PMA rapidly induce NF-kappaB activation this suggests that NEMO/IKKgamma-dependent activation of the NF-kappaB pathway is necessary but not sufficient for up-regulation of TRAIL in T cells. The capability of the NF-kappaB pathway to induce the potent death ligand TRAIL may explain the reported proapoptotic features of this typically antiapoptotic pathway.
Collapse
Affiliation(s)
- D Siegmund
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
37
|
Rivera-Walsh I, Waterfield M, Xiao G, Fong A, Sun SC. NF-kappaB signaling pathway governs TRAIL gene expression and human T-cell leukemia virus-I Tax-induced T-cell death. J Biol Chem 2001; 276:40385-8. [PMID: 11553609 DOI: 10.1074/jbc.c100501200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tax oncoprotein encoded by human T-cell leukemia virus induces both T-cell activation and apoptosis. The mechanism by which Tax induces apoptosis has remained unclear. Using genetically manipulated T-cell lines, we demonstrate that Tax-induced T-cell death is dependent on NF-kappaB signaling. Tax fails to induce apoptosis in T cells lacking IkappaB kinase gamma (IKKgamma), an essential component of the NF-kappaB signaling pathway. This defect was rescued when the mutant cells were reconstituted with exogenous IKKgamma. We further demonstrate that the Tax-induced T-cell death is mediated by TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), because this event can be effectively inhibited by a TRAIL-blocking antibody. Consistent with this functional aspect, Tax stimulates the expression of TRAIL mRNA. Finally, we provide genetic evidence demonstrating that the NF-kappaB signaling pathway is essential for TRAIL gene induction by both Tax and T-cell activation signals. These studies reveal a novel function of the NF-kappaB signaling pathway and suggest a key mechanism by which Tax induces T-cell death.
Collapse
Affiliation(s)
- I Rivera-Walsh
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
38
|
Abstract
Anticancer treatment using cytotoxic drugs is considered to mediate cell death by activating key elements of the apoptosis program and the cellular stress response. While proteolytic enzymes (caspases) serve as main effectors of apoptosis, the mechanisms involved in activation of the caspase system are less clear. Two distinct pathways upstream of the caspase cascade have been identified. Death receptors, eg, CD95 (APO-1/Fas), trigger caspase-8, and mitochondria release apoptogenic factors (cytochrome c, Apaf-1, AIF), leading to the activation of caspase-9. The stressed endoplasmic reticulum (ER) contributes to apoptosis by the unfolded protein response pathway, which induces ER chaperones, and by the ER overload response pathway, which produces cytokines via nuclear factor-kappaB. Multiple other stress-inducible molecules, such as p53, JNK, AP-1, NF-kappaB, PKC/MAPK/ERK, and members of the sphingomyelin pathway have a profound influence on apoptosis. Understanding the complex interaction between different cellular programs provides insights into sensitivity or resistance of tumor cells and identifies molecular targets for rational therapeutic intervention strategies.
Collapse
Affiliation(s)
- I Herr
- Division of Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
39
|
Jarosinski KW, Whitney LW, Massa PT. Specific deficiency in nuclear factor-kappaB activation in neurons of the central nervous system. J Transl Med 2001; 81:1275-88. [PMID: 11555675 DOI: 10.1038/labinvest.3780341] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expression and activation of nuclear factor-kappaB (NF-kappaB) in neurons and glia of the central nervous system (CNS) has been intensely investigated because of its potential importance in understanding how this multifunctional transcription factor controls developmental and pathological processes. In particular, there has been interest in how NF-kappaB may be differentially regulated in these two major functional subgroups of cells in the CNS to provide for specific responses to various stimuli. Of special interest are responses to both proinflammatory cytokines and microbial products that signal from specific cell receptors to activate NF-kappaB. In the present studies, both neurons and glia (astrocytes) in vivo expressed latent cytoplasmic NF-kappaB analyzed by immunofluorescence microscopy and electrophoretic mobility shift analysis. In vitro, neurons and astrocytes expressed comparable levels of latent NF-kappaB molecules, but NF-kappaB nuclear localization stimulated by proinflammatory cytokines or microbial products was markedly deficient in neurons. In accord with this finding, the rapid degradation of inhibitor of NF-kappaB alpha (IkappaBalpha) that is seen in astrocytes did not occur in neurons in response to these agents. However, long-term exposure to translational inhibitors resulted in IkappaBalpha decay and activation of latent NF-kappaB in neurons, indicating potential NF-kappaB activity in these cells. Analysis of NF-kappaB-responsive interferon regulatory factor-1 gene expression indicated that increased nuclear NF-kappaB in neurons had transcriptional potential. We conclude that mechanisms responsible for inducible targeting of IkappaBalpha are uniquely regulated in neurons and account for the hypo-responsiveness of these cells to signals generated during microbial infections in the CNS. Thus, modulation of signals that target IkappaBalpha degradation may be unique and a key component of specific NF-kappaB regulation in neurons.
Collapse
Affiliation(s)
- K W Jarosinski
- Department of Neurology, State University of New York Health Science Center, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
40
|
Chen F, Castranova V, Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2001; 159:387-97. [PMID: 11485895 PMCID: PMC1850555 DOI: 10.1016/s0002-9440(10)61708-7] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear factor (NF)-kappaB family of eukaryotic transcription factors plays an important role in the regulation of immune response, embryo and cell lineage development, cell apoptosis, cell-cycle progression, inflammation, and oncogenesis. A wide range of stimuli, including cytokines, mitogens, environmental particles, toxic metals, and viral or bacterial products, activate NF-kappaB, mostly through IkappaB kinase (IKK)-dependent phosphorylation and subsequent degradation of its inhibitor, the IkappaB family of proteins. Activated NF-kappaB translocates into the nucleus where it modulates the expression of a variety of genes, including those encoding cytokines, growth factors, acute phase response proteins, cell adhesion molecules, other transcription factors, and several cell apoptosis regulators. During the past few years, tremendous progress has been achieved in our understanding on how intracellular signaling pathways are transmitted in either a linear or a network manner leading to the activation of NF-kappaB and subsequent cell growth control. However, a detailed molecular mechanism of NF-kappaB regulating cell growth has yet to be determined. Elucidation of the relationships between NF-kappaB activation and cell growth will be important in developing new strategies for the treatment of various human diseases, such as chronic autoimmune disorder and cancer.
Collapse
Affiliation(s)
- F Chen
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | | | | |
Collapse
|
41
|
Matroule JY, Carthy CM, Granville DJ, Jolois O, Hunt DW, Piette J. Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization. Oncogene 2001; 20:4070-84. [PMID: 11494135 DOI: 10.1038/sj.onc.1204546] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/08/2022]
Abstract
Pyropheophorbide-a methylester (PPME) is a second generation of photosensitizers used in photodynamic therapy (PDT). We demonstrated that PPME photosensitization triggered apoptosis of colon cancer cells as measured by using several classical parameters such as DNA laddering, PARP cleavage, caspase activation and mitochondrial release of cytochrome c. Preincubation of cells with N-acetyl cysteine (NAC) or pyrolidine dithiocarbamate (PDTC) protected against apoptosis mediated by PPME photosensitization showing that reactive oxygen species (ROS) are involved as second messengers. On the other hand, photosensitization carried out in the presence of deuterium oxide (D2O) which enhances singlet oxygen (1O2) lifetime only increases necrosis without affecting apoptosis. Since PPME was localized in the endoplasmic reticulum (ER)/Golgi system and lysosomes, other messengers than ROS were tested such as calcium, Bid, Bap31, phosphorylated Bcl-2 and caspase-12 but none was clearly identified as being involved in triggering cytochrome c release from mitochondria. On the other hand, we demonstrated that the transduction pathways leading to NF-kappaB activation and apoptosis were clearly independent although NF-kappaB was shown to counteract apoptosis mediated by PPME photosensitization.
Collapse
Affiliation(s)
- J Y Matroule
- Laboratory of Virology and Immunology, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
42
|
Baldwin AS. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 2001; 107:241-6. [PMID: 11160144 PMCID: PMC199203 DOI: 10.1172/jci11991] [Citation(s) in RCA: 995] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|