1
|
Wang S, Nikamo P, Laasonen L, Gudbjornsson B, Ejstrup L, Iversen L, Lindqvist U, Alm JJ, Eisfeldt J, Zheng X, Catrina SB, Taylan F, Vaz R, Ståhle M, Tapia-Paez I. Rare coding variants in NOX4 link high ROS levels to psoriatic arthritis mutilans. EMBO Mol Med 2024; 16:596-615. [PMID: 38379095 PMCID: PMC10940640 DOI: 10.1038/s44321-024-00035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Psoriatic arthritis mutilans (PAM) is the rarest and most severe form of psoriatic arthritis, characterized by erosions of the small joints and osteolysis leading to joint disruption. Despite its severity, the underlying mechanisms are unknown, and no susceptibility genes have hitherto been identified. We aimed to investigate the genetic basis of PAM by performing massive parallel sequencing in sixty-one patients from the PAM Nordic cohort. We found rare variants in the NADPH oxidase 4 (NOX4) in four patients. In silico predictions show that the identified variants are potentially damaging. NOXs are the only enzymes producing reactive oxygen species (ROS). NOX4 is specifically involved in the differentiation of osteoclasts, the cells implicated in bone resorption. Functional follow-up studies using cell culture, zebrafish models, and measurement of ROS in patients uncovered that these NOX4 variants increase ROS levels both in vitro and in vivo. We propose NOX4 as the first candidate susceptibility gene for PAM. Our study links high levels of ROS caused by NOX4 variants to the development of PAM, offering a potential therapeutic target.
Collapse
Affiliation(s)
- Sailan Wang
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Nikamo
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Leena Laasonen
- Helsinki Medical Imaging Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Bjorn Gudbjornsson
- Centre for Rheumatology Research, University Hospital and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Leif Ejstrup
- Department of Rheumatology, Odense University Hospital, Odense, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Ulla Lindqvist
- Department of Medical Sciences, Rheumatology, Uppsala University, Uppsala, Sweden
| | - Jessica J Alm
- Department of Microbiology, Tumor and Cell Biology & National Pandemic Center, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Zheng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Center for Diabetes, Academic Specialist Center, Stockholm, Sweden
| | - Fulya Taylan
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Mona Ståhle
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Dermatology and Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Isabel Tapia-Paez
- Division of Dermatology and Venereology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
3
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
4
|
Gulumsek E, Yesildal F, Koca H, Ozturk HA, Ozturk DD, Acibucu F, Neselioglu S, Erel O, Sumbul HE. Native thiol decreases in patients with asymptomatic primary hyperparathyroidism, especially in the presence of surgery indication. Minerva Endocrinol (Torino) 2022; 47:395-402. [PMID: 35142482 DOI: 10.23736/s2724-6507.22.03604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Oxidative stress increases in many systemic and endocrine diseases. The effect of increased parathyroid hormone levels (PTH) and the effects of this hormone on oxidative stress in patients with primary hyperparathyroidism (pHPT) is unknown. We aimed to investigate the change of Thiol-disulfide (SH-SS), one of the oxidative stress parameters, in patients diagnosed with pHPT and the usability of this parameter in patients with pHPT. METHODS Forty-six patients who recently diagnosed with asymptomatic pHPT and 40 healthy controls were included in this prospective study. In addition to routine examinations for pHPT, serum SH-SS measurements were recorded. The pHPT patients included in the study were divided into two groups as patients with and without surgical treatment indication. RESULTS It was observed that the pHPT group had lower total SH and native SH values and higher SS values compared to the control group (P<0.05 for each). Native SH values were found to be lower in pHPT patients who were indicated for surgical treatment compared to those who did not (P<0.05). An independent relationship was found between Native SH and serum calcium, urine calcium and T scores in DEXA level in asymptomatic pHPT patients with surgical treatment indication (P<0.05). CONCLUSIONS In our study, native SH level decreases in patients with pHPT, especially in patients with surgical treatment indication for pHPT. The decrease in SH levels, which is a natural antioxidant that protects the body against oxidative stress, and the increase in SS levels in pHPT patients may be another metabolic effect of this disease. Native SH may be helpful in determining the indication for surgical treatment in asymptomatic pHPT patients.
Collapse
Affiliation(s)
- Erdinc Gulumsek
- Department of Gastroenterology, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey -
| | - Fatih Yesildal
- Department of Medical Biochemistry, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
| | - Hasan Koca
- Department of Cardiology, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | - Huseyin A Ozturk
- Department of Internal Medicine, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | - Dilan D Ozturk
- Department of Internal Medicine, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | - Fettah Acibucu
- Division of Endocrinology, Department of Internal Medicine, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| | - Salim Neselioglu
- Department of Medical Biochemistry, Ankara Yıldırım Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Ozcan Erel
- Department of Medical Biochemistry, Ankara Yıldırım Beyazit University Faculty of Medicine, Ankara, Turkey
| | - Hilmi E Sumbul
- Department of Internal Medicine, Adana Health Practice and Research Center, University of Health Sciences, Adana, Turkey
| |
Collapse
|
5
|
Cao Z, Liu G, Zhang H, Wang M, Xu Y. Nox4 promotes osteoblast differentiation through TGF-beta signal pathway. Free Radic Biol Med 2022; 193:595-609. [PMID: 36372285 DOI: 10.1016/j.freeradbiomed.2022.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022]
Abstract
NADPH oxidase 4 (Nox4) is the main source of reactive oxygen species, which promote osteoclast formation and lead to bone loss, thereby causing osteoporosis. However, the role of Nox4 in osteoblasts during early development remains unclear. We used zebrafish to study the effect of Nox4 deletion on bone mineralization in early development. nox4-/- zebrafish showed decreased bone mineralization during early development and significantly reduced numbers of osteoblasts, osteoclasts, and chondrocytes. Transcriptome sequencing showed that the TGF-β signaling pathway was significantly disrupted in nox4-/- zebrafish. Inhibiting TGF-β signaling rescued the abnormal bone development caused by nox4 deletion and increased the number of osteoblasts. We used Saos-2 human osteosarcoma cells to confirm our results, which clarified the role of Nox4 in human osteoblasts. Our results demonstrate the mechanism of reduced bone mineralization in early development and provide a basis for the clinical treatment of osteoporosis.
Collapse
Affiliation(s)
- Zihou Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Gongwen Liu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Hui Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, No.11 Jinpu Road, Suzhou, China.
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Díaz-Hernández ME, Kinter CW, Watson SR, Mella-Velazquez G, Kaiser J, Liu G, Khan NM, Roberts JL, Lorenzo J, Drissi H. Sexually Dimorphic Increases in Bone Mass Following Tissue-specific Overexpression of Runx1 in Osteoclast Precursors. Endocrinology 2022; 163:6650061. [PMID: 35880727 PMCID: PMC9337273 DOI: 10.1210/endocr/bqac113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/19/2022]
Abstract
Many metabolic bone diseases arise as a result excessive osteoclastic bone resorption, which has motivated efforts to identify new molecular targets that can inhibit the formation or activity of these bone-resorbing cells. Mounting evidence indicates that the transcription factor Runx1 acts as a transcriptional repressor of osteoclast formation. Prior studies using a conditional knockout approach suggested that Runx1 in osteoclast precursors acts as an inhibitor of osteoclastogenesis; however, the effects of upregulation of Runx1 on osteoclast formation remain unknown. In this study, we investigated the skeletal effects of conditional overexpression of Runx1 in preosteoclasts by crossing novel Runx1 gain-of-function mice (Rosa26-LSL-Runx1) with LysM-Cre transgenic mice. We observed a sex-dependent effect whereby overexpression of Runx1 in female mice increased trabecular bone microarchitectural indices and improved torsion biomechanical properties. These effects were likely mediated by delayed osteoclastogenesis and decreased bone resorption. Transcriptomics analyses during osteoclastogenesis revealed a distinct transcriptomic profile in the Runx1-overexpressing cells, with enrichment of genes related to redox signaling, apoptosis, osteoclast differentiation, and bone remodeling. These data further confirm the antiosteoclastogenic activities of Runx1 and provide new insight into the molecular targets that may mediate these effects.
Collapse
Affiliation(s)
| | | | - Shana R Watson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Giovanni Mella-Velazquez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Jarred Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Guanglu Liu
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Joseph L Roberts
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia 30329, USA
- Atlanta VA Health Care System, Decatur, Georgia, 30033, USA
| | - Joseph Lorenzo
- Department of Medicine, UConn Health, Farmington, 06032, Connecticut, USA
| | - Hicham Drissi
- Correspondence: Hicham Drissi, PhD, Department of Orthopaedics, Emory University School of Medicine, 21 Ortho Ln, 6th Fl, Office 12, Atlanta, GA 30329, USA.
| |
Collapse
|
7
|
Chen JR, Lazarenko OP, Blackburn ML, Chen JF, Randolph CE, Zabaleta J, Schroder K, Pedersen KB, Ronis MJJ. Nox4 expression in osteo-progenitors controls bone development in mice during early life. Commun Biol 2022; 5:583. [PMID: 35701603 PMCID: PMC9198054 DOI: 10.1038/s42003-022-03544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated and cell-specific NADPH-oxidases (Nox) represent one of the major sources of reactive oxygen species (ROS) signaling molecules that are involved in tissue development and stem cell self-renewal. We have characterized the role of Nox4 in osteo-progenitors during postnatal bone development. Nox4 expression in bone and ROS generation were increased during early osteoblast differentiation and bone development. Stromal osteoblastic cell self-renewal, proliferation and ROS production were significantly lower in samples from whole-body Nox4 knockout mice (Nox4-/-) and conditional knockout (CKO) mice with depletion of Nox4 in the limb bud mesenchyme compared with those from control mice (Nox4fl/fl), but they were reversed after 9 passages. In both sexes, bone volume, trabecular number and bone mineral density were significantly lower in 3-week old CKO and Nox4-/- mice compared with Nox4fl/fl controls. This was reflected in serum levels of bone formation markers alkaline phosphatase (ALP) and procollagen 1 intact N-terminal propeptide (P1NP). However, under-developed bone formation in 3-week old CKO and Nox4-/- mice quickly caught up to levels of control mice by 6-week of age, remained no different at 13-week of age, and was reversed in 32-week old male mice. Osteoclastogenesis showed no differences among groups, however, CTX1 reflecting osteoclast activity was significantly higher in 3-week old male CKO and Nox4-/- mice compared with control mice, and significantly lower in 32-week old Nox4-/- mice compared with control mice. These data suggest that Nox4 expression and ROS signaling in bone and osteoblastic cells coordinately play an important role in osteoblast differentiation, proliferation and maturation.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, Little Rock, AR, 72202, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA.
| | - Oxana P. Lazarenko
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Michael L. Blackburn
- grid.508987.bArkansas Children’s Nutrition Center, Little Rock, AR 72202 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202 USA
| | - Jennifer F. Chen
- grid.411017.20000 0001 2151 0999Undergraduate Pre-Medical Program, University of Arkansas at Fayetteville, Fayetteville, AR 72701 USA
| | - Christopher E. Randolph
- grid.488749.eCenter for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Jovanny Zabaleta
- grid.279863.10000 0000 8954 1233Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Katrin Schroder
- grid.7839.50000 0004 1936 9721Institute of Physiology I, Goethe-University, Frankfurt, Germany
| | - Kim B. Pedersen
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| | - Martin J. J. Ronis
- grid.279863.10000 0000 8954 1233Department of Interdisciplinary Oncology (DIO), Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, LA 70112 USA
| |
Collapse
|
8
|
Sattgast LH, Branscum AJ, Walter NA, Newman N, Gonzales SW, Grant KA, Turner RT, Iwaniec UT. Effects of graded increases in ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques. Alcohol 2021; 91:53-59. [PMID: 33358984 DOI: 10.1016/j.alcohol.2020.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/25/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022]
Abstract
Chronic heavy alcohol use is often associated with reduced bone mineral density and altered bone turnover. However, the dose response effects of ethanol on bone turnover have not been established. This study examined the effects of graded increases of ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques (Macaca fascicularis). For this study, 6.6-year-old (95% CI: 6.5, 6.7) male macaques were subjected to three 30-day sessions of increased ethanol intake over a 90-day interval. During the first 30 days, the monkeys drank a predetermined volume of ethanol corresponding to 0.5 g/kg/day, followed by 1.0 g/kg/day and 1.5 g/kg/day. Osteocalcin, a marker of bone formation, and carboxyterminal cross-linking telopeptide of type 1 collagen (CTX), a marker of resorption, were measured during each 30-day session. In addition, the ratio of osteocalcin to CTX was determined as a surrogate measure of global turnover balance. Mean osteocalcin decreased by 2.6 ng/mL (1.8, 3.5) for each one-half unit (0.5 g/kg/day) increase in dose (p < 0.001). Mean CTX decreased by 0.13 ng/mL (0.06, 0.20) for each one-half unit increase in dose (p < 0.001). Furthermore, there was an inverse relationship between dose and the ratio of osteocalcin to CTX, such that the mean ratio decreased by 0.9 (0.3, 1.5) for each one-half unit increase in dose (p = 0.01). In summary, male cynomolgus macaques had decreased blood osteocalcin and CTX, and osteocalcin to CTX ratio during the 90-day interval of graded increases in ethanol consumption, indicative of reduced bone turnover and negative turnover balance, respectively. These findings suggest that over the range ingested, ethanol resulted in a linear decrease in bone turnover. Furthermore, the negative bone turnover balance observed is consistent with reported effects of chronic alcohol intake on the skeleton.
Collapse
|
9
|
Stępniowska A, Tutaj K, Drażbo A, Kozłowski K, Ognik K, Jankowski J. Estimated intestinal absorption of phosphorus and its deposition in chosen tissues, bones and feathers of chickens receiving chromium picolinate or chromium nanoparticles in diet. PLoS One 2020; 15:e0242820. [PMID: 33237949 PMCID: PMC7688154 DOI: 10.1371/journal.pone.0242820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to determine whether the level and form of Cr in the diet of chickens influences its accumulation in tissues as well as intestinal absorption of P and its deposition in tissues. The experiment was carried out on 405 one-day-old male Ross 308 chickens that were randomly divided into five treatment groups. Control group was fed the diet without supplemental chromium; experimental groups were fed the diet with 3 or 6 mg/kg chromium picolinate (Cr-Pic) and with 3 or 6 mg/kg chromium nanoparticles (Cr-NP). Chromium was found to accumulate in the tissues of the ileum, liver, breast muscle, bones skin and in feathers of chickens. Chromium deposited in the ileum of chickens does not affect the ex vivo estimated intestinal absorption of P. The use of Cr in the diet of chickens carries the risk of lowering P levels in femur.
Collapse
Affiliation(s)
- Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
- * E-mail:
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Aleksandra Drażbo
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Lublin, Poland
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
10
|
Wen H, He Y, Zhang K, Yang X, Hao D, Jiang Y, He B. Mini-review: Functions and Action Mechanisms of PQQ in Osteoporosis and Neuro Injury. Curr Stem Cell Res Ther 2020; 15:32-36. [PMID: 30526470 DOI: 10.2174/1574888x14666181210165539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
Pyrroloquinoline Quinone (PQQ) is the third coenzyme found after niacinamide and flavone nucleotides and is widely present in microorganisms, plants, animals, and humans. PQQ can stimulate the growth of organisms and is very important for the growth, development and reproduction of animals. Owing to the inherent properties of PQQ as an antioxidant and redox modulator in various systems. In recent years, the role of PQQ in the field of osteoporosis and neuro injury has become a research hotspot. This article mainly discusses the derivatives, distribution of PQQ, in vitro models of osteoporosis and neuro injury, and the research progress of its mechanism of action. It provides new ideas in the study of osteoporosis and neuro injury.
Collapse
Affiliation(s)
- Hao Wen
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Yan'an University Medical School, Yan'an, China
| | - Yuan He
- Fifth Hospital of Xi'an, Xi'an , China
| | - Ke Zhang
- Yan'an University Medical School, Yan'an, China
| | - Xiaobin Yang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Yonghong Jiang
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Huang HT, Cheng TL, Lin SY, Ho CJ, Chyu JY, Yang RS, Chen CH, Shen CL. Osteoprotective Roles of Green Tea Catechins. Antioxidants (Basel) 2020; 9:E1136. [PMID: 33207822 PMCID: PMC7696448 DOI: 10.3390/antiox9111136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the second most common disease only secondary to cardiovascular disease, with the risk of fracture increasing with age. Osteoporosis is caused by an imbalance between osteoblastogenesis and osteoclastogenesis processes. Osteoclastogenesis may be enhanced, osteoblastogenesis may be reduced, or both may be evident. Inflammation and high reactive oxygen enhance osteoclastogenesis while reducing osteoblastogenesis by inducing osteoblast apoptosis and suppressing osteoblastic proliferation and differentiation. Catechins, the main polyphenols found in green tea with potent anti-oxidant and anti-inflammatory properties, can counteract the deleterious effects of the imbalance of osteoblastogenesis and osteoclastogenesis caused by osteoporosis. Green tea catechins can attenuate osteoclastogenesis by enhancing apoptosis of osteoclasts, hampering osteoclastogenesis, and prohibiting bone resorption in vitro. Catechin effects can be directly exerted on pre-osteoclasts/osteoclasts or indirectly exerted via the modulation of mesenchymal stem cells (MSCs)/stromal cell regulation of pre-osteoclasts through activation of the nuclear factor kB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Catechins also can enhance osteoblastogenesis by enhancing osteogenic differentiation of MSCs and increasing osteoblastic survival, proliferation, differentiation, and mineralization. The in vitro effects of catechins on osteogenesis have been confirmed in several animal models, as well as in epidemiological observational studies on human subjects. Even though randomized control trials have not shown that catechins provide anti-fracture efficacy, safety data in the trials are promising. A large-scale, placebo-controlled, long-term randomized trial with a tea regimen intervention of optimal duration is required to determine anti-fracture efficacy.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Joanna Y. Chyu
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rong-Sen Yang
- Department of Orthopedics, National Taiwan University Hospital, Taipei 100229, Taiwan;
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (S.-Y.L.); (C.-J.H.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
12
|
Wegner AM, Haudenschild DR. NADPH oxidases in bone and cartilage homeostasis and disease: A promising therapeutic target. J Orthop Res 2020; 38:2104-2112. [PMID: 32285964 DOI: 10.1002/jor.24693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/08/2020] [Accepted: 04/06/2020] [Indexed: 02/04/2023]
Abstract
Reactive oxygen species (ROS) generated by the NADPH oxidase (Nox) enzymes are important short-range signaling molecules. They have been extensively studied in the physiology and pathophysiology of the cardiovascular system, where they have important roles in vascular inflammation, angiogenesis, hypertension, cardiac injury, stroke, and aging. Increasing evidence demonstrates that ROS and Nox enzymes also affect bone homeostasis and osteoporosis, and more recent studies implicate ROS and Nox enzymes in both inflammatory arthritis and osteoarthritis. Mechanistically, this connection may be through the effects of ROS on signal transduction. ROS affect both transforming growth factor-β/Smad signaling, interleukin-1β/nuclear factor-kappa B signaling, and the resulting changes in matrix metalloproteinase expression. The purpose of this review is to describe the role of Nox enzymes in the physiology and pathobiology of bone and joints and to highlight the potential of therapeutically targeting the Nox enzymes.
Collapse
Affiliation(s)
- Adam M Wegner
- OrthoCarolina, Winston-Salem Spine Center, Winston-Salem, North Carolina
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California Davis, School of Medicine, Sacramento, California
| |
Collapse
|
13
|
Ayinde KS, Olaoba OT, Ibrahim B, Lei D, Lu Q, Yin X, Adelusi TI. AMPK allostery: A therapeutic target for the management/treatment of diabetic nephropathy. Life Sci 2020; 261:118455. [PMID: 32956662 DOI: 10.1016/j.lfs.2020.118455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy (DN) is a chronic complication of diabetes mellitus (DM) with approximately 30-40% of patients with DM developing nephropathy, and it is the leading cause of end-stage renal diseases and diabetic morbidity. The pathogenesis of DN is primarily associated with irregularities in the metabolism of glucose and lipid leading to hyperglycemia-induced oxidative stress, which has been a major target together with blood pressure regulation in the control of DN progression. However, the regulation of 5' adenosine monophosphate-activated protein kinase (AMPK), a highly conserved protein kinase for maintaining energy balance and cellular growth and repair has been implicated in the development of DM and its complications. Therefore, targeting AMPK pathway has been explored as a therapeutic strategy for the treatment of diabetes and its complication, although most of the mechanisms have not been fully elucidated. In this review, we discuss the structure of AMPK relevant to understanding its allosteric regulation and its role in the pathogenesis and progression of DN. We also identify therapeutic agents that modulate AMPK and its downstream targets with their specific mechanisms of action in the treatment of DN.
Collapse
Affiliation(s)
| | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos, SP, Brazil
| | - Boyenle Ibrahim
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Du Lei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
14
|
Kralova J, Drobek A, Prochazka J, Spoutil F, Fabisik M, Glatzova D, Borna S, Pokorna J, Skopcova T, Angelisova P, Gregor M, Kovarik P, Sedlacek R, Brdicka T. Dysregulated NADPH Oxidase Promotes Bone Damage in Murine Model of Autoinflammatory Osteomyelitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1607-1620. [PMID: 32024700 DOI: 10.4049/jimmunol.1900953] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Autoinflammatory diseases are characterized by dysregulation of the innate immune system, leading to spontaneous inflammation. Pstpip2cmo mouse strain is a well-characterized model of this class of disorders. Because of the mutation leading to the lack of adaptor protein PSTPIP2, these animals suffer from autoinflammatory chronic multifocal osteomyelitis similar to several human syndromes. Current evidence suggests that it is driven by hyperproduction of IL-1β by neutrophil granulocytes. In this study, we show that in addition to IL-1β, PSTPIP2 also negatively regulates pathways governing reactive oxygen species generation by neutrophil NOX2 NADPH oxidase. Pstpip2cmo neutrophils display highly elevated superoxide production in response to a range of stimuli. Inactivation of NOX2 NADPH oxidase in Pstpip2cmo mice did not affect IL-1β levels, and the autoinflammatory process was initiated with similar kinetics. However, the bone destruction was almost completely alleviated, suggesting that dysregulated NADPH oxidase activity is a key factor promoting autoinflammatory bone damage in Pstpip2cmo mice.
Collapse
Affiliation(s)
- Jarmila Kralova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Ales Drobek
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Frantisek Spoutil
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Matej Fabisik
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Daniela Glatzova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Simon Borna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
- Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Jana Pokorna
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Pavla Angelisova
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; and
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, 25242 Vestec, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signalling, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| |
Collapse
|
15
|
Adelusi TI, Du L, Hao M, Zhou X, Xuan Q, Apu C, Sun Y, Lu Q, Yin X. Keap1/Nrf2/ARE signaling unfolds therapeutic targets for redox imbalanced-mediated diseases and diabetic nephropathy. Biomed Pharmacother 2020; 123:109732. [PMID: 31945695 DOI: 10.1016/j.biopha.2019.109732] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperglycemia/oxidative stress has been implicated in the initiation and progression of diabetic complications while the components of Keap1/Nrf2/ARE signaling are being exploited as therapeutic targets for the treatment/management of these pathologies. Antioxidant agents like drugs, nutraceuticals and pure compounds that target the proteins of this pathway and their downstream genes hold the therapeutic strength to put the progression of this disease at bay. Here, we elucidate how the modulation of Keap1/Nrf2/ARE had been exploited for the treatment/management of end-stage diabetic kidney complication (diabetic nephropathy) by looking into (1) Nrf2 nuclear translocation and phosphorylation by some protein kinases at specific amino acid sequences and (2) Keap1 downregulation/Keap1-Nrf2 protein-protein inhibition (PPI) as potential therapeutic mechanisms exploited by Nrf2 activators for the modulation of diabetic nephropathy biomarkers (Collagen IV, Laminin, TGF-β1 and Fibronectin) that ultimately lead to the amelioration of this disease progression. Furthermore, we brought to limelight the relationship between diabetic nephropathy and Keap1/Nrf2/ARE and finally elucidate how the modulation of this signaling pathway could be further explored to create novel therapeutic milestones.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Xuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Chowdhury Apu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
16
|
Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of ROS-Mediated Osteoclast Diseases. Int J Mol Sci 2019; 20:ijms20143576. [PMID: 31336616 PMCID: PMC6678498 DOI: 10.3390/ijms20143576] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) and free radicals are essential for transmission of cell signals and other physiological functions. However, excessive amounts of ROS can cause cellular imbalance in reduction–oxidation reactions and disrupt normal biological functions, leading to oxidative stress, a condition known to be responsible for the development of several diseases. The biphasic role of ROS in cellular functions has been a target of pharmacological research. Osteoclasts are derived from hematopoietic progenitors in the bone and are essential for skeletal growth and remodeling, for the maintenance of bone architecture throughout lifespan, and for calcium metabolism during bone homeostasis. ROS, including superoxide ion (O2−) and hydrogen peroxide (H2O2), are important components that regulate the differentiation of osteoclasts. Under normal physiological conditions, ROS produced by osteoclasts stimulate and facilitate resorption of bone tissue. Thus, elucidating the effects of ROS during osteoclast differentiation is important when studying diseases associated with bone resorption such as osteoporosis. This review examines the effect of ROS on osteoclast differentiation and the efficacy of novel chemical compounds with therapeutic potential for osteoclast related diseases.
Collapse
|
17
|
Modulation of Redox Signaling in Chronic Diseases and Regenerative Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6091587. [PMID: 31178971 PMCID: PMC6507258 DOI: 10.1155/2019/6091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/18/2022]
|
18
|
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen derivatives. Initially, they were considered as metabolic by-products (of mitochondria in particular), which consistently lead to aging and disease. Over the last decades, however, it became increasingly apparent that virtually all eukaryotic cells possess specifically ROS-producing enzymes, namely, NOX NADPH oxidases. In most mammals, there are seven NOX isoforms: three closely related isoforms, NOX1, 2, 3, which are activated by cytoplasmic subunits; NOX4, which appears to be constitutively active; and the EF-hand-containing Ca2+-activated isoforms NOX5 and DUOX1 and 2. Loss-of-function mutations in NOX genes can lead to serious human disease. NOX2 deficiency leads to primary immune deficiency, while DUOX2 deficiency presents as congenital hypothyroidism. Nox-deficient mice provide important tools to explore the physiological functions of various NADPH oxidases as a loss of function in Nox2, Nox3, and Duox2 leads to a spontaneous phenotype. The genetic absence of Nox1, Nox4, and Duox1 does not result in an obvious mouse phenotype (the NOX5 gene is absent in rodents and can therefore not be studied using knockout mice). Since the discovery of the NOX family at the turn of the millennium, much progress in understanding the biochemistry and the physiology of NOX has been made; however many questions remain unanswered to date. This chapter is an overview of our present knowledge on mammalian NOX/DUOX enzymes.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Nox2 Activity Is Required in Obesity-Mediated Alteration of Bone Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6054361. [PMID: 30533174 PMCID: PMC6250007 DOI: 10.1155/2018/6054361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Despite increasing evidence suggesting a role for NADPH oxidases (Nox) in bone pathophysiology, whether Nox enzymes contribute to obesity-mediated bone remodeling remains to be clearly elucidated. Nox2 is one of the predominant Nox enzymes expressed in the bone marrow microenvironment and is a major source of ROS generation during inflammatory processes. It is also well recognized that a high-fat diet (HFD) induces obesity, which negatively impacts bone remodeling. In this work, we investigated the effect of Nox2 loss of function on obesity-mediated alteration of bone remodeling using wild-type (WT) and Nox2-knockout (KO) mice fed with a standard lab chow diet (SD) as a control or a HFD as an obesity model. Bone mineral density (BMD) of mice was assessed at the beginning and after 3 months of feeding with SD or HFD. Our results show that HFD increased bone mineral density to a greater extent in KO mice than in WT mice without affecting the total body weight and fat mass. HFD also significantly increased the number of adipocytes in the bone marrow microenvironment of WT mice as compared to KO mice. The bone levels of proinflammatory cytokines and proosteoclastogenic factors were also significantly elevated in WT-HFD mice as compared to KO-HFD mice. Furthermore, the in vitro differentiation of bone marrow cells into osteoclasts was significantly increased when using bone marrow cells from WT-HFD mice as compared to KO-HFD mice. Our data collectively suggest that Nox2 is implicated in HFD-induced deleterious bone remodeling by enhancing bone marrow adipogenesis and osteoclastogenesis.
Collapse
|
20
|
Tang CT, Gao YJ, Ge ZZ. NOX4, a new genetic target for anti-cancer therapy in digestive system cancer. J Dig Dis 2018; 19:578-585. [PMID: 30058122 DOI: 10.1111/1751-2980.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress has been implicated as an important factor in tumorigenesis and tumor progression. The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit 4 (NOX4), a substrate of NADPH that can generate H2 O2 reactive oxygen species, has been reported to be highly expressed in gastrointestinal tumors. In this review we summarize the available evidence on the biological function of NOX4 in digestive system tumors by focusing on its correlation with classical cell signaling pathways, including VEGF, MAPK and PI3K/AKT, and with biochemical mediators, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein (AP)-1 and transforming growth factor (TGF)-β. According to the clinical and database studies on tumors of the digestive system, such as colorectal, gastric and pancreatic cancer, there are significant associations between NOX4 expression and tumor prognosis as well as patient's survival. Animal studies using NOX4 inhibitors such as diphenylene iodonium and GKT137831, which selectively block NOX4, indicate their potential as therapeutic agents for targeting cancer cells.
Collapse
Affiliation(s)
- Chao Tao Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Yun Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi Zheng Ge
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
21
|
Vegetable Diversity, Injurious Falls, and Fracture Risk in Older Women: A Prospective Cohort Study. Nutrients 2018; 10:nu10081081. [PMID: 30104494 PMCID: PMC6115713 DOI: 10.3390/nu10081081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 01/21/2023] Open
Abstract
The importance of vegetable diversity for the risk of falling and fractures is unclear. Our objective was to examine the relationship between vegetable diversity with injurious falling and fractures leading to hospitalization in a prospective cohort of older Australian women (n = 1429, ≥70 years). Vegetable diversity was quantified by assessing the number of different vegetables consumed daily. Vegetable intake (75 g servings/day) was estimated using a validated food frequency questionnaire at baseline (1998). Over 14.5 years, injurious falls (events = 568, 39.7%), and fractures (events = 404, 28.3%) were captured using linked health records. In multivariable-adjusted Cox regression models, women with greater vegetable diversity (per increase in one different vegetable/day) had lower relative hazards for falls (8%; p = 0.02) and fractures (9%; p = 0.03). A significant interaction between daily vegetable diversity (number/day) and total vegetable intake (75 g servings/day) was observed for falls (pinteraction = 0.03) and fractures (pinteraction < 0.001). The largest benefit of higher vegetable diversity were observed in the one third of women with the lowest vegetable intake (<2.2 servings/day; falls HR 0.83 95% CI (0.71⁻0.98); fractures HR 0.74 95% CI (0.62⁻0.89)). Increasing vegetable diversity especially in older women with low vegetable intake may be an effective way to reduce injurious fall and fracture risk.
Collapse
|
22
|
nox2/cybb Deficiency Affects Zebrafish Retinotectal Connectivity. J Neurosci 2018; 38:5854-5871. [PMID: 29793976 DOI: 10.1523/jneurosci.1483-16.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 04/30/2018] [Accepted: 05/13/2018] [Indexed: 01/28/2023] Open
Abstract
NADPH oxidase (Nox)-derived reactive oxygen species (ROS) have been linked to neuronal polarity, axonal outgrowth, cerebellar development, regeneration of sensory axons, and neuroplasticity. However, the specific roles that individual Nox isoforms play during nervous system development in vivo remain unclear. To address this problem, we investigated the role of Nox activity in the development of retinotectal connections in zebrafish embryos. Zebrafish broadly express four nox genes (nox1, nox2/cybb, nox5, and duox) throughout the CNS during early development. Application of a pan-Nox inhibitor, celastrol, during the time of optic nerve (ON) outgrowth resulted in significant expansion of the ganglion cell layer (GCL), thinning of the ON, and a decrease in retinal axons reaching the optic tectum (OT). With the exception of GCL expansion, these effects were partially ameliorated by the addition of H2O2, a key ROS involved in Nox signaling. To address isoform-specific Nox functions, we used CRISPR/Cas9 to generate mutations in each zebrafish nox gene. We found that nox2/cybb chimeric mutants displayed ON thinning and decreased OT innervation. Furthermore, nox2/cybb homozygous mutants (nox2/cybb-/-) showed significant GCL expansion and mistargeted retinal axons in the OT. Neurite outgrowth from cultured zebrafish retinal ganglion cells was reduced by Nox inhibitors, suggesting a cell-autonomous role for Nox in these neurons. Collectively, our results show that Nox2/Cybb is important for retinotectal development in zebrafish.SIGNIFICANCE STATEMENT Most isoforms of NADPH oxidase (Nox) only produce reactive oxygen species (ROS) when activated by an upstream signal, making them ideal candidates for ROS signaling. Nox enzymes are present in neurons and their activity has been shown to be important for neuronal development and function largely by in vitro studies. However, whether Nox is involved in the development of axons and formation of neuronal connections in vivo has remained unclear. Using mutant zebrafish embryos, this study shows that a specific Nox isoform, Nox2/Cybb, is important for the establishment of axonal connections between retinal ganglion cells and the optic tectum.
Collapse
|
23
|
Costa-Rodrigues J, Fernandes MH, Pinho O, Monteiro PRR. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene. J Nutr Biochem 2018; 57:26-34. [PMID: 29655028 DOI: 10.1016/j.jnutbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/20/2018] [Accepted: 03/01/2018] [Indexed: 01/21/2023]
Abstract
Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions.
Collapse
Affiliation(s)
- João Costa-Rodrigues
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; ESS-Escola Superior de Saúde, P. Porto, Portugal; Faculdade de Medicina Dentária, U. Porto, Portugal; Instituto Politécnico de Viana do Castelo, Escola Superior de Saúde, Portugal.
| | | | - Olívia Pinho
- Faculdade de Ciências da Nutrição e Alimentação, U. Porto, Portugal; REQUIMTE/LAQV-U. Porto, Portugal
| | | |
Collapse
|
24
|
The polymethoxy flavonoid sudachitin suppresses inflammatory bone destruction by directly inhibiting osteoclastogenesis due to reduced ROS production and MAPK activation in osteoclast precursors. PLoS One 2018; 13:e0191192. [PMID: 29342179 PMCID: PMC5771597 DOI: 10.1371/journal.pone.0191192] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022] Open
Abstract
Inflammatory bone diseases, including rheumatoid arthritis, periodontitis and peri-implantitis, are associated not only with the production of inflammatory cytokines but also with local oxidative status, which is defined by intracellular reactive oxygen species (ROS). Osteoclast differentiation has been reported to be related to increased intracellular ROS levels in osteoclast lineage cells. Sudachitin, which is a polymethoxyflavone derived from Citrus sudachi, possesses antioxidant properties and regulates various functions in mammalian cells. However, the effects of sudachitin on inflammatory bone destruction and osteoclastogenesis remain unknown. In calvaria inflamed by a local lipopolysaccharide (LPS) injection, inflammation-induced bone destruction and the accompanying elevated expression of osteoclastogenesis-related genes were reduced by the co-administration of sudachitin and LPS. Moreover, sudachitin inhibited osteoclast formation in cultures of isolated osteoblasts and osteoclast precursors. However, sudachitin rather increased the expression of receptor activator of NF-κB ligand (RANKL), which is an important molecule triggering osteoclast differentiation, and the mRNA ratio of RANKL/osteoprotegerin that is a decoy receptor for RANKL, in the isolated osteoblasts, suggesting the presence of additional target cells. When osteoclast formation was induced from osteoclast precursors derived from bone marrow cells in the presence of soluble RANKL and macrophage colony-stimulating factor, sudachitin inhibited osteoclastogenesis without influencing cell viability. Consistently, the expression of osteoclast differentiation-related molecules including c-fos, NFATc1, cathepsin K and osteoclast fusion proteins such as DC-STAMP and Atp6v0d2 was reduced by sudachitin. In addition, sudachitin decreased activation of MAPKs such as Erk and JNK and the ROS production evoked by RANKL in osteoclast lineage cells. Our findings suggest that sudachitin is a useful agent for the treatment of anti-inflammatory bone destruction.
Collapse
|
25
|
Davies JMS, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D, Bulteau AL, Derbré F, Rébillard A, Burstein S, Hirsch E, Kloner RA, Jakowec M, Petzinger G, Sauce D, Sennlaub F, Limon I, Ursini F, Maiorino M, Economides C, Pike CJ, Cohen P, Salvayre AN, Halliday MR, Lundquist AJ, Jakowec NA, Mechta-Grigoriou F, Mericskay M, Mariani J, Li Z, Huang D, Grant E, Forman HJ, Finch CE, Sun PY, Pomatto LCD, Agbulut O, Warburton D, Neri C, Rouis M, Cillard P, Capeau J, Rosenbaum J, Davies KJA. The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 2017; 39:499-550. [PMID: 29270905 PMCID: PMC5745211 DOI: 10.1007/s11357-017-0002-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023] Open
Abstract
A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.
Collapse
Affiliation(s)
- Joanna M S Davies
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Josiane Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Bertrand Friguet
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Enrique Cadenas
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- School of Pharmacy, University of Southern California, Los Angeles, CA, 90089-9121, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rachael Cayce
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Andrew Fishmann
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - David Liao
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon,ENS de Lyon, CNRS, 69364, Lyon Cedex 07, France
| | - Frédéric Derbré
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Amélie Rébillard
- Laboratory for Movement, Sport and Health Sciences-EA 1274, M2S, Université de Rennes 2-ENS, Bruz, 35170, Rennes, France
| | - Steven Burstein
- The Medical Group, Internal Medicine, Rheumatology & Osteoporosis, Dermatology, Pulmonology, Ophthalmology, and Cardiology; the Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Etienne Hirsch
- INSERM UMR 1127-CNRS UMR 7225, Institut du cerveau et de la moelle épinière-ICM Thérapeutique Expérimentale de la Maladie de Parkinson, Université Pierre et Marie Curie, 75651, Paris Cedex 13, France
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, 91105, USA
| | - Michael Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giselle Petzinger
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Delphine Sauce
- Chronic infections and Immune ageing, INSERM U1135, Hopital Pitie-Salpetriere, Pierre et Marie Curie University, 75013, Paris, France
| | | | - Isabelle Limon
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Matilde Maiorino
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Christina Economides
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Neurobiology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Anne Negre Salvayre
- Lipid peroxidation, Signalling and Vascular Diseases INSERM U1048, 31432, Toulouse Cedex 4, France
| | - Matthew R Halliday
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Adam J Lundquist
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Nicolaus A Jakowec
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | | | - Mathias Mericskay
- Laboratoire de Signalisation et Physiopathologie Cardiovasculaire-Inserm UMR-S 1180, Faculté de Pharmacie, Université Paris-Sud, 92296 Châtenay-Malabry, Paris, France
| | - Jean Mariani
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Zhenlin Li
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - David Huang
- Department of Radiation Oncology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Ellsworth Grant
- Department of Oncology & Hematology, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
| | - Henry J Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Los Angeles Cardiology Associates, Hospital of the Good Samaritan, Los Angeles, CA, 90017, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA
| | - Onnik Agbulut
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - David Warburton
- Children's Hospital of Los Angeles, Developmental Biology, Regenerative Medicine and Stem Cell Therapeutics program and the Center for Environmental Impact on Global Health Across the Lifespan at The Saban Research Institute, Los Angeles, CA, 90027, USA
- Department of Pediatrics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Neri
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
| | - Mustapha Rouis
- Institut de Biologie Paris-Seine (IBPS), UMR CNRS 8256, Biological Adaptation and Ageing, Sorbonne Universités, UPMC Univ Paris 06, 75005, Paris, France
- INSERM ERL U1164, 75005, Paris, France
| | - Pierre Cillard
- Lab de Biologie Cellulaire et Végétale, Faculté de Pharmacie, Université de Rennes, 35043, Rennes Cedex, France
| | - Jacqueline Capeau
- DR Saint-Antoine UMR_S938, UPMC, Inserm Faculté de Médecine, Université Pierre et Marie Curie, 75012, Paris, France
| | - Jean Rosenbaum
- Scientific Service of the Embassy of France in the USA, Consulate General of France in Los Angeles, Los Angeles, CA, 90025, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA.
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, 90033, USA.
- Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089-0191, USA.
| |
Collapse
|
26
|
Meitzler JL, Makhlouf HR, Antony S, Wu Y, Butcher D, Jiang G, Juhasz A, Lu J, Dahan I, Jansen-Dürr P, Pircher H, Shah AM, Roy K, Doroshow JH. Decoding NADPH oxidase 4 expression in human tumors. Redox Biol 2017; 13:182-195. [PMID: 28578276 PMCID: PMC5458090 DOI: 10.1016/j.redox.2017.05.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
NADPH oxidase 4 (NOX4) is a redox active, membrane-associated protein that contributes to genomic instability, redox signaling, and radiation sensitivity in human cancers based on its capacity to generate H2O2 constitutively. Most studies of NOX4 in malignancy have focused on the evaluation of a small number of tumor cell lines and not on human tumor specimens themselves; furthermore, these studies have often employed immunological tools that have not been well characterized. To determine the prevalence of NOX4 expression across a broad range of solid tumors, we developed a novel monoclonal antibody that recognizes a specific extracellular region of the human NOX4 protein, and that does not cross-react with any of the other six members of the NOX gene family. Evaluation of 20 sets of epithelial tumors revealed, for the first time, high levels of NOX4 expression in carcinomas of the head and neck (15/19 patients), esophagus (12/18 patients), bladder (10/19 patients), ovary (6/17 patients), and prostate (7/19 patients), as well as malignant melanoma (7/15 patients) when these tumors were compared to histologically-uninvolved specimens from the same organs. Detection of NOX4 protein upregulation by low levels of TGF-β1 demonstrated the sensitivity of this new probe; and immunofluorescence experiments found that high levels of endogenous NOX4 expression in ovarian cancer cells were only demonstrable associated with perinuclear membranes. These studies suggest that NOX4 expression is upregulated, compared to normal tissues, in a well-defined, and specific group of human carcinomas, and that its expression is localized on intracellular membranes in a fashion that could modulate oxidative DNA damage.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hala R Makhlouf
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Smitha Antony
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yongzhong Wu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Donna Butcher
- Pathology/Histotechnology Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702, USA
| | - Guojian Jiang
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Agnes Juhasz
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiamo Lu
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Iris Dahan
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Haymo Pircher
- Institute for Biomedical Aging Research and Center for Molecular Biosciences Innsbruck (CMBI), Universität Innsbruck, 6020 Innsbruck, Austria
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, Cardiovascular Division, James Black Centre, London SE5 9NU, United Kingdom
| | - Krishnendu Roy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - James H Doroshow
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Wang Y, Liu Q, Zhao W, Zhou X, Miao G, Sun C, Zhang H. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation-Induced Cell Death. Dose Response 2017; 15:1559325817699697. [PMID: 28473742 PMCID: PMC5407528 DOI: 10.1177/1559325817699697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Increased oxidative stress plays an important role in heavy ion radiation-induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS) is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation-induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX) family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5) showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation-induced cell death.
Collapse
Affiliation(s)
- Yupei Wang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China.,School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weiping Zhao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Xin Zhou
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Guoying Miao
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China.,Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Chao Sun
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, Gansu, China.,Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou, Gansu, China.,Gansu Wuwei Institute of Medical Sciences, Wuwei, China
| |
Collapse
|
28
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 299] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
29
|
Wang Y, Wang W, Qiu E. Protection of oxidative stress induced apoptosis in osteosarcoma cells by dihydromyricetin through down-regulation of caspase activation and up-regulation of BcL-2. Saudi J Biol Sci 2016; 24:837-842. [PMID: 28490955 PMCID: PMC5415116 DOI: 10.1016/j.sjbs.2016.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/17/2016] [Accepted: 12/04/2016] [Indexed: 12/25/2022] Open
Abstract
Current study was aimed to investigate the effect of dihydromyricetin on hydrogen peroxide induced oxidative stress in the osteosarcoma cells. MTT assay showed that hydrogen peroxide treatment at a concentration of 100 μM caused a significant (p < 0.005) reduction in the viability of MG63 cells. However, reduction in cell viability caused by 100 μM concentration of hydrogen peroxide was completely prevented on incubation with 30 μM dose of dihydromyricetin. Treatment with 100 μM concentration of hydrogen peroxide for 24 h led to condensation of chromatin material, rounding of cell shape and detachment of cells. The results from flow cytometry using annexin V-FITC and PI double staining showed apoptosis induction in 47.84 ± 5.21% cells on treatment with 100 μM concentration of hydrogen peroxide compared to 2.32 ± 0.54% in controlcells. The apoptotic alterations in MG63 cell morphology were prevented significantly on pre-treatment with 30 μM doses of dihydromyricetin for 48 h. Annexin V-FITC and PI staining showed reduction of hydrogen peroxide induced apoptotic cell percentage to 3.07 ± 0.86% on pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin. Western blot analysis showed a significant increase in the activation of caspase-3 and -9 on treatment of MG63 cells for 24 h with 100 μM concentration of hydrogen peroxide. The expression level of Bcl-2 was decreased significantly by 100 μM concentration of hydrogen peroxide in MG63 cells. However, pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin for 48 h significantly prevented hydrogen peroxide induced increase in caspase-3 and -9 levels and reduction in Bcl-2 level. Thus dihydromyricetin prevents hydrogen peroxide induced reduction in viability and induction of apoptosis in MG63 cells through down-regulation of caspase activation and up-regulation of Bcl-2 levels.
Collapse
|
30
|
NADPH oxidase gp91 phox contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep 2016; 6:38014. [PMID: 27897222 PMCID: PMC5126560 DOI: 10.1038/srep38014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/04/2016] [Indexed: 01/01/2023] Open
Abstract
Bone-marrow derived monocyte-macrophages (BMMs) differentiate into osteoclasts by M-CSF along subsequent RANKL stimulation possibly in collaboration with many other unknown cytokines released by pre- or mature osteoblasts. The differentiation process requires receptor activator of nuclear factor kappa-B ligand (RANKL)/RANK signaling and reactive oxygen species (ROS) such as superoxide anion (O2•−). Gp91phox, a plasma membrane subunit of NADPH oxidase (Nox), is constitutively expressed in BMMs and plays a major role in superoxide anion production. In this study, we found that mice deficient in gp91phox (gp91phox−/−) showed defects in osteoclast differentiation. Femurs of these mice produced osteoclasts at about 70% of the levels seen in femurs from wild-type mice, and accordingly exhibited excessive bone density. This abnormal bone growth in the femurs of gp91phox−/− mice resulted from impaired osteoclast differentiation. In addition, gp91phox−/− mice were defective for RANKL-induced expression of nuclear factor of activated T cells c1 (NFATc1). However, H2O2 treatment compensated for gp91phox deficiency in BMMs, almost completely rescuing osteoclast differentiation. Treating wild-type BMMs with antioxidants and superoxide inhibitors resulted in a differentiation defect resembling the phenotype of gp91phox−/− BMMs. Therefore, our results demonstrate that gp91phox-derived superoxide is important for promoting efficient osteoclast differentiation by inducing NFATc1 as a downstream signaling mediator of RANK.
Collapse
|
31
|
Schiavone S, Morgese MG, Mhillaj E, Bove M, De Giorgi A, Cantatore FP, Camerino C, Tucci P, Maffulli N, Cuomo V, Trabace L. Chronic Psychosocial Stress Impairs Bone Homeostasis: A Study in the Social Isolation Reared Rat. Front Pharmacol 2016; 7:152. [PMID: 27375486 PMCID: PMC4896906 DOI: 10.3389/fphar.2016.00152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022] Open
Abstract
Chronic psychosocial stress is a key player in the onset and aggravation of mental diseases, including psychosis. Although a strong association between this psychiatric condition and other medical co-morbidities has been recently demonstrated, few data on the link between psychosis and bone homeostasis are actually available. The aim of this study was to investigate whether chronic psychosocial stress induced by 4 or 7 weeks of social isolation in drug-naïve male Wistar rats could alter bone homeostasis in terms of bone thickness, mineral density and content, as well as markers of bone formation and resorption (sclerostin, cathepsin K, and CTX-I). We found that bone mineral density was increased in rats exposed to 7 weeks of social isolation, while no differences were detected in bone mineral content and area. Moreover, 7 weeks of social isolation lead to increase of femur thickness with respect to controls, suggesting the development of a hyperostosis condition. Isolated rats showed no changes in sclerostin levels, a marker of bone formation, compared to grouped animals. Conversely, bone resorption markers were significantly altered after 7 weeks of social isolation in terms of decrease in cathepsin K and increase of CTX-I. No alterations were found after 4 weeks of isolation rearing. Our observations suggest that chronic psychosocial stress might affect bone homeostasis, more likely independently from drug treatment. Thus, the social isolation model might help to identify possible new therapeutic targets to treat the burden of chronic psychosocial stress and to attempt alternative therapy choices.
Collapse
Affiliation(s)
- Stefania Schiavone
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Maria G Morgese
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Emanuela Mhillaj
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Maria Bove
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Angelo De Giorgi
- Dual Diagnosis Unit, Azienda Sanitaria Locale della Provincia di Foggia Foggia, Italy
| | | | - Claudia Camerino
- Department of Physiology and Pharmacology, "Sapienza" University of RomeRome, Italy; Department of Basic Medical Science, Neuroscience and Sense Organs, University of BariBari, Italy
| | - Paolo Tucci
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of SalernoSalerno, Italy; Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and DentistryLondon, UK
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, "Sapienza" University of Rome Rome, Italy
| | - Luigia Trabace
- Department of Experimental and Clinical Medicine, University of Foggia Foggia, Italy
| |
Collapse
|
32
|
Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation. Nutrients 2016; 8:231. [PMID: 27104563 PMCID: PMC4848699 DOI: 10.3390/nu8040231] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/18/2016] [Accepted: 04/05/2016] [Indexed: 12/22/2022] Open
Abstract
Cordycepin was previously reported to have anti-tumor, anti-inflammatory and anti-oxidant activity. However, the potential role of cordycepin in bone metabolism and cell biology of osteoclasts remains unclear. In our study, we focused on the in vitro effects of cordycepin on osteoclastogenesis and its in vivo effects in ovariectomized (OVX) mice. Osteoclast differentiation, formation and fusion were evaluated by Tartrate-resistant acid phosphatase (TRAP) stain, focal adhesion stain and fusion assay, respectively. Osteoclastic bone resorption was evaluated by pit formation assay. Reactive oxygen species (ROS) generation and removal were detected by the ROS assay. OVX mice were orally administered with 10 mg/kg of cordycepin daily for four weeks. In vitro results revealed that cordycepin inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation, formation, fusion and bone resorption activity. We further proved that cordycepin treatments scavenged the generation of ROS, upregulated interferon regulatory factor 8 (IRF-8) and suppressed the activity of nuclear factor of activated T cells c1 (NFATc1) during osteoclastogenesis. In vivo results indicated cordycepin prevents bone loss, rescues bone microarchitecture, and restores bone mineralization in OVX mice. Our observations strongly suggested that cordycepin is an efficient osteoclast inhibitor and hold potential therapeutic value in preventing bone loss among postmenopausal osteoporosis patients.
Collapse
|
33
|
Sirokmány G, Donkó Á, Geiszt M. Nox/Duox Family of NADPH Oxidases: Lessons from Knockout Mouse Models. Trends Pharmacol Sci 2016; 37:318-327. [DOI: 10.1016/j.tips.2016.01.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 02/07/2023]
|
34
|
A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase. Sci Rep 2016; 6:22389. [PMID: 26975635 PMCID: PMC4792161 DOI: 10.1038/srep22389] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/10/2016] [Indexed: 01/12/2023] Open
Abstract
Osteoclast cells (OCs) are differentiated from bone marrow-derived macrophages (BMMs) by activation of receptor activator of nuclear factor κB (NF-κB) ligand (RANKL). Activation of NADPH oxidase (Nox) isozymes is involved in RANKL-dependent OC differentiation, implicating Nox isozymes as therapeutic targets for treatment of osteoporosis. Here, we show that a novel pyrazole derivative, Ewha-18278 has high inhibitory potency on Nox isozymes. Blocking the activity of Nox with Ewha-18278 inhibited the responses of BMMs to RANKL, including reactive oxygen species (ROS) generation, activation of mitogen-activated protein (MAP) kinases and NF-κB, and OC differentiation. To evaluate the anti-osteoporotic function of Ewha-18278, the derivative was applied to estrogen-deficient ovariectomized (OVX) ddY mice. Oral administration of Ewha-18278 (10 mg/kg/daily, 4 weeks) into the mice recovered bone mineral density, trabecular bone volume, trabecular bone length, number and thickness, compared to control OVX ddY mice. Moreover, treatment of OVX ddY mice with Ewha-18278 increased bone strength by increasing cortical bone thickness. We provide that Ewha-18278 displayed Nox inhibition and blocked the RANKL-dependent cell signaling cascade leading to reduced differentiation of OCs. Our results implicate Ewha-18278 as a novel therapeutic agent for the treatment of osteoporosis.
Collapse
|
35
|
Wang Y, Ma J, Du Y, Miao J, Chen N. Human Amnion-Derived Mesenchymal Stem Cells Protect Human Bone Marrow Mesenchymal Stem Cells against Oxidative Stress-Mediated Dysfunction via ERK1/2 MAPK Signaling. Mol Cells 2016; 39:186-94. [PMID: 26743906 PMCID: PMC4794600 DOI: 10.14348/molcells.2016.2159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022] Open
Abstract
Epidemiological evidence suggests that bone is especially sensitive to oxidative stress, causing bone loss in the elderly. Previous studies indicated that human amnion-derived mesenchymal stem cells (HAMSCs), obtained from human amniotic membranes, exerted osteoprotective effects in vivo. However, the potential of HAMSCs as seed cells against oxidative stress-mediated dysfunction is unknown. In this study, we systemically investigated their antioxidative and osteogenic effects in vitro. Here, we demonstrated that HAMSCs signicantly promoted the proliferation and osteoblastic differentiation of H2O2-induced human bone marrow mesenchymal stem cells (HBMSCs), and down-regulated the reactive oxygen species (ROS) level. Further, our results suggest that activation of the ERK1/2 MAPK signal transduction pathway is essential for both HAMSCs-mediated osteogenic and protective effects against oxidative stress-induced dysfunction in HBMSCs. U0126, a highly selective inhibitor of extracellular ERK1/2 MAPK signaling, significantly suppressed the antioxidative and osteogenic effects in HAMSCs. In conclusion, by modulating HBMSCs, HAMSCs show a strong potential in treating oxidative stress- mediated bone deficiency.
Collapse
Affiliation(s)
- Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Junchi Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Jing Miao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, Jiangsu,
People’s Republic of China
| |
Collapse
|
36
|
Prognostic significance of NADPH oxidase-4 as an indicator of reactive oxygen species stress in human retinoblastoma. Int J Clin Oncol 2016; 21:651-657. [PMID: 26857459 DOI: 10.1007/s10147-016-0951-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) have been shown to enhance the proliferation of cancer cells. NADPH oxidases (NOX4) are a major intracellular source of ROS and are found to be associated with cancer and tumor cell invasion. Therefore, the purpose of this study is to evaluate the expression of NOX4 protein in human retinoblastoma. METHODS Immunohistochemical expression of NOX4 protein was analyzed in 109 specimens from prospective cases of retinoblastoma and then correlated with clinicopathological parameters and patient survival. Western blotting confirmed and validated the immunoreactivity of NOX4 protein. RESULTS In our study we found a male preponderance (55.9 %), and 25/109 (22.9 %) were bilateral. Massive choroidal invasion was the histopathological high-risk factor (HRF) most frequently observed, in 42.2 % of the cases. NOX4 protein was expressed in 67.88 % (74/109) of primary retinoblastoma cases and was confirmed by Western blotting. NOX4 was statistically significant with massive choroidal invasion and pathological TNM staging. There was a statistically significant difference in overall survival in patients with NOX4 expression (p = 0.0461). CONCLUSION This is the first study to show the expression of NOX4 protein in retinoblastoma tumors. Hence, a retinoblastoma tumor may exhibit greater ROS stress. This protein may prove to be useful as a future therapeutic target for improving the management of retinoblastoma.
Collapse
|
37
|
Seredenina T, Demaurex N, Krause KH. Voltage-Gated Proton Channels as Novel Drug Targets: From NADPH Oxidase Regulation to Sperm Biology. Antioxid Redox Signal 2015; 23:490-513. [PMID: 24483328 PMCID: PMC4543398 DOI: 10.1089/ars.2013.5806] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Voltage-gated proton channels are increasingly implicated in cellular proton homeostasis. Proton currents were originally identified in snail neurons less than 40 years ago, and subsequently shown to play an important auxiliary role in the functioning of reactive oxygen species (ROS)-generating nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Molecular identification of voltage-gated proton channels was achieved less than 10 years ago. Interestingly, so far, only one gene coding for voltage-gated proton channels has been identified, namely hydrogen voltage-gated channel 1 (HVCN1), which codes for the HV1 proton channel protein. Over the last years, the first picture of putative physiological functions of HV1 has been emerging. RECENT ADVANCES The best-studied role remains charge and pH compensation during the respiratory burst of the phagocyte NADPH oxidase (NOX). Strong evidence for a role of HV1 is also emerging in sperm biology, but the relationship with the sperm NOX5 remains unclear. Probably in many instances, HV1 functions independently of NOX: for example in snail neurons, basophils, osteoclasts, and cancer cells. CRITICAL ISSUES Generally, ion channels are good drug targets; however, this feature has so far not been exploited for HV1, and hitherto no inhibitors compatible with clinical use exist. However, there are emerging indications for HV1 inhibitors, ranging from diseases with a strong activation of the phagocyte NOX (e.g., stroke) to infertility, osteoporosis, and cancer. FUTURE DIRECTIONS Clinically useful HV1-active drugs should be developed and might become interesting drugs of the future.
Collapse
Affiliation(s)
- Tamara Seredenina
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Nicolas Demaurex
- 2 Department of Cellular Physiology and Metabolism, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland
| | - Karl-Heinz Krause
- 1 Department of Pathology and Immunology, Geneva University Medical Faculty , Centre Médical Universitaire, Geneva, Switzerland .,3 Department of Genetic and Laboratory Medicine, Geneva University Hospitals , Centre Médical Universitaire, Geneva, Switzerland
| |
Collapse
|
38
|
Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 2015; 33:359-70. [PMID: 25804315 DOI: 10.1007/s00774-015-0656-4] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options.
Collapse
Affiliation(s)
- Danielle A Callaway
- Department of Biochemistry, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | | |
Collapse
|
39
|
Chen JR, Lazarenko OP, Blackburn ML, Mercer KE, Badger TM, Ronis MJJ. p47phox-Nox2-dependent ROS Signaling Inhibits Early Bone Development in Mice but Protects against Skeletal Aging. J Biol Chem 2015; 290:14692-704. [PMID: 25922068 DOI: 10.1074/jbc.m114.633461] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Indexed: 01/26/2023] Open
Abstract
Bone remodeling is age-dependently regulated and changes dramatically during the course of development. Progressive accumulation of reactive oxygen species (ROS) has been suspected to be the leading cause of many inflammatory and degenerative diseases, as well as an important factor underlying many effects of aging. In contrast, how reduced ROS signaling regulates inflammation and remodeling in bone remains unknown. Here, we utilized a p47(phox) knock-out mouse model, in which an essential cytosolic co-activator of Nox2 is lost, to characterize bone metabolism at 6 weeks and 2 years of age. Compared with their age-matched wild type controls, loss of Nox2 function in p47(phox-/-) mice resulted in age-related switch of bone mass and strength. Differences in bone mass were associated with increased bone formation in 6-week-old p47(phox-/-) mice but decreased in 2-year-old p47(phox-/-) mice. Despite decreases in ROS generation in bone marrow cells and p47(phox)-Nox2 signaling in osteoblastic cells, 2-year-old p47(phox-/-) mice showed increased senescence-associated secretory phenotype in bone compared with their wild type controls. These in vivo findings were mechanistically recapitulated in ex vivo cell culture of primary fetal calvarial cells from p47(phox-/-) mice. These cells showed accelerated cell senescence pathway accompanied by increased inflammation. These data indicate that the observed age-related switch of bone mass in p47(phox)-deficient mice occurs through an increased inflammatory milieu in bone and that p47(phox)-Nox2-dependent physiological ROS signaling suppresses inflammation in aging.
Collapse
Affiliation(s)
- Jin-Ran Chen
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Oxana P Lazarenko
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Michael L Blackburn
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | | | - Thomas M Badger
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| | - Martin J J Ronis
- From the Arkansas Children's Nutrition Center and the Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202
| |
Collapse
|
40
|
Zhang Z, Zheng L, Zhao Z, Shi J, Wang X, Huang J. Grape seed proanthocyanidins inhibit H2O2-induced osteoblastic MC3T3-E1 cell apoptosis via ameliorating H2O2-induced mitochondrial dysfunction. J Toxicol Sci 2015; 39:803-13. [PMID: 25242411 DOI: 10.2131/jts.39.803] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oxidative stress represents a major cause of cellular damage and death in pathological conditions including osteoporosis, in which oxidative stress is associated with increased bone resorption and low bone mass. And grape seed proanthocyanidins are a group of polyphenolic bioflavonoids which are known to possess broad pharmacological activity and therapeutic potential, exerting a protective role against oxidant injury. The aim of our study was to investigate whether proanthocyanidins exert an anti-apoptosis effect in osteoblastic MC3T3-E1 cells, via their antioxidant activity. Firstly, we determined the anti-apoptosis effect of proanthocyanidins in osteoblastic MC3T3-E1 cells, which were subject to H2O2 treatment, then we determined the association of the antioxidant activity exerted by proanthocyanidins with their anti-apoptosis effect. Results demonstrated that proanthocyanidins inhibit H2O2-promoted apoptosis in MC3T3-E1 cells, via ameliorating the viability of MC3T3-E1 cells post H2O2 treatment and reducing the apoptotic cell numbers. And the proanthocyanidins treatment also ameliorates the H2O2-induced mitochondrial dysfunction via promoting the mitochondrial membrane potential (MMP) and respiratory chain complex IV, and reducing the mitochondrial free radical production, ROS and mitochondrial superoxide. Moreover, the proanthocyanidins inhibit H2O2-induced apoptosis signaling which is mediated by p53. This study implied a possible anti-osteoporosis effect of proanthocyanidins via their antioxidant and anti-apoptosis activity.
Collapse
Affiliation(s)
- Zhifeng Zhang
- Department of Orthopaedics, the Second Affiliated Hospital of Inner Mongolia Medical University, China
| | | | | | | | | | | |
Collapse
|
41
|
Schröder K. NADPH oxidases in bone homeostasis and osteoporosis. Cell Mol Life Sci 2015; 72:25-38. [PMID: 25167924 PMCID: PMC11114015 DOI: 10.1007/s00018-014-1712-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/06/2023]
Abstract
Bone formation and degradation are perfectly coordinated. In case of an imbalance of these processes diseases occur associated with exaggerated formation of new bone or bone loss as in osteoporosis. Most studies investigating osteoporosis either focus on osteoblast or osteoclast function and differentiation. Both processes have been suggested to be affected by reactive oxygen species (ROS). Besides a potentially harmful role of ROS, these small molecules are important second messengers. The family of NADPH oxidases produces ROS in a controlled and targeted manner, to specifically regulate signal transduction. This review will highlight the role of reactive oxygen species in bone cell differentiation and bone-loss associated disease with a special focus on osteoporosis and NADPH oxidases as specialized sources of ROS.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität, Universität Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany,
| |
Collapse
|
42
|
Vlahos R, Selemidis S. NADPH Oxidases as Novel Pharmacologic Targets against Influenza A Virus Infection. Mol Pharmacol 2014; 86:747-59. [DOI: 10.1124/mol.114.095216] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
43
|
Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350432. [PMID: 25121095 PMCID: PMC4119900 DOI: 10.1155/2014/350432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022]
Abstract
The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival.
If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients.
Collapse
|
44
|
Marie PJ. Bone cell senescence: mechanisms and perspectives. J Bone Miner Res 2014; 29:1311-21. [PMID: 24496911 DOI: 10.1002/jbmr.2190] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
Age-related bone loss is in large part the consequence of senescence mechanisms that impact bone cell number and function. In recent years, progress has been made in the understanding of the molecular mechanisms underlying bone cell senescence that contributes to the alteration of skeletal integrity during aging. These mechanisms can be classified as intrinsic senescence processes, alterations in endogenous anabolic factors, and changes in local support. Intrinsic senescence mechanisms cause cellular dysfunctions that are not tissue specific and include telomere shortening, accumulation of oxidative damage, impaired DNA repair, and altered epigenetic mechanisms regulating gene transcription. Aging mechanisms that are more relevant to the bone microenvironment include alterations in the expression and signaling of local growth factors and altered intercellular communications. This review provides an integrated overview of the current concepts and interacting mechanisms underlying bone cell senescence during aging and how they could be targeted to reduce the negative impact of senescence in the aging skeleton.
Collapse
Affiliation(s)
- Pierre J Marie
- Inserm UMR-1132, Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
45
|
Zeng X, Tian J, Cai K, Wu X, Wang Y, Zheng Y, Su Y, Cui L. Promoting osteoblast differentiation by the flavanes from Huangshan Maofeng tea is linked to a reduction of oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:217-24. [PMID: 24075209 DOI: 10.1016/j.phymed.2013.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/24/2013] [Accepted: 08/23/2013] [Indexed: 05/23/2023]
Abstract
Epidemiological evidence has shown an association between tea consumption and the prevention of bone loss in the elderly. Previous studies indicated that green tea exerted osteoprotective effect in vivo. This study aims to investigate the constituents in Huangshan Maofeng tea and systemically evaluate their antioxidative and osteogenic effects in vitro. Five flavanes, isolated from Huangshan Maofeng tea, showed effects on proliferation of osteoblastic cells and ameliorated H2O2-induced C2C12 mouse myoblast cell apoptosis at 3.125-50 μg/ml. (-)-Epicatechin observably increased alkaline phosphatase (ALP) activity and hydroxyproline content. (-)-Epiafzelechin at 25 μg/ml significantly increased the area of mineralized bone nodules. The activities of flavanes in promoting osteblastic proliferation and differentiation are positively correlated with activities in protecting against apoptosis in C2C12 cells. It indicates that anti-osteoporosis effect of these flavanes may be linked to their antioxidative activity. The observed effects of these flavanes suggest that these flavanes may have beneficial effects on bone health.
Collapse
Affiliation(s)
- Xiaobin Zeng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China.
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Kangyong Cai
- Analysis Center of Guangdong Medical College, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Xin Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Yang Wang
- Shenzhen Xinpeng Shengwu Gongcheng Co. Ltd., Shenzhen 518055, Guangdong, China
| | - Yayuan Zheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Yanjie Su
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Department of Pharmacology, Guangdong Medical College, Zhanjiang 524023, Guangdong, China.
| |
Collapse
|
46
|
The phenolics from the roots of Livistona chinensis show antioxidative and obsteoblast differentiation promoting activity. Molecules 2013; 19:263-78. [PMID: 24378966 PMCID: PMC6270904 DOI: 10.3390/molecules19010263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 02/07/2023] Open
Abstract
This study investigated the antioxidative and obsteoblast differentiation promoting activity of the phenolics isolated from the 70% ethanol extract of the roots of Livistona chinensis. Two new phenolics, (2R,3R)-3,5,6,7,3',4'-hexahydroxyflavane (1), and phenanthrene-2,4,9-triol (2), together with six known phenolics 3-8, were isolated and identified on the basis of extensive spectroscopic analysis. The antioxidative and obsteoblast differentiation promoting abilities of the compounds 1-3, 7-8 were tested, the phenolics 1-3, 7 showed effects on proliferation of osteoblastic cells and antioxidative activity of 3.125-50 µg/mL. In addition, the phenolics 1-3 observably increased alkaline phosphatase activity, osteocalcin content and hydroxyproline content in osteoblastic cells. Phenolic 1 at 12.5 µg/mL concentration significantly increased the area of nodules by about 9.35-fold. The antioxidative activity results indicated that the anti-osteoporosis effects of these phenolics may be linked to a reduction of oxidative stress. The observed effects of these phenolics on bone formation by rat osteoblastic cells suggest that these phenolics may have beneficial effects on bone health.
Collapse
|
47
|
Mercer KE, Sims CR, Yang CS, Wynne RA, Moutos C, Hogue WR, Lumpkin CK, Suva LJ, Chen JR, Badger TM, Ronis MJJ. Loss of functional NADPH oxidase 2 protects against alcohol-induced bone resorption in female p47phox-/- mice. Alcohol Clin Exp Res 2013; 38:672-82. [PMID: 24256560 DOI: 10.1111/acer.12305] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND In bone, NADPH oxidase (NOX)-derived reactive oxygen species (ROS) superoxide and/or hydrogen peroxide are an important stimulus for osteoclast differentiation and activity. Previously, we have demonstrated that chronic ethanol (EtOH) consumption generates excess NOX-dependent ROS in osteoblasts, which functions to stimulate nuclear factor kappa-β receptor ligand (RANKL)-RANK signaling, thus increasing osteoclastogenesis and activity. This activity can be blocked by co-administration of EtOH with the pan-NOX inhibitor diphenylene idonium (DPI). METHODS To test whether EtOH-induced bone loss is dependent on a functional NOX2 enzyme, 6-week-old female C57BL/6J-Ncf1/p47phox(-/-) (p47phox KO) and wild-type (WT) mice were pair-fed EtOH diets for 40 days. Bone loss was assessed by 3-point bending, micro-computed tomography and static histomorphometric analysis. Additionally, ST2 cultured cells were co-treated with EtOH and NOX inhibitors, DPI, gliotoxin, and plumbagin, after which changes in ROS production, and in RANKL and NOX mRNA expression were analyzed. RESULTS In WT mice, EtOH treatment significantly reduced bone density and mechanical strength, and increased total osteoclast number and activity. In EtOH-treated p47phox KO mice, bone density and mechanical strength were completely preserved. EtOH p47phox KO mice had no changes in osteoclast numbers or activity, and no elevations in serum CTX or RANKL gene expression (p < 0.05). In both WT and p47phox KO mice, EtOH feeding reduced biochemical markers of bone formation (p < 0.05). In vitro EtOH exposure of ST2 cells increased ROS, which was blocked by pretreating with DPI or the NOX2 inhibitor gliotoxin. EtOH-induced RANKL and NOX2 gene expression were inhibited by the NOX4-specific inhibitor plumbagin. CONCLUSIONS These data suggest that NOX2-derived ROS is necessary for EtOH-induced bone resorption. In osteoblasts, NOX2 and NOX4 appear to work in tandem to increase RANKL expression, whereas EtOH-mediated inhibition of bone formation occurs via a NOX2-independent mechanism.
Collapse
Affiliation(s)
- Kelly E Mercer
- Department of Pediatrics, Center for Orthopaedic Research at the University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Venditti P, Di Stefano L, Di Meo S. Vitamin E management of oxidative damage-linked dysfunctions of hyperthyroid tissues. Cell Mol Life Sci 2013; 70:3125-44. [PMID: 23255045 PMCID: PMC11114018 DOI: 10.1007/s00018-012-1217-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/15/2012] [Accepted: 11/19/2012] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Thyroid hormones affect growth, development, and metabolism of vertebrates, and are considered the major regulators of their homeostasis. On the other hand, elevated circulating levels of thyroid hormones are associated with modifications in the whole organism (weight loss and increased metabolism and temperature) and in several body regions. Indeed, tachycardia, atrial arrhythmias, heart failure, muscle weakness and wasting, bone mass loss, and hepatobiliary complications are commonly found in hyperthyroid animals and humans. RESULTS Most thyroid hormone actions result from influences on transcription of T3-responsive genes, which are mediated through nuclear receptors. However, there is significant evidence that tissue oxidative stress underlies some dysfunctions produced by hyperthyroidism. DISCUSSION During the last decades, increasing interest has been turned to the use of antioxidants as therapeutic agents in various diseases and pathophysiological disorders believed to be mediated by oxidative stress. In particular, because elevated circulating levels of thyroid hormones are associated with tissue oxidative injury, more attention has been paid to explore the application of antioxidants as therapeutic agents in thyroid related disorders. CONCLUSIONS At present, vitamin E is among the most commonly consumed dietary supplements due to the belief that it, as an antioxidant, may attenuate morbidity and mortality. This is due to the results of numerous scientific studies, which demonstrate that vitamin E has a primary function to destroy peroxyl radicals, thus protecting polyunsaturated fatty acids biological membranes from oxidative damage. However, results are also available indicating that protective vitamin E effects against oxidative damage can be obtained even through different mechanisms.
Collapse
Affiliation(s)
- Paola Venditti
- Dipartimento delle Scienze Biologiche, Sezione di Fisiologia, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy.
| | | | | |
Collapse
|
49
|
Paletta-Silva R, Rocco-Machado N, Meyer-Fernandes JR. NADPH oxidase biology and the regulation of tyrosine kinase receptor signaling and cancer drug cytotoxicity. Int J Mol Sci 2013; 14:3683-704. [PMID: 23434665 PMCID: PMC3588065 DOI: 10.3390/ijms14023683] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 12/15/2022] Open
Abstract
The outdated idea that reactive oxygen species (ROS) are only dangerous products of cellular metabolism, causing toxic and mutagenic effects on cellular components, is being replaced by the view that ROS have several important functions in cell signaling. In aerobic organisms, ROS can be generated from different sources, including the mitochondrial electron transport chain, xanthine oxidase, myeloperoxidase, and lipoxygenase, but the only enzyme family that produces ROS as its main product is the NADPH oxidase family (NOX enzymes). These transfer electrons from NADPH (converting it to NADP-) to oxygen to make O(2)•-. Due to their stability, the products of NADPH oxidase, hydrogen peroxide, and superoxide are considered the most favorable ROS to act as signaling molecules. Transcription factors that regulate gene expression involved in carcinogenesis are modulated by NADPH oxidase, and it has emerged as a promising target for cancer therapies. The present review discusses the mechanisms by which NADPH oxidase regulates signal transduction pathways in view of tyrosine kinase receptors, which are pivotal to regulating the hallmarks of cancer, and how ROS mediate the cytotoxicity of several cancer drugs employed in clinical practice.
Collapse
Affiliation(s)
- Rafael Paletta-Silva
- Clinical Research Coordination, Nacional Institute of Cancer (INCA), André Cavalcanti Street, 37, Rio de Janeiro, RJ 20231-050, Brazil
| | - Nathália Rocco-Machado
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| | - José Roberto Meyer-Fernandes
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro (UFRJ), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
- Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), CCS, Bloco H, University City, Fundão Island, Rio de Janeiro, RJ 21941-590, Brazil
| |
Collapse
|
50
|
Shen CL, von Bergen V, Chyu MC, Jenkins MR, Mo H, Chen CH, Kwun IS. Fruits and dietary phytochemicals in bone protection. Nutr Res 2012; 32:897-910. [DOI: 10.1016/j.nutres.2012.09.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 12/13/2022]
|