1
|
Tiam1 is Critical for Glutamatergic Synapse Structure and Function in the Hippocampus. J Neurosci 2019; 39:9306-9315. [PMID: 31597723 DOI: 10.1523/jneurosci.1566-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests numerous glutamatergic synapse subtypes exist in the brain, and that these subtypes are likely defined by unique molecular regulatory mechanisms. Recent work has identified substantial divergence of molecular composition between commonly studied Schaffer collateral synapses and perforant path-dentate gyrus (DG) synapses of the hippocampus. However, little is known about the molecular mechanisms that may confer unique properties to perforant path-DG synapses. Here we investigate whether the RhoGEF (Rho guanine-nucleotide exchange factor) protein Tiam1 plays a unique role in the regulation of glutamatergic synapses in dentate granule neurons using a combination of molecular, electrophysiological, and imaging approaches in rat entorhino-hippocampal slices of both sexes. We find that inhibition of Tiam1 function in dentate granule neurons reduces synaptic AMPA receptor function and causes dendritic spines to adopt an elongated filopodia-like morphology. We also find that Tiam1's support of perforant path-DG synapse function is dependent on its GEF domain and identify a potential role for the auto-inhibitory PH domain of Tiam1 in regulating Tiam1 function at these synapses. In marked contrast, reduced Tiam1 expression in CA1 pyramidal neurons produced no effect on glutamatergic synapse development. Together, these data identify a critical role for Tiam1 in the hippocampus and reveal a unique Tiam1-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons.SIGNIFICANCE STATEMENT Several lines of evidence independently point to the molecular diversity of glutamatergic synapses in the brain. Rho guanine-nucleotide exchange factor (RhoGEF) proteins as powerful modulators of glutamatergic synapse function have also become increasingly appreciated in recent years. Here we investigate the synaptic regulatory role of the RhoGEF protein Tiam1, whose expression appears to be remarkably enriched in granule neurons of the dentate gyrus. We find that Tiam1 plays a critical role in the development of glutamatergic perforant path-dentate gyrus synapses, but not in commonly studied in Schaffer collateral-CA1 synapses. Together, these data reveal a unique RhoGEF-mediated molecular program of glutamatergic synapse regulation in dentate granule neurons.
Collapse
|
2
|
Liu Y, Wang X, Jiang X, Yan P, Zhan L, Zhu H, Wang T, Wen J. Tumor-suppressive microRNA-10a inhibits cell proliferation and metastasis by targeting Tiam1 in esophageal squamous cell carcinoma. J Cell Biochem 2019; 120:7845-7857. [PMID: 30426564 DOI: 10.1002/jcb.28059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Aberrant microRNAs (miRNAs) expressions could contribute to the progression of numerous cancers, including esophageal squamous cell carcinoma, while miR-10a participates in multiple biological processes on cancers. However, the molecular mechanism of miR-10a in esophageal squamous cell carcinoma (ESCC) has not been investigated. Herein, miR-10a was significantly reduced in ESCC clinical tissues and ESCC cell lines (EC109 and TE-3). In addition, immunohistochemistry indicated that the expressions of α-SMA, Ki-67, and PCNA in tumor tissues were higher than that of controls. In vitro, overexpression of miR-10a dramatically suppressed cell proliferation and enhanced cell apoptosis, while the decrease of miR-10a expressed the opposite outcome. Specially, overexpression of miR-10a caused a G0/G1 peak accumulation. Moreover, miR-10a also negatively regulated ESCC cell migration and invasion. Furthermore, targetscan bioinformatics predictions and the dual-luciferase assay confirmed that Tiam1 was a direct target gene of miR-10a. The statistical analysis showed Tiam1 was negatively in correlation with miR-10a in ESCC patient samples. And silencing Tiam1 could lead to a decline on cell growth, invasion, and migration in ESCC cell lines, while it could enhance cell apoptosis and cause a G0/G1 peak accumulation. In vivo, it revealed that miR-10a notably decreased the tumor growth and metastasis in xenograft model and pulmonary metastasis model. And it showed a lower expressions of Tiam1 in the miR-10a mimics group by immunohistochemistry. Taken together the results, they indicated that miR-10a might function as a novel tumor suppressor in vitro and in vivo via targeting Tiam1, suggesting miR-10a to be a candidate biomarker for the ESCC therapy.
Collapse
Affiliation(s)
- Yatian Liu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Wang
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesong Jiang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengwei Yan
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanfeng Zhu
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tingting Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Wen
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Hobbs GA, Mitchell LE, Arrington ME, Gunawardena HP, DeCristo MJ, Loeser RF, Chen X, Cox AD, Campbell SL. Redox regulation of Rac1 by thiol oxidation. Free Radic Biol Med 2015; 79:237-50. [PMID: 25289457 PMCID: PMC4708892 DOI: 10.1016/j.freeradbiomed.2014.09.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/24/2023]
Abstract
The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys(18)) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys(18) by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1(C18D). We also evaluated Rac1(C18S) as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1(WT) but is resistant to thiol oxidation. In addition, Rac1(C18D), but not Rac1(C18S), shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1(C18D) in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1(C18D) in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1(WT) and the redox-insensitive Rac1(C18S) variant. Moreover, expression of Rac1(C18D) in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys(18) is a novel posttranslational modification that upregulates Rac1 activity.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Lauren E Mitchell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260
| | - Megan E Arrington
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260; Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Harsha P Gunawardena
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260; Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Molly J DeCristo
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365
| | - Richard F Loeser
- Department of Medicine and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC 27599-7280
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260; Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295; Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC 27599-7512
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295.
| |
Collapse
|
4
|
The guanine nucleotide exchange factor Tiam1: A Janus-faced molecule in cellular signaling. Cell Signal 2014; 26:483-91. [DOI: 10.1016/j.cellsig.2013.11.034] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 11/22/2022]
|
5
|
Uptake of advanced glycation end products by proximal tubule epithelial cells via macropinocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2922-2932. [DOI: 10.1016/j.bbamcr.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 11/15/2022]
|
6
|
Subramanian N, Navaneethakrishnan S, Biswas J, Kanwar RK, Kanwar JR, Krishnakumar S. RNAi mediated Tiam1 gene knockdown inhibits invasion of retinoblastoma. PLoS One 2013; 8:e70422. [PMID: 23950931 PMCID: PMC3737373 DOI: 10.1371/journal.pone.0070422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022] Open
Abstract
T lymphoma invasion and metastasis protein (Tiam1) is up-regulated in variety of cancers and its expression level is related to metastatic potential of the type of cancer. Earlier, Tiam1 was shown to be overexpressed in retinoblastoma (RB) and we hypothesized that it was involved in invasiveness of RB. This was tested by silencing Tiam1 in RB cell lines (Y79 and Weri-Rb1) using siRNA pool, targeting different regions of Tiam1 mRNA. The cDNA microarray of Tiam1 silenced cells showed gene regulations altered by Tiam1 were predominantly on the actin cytoskeleton interacting proteins, apoptotic initiators and tumorogenic potential targets. The silenced phenotype resulted in decreased growth and increased apoptosis with non-invasive characteristics. Transfection of full length and N-terminal truncated construct (C1199) clearly revealed membrane localization of Tiam1 and not in the case of C580 construct. F-actin staining showed the interaction of Tiam1 with actin in the membrane edges that leads to ruffling, and also imparts varying invasive potential to the cell. The results obtained from our study show for the first time that Tiam1 modulates the cell invasion, mediated by actin cytoskeleton remodeling in RB.
Collapse
Affiliation(s)
- Nithya Subramanian
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
| | - Saranya Navaneethakrishnan
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jyotirmay Biswas
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rupinder K. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
| | - Jagat R. Kanwar
- Nanomedicine Laboratory of Immunology and Molecular Biomedical Research (N-LIMBR), School of Medicine (SoM), Molecular and Medical Research (MMR) Strategic Research Centre, Faculty of Health, Deakin University, Geelong Technology Precinct (GTP), Geelong, Victoria, Australia
- * E-mail: (SK); (JRK)
| | - Subramanian Krishnakumar
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- * E-mail: (SK); (JRK)
| |
Collapse
|
7
|
Chiu TT, Sun Y, Koshkina A, Klip A. Rac-1 superactivation triggers insulin-independent glucose transporter 4 (GLUT4) translocation that bypasses signaling defects exerted by c-Jun N-terminal kinase (JNK)- and ceramide-induced insulin resistance. J Biol Chem 2013; 288:17520-31. [PMID: 23640896 DOI: 10.1074/jbc.m113.467647] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insulin activates a cascade of signaling molecules, including Rac-1, Akt, and AS160, to promote the net gain of glucose transporter 4 (GLUT4) at the plasma membrane of muscle cells. Interestingly, constitutively active Rac-1 expression results in a hormone-independent increase in surface GLUT4; however, the molecular mechanism and significance behind this effect remain unresolved. Using L6 myoblasts stably expressing myc-tagged GLUT4, we found that overexpression of constitutively active but not wild-type Rac-1 sufficed to drive GLUT4 translocation to the membrane of comparable magnitude with that elicited by insulin. Stimulation of endogenous Rac-1 by Tiam1 overexpression elicited a similar hormone-independent gain in surface GLUT4. This effect on GLUT4 traffic could also be reproduced by acutely activating a Rac-1 construct via rapamycin-mediated heterodimerization. Strategies triggering Rac-1 "superactivation" (i.e. to levels above those attained by insulin alone) produced a modest gain in plasma membrane phosphatidylinositol 3,4,5-trisphosphate, moderate Akt activation, and substantial AS160 phosphorylation, which translated into GLUT4 translocation and negated the requirement for IRS-1. This unique signaling capacity exerted by Rac-1 superactivation bypassed the defects imposed by JNK- and ceramide-induced insulin resistance and allowed full and partial restoration of the GLUT4 translocation response, respectively. We propose that potent elevation of Rac-1 activation alone suffices to drive insulin-independent GLUT4 translocation in muscle cells, and such a strategy might be exploited to bypass signaling defects during insulin resistance.
Collapse
Affiliation(s)
- Tim Ting Chiu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
8
|
Henríquez DR, Bodaleo FJ, Montenegro-Venegas C, González-Billault C. The light chain 1 subunit of the microtubule-associated protein 1B (MAP1B) is responsible for Tiam1 binding and Rac1 activation in neuronal cells. PLoS One 2012; 7:e53123. [PMID: 23300879 PMCID: PMC3531375 DOI: 10.1371/journal.pone.0053123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/27/2012] [Indexed: 12/01/2022] Open
Abstract
Microtubule-associated protein 1B (MAP1B) is a neuronal protein involved in the stabilization of microtubules both in the axon and somatodendritic compartments. Acute, genetic inactivation of MAP1B leads to delayed axonal outgrowth, most likely due to changes in the post-translational modification of tubulin subunits, which enhances microtubule polymerization. Furthermore, MAP1B deficiency is accompanied by abnormal actin microfilament polymerization and dramatic changes in the activity of small GTPases controlling the actin cytoskeleton. In this work, we showed that MAP1B interacts with a guanine exchange factor, termed Tiam1, which specifically activates Rac1. These proteins co-segregated in neurons, and interact in both heterologous expression systems and primary neurons. We dissected the molecular domains involved in the MAP1B-Tiam1 interaction, and demonstrated that pleckstrin homology (PH) domains in Tiam1 are responsible for MAP1B binding. Interestingly, only the light chain 1 (LC1) of MAP1B was able to interact with Tiam1. Moreover, it was able to increase the activity of the small GTPase, Rac1. These results suggest that the interaction between Tiam1 and MAP1B, is produced by the binding of LC1 with PH domains in Tiam1. The formation of such a complex impacts on the activation levels of Rac1 confirming a novel function of MAP1B related with the control of small GTPases. These results also support the idea of cross-talk between cytoskeleton compartments inside neuronal cells.
Collapse
Affiliation(s)
- Daniel R Henríquez
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
9
|
Regulation of Drosophila mesoderm migration by phosphoinositides and the PH domain of the Rho GTP exchange factor Pebble. Dev Biol 2012; 372:17-27. [PMID: 23000359 DOI: 10.1016/j.ydbio.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 08/20/2012] [Accepted: 09/13/2012] [Indexed: 11/27/2022]
Abstract
The Drosophila RhoGEF Pebble (Pbl) is required for cytokinesis and migration of mesodermal cells. In a screen for genes that could suppress migration defects in pbl mutants we identified the phosphatidylinositol phosphate (PtdInsP) regulator pi5k59B. Genetic interaction tests with other PtdInsP regulators suggested that PtdIns(4,5)P2 levels are important for mesoderm migration when Pbl is depleted. Consistent with this, the leading front of migrating mesodermal cells was enriched for PtdIns(4,5)P2. Given that Pbl contains a Pleckstrin Homology (PH) domain, a known PtdInsP-binding motif, we examined PtdInsP-binding of Pbl and the importance of the PH domain for Pbl function. In vitro lipid blot assays showed that Pbl binds promiscuously to PtdInsPs, with binding strength associated with the degree of phosphorylation. Pbl was also able to bind lipid vesicles containing PtdIns(4,5)P2 but binding was strongly reduced upon deletion of the PH domain. Similarly, in vivo, loss of the PH domain prevented localisation of Pbl to the cell cortex and severely affected several aspects of early mesoderm development, including flattening of the invaginated tube onto the ectoderm, extension of protrusions, and dorsal migration to form a monolayer. Pbl lacking the PH domain could still localise to the cytokinetic furrow, however, and cytokinesis failure was reduced in pbl(ΔPH) mutants. Taken together, our results support a model in which interaction of the PH-domain of Pbl with PtdIns(4,5)P2 helps localise it to the plasma membrane which is important for mesoderm migration.
Collapse
|
10
|
van Rahden VA, Brand K, Najm J, Heeren J, Pfeffer SR, Braulke T, Kutsche K. The 5-phosphatase OCRL mediates retrograde transport of the mannose 6-phosphate receptor by regulating a Rac1-cofilin signalling module. Hum Mol Genet 2012; 21:5019-38. [PMID: 22907655 DOI: 10.1093/hmg/dds343] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mutations in the OCRL gene encoding the phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) 5-phosphatase OCRL cause Lowe syndrome (LS), which is characterized by intellectual disability, cataracts and selective proximal tubulopathy. OCRL localizes membrane-bound compartments and is implicated in intracellular transport. Comprehensive analysis of clathrin-mediated endocytosis in fibroblasts of patients with LS did not reveal any difference in trafficking of epidermal growth factor, low density lipoprotein or transferrin, compared with normal fibroblasts. However, LS fibroblasts displayed reduced mannose 6-phosphate receptor (MPR)-mediated re-uptake of the lysosomal enzyme arylsulfatase B. In addition, endosome-to-trans Golgi network (TGN) transport of MPRs was decreased significantly, leading to higher levels of cell surface MPRs and their enrichment in enlarged, retromer-positive endosomes in OCRL-depleted HeLa cells. In line with the higher steady-state concentration of MPRs in the endosomal compartment in equilibrium with the cell surface, anterograde transport of the lysosomal enzyme, cathepsin D was impaired. Wild-type OCRL counteracted accumulation of MPR in endosomes in an activity-dependent manner, suggesting that PI(4,5)P(2) modulates the activity state of proteins regulated by this phosphoinositide. Indeed, we detected an increased amount of the inactive, phosphorylated form of cofilin and lower levels of the active form of PAK3 upon OCRL depletion. Levels of active Rac1 and RhoA were reduced or enhanced, respectively. Overexpression of Rac1 rescued both enhanced levels of phosphorylated cofilin and MPR accumulation in enlarged endosomes. Our data suggest that PI(4,5)P(2) dephosphorylation through OCRL regulates a Rac1-cofilin signalling cascade implicated in MPR trafficking from endosomes to the TGN.
Collapse
Affiliation(s)
- Vanessa A van Rahden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling. Cell Res 2012; 22:1479-501. [PMID: 22825554 PMCID: PMC3463263 DOI: 10.1038/cr.2012.110] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1.
Collapse
|
12
|
Viaud J, Gaits-Iacovoni F, Payrastre B. Regulation of the DH-PH tandem of guanine nucleotide exchange factor for Rho GTPases by phosphoinositides. Adv Biol Regul 2012; 52:303-14. [PMID: 22781744 DOI: 10.1016/j.jbior.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
Rho GTPases act as molecular switches central in cellular processes such as cytoskeleton dynamics, migration, cell proliferation, growth or survival. Their activation is tightly regulated downstream of cell surface receptors by Guanine nucleotide Exchange Factors (GEFs), that are responsible for the specificity, the accuracy, and the spatial restriction of Rho GTPases response to extracellular cues. Because there is about four time more RhoGEFs that Rho GTPases, and GEFs do not always show a strict specificity for GTPases, it is clear that their regulation depends on specific interactions with the subcellular environment. RhoGEFs bear a peculiar structure, highly conserved though evolution, consisting of a DH-PH tandem, the DH (Dbl homology) domain being responsible for the exchange activity. The function of the PH (Pleckstrin homology) domain known to bind phosphoinositides, however, remains elusive, and reports are in many cases rather confusing. This review summarizes data on the regulation of RhoGEFs activity through interaction of the PH-associated DH domain with phosphoinositides which are considered as critical players in the spatial organization of major signaling pathways.
Collapse
Affiliation(s)
- Julien Viaud
- INSERM, UMR1048, Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France
| | | | | |
Collapse
|
13
|
Johnson JL, Erickson JW, Cerione RA. C-terminal di-arginine motif of Cdc42 protein is essential for binding to phosphatidylinositol 4,5-bisphosphate-containing membranes and inducing cellular transformation. J Biol Chem 2012; 287:5764-74. [PMID: 22215673 DOI: 10.1074/jbc.m111.336487] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases regulate a diverse range of processes that are dependent on their proper cellular localization. The membrane localization of these GTPases is due in large part to their carboxyl-terminal geranylgeranyl moiety. In addition, most of the Rho family members contain a cluster of positively charged residues (i.e. a "polybasic domain"), directly preceding their geranylgeranyl moiety, and it has been suggested that this domain serves to fine-tune their localization among different cellular membrane sites. Here, we have taken a closer look at the role of the polybasic domain of Cdc42 in its ability to bind to membranes and induce the transformation of fibroblasts. A FRET assay for the binding of Cdc42 to liposomes of defined composition showed that Cdc42 associates more strongly with liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) when compared either with uncharged control membranes or with liposomes containing a charge-equivalent amount of phosphatidylserine. The carboxyl-terminal di-arginine motif (Arg-186 and Arg-187) was shown to play an essential role in the binding of Cdc42 to PIP(2)-containing membranes. We further showed that substitutions for the di-arginine motif, when introduced within a constitutively active ("fast cycling") Cdc42(F28L) background, had little effect on the ability of the activated Cdc42 mutant to induce microspikes/filopodia in NIH 3T3 cells, whereas they eliminated its ability to transform fibroblasts. Taken together, these findings suggest that the di-arginine motif within the carboxyl terminus of Cdc42 is necessary for this GTPase to bind at membrane sites containing PIP(2), where it can initiate signaling activities that are essential for the oncogenic transformation of cells.
Collapse
Affiliation(s)
- Jared L Johnson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
14
|
|
15
|
Huynh C, Ren G, Papillon J, Guillemette J, Takano T, Cybulsky AV. The cytoprotective role of Ras in complement-mediated glomerular epithelial cell injury. Clin Immunol 2009; 131:343-53. [DOI: 10.1016/j.clim.2008.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/24/2008] [Accepted: 11/24/2008] [Indexed: 11/16/2022]
|
16
|
Strumane K, Song JY, Baas I, Collard JG. Increased Rac activity is required for the progression of T-lymphomas induced by Pten-deficiency. Leuk Res 2008; 32:113-20. [PMID: 17521720 DOI: 10.1016/j.leukres.2007.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 01/30/2007] [Accepted: 03/30/2007] [Indexed: 10/23/2022]
Abstract
Mutation of the tumor suppressor PTEN results in loss of its PI3-kinase counteracting function. PI3-kinase stimulates tumor formation by PKB/Akt-mediated cell proliferation and prevention of apoptosis. PI3-kinase may also activate Rho-GTPases and their regulatory GEFs to promote invasion. Here we have analyzed the function of the Rac-specific activator, Tiam1, in PI3-kinase-induced T-lymphomagenesis. Mice with a T cell-specific Pten deletion developed T-lymphomas with enhanced PKB/Akt phosphorylation. However, these T-lymphomas infiltrated more frequently into various organs in Tiam1-deficient mice compared to wild type mice. Surprisingly, Tiam1-deficient lymphomas showed increased Rac activity, suggesting that the lack of Tiam1 is compensated by alternative Rac-activating mechanisms that lead to increased progression of PI3-kinase-induced T-lymphomas.
Collapse
Affiliation(s)
- Kristin Strumane
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL. Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. ACTA ACUST UNITED AC 2007; 179:403-10. [PMID: 17984318 PMCID: PMC2064788 DOI: 10.1083/jcb.200704169] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fundamental feature of cell polarity in response to spatial cues is asymmetric amplification of molecules generated by positive feedback signaling. We report a positive feedback loop between the guanosine triphosphatase Cdc42, a central determinant in eukaryotic cell polarity, and H+ efflux by Na-H+ exchanger 1 (NHE1), which is necessary at the front of migrating cells for polarity and directional motility. In response to migratory cues, Cdc42 is not activated in fibroblasts expressing a mutant NHE1 that lacks H+ efflux, and wild-type NHE1 is not activated in fibroblasts expressing mutationally inactive Cdc42-N17. H+ efflux by NHE1 is not necessary for release of Cdc42–guanosine diphosphate (GDP) from Rho GDP dissociation inhibitor or for the membrane recruitment of Cdc42 but is required for GTP binding by Cdc42 catalyzed by a guanine nucleotide exchange factor (GEF). Data indicate that GEF binding to phosphotidylinositol 4,5–bisphosphate is pH dependent, suggesting a mechanism for how H+ efflux by NHE1 promotes Cdc42 activity to generate a positive feedback signal necessary for polarity in migrating cells.
Collapse
Affiliation(s)
- Christian Frantz
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
18
|
Schiller MR. Coupling receptor tyrosine kinases to Rho GTPases--GEFs what's the link. Cell Signal 2006; 18:1834-43. [PMID: 16725310 DOI: 10.1016/j.cellsig.2006.01.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 01/19/2006] [Accepted: 04/07/2006] [Indexed: 12/20/2022]
Abstract
Rho GTPases are molecular switches involved in the regulation of many cellular processes. This review summarizes work examining how stimulation of receptor tyrosine kinases (RTKs) leads to the activation of Rho guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. The collective findings strongly suggest that RTK signaling to Rho proteins is a general signal transduction mechanism, like RTK mediated activation of phosphatidyl inositol 3-kinase, phospholipase Cgamma, and the mitogen activated protein kinase (MAPK) pathway. More than half of the 58 known human RTKs activate at least one Rho family member. Likewise, 16 Rho GEFs directly interact with and/or are phosphorylated by a RTK. The specificity of receptor tyrosine kinase/Rho GEF signaling seems to be somewhat promiscuous. There several cases where multiple RTKs activate the same Rho GEF and where a single RTK can activate multiple Rho GEFs. Expression analysis indicates that the average human tissue contains transcripts for 33 RTKs, 34 Rho GEFs, and 14 Rho GTPases with each tissue containing a unique complement of these proteins. Given the promiscuity of RTKs for Rho GEFs, Rho GEFs for Rho GTPases, and the large number of these proteins expressed in cells, a complex combinatorial network of proteins in these families may contribute to coding specific signals and cell responses from RTKs.
Collapse
Affiliation(s)
- Martin R Schiller
- Department of Neuroscience and Partnership for Excellence in Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-4301, USA.
| |
Collapse
|
19
|
Mahlert M, Leveleki L, Hlubek A, Sandrock B, Bölker M. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol 2006; 59:567-78. [PMID: 16390450 DOI: 10.1111/j.1365-2958.2005.04952.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small GTP-binding proteins of the highly conserved Rho family act as molecular switches regulating cell signalling, cytoskeletal organization and vesicle trafficking in eukaryotic cells. Here we show that in the dimorphic plant pathogenic fungus Ustilago maydis deletion of either cdc42 or rac1 results in loss of virulence but does not interfere with viability. Cells deleted for cdc42 display a cell separation defect during budding. We have previously shown that the Rho-specific guanine nucleotide exchange factor (GEF) Don1 is required for cell separation in U. maydis. Expression of constitutive active Cdc42 rescues the phenotype of don1 mutant cells indicating that Don1 triggers cell separation by activating Cdc42. Deletion of rac1 affects cellular morphology and interferes with hyphal growth, whereas overexpression of wild-type Rac1 induces filament formation in haploid cells. This indicates that Rac1 is both necessary and sufficient for the dimorphic switch from budding to hyphal growth. Cdc42 and Rac1 share at least one common essential function because depletion of both Rac1 and Cdc42 is lethal. Expression of constitutively active Rac1(Q61L) is lethal and results in swollen cells with a large vacuole. The morphological phenotype, but not lethality is suppressed in cla4 mutant cells suggesting that the PAK family kinase Cla4 acts as a downstream effector of Rac1.
Collapse
Affiliation(s)
- Michael Mahlert
- Philipps-Universität Marburg, Fachbereich Biologie, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW. Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. J Biol Chem 2006; 281:18774-86. [PMID: 16644733 DOI: 10.1074/jbc.m512482200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoGEFs are central controllers of small G-proteins in cells and are regulated by several mechanisms. There are at least 22 human RhoGEFs that contain SH3 domains, raising the possibility that, like several other enzymes, SH3 domains control the enzymatic activity of guanine nucleotide exchange factor (GEF) domains through intra- and/or intermolecular interactions. The structure of the N-terminal SH3 domain of Kalirin was solved using NMR spectroscopy, and it folds much like other SH3 domains. However, NMR chemical shift mapping experiments showed that this Kalirin SH3 domain is unique, containing novel cooperative binding site(s) for intramolecular PXXP ligands. Intramolecular Kalirin SH3 domain/ligand interactions, as well as binding of the Kalirin SH3 domain to the adaptor protein Crk, inhibit the GEF activity of Kalirin. This study establishes a novel molecular mechanism whereby intramolecular and intermolecular Kalirin SH3 domain/ligand interactions modulate GEF activity, a regulatory mechanism that is likely used by other RhoGEF family members.
Collapse
Affiliation(s)
- Martin R Schiller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06019-4301, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Joseph RE, Norris FA. Substrate Specificity and Recognition Is Conferred by the Pleckstrin Homology Domain of the Dbl Family Guanine Nucleotide Exchange Factor P-Rex2. J Biol Chem 2005; 280:27508-12. [PMID: 15897194 DOI: 10.1074/jbc.m412495200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl family guanine nucleotide exchange factors (GEFs) are characterized by the presence of a catalytic Dbl homology domain followed invariably by a lipid-binding pleckstrin homology (PH) domain. To date, substrate recognition and specificity of this family of GEFs has been reported to be mediated exclusively via the Dbl homology domain. Here we report the novel and unexpected finding that, in the Dbl family Rac-specific GEF P-Rex2, it is the PH domain that confers substrate specificity and recognition. Moreover, the beta3beta4 loop of the PH domain of P-Rex2 is the determinant for Rac1 recognition, as substitution of the beta3beta4 loop of the PH domain of Dbs (a RhoA- and Cdc42-specific GEF) with that of P-Rex2 confers Rac1-specific binding capability to the PH domain of Dbs. The contact interface between the PH domain of P-Rex2 and Rac1 involves the switch loop and helix 3 of Rac1. Moreover, substitution of helix 3 of Cdc42 with that of Rac1 now enables the PH domain of P-Rex2 to bind this Cdc42 chimera. Despite having the ability to recognize this chimeric Cdc42, P-Rex2 is unable to catalyze nucleotide exchange on Cdc42, suggesting that recognition of substrate and catalysis are two distinct events. Thus substrate recognition can now be added to the growing list of functions that are being attributed to the PH domain of Dbl family GEFs.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
22
|
Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6:167-80. [PMID: 15688002 DOI: 10.1038/nrm1587] [Citation(s) in RCA: 1347] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Guanine nucleotide-exchange factors (GEFs) are directly responsible for the activation of Rho-family GTPases in response to diverse extracellular stimuli, and ultimately regulate numerous cellular responses such as proliferation, differentiation and movement. With 69 distinct homologues, Dbl-related GEFs represent the largest family of direct activators of Rho GTPases in humans, and they activate Rho GTPases within particular spatio-temporal contexts. The failure to do so can have significant consequences and is reflected in the aberrant function of Dbl-family GEFs in some human diseases.
Collapse
Affiliation(s)
- Kent L Rossman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
23
|
Liu L, Wu DH, Ding YQ. Tiam1 gene expression and its significance in colorectal carcinoma. World J Gastroenterol 2005; 11:705-7. [PMID: 15655826 PMCID: PMC4250743 DOI: 10.3748/wjg.v11.i5.705] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Revised: 02/17/2004] [Accepted: 03/02/2004] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the expression of Tiam1 gene in colorectal carcinoma and its correlation with tumor metastasis. METHODS Expressions of Tiam1 gene in 8 colorectal carcinoma cell lines were detected by reverse transcriptase-polymerase chain reaction. In vitro invasiveness was determined by means of Matrigel invasion assay. The correlation of Tiam1 expression with the invasive ability was also analyzed. RESULTS Tiam1 gene was highly expressed in LoVo and SW620, which were established from metastatic colorectal carcinomas in comparison with LS174T, SW480, HCT116, LST, HRT-18 and Hee8693, which were established from primary colorectal carcinomas. In vitro cell invasion demonstrated that LoVo and SW620 had a higher invasive ability than LS174T, SW480, HCT116, LST, HRT-18 and Hee8693. The expression of Tiam1 gene was highly related to the metastatic potential of colorectal carcinoma cells. CONCLUSION Tiam1 gene may play an important role in invasion and metastasis of colorectal carcinoma and is a metastasis-related gene.
Collapse
Affiliation(s)
- Li Liu
- Department of Pathology, First Military Medical University, Guangzhou 510515, Guangdong Province, China
| | | | | |
Collapse
|
24
|
Minard ME, Kim LS, Price JE, Gallick GE. The role of the guanine nucleotide exchange factor Tiam1 in cellular migration, invasion, adhesion and tumor progression. Breast Cancer Res Treat 2004; 84:21-32. [PMID: 14999151 DOI: 10.1023/b:brea.0000018421.31632.e6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While advances in molecular genetics have provided new insights into molecular alterations that lead to the development of many tumors, including breast carcinoma, the genetic and epigenetic alterations that result in metastatic spread of the disease, from which afflicted patients ultimately succumb, are much more poorly understood. Important biologic processes in the development of metastasis include increased migration and invasion of tumor cells. While the regulation of these processes is complex, they are controlled in part by small G proteins of the Rho family, including Rho, Rac, and Cdc42, that are involved in cytoskeletal organization. These proteins, active when bound to GTP, are, in turn, regulated by guanine nucleotide exchange factors (GNEFs) and guanine nucleotide activating proteins. The GNEF Tiam1 catalyzes nucleotide exchange for Rac in vivo, and Rac, Cdc42 and Rho in vitro. Tiam1 was identified first in 1994 by in vitro selection for invasiveness in T-lymphoma cells. Accordingly, Tiam1 has been shown to increase invasion in T-lymphoma cells, as well as to increase cellular migration in fibroblasts, and to promote motility in some neuronal cells. In contrast, Tiam1 has been demonstrated to increase cellular adhesion in some epithelial cell populations. Thus, Tiam1 has multiple roles in regulating cellular functions, likely dependent on the cell type, the substratum, transformation status of the cells, and the activation state of small G proteins in a given cell. Increasing evidence has focused on Tiam1's regulation, as well as Tiam1's role in cancer progression and metastasis. Recent results from other laboratories and ours have demonstrated that increased Tiam1 expression correlates with grade of breast cancer in humans and metastatic potential of human breast carcinoma cell lines in nude mice. This review will discuss Tiam1's cellular functions and methods of regulation, and will highlight Tiam1's contribution to cancer progression and metastasis.
Collapse
Affiliation(s)
- Meghan E Minard
- Department of Cancer Biology, The University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
25
|
Worthylake DK, Rossman KL, Sondek J. Crystal Structure of the DH/PH Fragment of Dbs without Bound GTPase. Structure 2004; 12:1078-86. [PMID: 15274927 DOI: 10.1016/j.str.2004.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/17/2022]
Abstract
Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.
Collapse
Affiliation(s)
- David K Worthylake
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
26
|
Cheng L, Mahon GM, Kostenko EV, Whitehead IP. Pleckstrin Homology Domain-mediated Activation of the Rho-specific Guanine Nucleotide Exchange Factor Dbs by Rac1. J Biol Chem 2004; 279:12786-93. [PMID: 14701795 DOI: 10.1074/jbc.m313099200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dbs is a Rho-specific guanine nucleotide exchange factor that was identified in a screen for proteins whose expression causes deregulated growth in NIH 3T3 mouse fibroblasts. Although Rac1 has not been shown to be a substrate for Dbs in either in vitro or in vivo assays, the Rat ortholog of Dbs (Ost) has been shown to bind specifically to GTP.Rac1 in vitro. The dependence of the Rac1/Dbs interaction on GTP suggests that Dbs may in fact be an effector for Rac1. Here we show that the interaction between activated Rac1 and Dbs can be recapitulated in mammalian cells and that the Rac1 docking site resides within the pleckstrin homology domain of Dbs. This interaction is specific for Rac1 and is not observed between Rac1 and several other members of the Rho-specific guanine nucleotide exchange factor family. Co-expression of Dbs with activated Rac1 causes enhanced focus forming activity and elevated levels of GTP.RhoA in NIH 3T3 cells, indicating that Dbs is activated by the interaction. Consistent with this, activated Rac1 co-localizes with Dbs in NIH 3T3 cells, and natively expressed Rac1 relocalizes in response to Dbs expression. To summarize, we have characterized a surprisingly direct pleckstrin homology domain-mediated mechanism through which Rho GTPases can become functionally linked.
Collapse
Affiliation(s)
- Li Cheng
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
27
|
Cozier GE, Carlton J, Bouyoucef D, Cullen PJ. Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 2004; 282:49-88. [PMID: 14594214 DOI: 10.1007/978-3-642-18805-3_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pleckstrin homology (PH) domains are small modular domains that occur once, or occasionally several times, in a large variety of signalling proteins. In a number of instances, PH domains act to target their host protein to the cytosolic face of cellular membranes through an ability to associate with phosphoinositides. In this review, we discuss recent advances in our understanding of PH domain function. In particular we describe the structural aspects of how PH domains have evolved to bind various phosphoinositides, how PH domains regulate phosphoinositide-mediated association to plasma and internals membranes, and finally raise the issue of PH domains in protein:protein interactions and the allosteric regulation of their host protein.
Collapse
Affiliation(s)
- G E Cozier
- Inositide Group, Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
28
|
Erickson JW, Cerione RA. Structural Elements, Mechanism, and Evolutionary Convergence of Rho Protein−Guanine Nucleotide Exchange Factor Complexes. Biochemistry 2003; 43:837-42. [PMID: 14744125 DOI: 10.1021/bi036026v] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rho GTPases act as key regulators of cellular biochemistry by determining the timing, direction, and amplitude of signal transduction in a number of important pathways. The rate of activation of a GTPase-controlled reaction is limited by the rate of GTP binding to the Rho protein, and this, in turn, depends on the rate that GDP dissociates from the GTPase. The latter is controlled by the action of guanine nucleotide exchange factors (GEFs) that catalyze GDP-GTP exchange by increasing the rate of GDP dissociation. Here, the recently reported structural information for Rho GTPase-GEF complexes and the molecular basis for the specificity of their interactions are discussed. Underscoring the importance of regulating the Rho GTPase activation pathway, genetically unrelated proteins have evolved which complement or mimic the Dbl homology-Pleckstrin homology (DH-PH) domain-containing family of proteins in their ability to catalyze GDP-GTP exchange. In particular, the structure of the mammalian Cdc42 protein bound to the SopE protein from Salmonella typhimurium illustrates how two unrelated protein folds are able to carry out guanine nucleotide exchange by a remarkably similar mechanism. It will be interesting to see if this conservation of mechanism extends to a newly recognized class of GEFs related to the DOCK180 family.
Collapse
Affiliation(s)
- Jon W Erickson
- Department of Chemistry and Chemical Biology, Veterinary Medical Center, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
29
|
Offenhäuser N, Borgonovo A, Disanza A, Romano P, Ponzanelli I, Iannolo G, Di Fiore PP, Scita G. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol Biol Cell 2003; 15:91-8. [PMID: 14565974 PMCID: PMC307530 DOI: 10.1091/mbc.e03-06-0427] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sos-1, a guanine nucleotide exchange factor (GEF), eps8 and Abi1, two signaling proteins, and the lipid kinase phosphoinositide 3-kinase (PI3-K), assemble in a multimolecular complex required for Rac activation leading to actin cytoskeletal remodeling. Consistently, eps8 -/- fibroblasts fail to form membrane ruffles in response to growth factor stimulation. Surprisingly, eps8 null mice are healthy, fertile, and display no overt phenotype, suggesting the existence of functional redundancy within this pathway. Here, we describe the identification and characterization of a family of eps8-related proteins, comprising three novel gene products, named eps8L1, eps8L2, and eps8L3. Eps8Ls display collinear topology and 27-42% identity to eps8. Similarly to eps8, eps8Ls interact with Abi1 and Sos-1; however, only eps8L1 and eps8L2 activate the Rac-GEF activity of Sos-1, and bind to actin in vivo. Consistently, eps8L1 and eps8L2, but not eps8L3, localize to PDGF-induced, F-actin-rich ruffles and restore receptor tyrosine kinase (RTK)-mediated actin remodeling when expressed in eps8 -/- fibroblasts. Thus, the eps8Ls define a novel family of proteins responsible for functional redundancy in the RTK-activated signaling pathway leading to actin remodeling. Finally, the patterns of expression of eps8 and eps8L2 in mice are remarkably overlapping, thus providing a likely explanation for the lack of overt phenotype in eps8 null mice.
Collapse
|
30
|
Kubiseski TJ, Culotti J, Pawson T. Functional analysis of the Caenorhabditis elegans UNC-73B PH domain demonstrates a role in activation of the Rac GTPase in vitro and axon guidance in vivo. Mol Cell Biol 2003; 23:6823-35. [PMID: 12972602 PMCID: PMC193939 DOI: 10.1128/mcb.23.19.6823-6835.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Caenorhabditis elegans UNC-73B protein regulates axon guidance through its ability to act as a guanine nucleotide exchange factor (GEF) for the CeRAC/MIG-2 GTPases. Like other GEFs for Rho family GTPases, UNC-73B has a Dbl homology (DH) catalytic domain, followed by a C-terminal pleckstrin homology (PH) domain. We have explored whether the PH domain cooperates with the adjacent DH domain to promote UNC-73B GEF activity and axonal pathfinding. We show that the UNC-73B PH domain binds preferentially to monophosphorylated phosphatidylinositides in vitro. Replacement of residues Lys1420 and Arg1422 with Glu residues within the PH domain impaired this phospholipid binding but did not affect the in vitro catalytic activity of the DH domain. In contrast, a mutant UNC-73B protein with a Trp1502-to-Ala substitution in the PH domain still interacted with phosphorylated phosphatidylinositides but had lost its GEF activity. UNC-73B minigenes containing these mutations were microinjected into C. elegans and transferred to unc-73(e936) mutant worms. Unlike the wild-type protein, neither PH domain mutant was able to rescue the unc-73 axon guidance defect. These results suggest that the UNC-73B PH domain plays distinct roles in targeting and promoting GEF activity towards the Rac GTPase, both of which are important for the directed movements of motorneurons in vivo.
Collapse
Affiliation(s)
- Terrance J Kubiseski
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
31
|
Abstract
The GTPases of the Rho family are molecular switches that play an important role in a wide range of cellular processes and are increasingly implicated in tumourigenesis. Unlike what was found for the Ras oncogenes in tumours, hardly any activating mutations have been found in the genes encoding Rho proteins. In the past, we have identified Tiam1 (T-lymphoma invasion and metastasis) as a specific activator for the Rho-like GTPase Rac. In vivo, Tiam1 deficiency protects against Ras-induced skin carcinogenesis, underscoring the consequences of deregulated signalling for the onset and progression of tumours. Thus, an important level of regulation of signalling via the Rho-like GTPases comes from the specific control of their activators. In this paper, we review what is known on the specific regulation of Tiam1 signalling towards Rac.
Collapse
Affiliation(s)
- Alexander E Mertens
- The Netherlands Cancer Institute, Department of Cell Biology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
32
|
Rossman KL, Cheng L, Mahon GM, Rojas RJ, Snyder JT, Whitehead IP, Sondek J. Multifunctional roles for the PH domain of Dbs in regulating Rho GTPase activation. J Biol Chem 2003; 278:18393-400. [PMID: 12637522 DOI: 10.1074/jbc.m300127200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation.
Collapse
Affiliation(s)
- Kent L Rossman
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Zamanian JL, Kelly RB. Intersectin 1L guanine nucleotide exchange activity is regulated by adjacent src homology 3 domains that are also involved in endocytosis. Mol Biol Cell 2003; 14:1624-37. [PMID: 12686614 PMCID: PMC153127 DOI: 10.1091/mbc.e02-08-0494] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Intersectin 1L is a scaffolding protein involved in endocytosis that also has guanine nucleotide exchange activity for Cdc42. In the context of the full-length protein, the catalytic exchange activity of the DH domain is repressed. Here we use biochemical methods to dissect the mechanism for this inhibition. We demonstrate that the intersectin 1L SH3 domains, which bind endocytic proteins, directly inhibit the activity of the DH domain in assays for both binding and exchange of Cdc42. This inhibitory mechanism seems to act through steric hindrance of Cdc42 binding by an intramolecular interaction between the intersectin 1L SH3 domain region and the adjacent DH domain. Surprisingly, the mode of SH3 domain binding is other than through the proline peptide binding pocket. The dual role of the SH3 domains in endocytosis and repression of exchange activity suggests that the intersectin 1L exchange activity is regulated by endocytosis. We show that the endocytic protein, dynamin, competes for binding to the SH3 domains with the neural Wiskott-Aldrich Syndrome protein, an actin filament nucleation protein that is a substrate for activated Cdc42. Swapping of SH3 domain binding partners might act as a switch controlling the actin nucleation activity of intersectin 1L.
Collapse
Affiliation(s)
- Jennifer L Zamanian
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0407, USA
| | | |
Collapse
|
34
|
Baumeister MA, Martinu L, Rossman KL, Sondek J, Lemmon MA, Chou MM. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. J Biol Chem 2003; 278:11457-64. [PMID: 12525493 DOI: 10.1074/jbc.m211901200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Dbl family guanine nucleotide exchange factors (GEFs) for Rho family small GTPases invariably contain a pleckstrin homology (PH) domain that immediately follows their Dbl homology (DH) domain. Although the DH domain is responsible for GEF activity, the role of the PH domain is less clear. We previously reported that PH domains from several Dbl family members bind phosphoinositides with very low affinity (K(d) values in the 10 microM range). This suggests that, unlike several other PH domains, those from Dbl proteins will not function as independent membrane-targeting modules. To determine the functional relevance of low affinity phosphoinositide binding, we mutated the corresponding PH domain from Tiam-1 to abolish its weak, specific binding to phosphatidylinositol 3-phosphate. We first confirmed in vitro that phosphoinositide binding by the isolated DH/PH domain was impaired by the mutations but that intrinsic GEF activity was unaffected. We then introduced the PH domain mutations into full-length Tiam-1 and found that its ability to activate Rac1 or serum response factor in vivo was abolished. Immunofluorescence studies showed that membrane targeting of Tiam-1 was essentially unaffected by mutations in the C-terminal PH domain. Our studies therefore indicate that low affinity phosphatidylinositol 3-phosphate binding by the C-terminal PH domain may be critical for in vivo regulation and activity of Tiam-1 but that the PH domain exerts its regulatory effects without altering membrane targeting. We suggest instead that ligand binding to the PH domain induces conformational and/or orientational changes at the membrane surface that are required for maximum exchange activity of its adjacent DH domain.
Collapse
Affiliation(s)
- Mark A Baumeister
- Department of Biochemistry & Biophysics and the Graduate Group in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem 2002; 277:42964-72. [PMID: 12221096 DOI: 10.1074/jbc.m207401200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho proteins cycle between an inactive, GDP-bound state and an active, GTP-bound state. Activation of these GTPases is mediated by guanine nucleotide exchange factors (GEFs), which promote GDP to GTP exchange. In this study we have characterized XPLN, a Rho family GEF. Like other Rho GEFs, XPLN contains a tandem Dbl homology and pleckstrin homology domain topography, but lacks homology with other known functional domains or motifs. XPLN protein is expressed in the brain, skeletal muscle, heart, kidney, platelets, and macrophage and neuronal cell lines. In vitro, XPLN stimulates guanine nucleotide exchange on RhoA and RhoB, but not RhoC, RhoG, Rac1, or Cdc42. Consistent with these data, XPLN preferentially associates with RhoA and RhoB. The specificity of XPLN for RhoA and RhoB, but not RhoC, is surprising given that they share over 85% sequence identity. We determined that the inability of XPLN to exchange RhoC is mediated by isoleucine 43 in RhoC, a position occupied by valine in RhoA and RhoB. When expressed in cells, XPLN activates RhoA and RhoB, but not RhoC, and stimulates the assembly of stress fibers and focal adhesions in a Rho kinase-dependent manner. We also found that XPLN possesses transforming activity, as determined by focus formation assays. In conclusion, here we describe a Rho family GEF that can discriminate between the closely related RhoA, RhoB, and RhoC, possibly giving insight to the divergent functions of these three proteins.
Collapse
Affiliation(s)
- William T Arthur
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
36
|
Yamauchi J, Hirasawa A, Miyamoto Y, Kokubu H, Nishii H, Okamoto M, Sugawara Y, Tsujimoto G, Itoh H. Role of Dbl's big sister in the anti-mitogenic pathway from alpha1B-adrenergic receptor to c-Jun N-terminal kinase. Biochem Biophys Res Commun 2002; 296:85-92. [PMID: 12147231 DOI: 10.1016/s0006-291x(02)00839-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We previously reported that the alpha1B-adrenergic receptor leads to activation of Rho family small GTPases, and in turn, c-Jun N-terminal kinase (JNK), which results in the inhibition of cell proliferation. Here, we show the involvement of the Rho family guanine nucleotide exchange factor (GEF) Dbl's Big Sister (Dbs) in the signaling pathway. Transfection of a Dbl-homology (DH) and pleckstrin-homology (PH) domain-deficient form of Dbs into cells blocked the alpha1B-adrenergic receptor-induced activation of JNK. Conversely, transfection of an isolated DH domain of Dbs induced JNK activation. Stimulation of the alpha1B-adrenergic receptor enhanced an intrinsic Cdc42-GEF activity of Dbs in a manner dependent on Src family tyrosine kinases. Additionally, DH and PH domain deficient Dbs blocked the receptor-induced inhibition of cell proliferation, while DH domain of Dbs inhibited cell proliferation via the JNK-dependent pathway. Taken together, Dbs may play an important role in the anti-mitogenic JNK pathway downstream of the alpha1B-adrenergic receptor.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Cell Biology, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0101, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat Cell Biol 2002; 4:621-5. [PMID: 12134164 DOI: 10.1038/ncb833] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rac is a member of the Ras superfamily of GTPases and functions as a GDP/GTP-regulated switch. Formation of active Rac-GTP is stimulated by Dbl family guanine nucleotide exchange factors (GEFs), such as Tiam1 (ref. 2). Once activated, Rac stimulates signalling pathways that regulate actin organization, gene expression and cellular proliferation. Rac also functions downstream of the Ras oncoprotein in pathways that stimulate membrane ruffling, growth transformation, activation of the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase, activation of the NF-kappa B transcription factor and promotion of cell survival. Although recent studies support phosphatidylinositol 3-OH kinase (PI(3)K)-dependent mechanisms through which Ras might activate Rac (refs 9,10), the precise mechanism remains to be determined. Here we demonstrate that Tiam1, a Rac-specific GEF, preferentially associates with activated GTP-bound Ras through a Ras-binding domain. Furthermore, activated Ras and Tiam1 cooperate to cause synergistic formation of Rac-GTP in a PI(3)K-independent manner. Thus, Tiam1 can function as an effector that directly mediates Ras activation of Rac.
Collapse
Affiliation(s)
- John M Lambert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Price MO, Atkinson SJ, Knaus UG, Dinauer MC. Rac activation induces NADPH oxidase activity in transgenic COSphox cells, and the level of superoxide production is exchange factor-dependent. J Biol Chem 2002; 277:19220-8. [PMID: 11896053 DOI: 10.1074/jbc.m200061200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91(phox), p22(phox), p47(phox), and p67(phox), were expressed as stable transgenes. Expression of constitutively active Rac1 in "COS(phox)" cells induced translocation of p47(phox) and p67(phox) to the membrane. Furthermore, translocation of p47(phox) was induced in the absence of p67(phox) expression, even though Rac does not directly bind p47(phox). Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COS(phox) cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex.
Collapse
Affiliation(s)
- Marianne O Price
- Herman B Wells Center for Pediatric Research, Department of Pediatrics (Hematology/Oncology), James Whitcomb Riley Hospital for Children, Indiana University Medical Center, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|
39
|
Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell SL, Sondek J. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. EMBO J 2002; 21:1315-26. [PMID: 11889037 PMCID: PMC125919 DOI: 10.1093/emboj/21.6.1315] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2001] [Revised: 01/21/2002] [Accepted: 01/21/2002] [Indexed: 12/24/2022] Open
Abstract
Dbl-related oncoproteins are guanine nucleotide exchange factors (GEFs) specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. While it is known that the DH domain is the principal catalytic subunit, recent biochemical data indicate that for some Dbl-family proteins, such as Dbs and Trio, PH domains may cooperate with their associated DH domains in promoting guanine nucleotide exchange of Rho GTPases. In order to gain an understanding of the involvement of these PH domains in guanine nucleotide exchange, we have determined the crystal structure of a DH/PH fragment from Dbs in complex with Cdc42. The complex features the PH domain in a unique conformation distinct from the PH domains in the related structures of Sos1 and Tiam1.Rac1. Consequently, the Dbs PH domain participates with the DH domain in binding Cdc42, primarily through a set of interactions involving switch 2 of the GTPase. Comparative sequence analysis suggests that a subset of Dbl-family proteins will utilize their PH domains similarly to Dbs.
Collapse
Affiliation(s)
- Kent L. Rossman
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| | - David K. Worthylake
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| | - Jason T. Snyder
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| | - David P. Siderovski
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| | - John Sondek
- Department of Biochemistry and Biophysics, Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA Corresponding author e-mail:
| |
Collapse
|
40
|
Abstract
The Dbl homology (DH) domain was first identified in the Dbl oncogene product as the limit region required for mediating guanine nucleotide exchange on the Rho family GTPase Cdc42. Since the initial biochemical characterization of the DH domain, this conserved motif has been identified in a large family of proteins. In each case, a pleckstrin homology (PH) domain immediately follows the DH domain and this tandem DH-PH module is the signature motif of the Dbl family of guanine nucleotide exchange factors (GEFs). Recent structural studies have provided significant insight into the molecular basis of guanine nucleotide exchange by Dbl family GEFs, opening the door for understanding the specificity of the DH/GTPase interaction as well as providing a starting point for understanding how the exchange activity of these proteins is modulated to achieve specific biological outcomes in the cell.
Collapse
Affiliation(s)
- Gregory R Hoffman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
41
|
Gao Y, Xing J, Streuli M, Leto TL, Zheng Y. Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors. J Biol Chem 2001; 276:47530-41. [PMID: 11595749 DOI: 10.1074/jbc.m108865200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling specificity of Rho GTPase pathways is achieved in part by selective interaction between members of the Dbl family guanine nucleotide exchange factors (GEFs) and their Rho GTPase substrates. For example, Trio, GEF-H1, and Tiam1 are a subset of GEFs that specifically activate Rac1 but not the closely related Cdc42. The Rac1 specificity of these GEFs appears to be governed by Rac1-GEF binding interaction. To understand the detailed mechanism underlying the GEF specificity issue, we have analyzed a panel of chimeras made between Rac1 and Cdc42 and examined a series of point mutants of Rac1 made at the switch I, switch II, and beta(2)/beta(3) regions for their ability to interact with and to be activated by the GEFs. The results reveal that Rac1 residues of both the switch I and switch II regions are involved in GEF docking and GEF-mediated nucleotide disruption, because mutation of Asp(38), Asn(39), Gln(61), Tyr(64), or Arg(66)/Leu(67) into Ala results in the loss of GEF binding, whereas mutation at Tyr(32), Asp(65), or Leu(70)/Ser(71) leads to the loss of GEF catalysis while retaining the binding capability. The region between amino acids 53-72 of Rac1 is required for specific recognition and activation by the GEFs, and Trp(56) in beta(3) appears to be the critical determinant. Introduction of Trp(56) to Cdc42 renders it fully responsive to the Rac-specific GEF in vitro and in cells. Further, a polypeptide derived from the beta(3) region of Rac1 including the Trp(56) residue serves as a specific inhibitor for Rac1 interaction with the GEFs. Taken together, these results indicate that Trp(56) is the necessary and sufficient determinant of Rac1 for discrimination by the subset of Rac1-specific GEFs and suggest that a compound mimicking Trp(56) action could be explored as an interfering reagent specifically targeting Rac1 activation.
Collapse
Affiliation(s)
- Y Gao
- Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
42
|
Snyder JT, Rossman KL, Baumeister MA, Pruitt WM, Siderovski DP, Der CJ, Lemmon MA, Sondek J. Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J Biol Chem 2001; 276:45868-75. [PMID: 11577097 DOI: 10.1074/jbc.m106731200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Normally, Rho GTPases are activated by the removal of bound GDP and the concomitant loading of GTP catalyzed by members of the Dbl family of guanine nucleotide exchange factors (GEFs). This family of GEFs invariantly contain a Dbl homology (DH) domain adjacent to a pleckstrin homology (PH) domain, and while the DH domain usually is sufficient to catalyze nucleotide exchange, possible roles for the conserved PH domain remain ambiguous. Here we demonstrate that the conserved PH domains of three distinct Dbl family proteins, intersectin, Dbs, and Tiam1, selectively bind lipid vesicles only when phosphoinositides are present. While the PH domains of intersectin and Dbs promiscuously bind several multiphosphorylated phosphoinositides, Tiam1 selectively interacts with phosphatidylinositol 3-phosphate (K(D) approximately 5-10 microm). In addition, and in contrast to recent reports, catalysis of nucleotide exchange on nonprenylated Rac1 provided by various extended portions of Tiam1 is not influenced by (a) soluble phosphoinositide head groups, (b) dibutyl versions of phosphoinositides, or (c) lipid vesicles containing phosphoinositides. Likewise, GEF activity afforded by DH/PH fragments of intersectin and Dbs are also not altered by phosphoinositide interactions. These results strongly suggest that unless all relevant components are localized to a lipid membrane surface, Dbl family GEFs generally are not intrinsically modulated by binding phosphoinositides.
Collapse
Affiliation(s)
- J T Snyder
- Department of Biochemistry and Biophysics, Program in Molecular and Cellular Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Adam L, Vadlamudi RK, McCrea P, Kumar R. Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. J Biol Chem 2001; 276:28443-50. [PMID: 11328805 DOI: 10.1074/jbc.m009769200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heregulin-beta1 (HRG) promotes motility, scattering, and invasiveness of breast cancer cells. Tiam1, a newly identified guanine nucleotide exchange factor, has been shown to inhibit or promote cell migration in a cell type-dependent manner. In this study, we identified Tiam1 as a target of HRG signaling. HRG stimulation of breast cancer epithelial cells induced the phosphorylation and redistribution of Tiam1 to the membrane ruffles and the loosening of intercellular junctions. In addition, HRG-mediated scattering of breast epithelial cells was accompanied by stimulation of tyrosine phosphorylation and redistribution of beta-catenin from the cell junctions to the cytosol and, finally, entry into the nucleus. Decompaction of breast cancer epithelial cells by HRG was accompanied by a transient physical association of the tyrosine-phosphorylated beta-catenin with the activated human epidermal growth factor receptor 2 and subsequent nuclear translocation of beta-catenin, as well as beta-catenin-dependent transactivation of T-cell factor.lymphoid enhancer factor-1. All of these HRG-induced phenotypic changes were regulated in a phosphatidylinositol-3 kinase-sensitive manner. HRG-induced cellular ruffles, loss of intercellular adhesiveness, and increased cell migration could be mimicked by overexpression of a fully functional Tiam1 construct. Furthermore, ectopic expression of Tiam1 or of an active beta-catenin mutant led to potentiation of the beta-catenin-dependent T-cell factor.lymphoid enhancer factor-1 transactivation and invasiveness of HRG-treated cells. We also found preliminary evidence suggesting a close correlation between the status of Tiam1 expression and invasiveness of human breast tumor cells with the degree of progression of breast tumors. Together, these findings suggest that HRG regulate Tiam1 activation and lymphoid enhancer factor/beta-catenin nuclear signaling via phosphatidylinositol-3 kinase in breast cancer cells.
Collapse
Affiliation(s)
- L Adam
- University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|