1
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kong G, Lee H, Tran Q, Kim C, Park J, Kwon SH, Kim SH, Park J. Current Knowledge on the Function of α-Methyl Acyl-CoA Racemase in Human Diseases. Front Mol Biosci 2020; 7:153. [PMID: 32760737 PMCID: PMC7372137 DOI: 10.3389/fmolb.2020.00153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/18/2020] [Indexed: 01/22/2023] Open
Abstract
Branched chain fatty acids perform very important functions in human diet and drug metabolism. they cannot be metabolized in mitochondria and are instead processed and degraded in peroxisomes due to the presence of methyl groups on the carbon chains. Oxidative degradation pathways for lipids include α- and β-oxidation and several pathways. In all metabolic pathways, α-methyl acyl-CoA racemase (AMACR) plays an essential role by regulating the metabolism of lipids and drugs. AMACR regulates β-oxidation of branched chain lipids in peroxisomes and mitochondria and promotes chiral reversal of 2-methyl acids. AMACR defects cause sensory-motor neuronal and liver abnormalities in humans. These phenotypes are inherited and are caused by mutations in AMACR. In addition, AMACR has been found to be overexpressed in prostate cancer. In addition, the protein levels of AMACR have increased significantly in many types of cancer. Therefore, AMACR may be an important marker in tumors. In this review, a comprehensive overview of AMACR studies in human disease will be described.
Collapse
Affiliation(s)
- Gyeyeong Kong
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Hyunji Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Quangdon Tran
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chaeyeong Kim
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jisoo Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Life Science, Hyehwa Liberal Arts College, LINC Plus Project Group, Daejeon University, Daejeon, South Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, South Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
3
|
Yevglevskis M, Nathubhai A, Wadda K, Lee GL, Al-Rawi S, Jiao T, Mitchell PJ, James TD, Threadgill MD, Woodman TJ, Lloyd MD. Novel 2-arylthiopropanoyl-CoA inhibitors of α-methylacyl-CoA racemase 1A (AMACR; P504S) as potential anti-prostate cancer agents. Bioorg Chem 2019; 92:103263. [PMID: 31536953 DOI: 10.1016/j.bioorg.2019.103263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 10/26/2022]
Abstract
α-Methylacyl-CoA racemase (AMACR; P504S) catalyses an essential step in the degradation of branched-chain fatty acids and the activation of ibuprofen and related drugs. AMACR has gained much attention as a drug target and biomarker, since it is found at elevated levels in prostate cancer and several other cancers. Herein, we report the synthesis of 2-(phenylthio)propanoyl-CoA derivatives which provided potent AMACR inhibitory activity (IC50 = 22-100 nM), as measured by the AMACR colorimetric activity assay. Inhibitor potency positively correlates with calculated logP, although 2-(3-benzyloxyphenylthio)propanoyl-CoA and 2-(4-(2-methylpropoxy)phenylthio)propanoyl-CoA were more potent than predicted by this parameter. Subsequently, carboxylic acid precursors were evaluated against androgen-dependent LnCaP prostate cancer cells and androgen-independent Du145 and PC3 prostate cancer cells using the MTS assay. All tested precursor acids showed inhibitory activity against LnCaP, Du145 and PC3 cells at 500 µM, but lacked activity at 100 µM. This is the first extensive structure-activity relationship study on the influence of side-chain interactions on the potency of novel rationally designed AMACR inhibitors.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK; University of Sunderland, School of Pharmacy and Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK(1)
| | - Katty Wadda
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Guat L Lee
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Suzanne Al-Rawi
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tingying Jiao
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK; School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| | - Paul J Mitchell
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Popov BV, Sutula GI, Petrov NS, Yang XJ. Preparation and characterization of the antibody recognizing AMACR inside its catalytic center. Int J Oncol 2018; 52:547-559. [PMID: 29345292 DOI: 10.3892/ijo.2017.4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/01/2017] [Indexed: 11/06/2022] Open
Abstract
Alpha-methylacyl-CoA racemase (AMACR) catalyzes the β-oxidation of fatty acids and is overexpressed in carcinomas in various organs, while its inactivation results in the inhibition of cancer growth. In the present study, we prepared and characterized 20 different mouse monoclonal antibodies against human AMACR. In the course of biopanning of a phage peptide commercial library against in-house prepared 6H9 and 2A5, and commercial 13H4 antibodies, 10 phage mimotopes recognized by each type of the antibody were selected. Using the program Pepitope and the crystal structure of AMACR from Mycobacterium tuberculosis, we reveal for the first time, at least to the best of our knowledge, that the epitopes recognizing the antibody against AMACR are composed of conformation sequences localized inside the AMACR catalytic center. When delivered into live HeLa cells using cationic lipid-based PULSin reagent, the specific antibodies against AMACR were co-localized with peroxisomes. The in-house made 6H9 antibody exhibited a low level of this co-localization compared to the commercially available 63340 antibody, and did not inhibit the growth rate of HeLa and T98G cells. The results obtained suggest that antibody against AMACR may possess anti-AMACR catalytic activity and needs to be further investigated as a potential drug for use in anticancer therapy. On the whole, in this study, we generated several clones of AMACR antibodies and demonstrated that these antibodies can be colonized into live cells. Currently, we are testing the growth inhibitory properties of these antibodies against AMACR.
Collapse
Affiliation(s)
- Boris V Popov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Gleb I Sutula
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Nikolay S Petrov
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia
| | - Ximing J Yang
- Robert H. Lurie Comprehensive Cancer Center, Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Human disorders of peroxisome metabolism and biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:922-33. [DOI: 10.1016/j.bbamcr.2015.11.015] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
|
6
|
Wanders RJA, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol 2016; 3:83. [PMID: 26858947 PMCID: PMC4729952 DOI: 10.3389/fcell.2015.00083] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/10/2015] [Indexed: 01/02/2023] Open
Abstract
Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Laboratory Division, Departments of Paediatrics and Clinical Chemistry, Academic Medical Center, Emma Children's Hospital, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
7
|
Tafferner N, Barthelmes J, Eberle M, Ulshöfer T, Henke M, deBruin N, Mayer CA, Foerch C, Geisslinger G, Parnham MJ, Schiffmann S. Alpha-methylacyl-CoA racemase deletion has mutually counteracting effects on T-cell responses, associated with unchanged course of EAE. Eur J Immunol 2016; 46:570-81. [DOI: 10.1002/eji.201545782] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/05/2015] [Accepted: 12/02/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nadja Tafferner
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Julia Barthelmes
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Max Eberle
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Thomas Ulshöfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Marina Henke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Natasja deBruin
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Christoph A. Mayer
- Department of Neurology; Goethe-University Frankfurt; Frankfurt/Main Germany
| | - Christian Foerch
- Department of Neurology; Goethe-University Frankfurt; Frankfurt/Main Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| | - Michael J. Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Project Group Translational Medicine and Pharmacology (TMP); Frankfurt am Main Germany
| | - Susanne Schiffmann
- Pharmazentrum Frankfurt/ZAFES; Institute of Clinical Pharmacology; Goethe-University Hospital Frankfurt; Frankfurt/Main Germany
| |
Collapse
|
8
|
Yevglevskis M, Bowskill CR, Chan CCY, Heng JHJ, Threadgill MD, Woodman TJ, Lloyd MD. A study on the chiral inversion of mandelic acid in humans. Org Biomol Chem 2015; 12:6737-44. [PMID: 25050409 DOI: 10.1039/c3ob42515k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mandelic acid is a chiral metabolite of the industrial pollutant styrene and is used in chemical skin peels, as a urinary antiseptic and as a component of other medicines. In humans, S-mandelic acid undergoes rapid chiral inversion to R-mandelic acid by an undefined pathway but it has been proposed to proceed via the acyl-CoA esters, S- and R-2-hydroxy-2-phenylacetyl-CoA, in an analogous pathway to that for Ibuprofen. This study investigates chiral inversion of mandelic acid using purified human recombinant enzymes known to be involved in the Ibuprofen chiral inversion pathway. Both S- and R-2-hydroxy-2-phenylacetyl-CoA were hydrolysed to mandelic acid by human acyl-CoA thioesterase-1 and -2 (ACOT1 and ACOT2), consistent with a possible role in the chiral inversion pathway. However, human α-methylacyl-CoA racemase (AMACR; P504S) was not able to catalyse exchange of the α-proton of S- and R-2-hydroxy-2-phenylacetyl-CoA, a requirement for chiral inversion. Both S- and R-2-phenylpropanoyl-CoA were epimerised by AMACR, showing that it is the presence of the hydroxy group that prevents epimerisation of R- and S-2-hydroxy-2-phenylacetyl-CoAs. The results show that it is unlikely that 2-hydroxy-2-phenylacetyl-CoA is an intermediate in the chiral inversion of mandelic acid, and that the chiral inversion of mandelic acid is via a different pathway to that of Ibuprofen and related drugs.
Collapse
Affiliation(s)
- Maksims Yevglevskis
- Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
9
|
Qu X, Allan A, Chui G, Hutchings TJ, Jiao P, Johnson L, Leung WY, Li PK, Steel GR, Thompson AS, Threadgill MD, Woodman TJ, Lloyd MD. Hydrolysis of ibuprofenoyl-CoA and other 2-APA-CoA esters by human acyl-CoA thioesterases-1 and -2 and their possible role in the chiral inversion of profens. Biochem Pharmacol 2013; 86:1621-5. [PMID: 24041740 DOI: 10.1016/j.bcp.2013.08.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022]
Abstract
Ibuprofen and related 2-arylpropanoic acid (2-APA) drugs are often given as a racemic mixture and the R-enantiomers undergo activation in vivo by metabolic chiral inversion. The chiral inversion pathway consists of conversion of the drug to the coenzyme A ester (by an acyl-CoA synthetase) followed by chiral inversion by α-methylacyl-CoA racemase (AMACR; P504S). The enzymes responsible for hydrolysis of the product S-2-APA-CoA ester to the active S-2-APA drug have not been identified. In this study, conversion of a variety of 2-APA-CoA esters by human acyl-CoA thioesterase-1 and -2 (ACOT-1 and -2) was investigated. Human recombinant ACOT-1 and -2 (ACOT-1 and -2) were both able to efficiently hydrolyse a variety of 2-APA-CoA substrates. Studies with the model substrates R- and S-2-methylmyristoyl-CoA showed that both enzymes were able to efficiently hydrolyse both of the epimeric substrates with (2R)- and (2S)- methyl groups. ACOT-1 is located in the cytosol and is able to hydrolyse 2-APA-CoA esters exported from the mitochondria and peroxisomes for inhibition of cyclo-oxygenase-1 and -2 in the endoplasmic reticulum. It is a prime candidate to be the enzyme responsible for the pharmacological action of chiral inverted drugs. ACOT-2 activity may be important in 2-APA toxicity effects and for the regulation of mitochondrial free coenzyme A levels. These results support the idea that 2-APA drugs undergo chiral inversion via a common pathway.
Collapse
Affiliation(s)
- Xiao Qu
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pértega-Gomes N, Vizcaíno JR, Gouveia C, Jerónimo C, Henrique RM, Lopes C, Baltazar F. Monocarboxylate transporter 2 (MCT2) as putative biomarker in prostate cancer. Prostate 2013. [PMID: 23192371 DOI: 10.1002/pros.22620] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Monocarboxylate transporter 2 (MCT2) is a transmembrane protein involved in the transport of monocarboxylates such as pyruvate and lactate. In a previous study we described overexpression of MCT2 in prostate carcinoma raising the hypothesis of using MCT2 as a possible biomarker in prostate cancer. With the present study we aimed to compare the pattern of expression of MCT2 and alpha-methylacyl-CoA racemase (AMACR), in prostate carcinoma, PIN lesions, non-neoplastic prostate tissue, and normal prostate and compare their sensitivity and specificity. Also, we wanted to evaluate the value of using MCT2 in combination with AMACR and the negative markers 34βE12 or p63 to detect prostate cancer. METHODS A total of 349 cases, including prostate carcinoma, non-neoplastic prostate tissue and PIN lesions, from radical prostatectomies were examined by immunohistochemistry for AMACR, MCT2, p63, and 34βE12, using tissue microarrays (TMAs). Normal prostate from radical cystoprostatectomy was also studied. RESULTS Our study revealed that MCT2, similarly to AMACR, was consistently expressed in prostate cancer regardless of the Gleason score. In combination with AMACR and p63 or 34βE12, MCT2 helped to improve the diagnosis of prostate carcinoma. Also, overexpression of MCT2 as well as AMACR in PIN lesions may indicate the involvement of these two proteins in prostate cancer initiation. CONCLUSIONS We provided evidence for the presence of MCT2 in prostate cancer, selectively labeling malignant glands. Importantly, assessment of MCT2 together with AMACR, along with the negative markers, highly increases the accuracy in prostate cancer diagnosis.
Collapse
Affiliation(s)
- Nelma Pértega-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
11
|
Lloyd MD, Yevglevskis M, Lee GL, Wood PJ, Threadgill MD, Woodman TJ. α-Methylacyl-CoA racemase (AMACR): Metabolic enzyme, drug metabolizer and cancer marker P504S. Prog Lipid Res 2013; 52:220-30. [DOI: 10.1016/j.plipres.2013.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
|
12
|
Martín JF, Ullán RV, García-Estrada C. Role of peroxisomes in the biosynthesis and secretion of β-lactams and other secondary metabolites. J Ind Microbiol Biotechnol 2011; 39:367-82. [PMID: 22160272 DOI: 10.1007/s10295-011-1063-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/16/2011] [Indexed: 12/01/2022]
Abstract
Peroxisomes are eukaryotic organelles surrounded by a single bilayer membrane, containing a variety of proteins depending on the organism; they mainly perform degradation reactions of toxic metabolites (detoxification), catabolism of linear and branched-chain fatty acids, and removal of H(2)O(2) (formed in some oxidative processes) by catalase. Proteins named peroxins are involved in recruiting, transporting, and introducing the peroxisomal matrix proteins into the peroxisomes. The matrix proteins contain the peroxisomal targeting signals PTS1 and/or PTS2 that are recognized by the peroxins Pex5 and Pex7, respectively. Initial evidence indicated that the penicillin biosynthetic enzyme isopenicillin N acyltransferase (IAT) of Penicillium chrysogenum is located inside peroxisomes. There is now solid evidence (based on electron microscopy and/or biochemical data) confirming that IAT and the phenylacetic acid- and fatty acid-activating enzymes are also located in peroxisomes. Similarly, the Acremonium chrysogenum CefD1 and CefD2 proteins that perform the central reactions (activation and epimerization of isopenicillin N) of the cephalosporin pathway are targeted to peroxisomes. Growing evidence supports the conclusion that some enzymes involved in the biosynthesis of mycotoxins (e.g., AK-toxin), and the biosynthesis of signaling molecules in plants (e.g., jasmonic acid or auxins) occur in peroxisomes. The high concentration of substrates (in many cases toxic to the cytoplasm) and enzymes inside the peroxisomes allows efficient synthesis of metabolites with interesting biological or pharmacological activities. This compartmentalization poses additional challenges to the cell due to the need to import the substrates into the peroxisomes and to export the final products; the transporters involved in these processes are still very poorly known. This article focuses on new aspects of the metabolic processes occurring in peroxisomes, namely the degradation and detoxification processes that lead to the biosynthesis and secretion of secondary metabolites.
Collapse
Affiliation(s)
- Juan-Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain.
| | | | | |
Collapse
|
13
|
|
14
|
Ouazia D, Bearne SL. A continuous assay for alpha-methylacyl-coenzyme A racemase using circular dichroism. Anal Biochem 2009; 398:45-51. [PMID: 19854148 DOI: 10.1016/j.ab.2009.10.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 12/22/2022]
Abstract
alpha-Methylacyl-coenzyme A racemase (AMACR) catalyzes the epimerization of (2R)- and (2S)-methyl branched fatty acyl-coenzyme A (CoA) thioesters. AMACR is a biomarker for prostate cancer and a putative target for the development of therapeutic agents directed against the disease. To facilitate development of AMACR inhibitors, a continuous circular dichroism (CD)-based assay has been developed. The open reading frame encoding AMACR from Mycobacterium tuberculosis (MCR) was subcloned into a pET15b vector, and the enzyme was overexpressed and purified using metal ion affinity chromatography. The rates of MCR-catalyzed epimerization of either (2R)- or (2S)-ibuprofenoyl-CoA were determined by following the change in ellipticity at 279nm in the presence of octyl-beta-d-glucopyranoside (0.2%). MCR exhibited slightly higher affinity for (2R)-ibuprofenoyl-CoA (K(m)=48+/-5microM, k(cat)=291+/-30s(-1)), but turned over (2S)-ibuprofenoyl-CoA (K(m)=86+/-6microM, k(cat)=450+/-14s(-1)) slightly faster. MCR expressed as a fusion protein bearing an N-terminal His(6)-tag had a catalytic efficiency (k(cat)/K(m)) that was reduced 22% and 47% in the 2S-->2R and 2R-->2S directions, respectively, relative to untagged enzyme. The continuous CD-based assay offers an economical and efficient alternative method to the labor-intensive, fixed-time assays currently used to measure AMACR activity.
Collapse
Affiliation(s)
- Dahmane Ouazia
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | |
Collapse
|
15
|
|
16
|
Darley DJ, Butler DS, Prideaux SJ, Thornton TW, Wilson AD, Woodman TJ, Threadgill MD, Lloyd MD. Synthesis and use of isotope-labelled substrates for a mechanistic study on human alpha-methylacyl-CoA racemase 1A (AMACR; P504S). Org Biomol Chem 2008; 7:543-52. [PMID: 19156321 DOI: 10.1039/b815396e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-Methylacyl-CoA racemase (AMACR) is an important enzyme for the metabolism of branched-chain lipids and drugs. The enzyme is over-expressed in prostate and other cancers. AMACR 1A, the major splice variant, was purified from recombinant E. coli cells as a His-tag protein. Purified enzyme catalysed chiral inversion of both S- and R-2-methyldecanoyl-CoA, with an equilibrium constant of 1.09 +/- 0.14 (2S/2R). Reactions with (2)H-labelled substrate showed that loss of the alpha-proton was a prerequisite for chiral inversion. Reactions conducted in (2)H(2)O indicated that reprotonation was not stereospecific. These results are the first mechanistic study on any recombinant mammalian alpha-methylacyl-CoA racemase.
Collapse
Affiliation(s)
- Daniel J Darley
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lloyd MD, Darley DJ, Wierzbicki AS, Threadgill MD. Alpha-methylacyl-CoA racemase--an 'obscure' metabolic enzyme takes centre stage. FEBS J 2008; 275:1089-102. [PMID: 18279392 DOI: 10.1111/j.1742-4658.2008.06290.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Branched-chain lipids are important components of the human diet and are used as drug molecules, e.g. ibuprofen. Owing to the presence of methyl groups on their carbon chains, they cannot be metabolized in mitochondria, and instead are processed and degraded in peroxisomes. Several different oxidative degradation pathways for these lipids are known, including alpha-oxidation, beta-oxidation, and omega-oxidation. Dietary branched-chain lipids (especially phytanic acid) have attracted much attention in recent years, due to their link with prostate, breast, colon and other cancers as well as their role in neurological disease. A central role in all the metabolic pathways is played by alpha-methylacyl-CoA racemase (AMACR), which regulates metabolism of these lipids and drugs. AMACR catalyses the chiral inversion of a diverse number of 2-methyl acids (as their CoA esters), and regulates the entry of branched-chain lipids into the peroxisomal and mitochondrial beta-oxidation pathways. This review brings together advances in the different disciplines, and considers new research in both the metabolism of branched-chain lipids and their role in cancer, with particular emphasis on the crucial role played by AMACR. These recent advances enable new preventative and treatment strategies for cancer.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Pharmacy & Pharmacology, Medicinal Chemistry, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
18
|
Westin MAK, Hunt MC, Alexson SEH. Peroxisomes contain a specific phytanoyl-CoA/pristanoyl-CoA thioesterase acting as a novel auxiliary enzyme in alpha- and beta-oxidation of methyl-branched fatty acids in mouse. J Biol Chem 2007; 282:26707-26716. [PMID: 17613526 DOI: 10.1074/jbc.m703718200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytanic acid and pristanic acid are derived from phytol, which enter the body via the diet. Phytanic acid contains a methyl group in position three and, therefore, cannot undergo beta-oxidation directly but instead must first undergo alpha-oxidation to pristanic acid, which then enters beta-oxidation. Both these pathways occur in peroxisomes, and in this study we have identified a novel peroxisomal acyl-CoA thioesterase named ACOT6, which we show is specifically involved in phytanic acid and pristanic acid metabolism. Sequence analysis of ACOT6 revealed a putative peroxisomal targeting signal at the C-terminal end, and cellular localization experiments verified it as a peroxisomal enzyme. Subcellular fractionation experiments showed that peroxisomes contain by far the highest phytanoyl-CoA/pristanoyl-CoA thioesterase activity in the cell, which could be almost completely immunoprecipitated using an ACOT6 antibody. Acot6 mRNA was mainly expressed in white adipose tissue and was co-expressed in tissues with Acox3 (the pristanoyl-CoA oxidase). Furthermore, Acot6 was identified as a target gene of the peroxisome proliferator-activated receptor alpha (PPARalpha) and is up-regulated in mouse liver in a PPARalpha-dependent manner.
Collapse
Affiliation(s)
- Maria A K Westin
- From the Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | - Mary C Hunt
- From the Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden
| | - Stefan E H Alexson
- From the Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, C1-74, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
19
|
Abstract
In this review, we describe the current state of knowledge about the biochemistry of mammalian peroxisomes, especially human peroxisomes. The identification and characterization of yeast mutants defective either in the biogenesis of peroxisomes or in one of its metabolic functions, notably fatty acid beta-oxidation, combined with the recognition of a group of genetic diseases in man, wherein these processes are also defective, have provided new insights in all aspects of peroxisomes. As a result of these and other studies, the indispensable role of peroxisomes in multiple metabolic pathways has been clarified, and many of the enzymes involved in these pathways have been characterized, purified, and cloned. One aspect of peroxisomes, which has remained ill defined, is the transport of metabolites across the peroxisomal membrane. Although it is clear that mammalian peroxisomes under in vivo conditions are closed structures, which require the active presence of metabolite transporter proteins, much remains to be learned about the permeability properties of mammalian peroxisomes and the role of the four half ATP-binding cassette (ABC) transporters therein.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Disease, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | | |
Collapse
|
20
|
Kovacs WJ, Tape KN, Shackelford JE, Duan X, Kasumov T, Kelleher JK, Brunengraber H, Krisans SK. Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 2006; 127:273-90. [PMID: 17180682 DOI: 10.1007/s00418-006-0254-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
Previous studies have indicated that the early steps in the isoprenoid/cholesterol biosynthetic pathway occur in peroxisomes. However, the role of peroxisomes in cholesterol biosynthesis has recently been questioned in several reports concluding that three of the peroxisomal cholesterol biosynthetic enzymes, namely mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase, do not localize to peroxisomes in human cells even though they contain consensus peroxisomal targeting signals. We re-investigated the subcellular localization of the cholesterol biosynthetic enzymes of the pre-squalene segment in human cells by using new stable isotopic techniques and data computations with isotopomer spectral analysis, in combination with immunofluorescence and cell permeabilization techniques. Our present findings clearly show and confirm previous studies that the pre-squalene segment of the cholesterol biosynthetic pathway is localized to peroxisomes. In addition, our data are consistent with the hypothesis that acetyl-CoA derived from peroxisomal beta-oxidation of very long-chain fatty acids and medium-chain dicarboxylic acids is preferentially channeled to cholesterol synthesis inside the peroxisomes without mixing with the cytosolic acetyl-CoA pool.
Collapse
Affiliation(s)
- Werner J Kovacs
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Went PT, Sauter G, Oberholzer M, Bubendorf L. Abundant expression of AMACR in many distinct tumour types. Pathology 2006; 38:426-32. [PMID: 17008281 DOI: 10.1080/00313020600922470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS Alpha-methylacyl-CoA racemase (AMACR), a mitochondrial and peroxisomal enzyme, is a valuable tool to confirm the diagnosis of prostate cancer, especially if combined with basal cell markers. To extend this diagnostic utility to other neoplasias, we comprehensively surveyed AMACR expression in human tumours. METHODS We performed immunohistochemical analyses on tissue microarrays of AMACR expression in over 125 different human tumour types and 80 normal tissues. RESULTS Microarray analysis revealed that tumours with prominent AMACR expression included adenocarcinomas of the prostate (72%), hepatocellular carcinomas (77%), papillary renal cell carcinomas (70%), and colorectal adenocarcinomas (71%). AMACR expression was equally frequent in colorectal adenomas and carcinomas. No significant difference in AMACR expression between untreated and hormone-refractory prostate cancers was observed. In the thyroid, AMACR expression was found in 42% of the follicular carcinomas but in only 16% of follicular adenomas. However, a more detailed analysis on a thyroid tissue microarray did not confirm a significant difference of AMACR expression in follicular adenoma and carcinomas. CONCLUSION Taken together, the results indicate that AMACR is expressed in a wide variety of adenocarcinomas, and its diagnostic utility is restricted to specific areas.
Collapse
Affiliation(s)
- Philip T Went
- Institutes for Pathology, University of Basel, Switzerland.
| | | | | | | |
Collapse
|
22
|
Bowes T, Singh B, Gupta RS. Subcellular localization of fumarase in mammalian cells and tissues. Histochem Cell Biol 2006; 127:335-46. [PMID: 17111171 DOI: 10.1007/s00418-006-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunofluorescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.
Collapse
Affiliation(s)
- Timothy Bowes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | |
Collapse
|
23
|
Abstract
Although prostate-specific antigen (PSA) has evolved as a very useful tool for detection of prostate cancer, there remains an urgent need for more accurate biomarkers to diagnose prostate cancer and predict cancer-related outcomes. Recent advances in the study of proteomics and high throughput techniques have led to the discovery of many potential biomarkers for prostate cancer. This article briefly reviews the current status of PSA testing and discusses several candidate protein biomarkers for prostate cancer, as well as highlighting some recent proteomic discoveries with the potential to supplement or even replace PSA for the diagnosis and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Timothy J Bradford
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
24
|
Abstract
Morphologic identification of dysplasia in mucosal biopsies is the best and most reliable marker of an increased risk for malignancy in patients who have inflammatory bowel disease, and it forms the basis of the recommended endoscopic surveillance strategies that are in practice for patients who have this illness. In ulcerative colitis (UC) and Crohn's disease (CD), dysplasia is defined as unequivocal neoplastic epithelium that is confined to the basement membrane, without invasion into the lamina propria. Unfortunately, unlike in UC, only a few studies have evaluated the pathologic features and biologic characteristics of dysplasia and carcinoma in CD specifically. As a result, this article focuses mainly on the pathologic features, adjunctive diagnostic methods, and differential diagnosis of dysplasia in UC.
Collapse
Affiliation(s)
- Robert D Odze
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School Boston, MA 02115, USA.
| |
Collapse
|
25
|
Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1413-26. [PMID: 17028011 DOI: 10.1016/j.bbamcr.2006.08.034] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/15/2022]
Abstract
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Collapse
Affiliation(s)
- Yves Poirier
- Department of Plant Molecular Biology, Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
26
|
Singh B, Gupta RS. Mitochondrial import of human and yeast fumarase in live mammalian cells: Retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence. Biochem Biophys Res Commun 2006; 346:911-8. [PMID: 16774737 DOI: 10.1016/j.bbrc.2006.05.188] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada L8N 3Z5
| | | |
Collapse
|
27
|
Dorer R, Odze RD. AMACR Immunostaining is Useful in Detecting Dysplastic Epithelium in Barrett's Esophagus, Ulcerative Colitis, and Crohn's Disease. Am J Surg Pathol 2006; 30:871-7. [PMID: 16819330 DOI: 10.1097/01.pas.0000213268.30468.b4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alpha-methylacyl-CoA racemase (AMACR) catalyzes the racemization of alpha-methyl, branched carboxylic coenzyme A thioesters, and is overexpressed in a variety of neoplasms, such as prostate and colon cancer. The aim of this study was to evaluate AMACR expression in the metaplasia-dysplasia-carcinoma sequence in Barrett's esophagus (BE), ulcerative colitis (UC), and Crohn's disease (CD) and to determine whether its expression can be used to detect dysplastic epithelium in these conditions. One hundred thirty-four routinely processed biopsy and/or resection specimens from 134 patients with BE [M/F ratio: 5.7, mean age: 67 y (36 negative (intestinal metaplasia only), 14 indefinite for dysplasia (IND), 16 low-grade dysplasia (LGD), 32 high-grade dysplasia (HGD), and 36 invasive adenocarcinoma (ACA)] and 74 specimens from 74 patients with inflammatory bowel disease (IBD) [56 with ulcerative colitis, 18 with Crohn's disease, M/F ratio: 1.8, mean age: 55 y (17 negative, 7 IND, 26 LGD, 10 HGD, and 14 ACA)] were immunostained with a monoclonal AMACR antibody (p504S). The degree of cytoplasmic staining in all cases was evaluated in a blinded fashion according to the following grading system: 0, negative (0% cells positive); 1+, 1% to 10% cells positive; 2+, 10% to 50% cells positive; or 3+, >50% cells positive. In patients with BE, AMACR was not expressed in any negative foci (0%) but was significantly increased (P<0.0001) in foci of LGD (38%), HGD (81%), and ACA (72%). Three of 14 (21%) IND foci from 3 BE patients were only focally positive (grade 1: 7%, 2: 14%). However, 1 of these 3 patients had follow-up information available and had developed ACA subsequently. Similarly, in patients with IBD, AMACR was not expressed in any foci considered negative for dysplasia, but was significantly increased (P<0.0001) in foci of LGD (96%), HGD (80%), and ACA (71%). Only 1/7 (14%) IND focus from 1 patient was focally positive (grade 1). The sensitivity for the detection of LGD and HGD in BE and IBD was 38% and 81%, and 96% and 80%, respectively, for the 2 types of disorders. The specificity was 100% for both BE and IBD. AMACR is involved in the neoplastic progression in BE and IBD. The high degree of specificity of AMACR for dysplasia/carcinoma in BE and IBD suggests that it may be useful to detect neoplastic epithelium in these conditions.
Collapse
Affiliation(s)
- Russell Dorer
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Thornburg T, Turner AR, Chen YQ, Vitolins M, Chang B, Xu J. Phytanic acid, AMACR and prostate cancer risk. Future Oncol 2006; 2:213-23. [PMID: 16563090 DOI: 10.2217/14796694.2.2.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The growing body of knowledge in cancer prevention demonstrates that for many cancers, risk must be defined in terms of both environmental and genetic factors. In prostate cancer, there is increasing evidence linking risk with polymorphisms in the alpha-methylacyl-CoA racemase (AMACR) gene and branched-chain fatty acids derived from specific sources of dietary fats. We are now at the point where we can begin to conceptualize possible inter-relationships between dietary and genetic risk as applied to prostate cancer, with the goal of generating testable hypotheses amenable to coordinated examinations. A greater understanding of such relationships should provide better ways to establish overall risk, to screen for the disease and perhaps to offer specific opportunities for prevention and treatment.
Collapse
Affiliation(s)
- Todd Thornburg
- Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
29
|
Huyghe S, Schmalbruch H, De Gendt K, Verhoeven G, Guillou F, Van Veldhoven PP, Baes M. Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice. Endocrinology 2006; 147:2228-36. [PMID: 16484321 DOI: 10.1210/en.2005-1571] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inactivation of peroxisomal beta-oxidation in mice, by knocking out multifunctional protein-2 (MFP-2; also called d-bifunctional enzyme), causes male infertility. In the testis, extensive accumulations of neutral lipids were observed in Sertoli cells, beginning in prepubertal mice and evolving in complete testicular atrophy by the age of 4 months. Spermatogenesis was already severely affected at the age of 5 wk, and pre- and postmeiotic germ cells gradually disappeared from the tubuli seminiferi. Based on cytochemical stainings and biochemical analyses, the lipid droplets consisted of cholesteryl esters and neutral glycerolipids. Furthermore, peroxisomal beta-oxidation substrates, such as very-long-chain fatty acids and pristanic acid, accumulated in the testis, whereas the concentration of docosapentaenoic acid, a polyunsaturated fatty acid and peroxisomal beta-oxidation product, was reduced. The testicular defects were also present in double MFP-2/peroxisome proliferator-activated receptor-alpha knockout mice, ruling out the possibility that they were mediated through the activation of this nuclear receptor. Immunoreactivity for peroxisomal proteins, including MFP-2, was detected in Sertoli cells as well as in germ cells and Leydig cells. The pivotal role of peroxisomal metabolism in Sertoli cells was also demonstrated by generating mice with a Sertoli cell-selective elimination of peroxisomes through cell type-specific inactivation of the peroxin 5 gene. These mice also developed lipid inclusions and were infertile, and their testes fully degenerated by the age of 4 months. In conclusion, the present data demonstrate that peroxisomal beta-oxidation is essential for lipid homeostasis in the testis and for male fertility.
Collapse
Affiliation(s)
- Steven Huyghe
- Laboratory of Clinical Chemistry, Faculty of Pharmacy, Katholieke Universiteit, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
30
|
Mubiru JN, Valente AJ, Troyer DA. A variant of the alpha-methyl-acyl-CoA racemase gene created by a deletion in exon 5 and its expression in prostate cancer. Prostate 2005; 65:117-23. [PMID: 15880524 DOI: 10.1002/pros.20277] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alpha-methylacyl-CoA racemase (AMACR) is a mitochondrial and peroxisomal enzyme that is overexpressed in prostate cancer. Alternatively spliced variants of AMACR have recently been reported, however, their role in prostate cancer pathogenesis is unclear. METHODS Using PCR techniques we have identified a novel variant of AMACR. RESULTS This transcript arises by an alternative splicing event in the 5th exon of the gene whereby a 749 base sequence is deleted causing a shift in the reading frame. The protein encoded by this transcript has a predicted molecular weight of 43,833 kDa and a pI of 7.01 and therefore differs in size and physical characteristics from the main form of AMACR. The carboxyl terminus of this variant does not contain the peroxisomal targeting signal found in the main form of AMACR. Using real time PCR it was demonstrated that this transcript also occurs in normal prostate tissue and is elevated in prostate cancer. Coordinate expression of this transcript with the other forms of AMACR was shown. This transcript was expressed as a FLAG fusion protein in Cos-7 cells and probed with relevant antibodies. CONCLUSION A deletion event in exon 5 of the AMACR gene creates a novel transcript that is coordinately expressed with the other forms of AMACR but with different biochemical characteristics. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- James N Mubiru
- Department of Pathology, the University of Texas Health Science Center, San Antonio, 78229, USA
| | | | | |
Collapse
|
31
|
Sadacharan SK, Singh B, Bowes T, Gupta RS. Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem Cell Biol 2005; 124:409-21. [PMID: 16133117 DOI: 10.1007/s00418-005-0056-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX) complex is an integral part of the electron transport chain. Three subunits of this complex (COX I, COX II and COX III) are encoded by mitochondrial (mit-) DNA. High-resolution immunogold electron microscopy has been used to study the subcellular localization of COX I and COX II in rat tissue sections, embedded in LR Gold resin, using monoclonal antibodies for these proteins. Immunofluorescence labeling of BS-C-1 monkey kidney cells with these antibodies showed characteristic mitochondrial labeling. In immunogold labeling studies, the COX I and COX II antibodies showed strong and specific mitochondrial labeling in the liver, kidney, heart and pancreas. However, in rat pancreatic acinar tissue, in addition to mitochondrial labeling, strong and specific labeling was also observed in the zymogen granules (ZGs). In the anterior pituitary, strong labeling with these antibodies was seen in the growth hormone secretory granules. In contrast to these compartments, the COX I or COX II antibodies showed only minimal labeling (five- to tenfold lower) of the cytoplasm, endoplasmic reticulum and the nucleus. Strong labeling with the COX I or COX II antibodies was also observed in highly purified ZGs from bovine pancreas. The observed labeling, in all cases, was completely abolished upon omission of the primary antibodies. These results provide evidence that, similar to a number of other recently studied mit-proteins, COX I and COX II are also present outside the mitochondria. The presence of mit-DNA encoded COX I and COX II in extramitochondrial compartments, provides strong evidence that proteins can exit, or are exported, from the mitochondria. Although the mechanisms responsible for protein exit/export remain to be elucidated, these results raise fundamental questions concerning the roles of mitochondria and mitochondrial proteins in diverse cellular processes in different compartments.
Collapse
Affiliation(s)
- Skanda K Sadacharan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
32
|
Savolainen K, Bhaumik P, Schmitz W, Kotti TJ, Conzelmann E, Wierenga RK, Hiltunen JK. α-Methylacyl-CoA Racemase from Mycobacterium tuberculosis. J Biol Chem 2005; 280:12611-20. [PMID: 15632186 DOI: 10.1074/jbc.m409704200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha-methylacyl-CoA racemase (Amacr) catalyzes the racemization of alpha-methyl-branched CoA esters. Sequence comparisons have shown that this enzyme is a member of the family III CoA transferases. The mammalian Amacr is involved in bile acid synthesis and branched-chain fatty acid degradation. In human, mutated variants of Amacr have been shown to be associated with disease states. Amino acid sequence alignment of Amacrs and its homologues from various species revealed 26 conserved protic residues, assumed to be potential candidates as catalytic residues. Amacr from Mycobacterium tuberculosis (MCR) was taken as a representative of the racemases. To determine their importance for efficient catalysis, each of these 26 protic residues of MCR was mutated into an alanine, respectively, and the mutated variants were overexpressed in Escherichia coli. It was found that four variants (R91A, H126A, D156A, and E241A) were properly folded but had much decreased catalytic efficiency. Apparently, Arg91, His126, Asp156, and Glu241 are important catalytic residues of MCR. The importance of these residues for catalysis can be rationalized by the 1.8 A resolution crystal structure of MCR, which shows that the catalytic site is at the interface between the large and small domain of two different subunits of the dimeric enzyme. This crystal structure is the first structure of a complete enzyme of the bile acid synthesis pathway. It shows that MCR has unique structural features, not seen in the structures of the sequence related formyl-CoA transferases, suggesting that the family III CoA transferases can be subdivided in at least two classes, being racemases and CoA transferases.
Collapse
Affiliation(s)
- Kalle Savolainen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Linnanmaa, P. O. Box 3000, FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
33
|
Sakai Y, Takahashi H, Wakasa Y, Kotani T, Yurimoto H, Miyachi N, Van Veldhoven PP, Kato N. Role of alpha-methylacyl coenzyme A racemase in the degradation of methyl-branched alkanes by Mycobacterium sp. strain P101. J Bacteriol 2004; 186:7214-20. [PMID: 15489432 PMCID: PMC523219 DOI: 10.1128/jb.186.21.7214-7220.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new isolate, Mycobacterium sp. strain P101, is capable of growth on methyl-branched alkanes (pristane, phytane, and squalane). Among ca. 10,000 Tn5-derived mutants, we characterized 2 mutants defective in growth on pristane or n-hexadecane. A single copy of Tn5 was found to be inserted into the coding region of mcr (alpha-methylacyl coenzyme A [alpha-methylacyl-CoA] racemase gene) in mutant P1 and into the coding region of mls (malate synthase gene) in mutant H1. Mutant P1 could not grow on methyl-branched alkanes. The recombinant Mcr produced in Escherichia coli was confirmed to catalyze racemization of (R)-2-methylpentadecanoyl-CoA, with a specific activity of 0.21 micromol . min(-1) . mg of protein(-1). Real-time quantitative reverse transcriptase PCR analyses indicated that mcr gene expression was enhanced by the methyl-branched alkanes pristane and squalane. Mutant P1 used (S)-2-methylbutyric acid for growth but did not use the racemic compound, and growth on n-hexadecane was not inhibited by pristane. These results suggested that the oxidation of the methyl-branched alkanoic acid is inhibited by the (R) isomer, although the (R) isomer was not toxic during growth on n-hexadecane. Based on these results, Mcr is suggested to play a critical role in beta-oxidation of methyl-branched alkanes in Mycobacterium. On the other hand, mutant H1 could not grow on n-hexadecane, but it partially retained the ability to grow on pristane. The reduced growth of mutant H1 on pristane suggests that propionyl-CoA is available for cell propagation through the 2-methyl citric acid cycle, since propionyl-CoA is produced through beta-oxidation of pristane.
Collapse
Affiliation(s)
- Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sreekumar A, Laxman B, Rhodes DR, Bhagavathula S, Harwood J, Giacherio D, Ghosh D, Sanda MG, Rubin MA, Chinnaiyan AM. Humoral Immune Response to -Methylacyl-CoA Racemase and Prostate Cancer. J Natl Cancer Inst 2004; 96:834-43. [PMID: 15173267 DOI: 10.1093/jnci/djh145] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although prostate-specific antigen (PSA) is a prototypic biomarker for prostate cancer, it has poor specificity. Expression of alpha-methylacyl-CoA racemase (AMACR), which is involved in the conversion of R-stereoisomers of branched-chain fatty acids to S-stereoisomers, has been shown to be specifically increased in prostate cancer epithelia. However, attempts to detect AMACR in circulation have not been successful. Hence, we determined whether an immune response to AMACR could be used as a serum biomarker for prostate cancer. METHODS Sera from patients with biopsy-proven prostate cancer and from control subjects were screened for a humoral immune response to selected tumor antigens, including AMACR, by using protein microarrays (46 patients, 28 control subjects). Humoral immune response to AMACR was then validated using high-throughput immunoblot analysis (151 patients, 259 control subjects) and enzyme-linked immunosorbent assay (ELISA) (54 patients, 55 control subjects). Receiver operating characteristic curves were used to determine the sensitivity and specificity of the immune response to AMACR to detect prostate cancer. RESULTS Immunoreactivity against AMACR was statistically significantly higher in sera from patients with prostate cancer than in control subjects by all three techniques (P(protein microarray) =.009, P(immunoblot)<.001, P(ELISA) =.011). High-throughput immunoblot analysis revealed that, in subjects with intermediate PSA levels (4-10 ng/mL), the immune response against AMACR was more sensitive and specific than was PSA in distinguishing sera from prostate cancer patients relative to control subjects (sensitivity and specificity of 77.8% and 80.6% versus 45.6% and 50%, respectively; area under the curve of 0.789 versus 0.492; P<.001). CONCLUSION Assays to detect a humoral immune response against AMACR may have the potential to supplement PSA screening in identifying patients with clinically significant prostate cancer, especially those with intermediate PSA levels.
Collapse
Affiliation(s)
- Arun Sreekumar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E, Hiltunen JK. A mouse model for α-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 2004; 13:955-65. [PMID: 15016763 DOI: 10.1093/hmg/ddh107] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
alpha-Methylacyl-CoA racemase (Amacr) deficiency in humans leads to sensory motor neuronal and liver abnormalities. The disorder is recessively inherited and caused by mutations in the AMACR gene, which encodes Amacr, an enzyme presumed to be essential for bile acid synthesis and to participate in the degradation of methyl-branched fatty acids. To generate a model to study the pathophysiology in Amacr deficiency we inactivated the mouse Amacr gene. As per human Amacr deficiency, the Amacr(-/-) mice showed accumulation (44-fold) of C27 bile acid precursors and decreased (over 50%) primary (C24) bile acids in bile, serum and liver, however the Amacr(-/-) mice were clinically symptomless. Real-time quantitative PCR analysis showed that, among other responses, the level of mRNA for peroxisomal multifunctional enzyme type 1 (pMFE-1) was increased 3-fold in Amacr(-/-) mice. This enzyme can be placed, together with CYP3A11 and CYP46A1, to make an Amacr-independent pathway for the generation of C24 bile acids. Exposure of Amacr(-/-) mice to a diet supplemented with phytol, a source for branched-chain fatty acids, triggered the development of a disease state with liver manifestations, redefining the physiological significance of Amacr. Amacr is indispensable for the detoxification of dietary methyl-branched lipids and, although it contributes normally to bile acid synthesis from cholesterol, the putative pMFE-1-mediated cholesterol degradation can provide for generation of bile acids, allowing survival without Amacr. Based upon our mouse model, we propose elimination of phytol from the diet of patients suffering from Amacr deficiency.
Collapse
Affiliation(s)
- Kalle Savolainen
- Department of Biochemistry, Biocenter Oulu, University of Oulu, FIN-90014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Multiple factors contribute to the high incidence and prevalence of prostate cancer including race, ethnicity, diet, environment, widespread awareness through prostate-specific antigen screening and genetics. Linkage analysis has identified several candidate sites for hereditary prostate cancer gene loci. Molecular studies have also identified genes that are frequently altered in sporadic prostate cancer. It appears that due to the heterogeneity of prostate cancer, multiple genes may be involved in the neoplastic process.
Collapse
Affiliation(s)
- Mark A Rubin
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
37
|
Mubiru JN, Shen-Ong GL, Valente AJ, Troyer DA. Alternative spliced variants of the alpha-methylacyl-CoA racemase gene and their expression in prostate cancer. Gene 2004; 327:89-98. [PMID: 14960364 DOI: 10.1016/j.gene.2003.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 10/24/2003] [Accepted: 11/07/2003] [Indexed: 11/20/2022]
Abstract
Alpha-methyacyl-CoA racemase (AMACR), a mitochondrial and peroxisomal enzyme essential in lipid metabolism, is overexpressed in prostate cancer. Two different AMACR transcripts (designated IA and IIA), each derived from five exons, have been reported. AMACR IA, the most abundant form, encodes a 382-amino acid protein (Mw 42 kDa, pI 6.07). AMACR IIA contains an alternative fifth exon that has extensive homology to the human fumarate hydratase (FH) and encodes a 288-amino acid protein (Mw 32 kDa, pI 9.6). Here we report additional variants of IA and IIA whereby the transcripts lack exon 3 and are designated as IB (Mw 22 kDa, pI 10.31) and IIB (Mw 31 kDa, pI 9.44). Due to a frameshift, the alternative fifth exon in the IIA transcript encodes a polypeptide that differs from FH. In contrast, the IIB transcript, generated as a result of the dual alternative splicing events, encodes a polypeptide homologous with a highly conserved region of FH. We also identified a shorter variant form of IIA (IIAs, Mw 28 kDa, pI 9.65), which lacks the 5' half of the alternative fifth exon. The carboxy termini of all five gene products differ as a result of the alternative splicing events. In prostate tumor tissues that overexpressed AMACR, both the A and B forms were overexpressed, suggesting coregulation. Only the predominant AMACR IA has an acidic pI and contains the previously identified peroxisomal targeting signal (PTS1) peptide, while the other four variants are basic proteins that lack the peroxisomal targeting signal peptide. These observations have implications for the cellular localization and function of these AMACR variants.
Collapse
Affiliation(s)
- James N Mubiru
- Department of Pathology, Mail Code 7750, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | |
Collapse
|
38
|
Abstract
The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
Collapse
Affiliation(s)
- David W Russell
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9046, USA.
| |
Collapse
|
39
|
Abstract
Recent advances in molecular techniques have given the opportunity to assess genomic and proteomic alterations comprehensively and rapidly in routinely acquired tissue samples. In particular, new markers derived from qualitative and quantitative DNA, RNA, and protein analysis have provided additional objective information to supplant and extend the morphologic interpretations and have been increasingly integrated into the final surgical pathology diagnosis. In this review several recently developed molecular techniques are described and illustrated. The focus is on prostate cancer diagnostics, as an example of their application.
Collapse
Affiliation(s)
- Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology, School of Medicine, Polytechnic University of the Marche Region (Ancona), Azienda Ospedaliera Umberto I degrees, I-60020, Ancona, Torrette, Italy.
| | | | | |
Collapse
|
40
|
Mukherji M, Schofield CJ, Wierzbicki AS, Jansen GA, Wanders RJA, Lloyd MD. The chemical biology of branched-chain lipid metabolism. Prog Lipid Res 2003; 42:359-76. [PMID: 12814641 DOI: 10.1016/s0163-7827(03)00016-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mammalian metabolism of some lipids including 3-methyl and 2-methyl branched-chain fatty acids occurs within peroxisomes. Such lipids, including phytanic and pristanic acids, are commonly found within the human diet and may be derived from chlorophyll in plant extracts. Due to the presence of a methyl group at its beta-carbon, the well-characterised beta-oxidation pathway cannot degrade phytanic acid. Instead its alpha-methylene group is oxidatively excised to give pristanic acid, which can be metabolised by the beta-oxidation pathway. Many defects in the alpha-oxidation pathway result in an accumulation of phytanic acid, leading to neurological distress, deterioration of vision, deafness, loss of coordination and eventual death. Details of the alpha-oxidation pathway have only recently been elucidated, and considerable progress has been made in understanding the detailed enzymology of one of the oxidative steps within this pathway. This review summarises these recent advances and considers the roles and likely mechanisms of the enzymes within the alpha-oxidation pathway.
Collapse
Affiliation(s)
- Mridul Mukherji
- The Oxford Centre for Molecular Sciences & The Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY, UK
| | | | | | | | | | | |
Collapse
|
41
|
Magi-Galluzzi C, Luo J, Isaacs WB, Hicks JL, de Marzo AM, Epstein JI. Alpha-methylacyl-CoA racemase: a variably sensitive immunohistochemical marker for the diagnosis of small prostate cancer foci on needle biopsy. Am J Surg Pathol 2003; 27:1128-33. [PMID: 12883245 DOI: 10.1097/00000478-200308000-00010] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Expression of the alpha-methylacyl-CoA racemase (AMACR) gene has recently been demonstrated by several groups to be markedly elevated in prostate cancer cells with little expression in benign prostate tissue and has been suggested as a molecular marker of prostate cancer on needle biopsy. There is scant data, however, as to the sensitivity and specificity of AMACR in the diagnosis of small foci of cancer on needle biopsy. A total of 209 needle biopsies of the prostate with small foci (<5% of a core) of prostatic adenocarcinoma were identified. A total of 175 cases were received in consultation by one of the authors (140 from a single institution and 35 from different outside institutions) and 34 cases were from our hospital file. Immunohistochemistry for high molecular weight cytokeratin and p63 was performed in all cases to confirm the diagnosis of cancer. Only AMACR staining that was significantly stronger than that of background benign glands was considered positive; 88% of all cases of prostate cancer were positive for AMACR. The sensitivity varied among the different groups: 100% for the in house cases, 87.1% for the cases from a single institution, and 80% for cases from different outside institutions. The mean percentage of stained glands in positive cases was 95.9%, with 150 (71.8%) cases showing 100% of the glands positive and 25 (12.0%) cases showing no staining. Because negative staining for basal cell markers, especially in a small focus of atypical glands, is not necessarily diagnostic of prostate cancer, positive staining for AMACR can increase the level of confidence in establishing a definitive malignant diagnosis. However, the sensitivity of AMACR staining may vary in specimens from different pathology laboratories, possibly related to differences in fixation and processing. It is important to optimize the staining technique for each laboratory and recognize that some small cancers on needle biopsy may be AMACR negative.
Collapse
|
42
|
Neuberger G, Maurer-Stroh S, Eisenhaber B, Hartig A, Eisenhaber F. Prediction of peroxisomal targeting signal 1 containing proteins from amino acid sequence. J Mol Biol 2003; 328:581-92. [PMID: 12706718 DOI: 10.1016/s0022-2836(03)00319-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peroxisomal matrix proteins have to be imported into their target organelle post-translationally. The major translocation pathway depends on a C-terminal targeting signal, termed PTS1. Our previous analysis of sequence variability in the PTS1 motif revealed that, in addition to the known C-terminal tripeptide, at least nine residues directly upstream are important for signal recognition in the PTS1-Pex5 receptor complex. The refined PTS1 motif description was implemented in a prediction tool composed of taxon-specific functions (metazoa, fungi, remaining taxa), capable of recognising potential PTS1s in query sequences. The composite score function consists of classical profile terms and additional terms penalising deviations from the derived physical property pattern over sequence segments. The prediction algorithm has been validated with a self-consistency and three different cross-validation tests. Additionally, we tested the tool on a large set of non-peroxisomal negatives, on mutation data, and compared the prediction rate to the PTS1 component of the PSORT2 program. The sensitivity of our predictor in recognising documented PTS1 signal containing proteins is close to 90% for reliable prediction. The predictor distinguishes even SKL-appended non-peroxisomally targeted proteins such as a mouse dihydrofolate reductase-SKL construct. The corresponding rate of false positives is not worse than 0.8%; thus, the tool can be applied for large-scale unsupervised sequence database annotation. A scan of public protein databases uncovered a number of yet uncharacterised proteins for which the PTS1 signal might be critical for biological function. The predicted presence of a PTS1 signal implies peroxisomal localisation in the absence of N-terminal targeting sequences such as the mitochondrial import signal.
Collapse
Affiliation(s)
- Georg Neuberger
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| | | | | | | | | |
Collapse
|
43
|
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003; 27:35-64. [PMID: 12697341 DOI: 10.1016/s0168-6445(03)00017-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation. The main factors involved in protein import into peroxisomes are also known, but only one peroxisomal metabolite transporter has been characterized in detail, Ant1p, which exchanges intraperoxisomal AMP with cytosolic ATP. The other known transporter is Pxa1p-Pxa2p, which bears similarity to the human adrenoleukodystrophy protein ALDP. The major players in the regulation of fatty acid-induced gene expression are Pip2p and Oaf1p, which unite to form a transcription factor that binds to oleate response elements in the promoter regions of genes encoding peroxisomal proteins. Adr1p, a transcription factor, binding upstream activating sequence 1, also regulates key genes involved in beta-oxidation. The development of new, postgenomic-era tools allows for the characterization of the entire transcriptome involved in beta-oxidation and will facilitate the identification of novel proteins as well as the characterization of protein families involved in this process.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
44
|
Kuefer R, Varambally S, Zhou M, Lucas PC, Loeffler M, Wolter H, Mattfeldt T, Hautmann RE, Gschwend JE, Barrette TR, Dunn RL, Chinnaiyan AM, Rubin MA. alpha-Methylacyl-CoA racemase: expression levels of this novel cancer biomarker depend on tumor differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:841-8. [PMID: 12213712 PMCID: PMC1867250 DOI: 10.1016/s0002-9440(10)64244-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
alpha-Methylacyl-CoA racemase (AMACR) has previously been shown to be a highly sensitive marker for colorectal and clinically localized prostate cancer (PCa). However, AMACR expression was down-regulated at the transcript and protein level in hormone-refractory metastatic PCa, suggesting a hormone-dependent expression of AMACR. To further explore the hypothesis that AMACR is hormone regulated and plays a role in PCa progression AMACR protein expression was characterized in a broad range of PCa samples treated with variable amounts and lengths of exogenous anti-androgens. Analysis included standard slides and high-density tissue microarrays. AMACR protein expression was significantly increased in localized hormone-naive PCa as compared to benign (P < 0.001). Mean AMACR expression was lower in tissue samples from patients who had received neoadjuvant hormone treatment but still higher compared to hormone-refractory metastases. The hormone-sensitive tumor cell line, LNCaP, demonstrated stronger AMACR expression by Western blot analysis than the poorly differentiated cell lines DU-145 and PC-3. AMACR protein expression in cells after exposure to anti-androgen treatment was unchanged, whereas prostate-specific antigen, known to be androgen-regulated, demonstrated decreased protein expression. Surprisingly, this data suggests that AMACR expression is not regulated by androgens. Examination of colorectal cancer, which is not hormone regulated, demonstrated high levels of AMACR expression in well to moderately differentiated tumors and weak expression in anaplastic colorectal cancers. Taken together, these data suggest that AMACR expression is not hormone-dependent but may in fact be a marker of tumor differentiation.
Collapse
Affiliation(s)
- Rainer Kuefer
- Department of Pathology, University of Michigan Medical School, Ann Arbor 48109-0602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Fifteen years ago, we had a model of peroxisome biogenesis that involved growth and division of preexisting peroxisomes. Today, thanks to genetically tractable model organisms and Chinese hamster ovary cells, 23 PEX genes have been cloned that encode the machinery ("peroxins") required to assemble the organelle. Membrane assembly and maintenance requires three of these (peroxins 3, 16, and 19) and may occur without the import of the matrix (lumen) enzymes. Matrix protein import follows a branched pathway of soluble recycling receptors, with one branch for each class of peroxisome targeting sequence (two are well characterized), and a common trunk for all. At least one of these receptors, Pex5p, enters and exits peroxisomes as it functions. Proliferation of the organelle is regulated by Pex11p. Peroxisome biogenesis is remarkably conserved among eukaryotes. A group of fatal, inherited neuropathologies are recognized as peroxisome biogenesis diseases; the responsible genes are orthologs of yeast or Chinese hamster ovary peroxins. Future studies must address the mechanism by which folded, oligomeric enzymes enter the organelle, how the peroxisome divides, and how it segregates at cell division. Most pex mutants contain largely empty membrane "ghosts" of peroxisomes; a few mutants apparently lacking peroxisomes entirely have led some to propose the de novo formation of the organelle. However, there is evidence for residual peroxisome membrane vesicles ("protoperoxisomes") in some of these, and the preponderance of data supports the continuity of the peroxisome compartment in space and time and between generations of cells.
Collapse
Affiliation(s)
- P E Purdue
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, NY 10029-6574, USA.
| | | |
Collapse
|
46
|
Laloi C, Rayapuram N, Chartier Y, Grienenberger JM, Bonnard G, Meyer Y. Identification and characterization of a mitochondrial thioredoxin system in plants. Proc Natl Acad Sci U S A 2001; 98:14144-9. [PMID: 11717467 PMCID: PMC61182 DOI: 10.1073/pnas.241340898] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2001] [Indexed: 11/18/2022] Open
Abstract
Plants possess two well described thioredoxin systems: a cytoplasmic system including several thioredoxins and an NADPH-dependent thioredoxin reductase and a specific chloroplastic system characterized by a ferredoxin-dependent thioredoxin reductase. On the basis of biochemical activities, plants also are supposed to have a mitochondrial thioredoxin system as described in yeast and mammals, but no gene encoding plant mitochondrial thioredoxin or thioredoxin reductase has been identified yet. We report the characterization of a plant thioredoxin system located in mitochondria. Arabidopsis thaliana genome sequencing has revealed numerous thioredoxin genes among which we have identified AtTRX-o1, a gene encoding a thioredoxin with a potential mitochondrial transit peptide. AtTRX-o1 and a second gene, AtTRX-o2, define, on the basis of the sequence and intron positions, a new thioredoxin type up to now specific to plants. We also have characterized AtNTRA, a gene encoding a protein highly similar to the previously described cytosolic NADPH-dependent thioredoxin reductase AtNTRB but with a putative presequence for import into mitochondria. Western blot analysis of A. thaliana subcellular and submitochondrial fractions and in vitro import experiments show that AtTRX-o1 and AtNTRA are targeted to the mitochondrial matrix through their cleavable N-terminal signal. The two proteins truncated to the estimated mature forms were produced in Escherichia coli; AtTRX-o1 efficiently reduces insulin in the presence of DTT and is reduced efficiently by AtNTRA and NADPH. Therefore, the thioredoxin and the NADPH-dependent thioredoxin reductase described here are proposed to constitute a functional plant mitochondrial thioredoxin system.
Collapse
Affiliation(s)
- C Laloi
- Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche Centre National de la Recherche Scientifique 5096, Université de Perpignan, 52 Avenue de Villeneuve, F-66860 Perpignan, France
| | | | | | | | | | | |
Collapse
|
47
|
Metzler DE, Metzler CM, Sauke DJ. Polyprenyl (Isoprenoid) Compounds. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes: AA-CoA thiolase, HMG-CoA synthase, MPPD, and FPP synthase. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32353-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|