1
|
Lyu Y, Yang F, Sundaresh B, Rosconi F, van Opijnen T, Gao J. Covalent Inhibition of a Host-Pathogen Protein-Protein Interaction Reduces the Infectivity of Streptococcus pneumoniae. JACS AU 2024; 4:2484-2491. [PMID: 39055144 PMCID: PMC11267552 DOI: 10.1021/jacsau.4c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
The ever-expanding antibiotic resistance urgently calls for novel antibacterial therapeutics, especially those with a new mode of action. We report herein our exploration of protein-protein interaction (PPI) inhibition as a new mechanism to thwart bacterial pathogenesis. Specifically, we describe potent and specific inhibitors of the pneumococcal surface protein PspC, an important virulence factor that facilitates the infection of Streptococcus pneumoniae. Specifically, PspC has been documented to recruit human complement factor H (hFH) to suppress host complement activation and/or promote the bacterial attachment to host tissues. The CCP9 domain of hFH was recombinantly expressed to inhibit the PspC-hFH interaction as demonstrated on live pneumococcal cells. The inhibitor allowed for the first pharmacological intervention of the PspC-hFH interaction. This PPI inhibition reduced pneumococci's attachment to epithelial cells and also resensitized the D39 strain of S. pneumoniae for opsonization. Importantly, we have further devised covalent versions of CCP9, which afforded long-lasting PspC inhibition with low nanomolar potency. Overall, our results showcase the promise of PPI inhibition for combating bacterial infections as well as the power of covalent inhibitors.
Collapse
Affiliation(s)
- Yuhan Lyu
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Fan Yang
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| | - Bharathi Sundaresh
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Federico Rosconi
- Department
of Biology, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Tim van Opijnen
- Broad
Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, United States
| | - Jianmin Gao
- Department
of Chemistry, Merkert Chemistry Center, Boston College, Chestnut
Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Pellegrini A, Pietrocola G. Recruitment of Vitronectin by Bacterial Pathogens: A Comprehensive Overview. Microorganisms 2024; 12:1385. [PMID: 39065153 PMCID: PMC11278874 DOI: 10.3390/microorganisms12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.
Collapse
Affiliation(s)
| | - Giampiero Pietrocola
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy;
| |
Collapse
|
3
|
Li N, Zhou H, Holden VK, Deepak J, Dhilipkannah P, Todd NW, Stass SA, Jiang F. Streptococcus pneumoniae promotes lung cancer development and progression. iScience 2023; 26:105923. [PMID: 36685035 PMCID: PMC9852931 DOI: 10.1016/j.isci.2022.105923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/12/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Streptococcus pneumoniae (SP) is associated with lung cancer, yet its role in the tumorigenesis remains uncertain. Herein we find that SP attaches to lung cancer cells via binding pneumococcal surface protein C (PspC) to platelet-activating factor receptor (PAFR). Interaction between PspC and PAFR stimulates cell proliferation and activates PI3K/AKT and nuclear factor kB (NF-kB) signaling pathways, which trigger a pro-inflammatory response. Lung cancer cells infected with SP form larger tumors in BALB/C mice compared to untreated cells. Mice treated with tobacco carcinogen and SP develop more lung tumors and had shorter survival period than mice treated with the carcinogen alone. Mutating PspC or PAFR abolishes tumor-promoting effects of SP. Overabundance of SP is associated with the survival. SP may play a driving role in lung tumorigenesis by activating PI3K/AKT and NF-kB pathways via binding PspC to PAFR and provide a microbial target for diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Ning Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huifen Zhou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Van K. Holden
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Janaki Deepak
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pushpa Dhilipkannah
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nevins W. Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sanford A. Stass
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feng Jiang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Robinson RE, Mitsi E, Nikolaou E, Pojar S, Chen T, Reiné J, Nyazika TK, Court J, Davies K, Farrar M, Gonzalez-Dias P, Hamilton J, Hill H, Hitchins L, Howard A, Hyder-Wright A, Lesosky M, Liatsikos K, Matope A, McLenaghan D, Myerscough C, Murphy A, Solórzano C, Wang D, Burhan H, Gautam M, Begier E, Theilacker C, Beavon R, Anderson AS, Gessner BD, Gordon SB, Collins AM, Ferreira DM. Human Infection Challenge with Serotype 3 Pneumococcus. Am J Respir Crit Care Med 2022; 206:1379-1392. [PMID: 35802840 DOI: 10.1164/rccm.202112-2700oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rationale: Streptococcus pneumoniae serotype 3 (SPN3) is a cause of invasive pneumococcal disease and associated with low carriage rates. Following the introduction of pediatric 13-valent pneumococcal conjugate vaccine (PCV13) programs, SPN3 declines are less than other vaccine serotypes and incidence has increased in some populations coincident with a shift in predominant circulating SPN3 clade, from I to II. A human challenge model provides an effective means for assessing the impact of PCV13 on SPN3 in the upper airway. Objectives: To establish SPN3's ability to colonize the nasopharynx using different inoculum clades and doses, and the safety of an SPN3 challenge model. Methods: In a human challenge study involving three well-characterized and antibiotic-sensitive SPN3 isolates (PFESP306 [clade Ia], PFESP231 [no clade], and PFESP505 [clade II]), inoculum doses (10,000, 20,000, 80,000, and 160,000 cfu/100 μl) were escalated until maximal colonization rates were achieved, with concurrent acceptable safety. Measurement and Main Results: Presence and density of experimental SPN3 nasopharyngeal colonization in nasal wash samples, assessed using microbiological culture and molecular methods, on Days 2, 7, and 14 postinoculation. A total of 96 healthy participants (median age 21, interquartile range 19-25) were inoculated (n = 6-10 per dose group, 10 groups). Colonization rates ranged from 30.0-70.0% varying with dose and isolate. 30.0% (29/96) reported mild symptoms (82.8% [24/29] developed a sore throat); one developed otitis media requiring antibiotics. No serious adverse events occurred. Conclusions: An SPN3 human challenge model is feasible and safe with comparable carriage rates to an established Serotype 6B human challenge model. SPN3 carriage may cause mild upper respiratory symptoms.
Collapse
Affiliation(s)
- Ryan E Robinson
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Elena Mitsi
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Elissavet Nikolaou
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sherin Pojar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tao Chen
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jesús Reiné
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Tinashe K Nyazika
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - James Court
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kelly Davies
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Madlen Farrar
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Josh Hamilton
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Helen Hill
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Lisa Hitchins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ashleigh Howard
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Angela Hyder-Wright
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Maia Lesosky
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Agnes Matope
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Daniella McLenaghan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Annabel Murphy
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Carla Solórzano
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Duolao Wang
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hassan Burhan
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Manish Gautam
- Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | | | | | | | | | | | - Stephen B Gordon
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Andrea M Collins
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK.,Respiratory Research Group, Liverpool University Hospitals Foundation Trust, Liverpool, UK
| | - Daniela M Ferreira
- Clinical Sciences Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
5
|
Bahadori Z, Shafaghi M, Madanchi H, Ranjbar MM, Shabani AA, Mousavi SF. In silico designing of a novel epitope-based candidate vaccine against Streptococcus pneumoniae with introduction of a new domain of PepO as adjuvant. J Transl Med 2022; 20:389. [PMID: 36059030 PMCID: PMC9440865 DOI: 10.1186/s12967-022-03590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptococcus pneumoniae is the leading reason for invasive diseases including pneumonia and meningitis, and also secondary infections following viral respiratory diseases such as flu and COVID-19. Currently, serotype-dependent vaccines, which have several insufficiency and limitations, are the only way to prevent pneumococcal infections. Hence, it is plain to need an alternative effective strategy for prevention of this organism. Protein-based vaccine involving conserved pneumococcal protein antigens with different roles in virulence could provide an eligible alternative to existing vaccines. METHODS In this study, PspC, PhtD and PsaA antigens from pneumococcus were taken to account to predict B-cell and helper T-cell epitopes, and epitope-rich regions were chosen to build the construct. To enhance the immunogenicity of the epitope-based vaccine, a truncated N-terminal fragment of pneumococcal endopeptidase O (PepO) was used as a potential TLR2/4 agonist which was identified by molecular docking studies. The ultimate construct was consisted of the chosen epitope-rich regions, along with the adjuvant role (truncated N-PepO) and suitable linkers. RESULTS The epitope-based vaccine was assessed as regards physicochemical properties, allergenicity, antigenicity, and toxicity. The 3D structure of the engineered construct was modeled, refined, and validated. Molecular docking and simulation of molecular dynamics (MD) indicated the proper and stable interactions between the vaccine and TLR2/4 throughout the simulation periods. CONCLUSIONS For the first time this work presents a novel vaccine consisting of epitopes of PspC, PhtD, and PsaA antigens which is adjuvanted with a new truncated domain of PepO. The computational outcomes revealed that the suggested vaccine could be deemed an efficient therapeutic vaccine for S. pneumoniae; nevertheless, in vitro and in vivo examinations should be performed to prove the potency of the candidate vaccine.
Collapse
Affiliation(s)
- Zohreh Bahadori
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Shafaghi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.,Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Agricultural Research, Education, and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. .,Research Center of Biotechnology, Semnan University of Medical Sciences, Semnan, Iran.
| | | |
Collapse
|
6
|
Kumar V, Pouw RB, Autio MI, Sagmeister MG, Phua ZY, Borghini L, Wright VJ, Hoggart C, Pan B, Tan AKY, Binder A, Brouwer MC, Pinnock E, De Groot R, Hazelzet J, Emonts M, Van Der Flier M, Reiter K, Nöthen MM, Hoffmann P, Schlapbach LJ, Bellos E, Anderson S, Secka F, Martinón-Torres F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Zenz W, Wouters D, Ang LT, Hibberd ML, Levin M, Kuijpers TW, Davila S. Variation in CFHR3 determines susceptibility to meningococcal disease by controlling factor H concentrations. Am J Hum Genet 2022; 109:1680-1691. [PMID: 36007525 PMCID: PMC9502058 DOI: 10.1016/j.ajhg.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.
Collapse
Affiliation(s)
- Vikrant Kumar
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Richard B Pouw
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Matias I Autio
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | | | - Zai Yang Phua
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Clive Hoggart
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Bangfen Pan
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Cardiovascular Research Institute, Centre for Translational Medicine, National University Health System, Singapore
| | - Antson Kiat Yee Tan
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Alexander Binder
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | | | - Ronald De Groot
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Hazelzet
- Department of Pediatrics, Erasmus Medical Center-Sophia Children's Hospital, University Medical Center, Rotterdam, the Netherlands
| | - Marieke Emonts
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK; National Institute for Health and Care Research Newcastle Biomedical Research Centre Based at Newcastle Upon Tyne Hospitals National Health Service Trust and Newcastle University, Newcastle Upon Tyne, UK; Paediatric Infectious Diseases and Immunology Department, Newcastle Upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Michiel Van Der Flier
- Section of Pediatric Infectious Diseases, Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Karl Reiter
- Department of Paediatrics, Division of Paediatric Intensive Care Medicine, Ludwig Maximilian University of Munich and Dr. von Hauner's Children's Hospital, Munich, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Luregn J Schlapbach
- Child Health Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care Unit, Queensland Children's Hospital, Brisbane, Australia; Department of Intensive Care and Neonatology and Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Evangelos Bellos
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | | | - Fatou Secka
- Medical Research Council Unit Gambia, Banjul, The Gambia
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases, and Pediatrics Research Group, Instituto de Investigación Sanitaria de Santiago, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Colin Fink
- Micropathology, University of Warwick, Coventry, UK
| | - Enitan D Carrol
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Lachlan J Coin
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Werner Zenz
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - Lay Teng Ang
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, Singapore; Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael Levin
- Section of Paediatric Infectious Disease, Division of Infectious Disease, Department of Medicine, Imperial College London, London, UK
| | - Taco W Kuijpers
- Division of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, the Netherlands.
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, Singapore; Duke-National University of Singapore Medical School, Singapore, Singapore; SingHealth Duke-NUS Institute of Precision Medicine, Singapore, Singapore.
| |
Collapse
|
7
|
Rios-Barros LV, Silva-Moreira AL, Horta MF, Gontijo NF, Castro-Gomes T. How to get away with murder: The multiple strategies employed by pathogenic protozoa to avoid complement killing. Mol Immunol 2022; 149:27-38. [PMID: 35709630 DOI: 10.1016/j.molimm.2022.05.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 01/15/2023]
Abstract
Parasitic protozoa are eukaryotic unicellular organisms that depend on a variety of living organisms and can develop intra- and extracellularly inside their hosts. In humans, these parasites cause diseases with a significant impact on public health, such as malaria, toxoplasmosis, Chagas disease, leishmaniasis and amebiasis. The ability of a parasite in establishing a successful infection depends on a series of intricate evolutionarily selected adaptations, which include the development of molecular and cellular strategies to evade the host immune system effector mechanisms. The complement system is one of the main effector mechanisms and the first humoral shield of hosts innate immunity against pathogens. For unicellular pathogens, such as protozoa, bacteria and fungi, the activation of the complement system may culminate in the elimination of the invader mainly via 1- the formation of a pore that depolarizes the plasma membrane of the parasite, causing cell lysis; 2- opsonization and killing by phagocytes; 3- increasing vascular permeability while also recruiting neutrophils to the site of activation. Numerous strategies to avoid complement activation have been reported for parasitic protozoa, such as 1- sequestration of complement system regulatory proteins produced by the host, 2- expression of complement system regulatory proteins, 3- proteolytic cleavage of different complement effector molecules, 4- formation of a physical glycolipid barrier that prevents deposition of complement molecules on the plasma membrane, and 5- removal, by endocytosis, of complement molecules bound to plasma membrane. In this review, we revisit the different strategies of blocking various stages of complement activation described for the main species of parasitic protozoa, present the most recent discoveries in the field and discuss new perspectives on yet neglected strategies and possible new evasion mechanisms.
Collapse
Affiliation(s)
- Laura Valeria Rios-Barros
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Anna Luiza Silva-Moreira
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Maria Fatima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Nelder Figueiredo Gontijo
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Marshall H, José RJ, Kilian M, Petersen FC, Brown JS. Effects of Expression of Streptococcus pneumoniae PspC on the Ability of Streptococcus mitis to Evade Complement-Mediated Immunity. Front Microbiol 2021; 12:773877. [PMID: 34880844 PMCID: PMC8646030 DOI: 10.3389/fmicb.2021.773877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae and Streptococcus mitis are genetically closely related and both frequently colonise the naso-oropharynx, yet S. pneumoniae is a common cause of invasive infections whereas S. mitis is only weakly pathogenic. We hypothesise that sensitivity to innate immunity may underlie these differences in virulence phenotype. We compared the sensitivity of S. pneumoniae and S. mitis strains to complement-mediated immunity, demonstrating S. mitis strains were susceptible to complement-mediated opsonophagocytosis. S. pneumoniae resistance to complement is partially dependent on binding of the complement regulator Factor H by the surface protein PspC. However, S. mitis was unable to bind factor H. The S. pneumoniae TIGR4 strain pspC was expressed in the S. mitis SK142 strain to create a S. mitis pspC+ strain. Immunoblots demonstrated the S. mitis pspC+ strain expressed PspC, and flow cytometry confirmed this resulted in Factor H binding to S. mitis, reduced susceptibility to complement and improved survival in whole human blood compared to the wild-type S. mitis strain. However, in mouse models the S. mitis pspC+ strain remained unable to establish persistent infection. Unlike S. pneumoniae strains, culture in serum or blood did not support increased CFU of the S. mitis strains. These results suggest S. mitis is highly sensitive to opsonisation with complement partially due to an inability to bind Factor H, but even when complement sensitivity was reduced by expression of pspC, poor growth in physiological fluid limited the virulence of S. mitis in mice.
Collapse
Affiliation(s)
- Helina Marshall
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Ricardo J José
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom
| | - Mogens Kilian
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Fernanda C Petersen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Department of Medicine, Royal Free and University College Medical School, University College London, London, United Kingdom
| |
Collapse
|
9
|
Park SS, Gonzalez-Juarbe N, Martínez E, Hale JY, Lin YH, Huffines JT, Kruckow KL, Briles DE, Orihuela CJ. Streptococcus pneumoniae Binds to Host Lactate Dehydrogenase via PspA and PspC To Enhance Virulence. mBio 2021; 12:e00673-21. [PMID: 33947761 PMCID: PMC8437407 DOI: 10.1128/mbio.00673-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC, also called CbpA) are major virulence factors of Streptococcus pneumoniae (Spn). These surface-exposed choline-binding proteins (CBPs) function independently to inhibit opsonization, neutralize antimicrobial factors, or serve as adhesins. PspA and PspC both carry a proline-rich domain (PRD) whose role, other than serving as a flexible connector between the N-terminal and C-terminal domains, was up to this point unknown. Herein, we demonstrate that PspA binds to lactate dehydrogenase (LDH) released from dying host cells during infection. Using recombinant versions of PspA and isogenic mutants lacking PspA or specific domains of PspA, this property was mapped to a conserved 22-amino-acid nonproline block (NPB) found within the PRD of most PspAs and PspCs. The NPB of PspA had specific affinity for LDH-A, which converts pyruvate to lactate. In a mouse model of pneumonia, preincubation of Spn carrying NPB-bearing PspA with LDH-A resulted in increased bacterial titers in the lungs. In contrast, incubation of Spn carrying a version of PspA lacking the NPB with LDH-A or incubation of wild-type Spn with enzymatically inactive LDH-A did not enhance virulence. Preincubation of NPB-bearing Spn with lactate alone enhanced virulence in a pneumonia model, indicating exogenous lactate production by Spn-bound LDH-A had an important role in pneumococcal pathogenesis. Our observations show that lung LDH, released during the infection, is an important binding target for Spn via PspA/PspC and that pneumococci utilize LDH-A derived lactate for their benefit in vivoIMPORTANCEStreptococcus pneumoniae (Spn) is the leading cause of community-acquired pneumonia. PspA and PspC are among its most important virulence factors, and these surface proteins carry the proline-rich domain (PRD), whose role was unknown until now. Herein, we show that a conserved 22-amino-acid nonproline block (NPB) found within most versions of the PRD binds to host-derived lactate dehydrogenase A (LDH-A), a metabolic enzyme which converts pyruvate to lactate. PspA-mediated binding of LDH-A increased Spn titers in the lungs and this required LDH-A enzymatic activity. Enhanced virulence was also observed when Spn was preincubated with lactate, suggesting LDH-A-derived lactate is a vital food source. Our findings define a role for the NPB of the PRD and show that Spn co-opts host enzymes for its benefit. They advance our understanding of pneumococcal pathogenesis and have key implications on the susceptibility of individuals with preexisting airway damage that results in LDH-A release.
Collapse
Affiliation(s)
- Sang-Sang Park
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Norberto Gonzalez-Juarbe
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, USA
| | - Eriel Martínez
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Joanetha Yvette Hale
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yi-Han Lin
- Infectious Diseases and Genomic Medicine Group, J Craig Venter Institute, Rockville, Maryland, USA
| | - Joshua T Huffines
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine L Kruckow
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David E Briles
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Carlos J Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
11
|
Pneumococcal Choline-Binding Proteins Involved in Virulence as Vaccine Candidates. Vaccines (Basel) 2021; 9:vaccines9020181. [PMID: 33672701 PMCID: PMC7924319 DOI: 10.3390/vaccines9020181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen responsible for millions of deaths worldwide. Currently, the available vaccines for the prevention of S. pneumoniae infections are the 23-valent pneumococcal polysaccharide-based vaccine (PPV-23) and the pneumococcal conjugate vaccines (PCV10 and PCV13). These vaccines only cover some pneumococcal serotypes (up to 100 different serotypes have been identified) and are unable to protect against non-vaccine serotypes and non-encapsulated pneumococci. The emergence of antibiotic-resistant non-vaccine serotypes after these vaccines is an increasing threat. Therefore, there is an urgent need to develop new pneumococcal vaccines which could cover a wide range of serotypes. One of the vaccines most characterized as a prophylactic alternative to current PPV-23 or PCVs is a vaccine based on pneumococcal protein antigens. The choline-binding proteins (CBP) are found in all pneumococcal strains, giving them the characteristic to be potential vaccine candidates as they may protect against different serotypes. In this review, we have focused the attention on different CBPs as vaccine candidates because they are involved in the pathogenesis process, confirming their immunogenicity and protection against pneumococcal infection. The review summarizes the major contribution of these proteins to virulence and reinforces the fact that antibodies elicited against many of them may block or interfere with their role in the infection process.
Collapse
|
12
|
Du S, Vilhena C, King S, Sahagún-Ruiz A, Hammerschmidt S, Skerka C, Zipfel PF. Molecular analyses identifies new domains and structural differences among Streptococcus pneumoniae immune evasion proteins PspC and Hic. Sci Rep 2021; 11:1701. [PMID: 33462258 PMCID: PMC7814132 DOI: 10.1038/s41598-020-79362-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
The PspC and Hic proteins of Streptococcuspneumoniae are some of the most variable microbial immune evasion proteins identified to date. Due to structural similarities and conserved binding profiles, it was assumed for a long time that these pneumococcal surface proteins represent a protein family comprised of eleven subgroups. Recently, however, the evaluation of more proteins revealed a greater diversity of individual proteins. In contrast to previous assumptions a pattern evaluation of six PspC and five Hic variants, each representing one of the previously defined subgroups, revealed distinct structural and likely functionally regions of the proteins, and identified nine new domains and new domain alternates. Several domains are unique to PspC and Hic variants, while other domains are also present in other virulence factors encoded by pneumococci and other bacterial pathogens. This knowledge improved pattern evaluation at the level of full-length proteins, allowed a sequence comparison at the domain level and identified domains with a modular composition. This novel strategy increased understanding of individual proteins variability and modular domain composition, enabled a structural and functional characterization at the domain level and furthermore revealed substantial structural differences between PspC and Hic proteins. Given the exceptional genomic diversity of the multifunctional PspC and Hic proteins a detailed structural and functional evaluation need to be performed at the strain level. Such knowledge will also be useful for molecular strain typing and characterizing PspC and Hic proteins from new clinical S. pneumoniae strains.
Collapse
Affiliation(s)
- Shanshan Du
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Cláudia Vilhena
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Samantha King
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Alfredo Sahagún-Ruiz
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Molecular Immunology Laboratory, Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Animal Husbandry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany. .,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany.
| |
Collapse
|
13
|
Ngwa DN, Singh SK, Gang TB, Agrawal A. Treatment of Pneumococcal Infection by Using Engineered Human C-Reactive Protein in a Mouse Model. Front Immunol 2020; 11:586669. [PMID: 33117400 PMCID: PMC7575696 DOI: 10.3389/fimmu.2020.586669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022] Open
Abstract
C-reactive protein (CRP) binds to several species of bacterial pathogens including Streptococcus pneumoniae. Experiments in mice have revealed that one of the functions of CRP is to protect against pneumococcal infection by binding to pneumococci and activating the complement system. For protection, however, CRP must be injected into mice within a few hours of administering pneumococci, that is, CRP is protective against early-stage infection but not against late-stage infection. It is assumed that CRP cannot protect if pneumococci got time to recruit complement inhibitor factor H on their surface to become complement attack-resistant. Since the conformation of CRP is altered under inflammatory conditions and altered CRP binds to immobilized factor H also, we hypothesized that in order to protect against late-stage infection, CRP needed to change its structure and that was not happening in mice. Accordingly, we engineered CRP molecules (E-CRP) which bind to factor H on pneumococci but do not bind to factor H on any host cell in the blood. We found that E-CRP, in cooperation with wild-type CRP, was protective regardless of the timing of administering E-CRP into mice. We conclude that CRP acts via two different conformations to execute its anti-pneumococcal function and a model for the mechanism of action of CRP is proposed. These results suggest that pre-modified CRP, such as E-CRP, is therapeutically beneficial to decrease bacteremia in pneumococcal infection. Our findings may also have implications for infections with antibiotic-resistant pneumococcal strains and for infections with other bacterial species that use host proteins to evade complement-mediated killing.
Collapse
Affiliation(s)
- Donald N Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Toh B Gang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
14
|
Murugaiah V, Varghese PM, Saleh SM, Tsolaki AG, Alrokayan SH, Khan HA, Collison KS, Sim RB, Nal B, Al-Mohanna FA, Kishore U. Complement-Independent Modulation of Influenza A Virus Infection by Factor H. Front Immunol 2020; 11:355. [PMID: 32269562 PMCID: PMC7109256 DOI: 10.3389/fimmu.2020.00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/13/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is an ancient innate immune defense mechanism that can recognize molecular patterns on the invading pathogens. Factor H, as an inhibitor of the alternative pathway, down-regulates complement activation on the host cell surface. Locally synthesized factor H at the site of infection/injury, including lungs, can act as a pattern recognition molecule without involving complement activation. Here, we report that factor H, a sialic acid binder, interacts with influenza A virus (IAV) and modulates IAV entry, as evident from down-regulation of matrix protein 1 (M1) in H1N1 subtype-infected cells and up-regulation of M1 expression in H3N2-infected A549 cells. Far-western blot revealed that factor H binds hemagglutinin (HA, ~70 kDa), neuraminidase (NA, ~60 kDa), and M1 (~25 kDa). IAV-induced transcriptional levels of IFN-α, TNF-α, IL-12, IL-6, IFN-α, and RANTES were reduced following factor H treatment for the H1N1 subtype at 6 h post-infection. However, for the H3N2 subtype, mRNA levels of these pro-inflammatory cytokines were enhanced. A recombinant form of vaccinia virus complement control protein (VCP), which like factor H, contains CCP modules and has complement-regulatory activity, mirrored the results obtained with factor H. Both factor H (25%), and VCP (45%) were found to reduce luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles. Factor H (50%) and VCP (30%) enhanced the luciferase reporter activity for H3N2, suggesting an entry inhibitory role of factor H and VCP against H1N1, but not H3N2. Thus, factor H can modulate IAV infection and inflammatory responses, independent of its complement-related functions.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Anthony G. Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kate S. Collison
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Béatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- *Correspondence: Uday Kishore
| |
Collapse
|
15
|
Regulation of regulators: Role of the complement factor H-related proteins. Semin Immunol 2019; 45:101341. [PMID: 31757608 DOI: 10.1016/j.smim.2019.101341] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 01/15/2023]
Abstract
The complement system, while being an essential and very efficient effector component of innate immunity, may cause damage to the host and result in various inflammatory, autoimmune and infectious diseases or cancer, when it is improperly activated or regulated. Factor H is a serum glycoprotein and the main regulator of the activity of the alternative complement pathway. Factor H, together with its splice variant factor H-like protein 1 (FHL-1), inhibits complement activation at the level of the central complement component C3 and beyond. In humans, there are also five factor H-related (FHR) proteins, whose function is poorly characterized. While data indicate complement inhibiting activity for some of the FHRs, there is increasing evidence that FHRs have an opposite role compared with factor H and FHL-1, namely, they enhance complement activation directly and also by competing with the regulators FH and FHL-1. This review summarizes the current stand and recent data on the roles of factor H family proteins in health and disease, with focus on the function of FHR proteins.
Collapse
|
16
|
Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0028-2018. [PMID: 31858954 PMCID: PMC10921951 DOI: 10.1128/microbiolspec.gpp3-0028-2018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Streptococcus pneumoniae is a Gram-Positive pathogen that is a major causative agent of pneumonia, otitis media, sepsis and meningitis across the world. The World Health Organization estimates that globally over 500,000 children are killed each year by this pathogen. Vaccines offer the best protection against S. pneumoniae infections. The current polysaccharide conjugate vaccines have been very effective in reducing rates of invasive pneumococcal disease caused by vaccine type strains. However, the effectiveness of these vaccines have been somewhat diminished by the increasing numbers of cases of invasive disease caused by non-vaccine type strains, a phenomenon known as serotype replacement. Since, there are currently at least 98 known serotypes of S. pneumoniae, it may become cumbersome and expensive to add many additional serotypes to the current 13-valent vaccine, to circumvent the effect of serotype replacement. Hence, alternative serotype independent strategies, such as vaccination with highly cross-reactive pneumococcal protein antigens, should continue to be investigated to address this problem. This chapter provides a comprehensive discussion of pneumococcal vaccines past and present, protein antigens that are currently under investigation as vaccine candidates, and other alternatives, such as the pneumococcal whole cell vaccine, that may be successful in reducing current rates of disease caused by S. pneumoniae.
Collapse
Affiliation(s)
- D E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - J C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, 5005, Australia
| | - R Mukerji
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - E Swiatlo
- Section of Infectious Diseases, Southeast Louisiana Veterans Health Care System, New Orleans, LA
| | - M J Crain
- Department of Pediatrics and Microbiology, University of Alabama at Birmingham
| |
Collapse
|
17
|
Meinel C, Spartà G, Dahse HM, Hörhold F, König R, Westermann M, Coldewey SM, Cseresnyés Z, Figge MT, Hammerschmidt S, Skerka C, Zipfel PF. Streptococcus pneumoniae From Patients With Hemolytic Uremic Syndrome Binds Human Plasminogen via the Surface Protein PspC and Uses Plasmin to Damage Human Endothelial Cells. J Infect Dis 2019; 217:358-370. [PMID: 28968817 DOI: 10.1093/infdis/jix305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pneumococcal hemolytic uremic syndrome (HUS) in children is caused by infections with Streptococcus pneumoniae. Because endothelial cell damage is a hallmark of HUS, we studied how HUS-inducing pneumococci derived from infant HUS patients during the acute phase disrupt the endothelial layer. HUS pneumococci efficiently bound human plasminogen. These clinical isolates of HUS pneumococci efficiently bound human plasminogen via the bacterial surface proteins Tuf and PspC. When activated to plasmin at the bacterial surface, the active protease degraded fibrinogen and cleaved C3b. Here, we show that PspC is a pneumococcal plasminogen receptor and that plasmin generated on the surface of HUS pneumococci damages endothelial cells, causing endothelial retraction and exposure of the underlying matrix. Thus, HUS pneumococci damage endothelial cells in the blood vessels and disturb local complement homeostasis. Thereby, HUS pneumococci promote a thrombogenic state that drives HUS pathology.
Collapse
Affiliation(s)
- Christian Meinel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Giuseppina Spartà
- Klinik für Kinder- und Jugendmedizin, Kantonsspital Winterthur, Switzerland
| | - Hans-Martin Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Franziska Hörhold
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | - Rainer König
- Associated Group of Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute.,Center for Sepsis Control and Care
| | | | - Sina M Coldewey
- Center for Sepsis Control and Care.,Department of Anesthesiology and Intensive Care Medicine.,Septomics Research Center.,Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena.,Friedrich Schiller University, Jena, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University, Greifswald
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care.,Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Ngwa DN, Agrawal A. Structure-Function Relationships of C-Reactive Protein in Bacterial Infection. Front Immunol 2019; 10:166. [PMID: 30863393 PMCID: PMC6400226 DOI: 10.3389/fimmu.2019.00166] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
One host defense function of C-reactive protein (CRP) is to protect against Streptococcus pneumoniae infection as shown by experiments employing murine models of pneumococcal infection. The protective effect of CRP is due to reduction in bacteremia. There is a distinct relationship between the structure of CRP and its anti-pneumococcal function. CRP is functional in both native and non-native pentameric structural conformations. In the native conformation, CRP binds to pneumococci through the phosphocholine molecules present on the C-polysaccharide of the pneumococcus and the anti-pneumococcal function probably involves the known ability of ligand-complexed CRP to activate the complement system. In the native structure-function relationship, CRP is protective only when given to mice within a few hours of the administration of pneumococci. The non-native pentameric conformation of CRP is created when CRP is exposed to conditions mimicking inflammatory microenvironments, such as acidic pH and redox conditions. In the non-native conformation, CRP binds to immobilized complement inhibitor factor H in addition to being able to bind to phosphocholine. Recent data using CRP mutants suggest that the factor H-binding function of non-native CRP is beneficial: in the non-native structure-function relationship, CRP can be given to mice any time after the administration of pneumococci irrespective of whether the pneumococci became complement-resistant or not. In conclusion, while native CRP is protective only against early stage infection, non-native CRP is protective against both early stage and late stage infections. Because non-native CRP displays phosphocholine-independent anti-pneumococcal activity, it is quite possible that CRP functions as a general anti-bacterial molecule.
Collapse
Affiliation(s)
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
19
|
Abstract
ABSTRACT
Streptococcus pneumoniae
undergoes phase variation or spontaneous, reversible phenotypic variation in colony opacity, encapsulation, and pilus expression. The variation in colony opacity appears to occur in all strains, whereas the switches in the production of the capsule and pilus have been observed in several strains. This chapter elaborates on the variation in colony opacity since this phenomenon has been extensively characterized.
S. pneumoniae
produces opaque and transparent colonies on the translucent agar medium. The different colony phases are fundamentally distinct phenotypes in their metabolism and multiple characteristics, as exemplified by cell surface features and phenotypes in colonization and virulence. Opaque variants, which express more capsular polysaccharides and fewer teichoic acids, are more virulent in animal models of sepsis but colonize the nasopharynx poorly. In contrast, transparent variants, with fewer capsular polysaccharides and more teichoic acid, colonize the nasopharynx in animal models more efficiently but are relatively avirulent. Lastly, pneumococcal opacity variants are generated by differential methylation of the genome DNA variation. The reversible switch in the methylation pattern is caused by DNA inversions in three homologous
hsdS
genes of the colony opacity determinant (
cod
) or SpnD39III locus, a conserved type I restriction-modification (RM) system. The
hsdS
gene encodes the sequence recognition subunit of the type I RM DNA methyltransferase. The combination of DNA inversion and differential methylation, a complex mechanism of phase variation, generates a mixed population that may allow for the selection of organisms
in vivo
with characteristics permissive for either carriage or systemic infection.
Collapse
|
20
|
Comparison of four adjuvants revealed the strongest protection against lethal pneumococcal challenge following immunization with PsaA-PspA fusion protein and AS02 as adjuvant. Med Microbiol Immunol 2019; 208:215-226. [PMID: 30707297 DOI: 10.1007/s00430-019-00579-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Streptococcuspneumoniae, or pneumococcus, is a major respiratory-tract pathogen that causes high levels of mortality and morbidity in infants and elderly individuals. Despite the development of various capsular polysaccharide vaccines to prevent pneumococcal disease, it remains epidemic. Pneumococcal surface protein A (PspA) is a highly immunogenic surface protein existing in all strains of S. pneumoniae, and it can elicit immunizing protection against pneumococcal infection. In our previous studies, a fusion protein (PsaA-PspA23), consisting of PspA and pneumococcal surface antigen A (PsaA), displayed greater immunogenicity and provided better protection in mice against S. pneumoniae strains than either PsaA or PspA. In this study, the fusion protein PsaA-PspA23, together with PspA4, was formulated with four adjuvants Al(OH)3, MF59, AS03, and AS02, and subsequently subjected to dose optimization and immunological evaluation for determination of the antibody titers, bacterial burden, survival rates, and levels of cytokines in mice. All vaccines with high adjuvant doses displayed higher antigen-specific immunoglobulin G (IgG) titers. Bacterial burdens were notably decreased to different extents in the lungs and blood of mice immunized with the antigen and various adjuvants. Among these adjuvants, AS02 provided outstanding protection against challenge with pathogenic bacteria from different families and clades; it also induced high titers of IgG1 and IgG2a. Moreover, only AS02 elicited high levels of cytokines, such as TNF-α, IFN-γ, IL-2, and IL-4. These results suggest that PsaA-PspA23 and PspA4 formulated with AS02 may potentially be used as a subunit vaccine against deadly pneumococcal infection.
Collapse
|
21
|
Binsker U, Kohler TP, Hammerschmidt S. Contribution of Human Thrombospondin-1 to the Pathogenesis of Gram-Positive Bacteria. J Innate Immun 2019; 11:303-315. [PMID: 30814475 PMCID: PMC6738282 DOI: 10.1159/000496033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022] Open
Abstract
A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia. Human platelets secrete thrombospondin-1, which is then acquired by invading pathogens to facilitate colonization and immune evasion. Gram-positive bacteria express a broad spectrum of surface-exposed proteins, some of which also recognize thrombospondin-1. This review highlights the importance of thrombospondin-1 as an adhesion substrate to facilitate colonization, and we summarize the variety of thrombospondin-1-binding proteins of S. pneumoniae and S. aureus.
Collapse
Affiliation(s)
- Ulrike Binsker
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
- Department of Microbiology, NYU Langone Health, Alexandria Center for the Life Sciences, New York City, New York, USA
| | - Thomas P Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Greifswald University, Greifswald, Germany,
| |
Collapse
|
22
|
Leonard A, Lalk M. Infection and metabolism – Streptococcus pneumoniae metabolism facing the host environment. Cytokine 2018; 112:75-86. [DOI: 10.1016/j.cyto.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
|
23
|
A recombinant conjugated pneumococcal vaccine that protects against murine infections with a similar efficacy to Prevnar-13. NPJ Vaccines 2018; 3:53. [PMID: 30393571 PMCID: PMC6208403 DOI: 10.1038/s41541-018-0090-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/08/2018] [Indexed: 11/09/2022] Open
Abstract
The pneumococcal conjugate vaccine (PCV) strongly protects against vaccine serotypes, but the rapid expansion of non-vaccine serotype disease and the vaccine's high expense has reduced its overall impact. We have developed Protein Glycan Coupling Technology (PGCT) as a flexible methodology for making low-cost polysaccharide/protein glycoconjugates recombinantly in Escherichia coli. We have used PGCT to make a recombinant PCV containing serotype 4 capsular polysaccharide linked to the Streptococcus pneumoniae proteins NanA, PiuA, and Sp0148. The introduction of the Campylobacter jejuni UDP-glucose 4-epimerase gene GalE (gne) into E. coli improved the yield of the resulting glycoprotein. PGCT glycoconjugate vaccination generated strong antibody responses in mice to both the capsule and the carrier protein antigens, with the PiuA/capsule glycoconjugate inducing similar anti-capsular antibody responses as the commercial PCV Prevnar-13. Antibody responses to PGCT glycoconjugates opsonised S. pneumoniae and Streptococcus mitis expressing the serotype 4 capsule and promoted neutrophil phagocytosis of S. pneumoniae to a similar level as antisera generated by vaccination with Prevnar-13. Vaccination with the PGCT glycoconjugates protected mice against meningitis and septicaemia with the same efficacy as vaccination with Prevnar-13. In addition, vaccination with the protein antigen components from PGCT glycoconjugates alone provided partial protection against septicaemia and colonisation. These data demonstrate that a vaccine made by PGCT is as effective as Prevnar-13, identifies PiuA as a carrier protein for glycoconjugate vaccines, and demonstrates that linking capsular antigen to S. pneumoniae protein antigens has additional protective benefits that could provide a degree of serotype-independent immunity.
Collapse
|
24
|
Pathak A, Bergstrand J, Sender V, Spelmink L, Aschtgen MS, Muschiol S, Widengren J, Henriques-Normark B. Factor H binding proteins protect division septa on encapsulated Streptococcus pneumoniae against complement C3b deposition and amplification. Nat Commun 2018; 9:3398. [PMID: 30139996 PMCID: PMC6107515 DOI: 10.1038/s41467-018-05494-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
Streptococcus pneumoniae evades C3-mediated opsonization and effector functions by expressing an immuno-protective polysaccharide capsule and Factor H (FH)-binding proteins. Here we use super-resolution microscopy, mutants and functional analysis to show how these two defense mechanisms are functionally and spatially coordinated on the bacterial cell surface. We show that the pneumococcal capsule is less abundant at the cell wall septum, providing C3/C3b entry to underlying nucleophilic targets. Evasion of C3b deposition at division septa and lateral amplification underneath the capsule requires localization of the FH-binding protein PspC at division sites. Most pneumococcal strains have one PspC protein, but successful lineages in colonization and disease may have two, PspC1 and PspC2, that we show affect virulence differently. We find that spatial localization of these FH-recruiting proteins relative to division septa and capsular layer is instrumental for pneumococci to resist complement-mediated opsonophagocytosis, formation of membrane-attack complexes, and for the function as adhesins. Streptococcus pneumoniae evades the action of the complement system by expressing an immuno-protective polysaccharide capsule as well as Factor H-binding proteins. Here, Pathak et al. show that these two defence mechanisms are functionally and spatially coordinated on the bacterial cell surface.
Collapse
Affiliation(s)
- Anuj Pathak
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jan Bergstrand
- Department Applied Physics, Royal Institute of Technology (KTH), Experimental Biomolecular Physics, SE-106 91, Stockholm, Sweden
| | - Vicky Sender
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Laura Spelmink
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Marie-Stephanie Aschtgen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sandra Muschiol
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jerker Widengren
- Department Applied Physics, Royal Institute of Technology (KTH), Experimental Biomolecular Physics, SE-106 91, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden. .,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 639798, Singapore. .,Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.
| |
Collapse
|
25
|
Streptococcus pneumoniae PspC Subgroup Prevalence in Invasive Disease and Differences in Contribution to Complement Evasion. Infect Immun 2018; 86:IAI.00010-18. [PMID: 29378798 DOI: 10.1128/iai.00010-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/24/2018] [Indexed: 01/20/2023] Open
Abstract
The pneumococcal capsular serotype is an important determinant of complement resistance and invasive disease potential, but other virulence factors have also been found to contribute. Pneumococcal surface protein C (PspC), a highly variable virulence protein that binds complement factor H to evade C3 opsonization, is divided into two subgroups: choline-bound subgroup I and LPxTG-anchored subgroup II. The prevalence of different PspC subgroups in invasive pneumococcal disease (IPD) and functional differences in complement evasion are unknown. The prevalence of PspC subgroups in IPD isolates was determined in a collection of 349 sequenced strains of Streptococcus pneumoniae isolated from adult patients. pspC deletion mutants and isogenic pspC switch mutants were constructed to study differences in factor H binding and complement evasion in relation to capsule thickness. Subgroup I pspC was far more prevalent in IPD isolates than subgroup II pspC The presence of capsule was associated with a greater ability of bound factor H to reduce complement opsonization. Pneumococcal subgroup I PspC bound significantly more factor H and showed more effective complement evasion than subgroup II PspC in isogenic encapsulated pneumococci. We conclude that variation in the PspC subgroups, independent of capsule serotypes, affects pneumococcal factor H binding and its ability to evade complement deposition.
Collapse
|
26
|
Antigenic Variation in Streptococcus pneumoniae PspC Promotes Immune Escape in the Presence of Variant-Specific Immunity. mBio 2018. [PMID: 29535198 PMCID: PMC5850329 DOI: 10.1128/mbio.00264-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Genomic analysis reveals extensive sequence variation and hot spots of recombination in surface proteins of Streptococcus pneumoniae. While this phenomenon is commonly attributed to diversifying selection by host immune responses, there is little mechanistic evidence for the hypothesis that diversification of surface protein antigens produces an immune escape benefit during infection with S. pneumoniae. Here, we investigate the biological significance of sequence variation within the S. pneumoniae cell wall-associated pneumococcal surface protein C (PspC) protein antigen. Using pspC allelic diversity observed in a large pneumococcal collection, we produced variant-specific protein constructs that span the sequence variability within the pspC locus. We show that antibodies raised against these PspC constructs are variant specific and prevent association between PspC and the complement pathway mediator, human factor H. We found that PspC variants differ in their capacity to bind factor H, suggesting that sequence variation within pspC reflects differences in biological function. Finally, in an antibody-dependent opsonophagocytic assay, S. pneumoniae expressing a PspC variant matching the antibody specificity was killed efficiently. In contrast, killing efficacy was not evident against S. pneumoniae expressing mismatched PspC variants. Our data suggest that antigenic variation within the PspC antigen promotes immune evasion and could confer a fitness benefit during infection. Loci encoding surface protein antigens in Streptococcus pneumoniae are highly polymorphic. It has become a truism that these polymorphisms are the outcome of selective pressure on S. pneumoniae to escape host immunity. However, there is little mechanistic evidence to support the hypothesis that diversifying protein antigens produces a benefit for the bacteria. Using the highly diverse pspC locus, we have now characterized the functional and immune implications of sequence diversity within the PspC protein. We have characterized the spectrum of biological function among diverse PspC variants and show that pspC sequence diversity reflects functional differences. Further, we show that sequence variation in PspC confers an immune escape benefit in the presence of anti-PspC variant-specific immunity. Overall, the results of our studies provide insights into the functional implications of protein sequence diversity and the role of variant-specific immunity in its maintenance.
Collapse
|
27
|
Garcia BL, Zwarthoff SA, Rooijakkers SHM, Geisbrecht BV. Novel Evasion Mechanisms of the Classical Complement Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2051-60. [PMID: 27591336 DOI: 10.4049/jimmunol.1600863] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.
Collapse
Affiliation(s)
- Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
28
|
Józsi M. Factor H Family Proteins in Complement Evasion of Microorganisms. Front Immunol 2017; 8:571. [PMID: 28572805 PMCID: PMC5435753 DOI: 10.3389/fimmu.2017.00571] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/28/2017] [Indexed: 01/08/2023] Open
Abstract
Human-pathogenic microbes possess various means to avoid destruction by our immune system. These include interactions with the host complement system that may facilitate pathogen entry into cells and tissues, expression of molecules that defuse the effector complement components and complexes, and acquisition of host complement inhibitors to downregulate complement activity on the surface of the pathogen. A growing number of pathogenic microorganisms have acquired the ability to bind the complement inhibitor factor H (FH) from body fluids and thus hijack its host protecting function. In addition to FH, binding of FH-related (FHR) proteins was also demonstrated for several microbes. Initial studies assumed that these proteins are complement inhibitors similar to FH. However, recent evidence suggests that FHR proteins may rather enhance complement activation both directly and also by competing with the inhibitor FH for binding to certain ligands and surfaces. This mini review focuses on the role of the main alternative pathway regulator FH in host–pathogen interactions, as well as on the emerging role of the FHR proteins as enhancers of complement activation.
Collapse
Affiliation(s)
- Mihály Józsi
- MTA-ELTE "Lendület" Complement Research Group, Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
29
|
Sjöholm K, Kilsgård O, Teleman J, Happonen L, Malmström L, Malmström J. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model. Mol Cell Proteomics 2017; 16:S29-S41. [PMID: 28183813 PMCID: PMC5393399 DOI: 10.1074/mcp.m116.063966] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host-pathogen interactions.
Collapse
Affiliation(s)
- Kristoffer Sjöholm
- From the ‡Department of Immunotechnology, Faculty of Engineering, Lund University, Sweden
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Ola Kilsgård
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Johan Teleman
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | - Lotta Happonen
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden
| | | | - Johan Malmström
- §Division of Infection Medicine, Department of Clinical Sciences, Lund University, Sweden;
| |
Collapse
|
30
|
Andre GO, Converso TR, Politano WR, Ferraz LFC, Ribeiro ML, Leite LCC, Darrieux M. Role of Streptococcus pneumoniae Proteins in Evasion of Complement-Mediated Immunity. Front Microbiol 2017; 8:224. [PMID: 28265264 PMCID: PMC5316553 DOI: 10.3389/fmicb.2017.00224] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/31/2017] [Indexed: 12/14/2022] Open
Abstract
The complement system plays a central role in immune defense against Streptococcus pneumoniae. In order to evade complement attack, pneumococci have evolved a number of mechanisms that limit complement mediated opsonization and subsequent phagocytosis. This review focuses on the strategies employed by pneumococci to circumvent complement mediated immunity, both in vitro and in vivo. At last, since many of the proteins involved in interactions with complement components are vaccine candidates in different stages of validation, we explore the use of these antigens alone or in combination, as potential vaccine approaches that aim at elimination or drastic reduction in the ability of this bacterium to evade complement.
Collapse
Affiliation(s)
- Greiciely O Andre
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Thiago R Converso
- Centro de Biotecnologia, Instituto ButantanSão Paulo, Brazil; Programa de Pós-graduação Interunidades em Biotecnologia, Universidade de São PauloSão Paulo, Brazil
| | - Walter R Politano
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Lucio F C Ferraz
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| | - Marcelo L Ribeiro
- Laboratório de Farmacologia, Universidade São Francisco Bragança Paulista, Brazil
| | | | - Michelle Darrieux
- Laboratório de Biologia Celular e Molecular de Microrganismos, Universidade São Francisco Bragança Paulista, Brazil
| |
Collapse
|
31
|
Argondizzo APC, Rocha-de-Souza CM, de Almeida Santiago M, Galler R, Reis JN, Medeiros MA. Pneumococcal Predictive Proteins Selected by Microbial Genomic Approach Are Serotype Cross-Reactive and Bind to Host Extracellular Matrix Proteins. Appl Biochem Biotechnol 2017; 182:1518-1539. [PMID: 28211009 DOI: 10.1007/s12010-017-2415-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a colonizer of the human nasopharynx, which accounts for most of the community-acquired pneumonia cases and can cause non-invasive and invasive diseases. Current available vaccines are serotype-specific and the use of recombinant proteins associated with virulence is an alternative to compose vaccines and to overcome these problems. In a previous work, we describe the identification of proteins in S. pneumoniae by reverse vaccinology and the genetic diversity of these proteins in clinical isolates. It was possible to purify a half of 20 selected proteins in soluble form. The expression of these proteins on the pneumococcal cells surface was confirmed by flow cytometry. We demonstrated that some of these proteins were able to bind to extracellular matrix proteins and were recognized by sera from patients with pneumococcal meningitis infection caused by several pneumococcal serotypes. In this context, our results suggest that these proteins may play a role in pneumococcal pathogenesis and might be considered as potential vaccine candidates.
Collapse
Affiliation(s)
- Ana Paula Corrêa Argondizzo
- Laboratory of Recombinant Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Cláudio Marcos Rocha-de-Souza
- Research Laboratory of Hospital Infection, Collection Hospital Origin bacteria cultures, Instituto Oswaldo Cruz, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| | - Marta de Almeida Santiago
- Laboratory of Diagnostic Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo Galler
- Fiocruz, Bio-Manguinhos, Brazilian Health Ministry, Rio de Janeiro, Brazil
| | - Joice Neves Reis
- School of Pharmacy, Federal University of Bahia, Salvador, BA, Brazil
| | - Marco Alberto Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Brazilian Health Ministry, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
32
|
Binsker U, Kohler TP, Krauel K, Kohler S, Habermeyer J, Schwertz H, Hammerschmidt S. Serotype 3 pneumococci sequester platelet-derived human thrombospondin-1 via the adhesin and immune evasion protein Hic. J Biol Chem 2017; 292:5770-5783. [PMID: 28209711 DOI: 10.1074/jbc.m116.760504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pneumoniae serotype 3 strains emerge frequently within clinical isolates of invasive diseases. Bacterial invasion into deeper tissues is associated with colonization and immune evasion mechanisms. Thus, pneumococci express a versatile repertoire of surface proteins sequestering and interacting specifically with components of the human extracellular matrix and serum. Hic, a PspC-like pneumococcal surface protein, possesses vitronectin and factor H binding activity. Here, we show that heterologously expressed Hic domains interact, similar to the classical PspC molecule, with human matricellular thrombospondin-1 (hTSP-1). Binding studies with isolated human thrombospondin-1 and various Hic domains suggest that the interaction between hTSP-1 and Hic differs from binding to vitronectin and factor H. Binding of Hic to hTSP-1 is inhibited by heparin and chondroitin sulfate A, indicating binding to the N-terminal globular domain or type I repeats of hTSP-1. Competitive inhibition experiments with other pneumococcal hTSP-1 adhesins demonstrated that PspC and PspC-like Hic recognize similar domains, whereas PavB and Hic can bind simultaneously to hTSP-1. In conclusion, Hic binds specifically hTSP-1; however, truncation in the N-terminal part of Hic decreases the binding activity, suggesting that the full length of the α-helical regions of Hic is required for an optimal interaction.
Collapse
Affiliation(s)
- Ulrike Binsker
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Thomas P Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Krystin Krauel
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sylvia Kohler
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Johanna Habermeyer
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| | - Hansjörg Schwertz
- the Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, D-17489 Greifswald, Germany
| | - Sven Hammerschmidt
- From the Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, D-17487 Greifswald, Germany and
| |
Collapse
|
33
|
Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. Proc Natl Acad Sci U S A 2017; 114:E357-E366. [PMID: 28053228 DOI: 10.1073/pnas.1613937114] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Characterizing the immune response to pneumococcal proteins is critical in understanding this bacterium's epidemiology and vaccinology. Probing a custom-designed proteome microarray with sera from 35 healthy US adults revealed a continuous distribution of IgG affinities for 2,190 potential antigens from the species-wide pangenome. Reproducibly elevated IgG binding was elicited by 208 "antibody binding targets" (ABTs), which included 109 variants of the diverse pneumococcal surface proteins A and C (PspA and PspC) and zinc metalloprotease A and B (ZmpA and ZmpB) proteins. Functional analysis found ABTs were enriched in motifs for secretion and cell surface association, with extensive representation of cell wall synthesis machinery, adhesins, transporter solute-binding proteins, and degradative enzymes. ABTs were associated with stronger evidence for evolving under positive selection, although this varied between functional categories, as did rates of diversification through recombination. Particularly rapid variation was observed at some immunogenic accessory loci, including a phage protein and a phase-variable glycosyltransferase ubiquitous among the diverse set of genomic islands encoding the serine-rich PsrP glycoprotein. Nevertheless, many antigens were conserved in the core genome, and strains' antigenic profiles were generally stable. No strong evidence was found for any epistasis between antigens driving population dynamics, or redundancy between functionally similar accessory ABTs, or age stratification of antigen profiles. These results highlight the paradox of why substantial variation is observed in only a subset of epitopes. This result may indicate only some interactions between immunoglobulins and ABTs clear pneumococcal colonization or that acquired immunity to pneumococci is an accumulation of individually weak responses to ABTs evolving under different levels of functional constraint.
Collapse
|
34
|
Parente R, Clark SJ, Inforzato A, Day AJ. Complement factor H in host defense and immune evasion. Cell Mol Life Sci 2016; 74:1605-1624. [PMID: 27942748 PMCID: PMC5378756 DOI: 10.1007/s00018-016-2418-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/30/2022]
Abstract
Complement is the major humoral component of the innate immune system. It recognizes pathogen- and damage-associated molecular patterns, and initiates the immune response in coordination with innate and adaptive immunity. When activated, the complement system unleashes powerful cytotoxic and inflammatory mechanisms, and thus its tight control is crucial to prevent damage to host tissues and allow restoration of immune homeostasis. Factor H is the major soluble inhibitor of complement, where its binding to self markers (i.e., particular glycan structures) prevents complement activation and amplification on host surfaces. Not surprisingly, mutations and polymorphisms that affect recognition of self by factor H are associated with diseases of complement dysregulation, such as age-related macular degeneration and atypical haemolytic uremic syndrome. In addition, pathogens (i.e., non-self) and cancer cells (i.e., altered-self) can hijack factor H to evade the immune response. Here we review recent (and not so recent) literature on the structure and function of factor H, including the emerging roles of this protein in the pathophysiology of infectious diseases and cancer.
Collapse
Affiliation(s)
- Raffaella Parente
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Simon J Clark
- Division of Evolution and Genomic Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Via Manzoni 56, Rozzano, 20089, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
35
|
Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics (Basel) 2016; 5:antibiotics5020021. [PMID: 27314398 PMCID: PMC4929436 DOI: 10.3390/antibiotics5020021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments.
Collapse
|
36
|
Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates. mSphere 2016; 1:mSphere00041-15. [PMID: 27303717 PMCID: PMC4863584 DOI: 10.1128/msphere.00041-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/06/2016] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci. Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCEStreptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci.
Collapse
|
37
|
Salieb-Beugelaar GB, Zhang B, Nigo MM, Frischmann S, Hunziker PR. Improving diagnosis of pneumococcal disease by multiparameter testing and micro/nanotechnologies. EUROPEAN JOURNAL OF NANOMEDICINE 2016. [DOI: 10.1515/ejnm-2016-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractThe diagnosis and management of pneumococcal disease remains challenging, in particular in children who often are asymptomatic carriers, and in low-income countries with a high morbidity and mortality from febrile illnesses where the broad range of bacterial, viral and parasitic cases are in contrast to limited, diagnostic resources. Integration of multiple markers into a single, rapid test is desirable in such situations. Likewise, the development of multiparameter tests for relevant arrays of pathogens is important to avoid overtreatment of febrile syndromes with antibiotics. Miniaturization of tests through use of micro- and nanotechnologies combines several advantages: miniaturization reduces sample requirements, reduces the use of consumables and reagents leading to a reduction in costs, facilitates parallelization, enables point-of-care use of diagnostic equipment and even reduces the amount of potentially infectious disposables, characteristics that are highly desirable in most healthcare settings. This critical review emphasizes our vision on the importance of multiparametric testing for diagnosing pneumococcal infections in patients with fever and examines recent relevant developments in micro/nanotechnologies to achieve this goal.
Collapse
|
38
|
Pettini E, Fiorino F, Cuppone AM, Iannelli F, Medaglini D, Pozzi G. Interferon-γ from Brain Leukocytes Enhances Meningitis by Type 4 Streptococcus pneumoniae. Front Microbiol 2015; 6:1340. [PMID: 26648922 PMCID: PMC4664635 DOI: 10.3389/fmicb.2015.01340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of bacterial meningitis. Pneumococcal meningitis is a life-threatening disease with high rates of mortality and neurological sequelae. Immune targeting of S. pneumoniae is essential for clearance of infection; however, within the brain, the induced inflammatory response contributes to pathogenesis. In this study we investigate the local inflammatory response and the role of IFN-γ in a murine model of pneumococcal meningitis induced by intracranial injection of type 4 S. pneumoniae. Lymphoid and myeloid cell populations involved in meningitis, as well as cytokine gene expression, were investigated after infection. Animals were treated with a monoclonal antibody specific for murine IFN-γ to evaluate its role in animal survival. Intracranial inoculation of 3 × 104 colony-forming units of type 4 strain TIGR4 caused 75% of mice to develop meningitis within 4 days. The amount of lymphocytes, NK cells, neutrophils, monocytes and macrophages in the brain increased 48 h post infection. IFN-γ mRNA levels were about 240-fold higher in brains of infected mice compared to controls. Pro-inflammatory cytokines such as IL-1β and TNF-α, and TLR2 were also upregulated. In vivo treatment with anti-IFN-γ antibody increased survival of infected mice. This study shows that IFN-γ produced during meningitis by type 4 S. pneumoniae enhances bacterial pathogenesis exerting a negative effect on the disease outcome.
Collapse
Affiliation(s)
- Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Anna Maria Cuppone
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Francesco Iannelli
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Siena, Italy
| |
Collapse
|
39
|
Herbert AP, Makou E, Chen ZA, Kerr H, Richards A, Rappsilber J, Barlow PN. Complement Evasion Mediated by Enhancement of Captured Factor H: Implications for Protection of Self-Surfaces from Complement. THE JOURNAL OF IMMUNOLOGY 2015; 195:4986-98. [PMID: 26459349 PMCID: PMC4635569 DOI: 10.4049/jimmunol.1501388] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/10/2015] [Indexed: 12/12/2022]
Abstract
In an attempt to evade annihilation by the vertebrate complement system, many microbes capture factor H (FH), the key soluble complement-regulating protein in human plasma. However, FH is normally an active complement suppressor exclusively on self-surfaces and this selective action of FH is pivotal to self versus non-self discrimination by the complement system. We investigated whether the bacterially captured FH becomes functionally enhanced and, if so, how this is achieved at a structural level. We found, using site-directed and truncation mutagenesis, surface plasmon resonance, nuclear magnetic resonance spectroscopy, and cross-linking and mass spectrometry, that the N-terminal domain of Streptococcus pneumoniae protein PspC (PspCN) not only binds FH extraordinarily tightly but also holds it in a previously uncharacterized conformation. Functional enhancement arises from exposure of a C-terminal cryptic second binding site in FH for C3b, the activation-specific fragment of the pivotal complement component, C3. This conformational change of FH doubles its affinity for C3b and increases 5-fold its ability to accelerate decay of the binary enzyme (C3bBb) responsible for converting C3 to C3b in an amplification loop. Despite not sharing critical FH-binding residues, PspCNs from D39 and Tigr4 S. pneumoniae exhibit similar FH-anchoring and enhancing properties. We propose that these bacterial proteins mimic molecular markers of self-surfaces, providing a compelling hypothesis for how FH prevents complement-mediated injury to host tissue while lacking efficacy on virtually all other surfaces. In hemolysis assays with 2-aminoethylisothiouronium bromide–treated erythrocytes that recapitulate paroxysmal nocturnal hemoglobinuria, PspCN enhanced protection of cells by FH, suggesting a new paradigm for therapeutic complement suppression.
Collapse
Affiliation(s)
- Andrew P Herbert
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Elisavet Makou
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Zhuo A Chen
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Heather Kerr
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom; Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Anna Richards
- Queen's Medical Research Institute, Edinburgh EH16 4TJ, United Kingdom
| | - Juri Rappsilber
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; and
| | - Paul N Barlow
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom;
| |
Collapse
|
40
|
Multivalent Pneumococcal Protein Vaccines Comprising Pneumolysoid with Epitopes/Fragments of CbpA and/or PspA Elicit Strong and Broad Protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1079-89. [PMID: 26245351 DOI: 10.1128/cvi.00293-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
Immunization with the pneumococcal proteins pneumolysin (Ply), choline binding protein A (CbpA), or pneumococcal surface protein A (PspA) elicits protective responses against invasive pneumococcal disease in animal models. In this study, we used different mouse models to test the efficacy of a variety of multivalent protein-based vaccines that comprised various combinations of full-length or peptide regions of the immunogens Ply, CbpA, or PspA: Ply toxoid with the L460D substitution (referred to herein as L460D); L460D fused with protective peptide epitopes from CbpA (YPT-L460D-NEEK [YLN]); L460D fused with the CD2 peptide containing the proline-rich region (PRR) of PspA (CD2-L460D); a combination of L460D and H70 (L460D+H70), a slightly larger PspA-derived peptide containing the PRR and the SM1 region; H70+YLN; and other combinations. Each mouse was immunized either intraperitoneally (i.p.) or subcutaneously (s.c.) with three doses (at 2-week intervals) of the various antigen combinations in alum adjuvant and then challenged in mouse models featuring different infection routes with multiple Streptococcus pneumoniae strains. In the i.p. infection sepsis model, H70+YLN consistently provided significant protection against three different challenge strains (serotypes 1, 2, and 6A); the CD2+YLN and H70+L460D combinations also elicited significant protection. Protection against intravenous (i.v.) sepsis (type 3 and 6A challenge strains) was largely dependent on PspA-derived antigen components, and the most protection was elicited by H70 with or without L460D or YLN. In a type 4 intratracheal (i.t.) challenge model that results in progression to meningitis, antigen combinations that contained YLN elicited the strongest protection. Thus, the trivalent antigen combination of H70+YLN elicited the strongest and broadest protection in diverse pneumococcal challenge models.
Collapse
|
41
|
Anderson D, Fakiola M, Hales BJ, Pennell CE, Thomas WR, Blackwell JM. Genome-wide association study of IgG1 responses to the choline-binding protein PspC of Streptococcus pneumoniae. Genes Immun 2015; 16:289-96. [PMID: 25928883 DOI: 10.1038/gene.2015.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/12/2015] [Accepted: 03/04/2015] [Indexed: 11/09/2022]
Abstract
Streptococcus pneumoniae causes invasive pneumococcal disease. Delayed development of antibodies to S. pneumoniae in infancy is associated with the development of atopy and asthma. Pneumococcal surface protein C (PspC) is a vaccine candidate and variation in its choline-binding region is associated with invasive disease. This study examined 523 060 single-nucleotide polymorphisms in The Western Australian Pregnancy Cohort (Raine) Study to find loci influencing immunoglobulin G1 (IgG1) responses to PspC measured at age 14 years (n=1152). Genome-wide significance (top SNP rs9275596; P=3.1 × 10(-14)) was only observed at human leucocyte antigen (HLA). Imputed HLA amino-acid polymorphisms showed the strongest associations at positions DRB1 47 (P=3.2 × 10(-11)), 13SRG (P=9.8 × 10(-10)) and 11SP (P=9.8 × 10(-10)), and at DQA1 34 (P=6.4 × 10(-10)), DQB1 167R (P=9.3 × 10(-6)) and HLA-B 95 W (P=1.2 × 10(-9)). Conditional analyses showed independent contributions from DRB1 47 and DQB1 167R to the signal at rs9275596, supported by an omnibus test showing a strong signal for the haplotype DRB1_47_DQB1_167 (P=9.02 × 10(-15)). In silico analysis showed that DRB1 four-digit allele groups defined by DRB1 47F bind to a greater complexity of core 9-mer epitopes compared with DRB1 47Y, especially across repeats in the C-term choline-binding region. Consequent differences in CD4 T-cell help for IgG1 to PspC could have implications for vaccine design. Further analysis in other cohorts is merited.
Collapse
Affiliation(s)
- D Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - M Fakiola
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - B J Hales
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - C E Pennell
- School of Women's and Infants' Health, University of Western Australia, Perth, Australia
| | - W R Thomas
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - J M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
42
|
Impact of the glpQ2 gene on virulence in a Streptococcus pneumoniae serotype 19A sequence type 320 strain. Infect Immun 2014; 83:682-92. [PMID: 25422269 DOI: 10.1128/iai.02357-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glycerophosphodiester phosphodiesterase (GlpQ) metabolizes glycerophosphorylcholine from the lung epithelium to produce free choline, which is transformed into phosphorylcholine and presented on the surfaces of many respiratory pathogens. Two orthologs of glpQ genes are found in Streptococcus pneumoniae: glpQ, with a membrane motif, is widespread in pneumococci, whereas glpQ2, which shares high similarity with glpQ in Haemophilus influenzae and Mycoplasma pneumoniae, is present only in S. pneumoniae serotype 3, 6B, 19A, and 19F strains. Recently, serotype 19A has emerged as an epidemiological etiology associated with invasive pneumococcal diseases. Thus, we investigated the pathophysiological role of glpQ2 in a serotype 19A sequence type 320 (19AST320) strain, which was the prevalent sequence type in 19A associated with severe pneumonia and invasive pneumococcal disease in pediatric patients. Mutations in glpQ2 reduced phosphorylcholine expression and the anchorage of choline-binding proteins to the pneumococcal surface during the exponential phase, where the mutants exhibited reduced autolysis and lower natural transformation abilities than the parent strain. The deletion of glpQ2 also decreased the adherence and cytotoxicity to human lung epithelial cell lines, whereas these functions were indistinguishable from those of the wild type in complementation strains. In a murine respiratory tract infection model, glpQ2 was important for nasopharynx and lung colonization. Furthermore, infection with a glpQ2 mutant decreased the severity of pneumonia compared with the parent strain, and glpQ2 gene complementation restored the inflammation level. Therefore, glpQ2 enhances surface phosphorylcholine expression in S. pneumoniae 19AST320 during the exponential phase, which contributes to the severity of pneumonia by promoting adherence and host cell cytotoxicity.
Collapse
|
43
|
Sandholm K, Henningsson AJ, Säve S, Bergström S, Forsberg P, Jonsson N, Ernerudh J, Ekdahl KN. Early cytokine release in response to live Borrelia burgdorferi Sensu Lato Spirochetes is largely complement independent. PLoS One 2014; 9:e108013. [PMID: 25265036 PMCID: PMC4180076 DOI: 10.1371/journal.pone.0108013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 11/19/2022] Open
Abstract
Aim Here we investigated the role of complement activation in phagocytosis and the release of cytokines and chemokines in response to two clinical isolates: Borrelia afzelii K78, which is resistant to complement-mediated lysis, and Borrelia garinii LU59, which is complement-sensitive. Methods Borrelia spirochetes were incubated in hirudin plasma, or hirudin-anticoagulated whole blood. Complement activation was measured as the generation of C3a and sC5b-9. Binding of the complement components C3, factor H, C4, and C4BP to the bacterial surfaces was analyzed. The importance of complement activation on phagocytosis, and on the release of cytokines and chemokines, was investigated using inhibitors acting at different levels of the complement cascade. Results 1) Borrelia garinii LU59 induced significantly higher complement activation than did Borrelia afzelii K78. 2) Borrelia afzelii K78 recruited higher amounts of factor H resulting in significantly lower C3 binding. 3) Both Borrelia strains were efficiently phagocytized by granulocytes and monocytes, with substantial inhibition by complement blockade at the levels of C3 and C5. 4) The release of the pro-inflammatory cytokines and chemokines IL-1β, IL-6, TNF, CCL20, and CXCL8, together with the anti-inflammatory IL-10, were increased the most (by>10-fold after exposure to Borrelia). 5) Both strains induced a similar release of cytokines and chemokines, which in contrast to the phagocytosis, was almost totally unaffected by complement blockade. Conclusions Our results show that complement activation plays an important role in the process of phagocytosis but not in the subsequent cytokine release in response to live Borrelia spirochetes.
Collapse
Affiliation(s)
- Kerstin Sandholm
- Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Anna J. Henningsson
- Department of Clinical Microbiology, Ryhov County Hospital, Jönköping, Sweden
- Department of Infection Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Susanne Säve
- Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Sven Bergström
- Department of Molecular Biology, University of Umeå, Umeå, Sweden
| | - Pia Forsberg
- Department of Infection Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Nina Jonsson
- Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Division of Clinical Immunology, Rudbeck Laboratory C5, University of Uppsala, Uppsala, Sweden
| | - Jan Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kristina N. Ekdahl
- Linnaeus University Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Division of Clinical Immunology, Rudbeck Laboratory C5, University of Uppsala, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
44
|
Schachern PA, Tsuprun V, Ferrieri P, Briles DE, Goetz S, Cureoglu S, Paparella MM, Juhn S. Pneumococcal PspA and PspC proteins: potential vaccine candidates for experimental otitis media. Int J Pediatr Otorhinolaryngol 2014; 78:1517-21. [PMID: 25015773 PMCID: PMC4129636 DOI: 10.1016/j.ijporl.2014.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Otitis media is the most commonly diagnosed disease in ambulatory care and Streptococcuspneumoniae continues to be the most common bacterial agent. Bacterial resistance to antibiotics underscores the need for better vaccines. Current pneumococcal conjugate vaccines are modestly protective against otitis media; however, limited serotype coverage and serotype replacement have led to the investigation of pneumococcal proteins as potential vaccine candidates. Two proteins, pneumococcal surface proteins A (PspA) and C (PspC) are important virulence factors, expressed by virtually all strains. Although a number of pneumococcal proteins have been investigated in other infection sites, these proteins can have diverse organ-specific effects. In this study, we investigated the viability and virulence of single (PspA(-) and PspC(-)) and double (PspA(-)/PspC(-)) mutants of pneumococcal PspA and PspC proteins in the chinchilla middle ear. METHODS Bullae of 24 chinchillas were inoculated with 0.5 ml of 10(6) colony forming units (CFUs)/ml bacteria: 6 with wild-type D39 strain; 6 with PspA(-); 6 with PspC(-); and 6 with PspA(-)/PspC(-) isogenic mutant strains. Bacterial CFU levels in middle ear effusions and light microscopic analysis of the number of inflammatory cells in the round window membrane (RWM) were compared 48 h after inoculation. RESULTS At 48 h, CFUs in middle ears were increased for wild-type and PspC(-) strains compared to inoculum levels; however, they were significantly less for the group inoculated with the PspC(-) strain compared to wild-type strain. No bacteria were detected in the PspA(-) and PspA(-)/PspC(-) groups. The number of inflammatory cells in the RWM was significantly higher in wild-type compared to the PspA(-), PspC(-), and PspA(-)/PspC(-) groups. No significant difference in number of inflammatory cells was observed between any pairs of groups inoculated with mutant strains. CONCLUSION Viability and virulence of the PspC(-) strain were similar to the wild-type strain. The single PspA(-) and double PspA(-)/PspC(-) mutants were highly attenuated in the ear. Bacterial clearance of the PspA(-)/PspC(-) double mutant was indistinguishable from that of the PspA mutant. These studies provide no reason to exclude PspC from a multi-component protein vaccine containing PspA.
Collapse
Affiliation(s)
| | - Vladimir Tsuprun
- Departments of Otolaryngology, University of Minnesota, Minneapolis, MN, United States.
| | - Patricia Ferrieri
- Department of Pediatrics, University of Minnesota, Minneapolis, MN,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, AL
| | - Sarah Goetz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | | | - Steven Juhn
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
45
|
Kohler S, Hallström T, Singh B, Riesbeck K, Spartà G, Zipfel PF, Hammerschmidt S. Binding of vitronectin and Factor H to Hic contributes to immune evasion of Streptococcus pneumoniae serotype 3. Thromb Haemost 2014; 113:125-42. [PMID: 25181963 DOI: 10.1160/th14-06-0561] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/24/2014] [Indexed: 11/05/2022]
Abstract
Streptococcus pneumoniae serotype 3 strains are highly resistant to opsonophagocytosis due to recruitment of the complement inhibitor Factor H via Hic, a member of the pneumococcal surface protein C (PspC) family. In this study, we demonstrated that Hic also interacts with vitronectin, a fluid-phase regulator involved in haemostasis, angiogenesis, and the terminal complement cascade as well as a component of the extracellular matrix. Blocking of Hic by specific antiserum or genetic deletion significantly reduced pneumococcal binding to soluble and immobilised vitronectin and to Factor H, respectively. In parallel, ectopic expression of Hic on the surface of Lactococcus lactis conferred binding to soluble and immobilised vitronectin as well as Factor H. Molecular analyses with truncated Hic fragments narrowed down the vitronectin-binding site to the central core of Hic (aa 151-201). This vitronectin-binding region is separate from that of Factor H, which binds to the N-terminus of Hic (aa 38-92). Binding of pneumococcal Hic was localised to the C-terminal heparin-binding domain (HBD3) of vitronectin. However, an N-terminal region to HBD3 was further involved in Hic-binding to immobilised vitronectin. Finally, vitronectin bound to Hic was functionally active and inhibited formation of the terminal complement complex. In conclusion, Hic interacts with vitronectin and simultaneously with Factor H, and both human proteins may contribute to colonisation and invasive disease caused by serotype 3 pneumococci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Hammerschmidt
- Prof. Dr. Sven Hammerschmidt, Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Friedrich-Ludwig-Jahn-Strasse 15A, 17487 Greifswald, Germany, Tel.: +49 3834 864161, Fax: +49 3834 864172, E-mail:
| |
Collapse
|
46
|
Mapping of epitopes recognized by antibodies induced by immunization of mice with PspA and PspC. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:940-8. [PMID: 24807052 DOI: 10.1128/cvi.00239-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pneumococcal surface protein A (PspA) and pneumococcal surface protein C (PspC) are important candidates for an alternative vaccine against pneumococcal infections. Since these antigens show variability, the use of variants that do not afford broad protection may lead to the selection of vaccine escape bacteria. Epitopes capable of inducing antibodies with broad cross-reactivities should thus be the preferred antigens. In this work, experiments using peptide arrays show that most linear epitopes recognized by antibodies induced in mice against different PspAs were located at the initial 44 amino acids of the mature protein and that antibodies against these linear epitopes did not confer protection against a lethal challenge. Conversely, linear epitopes recognized by antibodies to PspC included the consensus sequences involved in the interaction with human factor H and secretory immunoglobulin A (sIgA). Since linear epitopes of PspA were not protective, larger overlapping fragments containing 100 amino acids of PspA of strain Rx1 were constructed (fragments 1 to 7, numbered from the N terminus) to permit the mapping of antibodies with conformational epitopes not represented in the peptide arrays. Antibodies from mice immunized with fragments 1, 2, 4, and 5 were capable of binding onto the surface of pneumococci and mediating protection against a lethal challenge. The fact that immunization of mice with 100-amino-acid fragments located at the more conserved N-terminal region of PspA (fragments 1 and 2) induced protection against a pneumococcal challenge indicates that the induction of antibodies against conformational epitopes present at this region may be important in strategies for inducing broad protection against pneumococci.
Collapse
|
47
|
Capsular switching as a strategy to increase pneumococcal virulence in experimental otitis media model. Microbes Infect 2014; 16:292-9. [DOI: 10.1016/j.micinf.2013.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/13/2013] [Accepted: 12/11/2013] [Indexed: 02/07/2023]
|
48
|
Pan X, Yang Y, Zhang JR. Molecular basis of host specificity in human pathogenic bacteria. Emerg Microbes Infect 2014; 3:e23. [PMID: 26038515 PMCID: PMC3974339 DOI: 10.1038/emi.2014.23] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/15/2014] [Accepted: 01/19/2014] [Indexed: 01/08/2023]
Abstract
Pathogenic bacteria display various levels of host specificity or tropism. While many bacteria can infect a wide range of hosts, certain bacteria have strict host selectivity for humans as obligate human pathogens. Understanding the genetic and molecular basis of host specificity in pathogenic bacteria is important for understanding pathogenic mechanisms, developing better animal models and designing new strategies and therapeutics for the control of microbial diseases. The molecular mechanisms of bacterial host specificity are much less understood than those of viral pathogens, in part due to the complexity of the molecular composition and cellular structure of bacterial cells. However, important progress has been made in identifying and characterizing molecular determinants of bacterial host specificity in the last two decades. It is now clear that the host specificity of bacterial pathogens is determined by multiple molecular interactions between the pathogens and their hosts. Furthermore, certain basic principles regarding the host specificity of bacterial pathogens have emerged from the existing literature. This review focuses on selected human pathogenic bacteria and our current understanding of their host specificity.
Collapse
Affiliation(s)
- Xiaolei Pan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Yang Yang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University , Beijing 10084, China
| |
Collapse
|
49
|
Ricci S, Gerlini A, Pammolli A, Chiavolini D, Braione V, Tripodi SA, Colombari B, Blasi E, Oggioni MR, Peppoloni S, Pozzi G. Contribution of different pneumococcal virulence factors to experimental meningitis in mice. BMC Infect Dis 2013; 13:444. [PMID: 24059458 PMCID: PMC3848944 DOI: 10.1186/1471-2334-13-444] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022] Open
Abstract
Background Pneumococcal meningitis (PM) is a life-threatening disease with a high case-fatality rate and elevated risk for serious neurological sequelae. In this study, we investigated the contribution of three major virulence factors of Streptococcus pneumoniae, the capsule, pneumococcal surface protein A (PspA) and C (PspC), to the pathogenesis of experimental PM. Methods Mice were challenged by the intracranial route with the serotype 4 TIGR4 strain (wt) and three isogenic mutants devoid of PspA, PspC, and the capsule. Survival, bacterial counts, and brain histology were carried out. To study the interaction between S. pneumoniae mutants and microglia, phagocytosis and survival experiments were performed using the BV2 mouse microglial cell line. Results Virulence of the PspC mutant was comparable to that of TIGR4. In contrast, survival of animals challenged with the PspA mutant was significantly increased compared with the wt, and the mutant was also impaired at replicating in the brain and blood of infected mice. Brain histology indicated that all strains, except for the unencapsulated mutant, caused PM. Analysis of inflammation and damage in the brain of mice infected with TIGR4 or its unencapsulated mutant demonstrated that the rough strain was unable to induce inflammation and neuronal injury, even at high challenge doses. Results with BV2 cells showed no differences in phagocytic uptake between wt and mutants. In survival assays, however, the PspA mutant showed significantly reduced survival in microglia compared with the wt. Conclusions PspA contributed to PM pathogenesis possibly by interacting with microglia at early infection stages, while PspC had limited importance in the disease. The rough mutant did not cause brain inflammation, neuronal damage or mouse death, strengthening the key role of the capsule in PM.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Medical Biotechnologies, Laboratory of Molecular Microbiology and Biotechnology (LA,M,M,B,), University of Siena and Siena University Hospital, Siena 53100, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Browall S, Norman M, Tångrot J, Galanis I, Sjöström K, Dagerhamn J, Hellberg C, Pathak A, Spadafina T, Sandgren A, Bättig P, Franzén O, Andersson B, Örtqvist Å, Normark S, Henriques-Normark B. Intraclonal variations among Streptococcus pneumoniae isolates influence the likelihood of invasive disease in children. J Infect Dis 2013; 209:377-88. [PMID: 24009156 PMCID: PMC4014860 DOI: 10.1093/infdis/jit481] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background. Pneumococcal serotypes are represented by
a varying number of clonal lineages with different genetic contents, potentially affecting
invasiveness. However, genetic variation within the same genetic lineage may be larger
than anticipated. Methods. A total of 715 invasive and carriage isolates
from children in the same region and during the same period were compared using
pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. Bacterial genome
sequencing, functional assays, and in vivo virulence mice studies were performed. Results. Clonal types of the same serotype but also
intraclonal variants within clonal complexes (CCs) showed differences in invasive-disease
potential. CC138, a common CC, was divided into several PFGE patterns, partly explained by
number, location, and type of temperate bacteriophages. Whole-genome sequencing of 4 CC138
isolates representing PFGE clones with different invasive-disease potentials revealed
intraclonal sequence variations of the virulence-associated proteins pneumococcal surface
protein A (PspA) and pneumococcal choline-binding protein C (PspC). A carrier isolate
lacking PcpA exhibited decreased virulence in mice, and there was a differential binding
of human factor H, depending on invasiveness. Conclusions. Pneumococcal clonal types but also
intraclonal variants exhibited different invasive-disease potentials in children.
Intraclonal variants, reflecting different prophage contents, showed differences in major
surface antigens. This suggests ongoing immune selection, such as that due to
PspC-mediated complement resistance through varied human factor H binding, that may affect
invasiveness in children.
Collapse
|