1
|
Yanagisawa S, Kamei T, Shimada A, Gladyck S, Aras S, Hüttemann M, Grossman LI, Kubo M. Resonance Raman spectral analysis of the heme site structure of cytochrome c oxidase with its positive regulator CHCHD2. J Inorg Biochem 2024; 260:112673. [PMID: 39094247 DOI: 10.1016/j.jinorgbio.2024.112673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.
Collapse
Affiliation(s)
| | - Takuto Kamei
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Atsuhiro Shimada
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Stephanie Gladyck
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan.
| |
Collapse
|
2
|
Arroum T, Hish GA, Burghardt KJ, McCully JD, Hüttemann M, Malek MH. Mitochondrial Transplantation's Role in Rodent Skeletal Muscle Bioenergetics: Recharging the Engine of Aging. Biomolecules 2024; 14:493. [PMID: 38672509 PMCID: PMC11048484 DOI: 10.3390/biom14040493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondria are the 'powerhouses of cells' and progressive mitochondrial dysfunction is a hallmark of aging in skeletal muscle. Although different forms of exercise modality appear to be beneficial to attenuate aging-induced mitochondrial dysfunction, it presupposes that the individual has a requisite level of mobility. Moreover, non-exercise alternatives (i.e., nutraceuticals or pharmacological agents) to improve skeletal muscle bioenergetics require time to be effective in the target tissue and have another limitation in that they act systemically and not locally where needed. Mitochondrial transplantation represents a novel directed therapy designed to enhance energy production of tissues impacted by defective mitochondria. To date, no studies have used mitochondrial transplantation as an intervention to attenuate aging-induced skeletal muscle mitochondrial dysfunction. The purpose of this investigation, therefore, was to determine whether mitochondrial transplantation can enhance skeletal muscle bioenergetics in an aging rodent model. We hypothesized that mitochondrial transplantation would result in sustained skeletal muscle bioenergetics leading to improved functional capacity. METHODS Fifteen female mice (24 months old) were randomized into two groups (placebo or mitochondrial transplantation). Isolated mitochondria from a donor mouse of the same sex and age were transplanted into the hindlimb muscles of recipient mice (quadriceps femoris, tibialis anterior, and gastrocnemius complex). RESULTS The results indicated significant increases (ranging between ~36% and ~65%) in basal cytochrome c oxidase and citrate synthase activity as well as ATP levels in mice receiving mitochondrial transplantation relative to the placebo. Moreover, there were significant increases (approx. two-fold) in protein expression of mitochondrial markers in both glycolytic and oxidative muscles. These enhancements in the muscle translated to significant improvements in exercise tolerance. CONCLUSIONS This study provides initial evidence showing how mitochondrial transplantation can promote skeletal muscle bioenergetics in an aging rodent model.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Gerald A. Hish
- Unit for Laboratory Animal Medicine (ULAM), University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle J. Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (M.H.)
| | - Moh H. Malek
- Physical Therapy Program, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Morse PT, Arroum T, Wan J, Pham L, Vaishnav A, Bell J, Pavelich L, Malek MH, Sanderson TH, Edwards BFP, Hüttemann M. Phosphorylations and Acetylations of Cytochrome c Control Mitochondrial Respiration, Mitochondrial Membrane Potential, Energy, ROS, and Apoptosis. Cells 2024; 13:493. [PMID: 38534337 DOI: 10.3390/cells13060493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cytochrome c (Cytc) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cytc acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cytc triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cytc requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cytc in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨm) to minimize reactive oxygen species (ROS) production. Cytc phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨm hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cytc by these post-translational modifications underscores the importance of Cytc for the ETC, ΔΨm, ROS production, apoptosis, and the cell as a whole.
Collapse
Affiliation(s)
- Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI 48201, USA
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian F P Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
4
|
Arroum T, Pham L, Raisanen TE, Morse PT, Wan J, Bell J, Lax R, Saada A, Hüttemann M, Weksler-Zangen S. High Sucrose Diet-Induced Subunit I Tyrosine 304 Phosphorylation of Cytochrome c Oxidase Leads to Liver Mitochondrial Respiratory Dysfunction in the Cohen Diabetic Rat Model. Antioxidants (Basel) 2023; 13:19. [PMID: 38275639 PMCID: PMC10812566 DOI: 10.3390/antiox13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The mitochondrial oxidative phosphorylation process generates most of the cellular energy and free radicals in mammalian tissues. Both factors play a critical role in numerous human diseases that could be affected by reversible phosphorylation events that regulate the function and activity of the oxidative phosphorylation complexes. In this study, we analyzed liver mitochondria of Cohen diabetes-sensitive (CDs) and Cohen diabetes-resistant (CDr) rats, using blue native gel electrophoresis (BN-PAGE) in combination with mitochondrial activity measurements and a site-specific tyrosine phosphorylation implicated in inflammation, a known driver of diabetes pathology. We uncovered the presence of a specific inhibitory phosphorylation on tyrosine 304 of catalytic subunit I of dimeric cytochrome c oxidase (CcO, complex IV). Driven by a high sucrose diet in both CDr and CDs rats, Y304 phosphorylation, which occurs close to the catalytic oxygen binding site, correlates with a decrease in CcO activity and respiratory dysfunction in rat liver tissue under hyperglycemic conditions. We propose that this phosphorylation, specifically seen in dimeric CcO and induced by high sucrose diet-mediated inflammatory signaling, triggers enzymatic activity decline of complex IV dimers and the assembly of supercomplexes in liver tissue as a molecular mechanism underlying a (pre-)diabetic phenotype.
Collapse
Affiliation(s)
- Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Taryn E. Raisanen
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
| | - Rachel Lax
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| | - Ann Saada
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- Department of Genetics, Hadassah Medical Center, Jerusalem 9112102, Israel
- Department of Medical Laboratory Sciences, Hadassah Academic College, Jerusalem 9101001, Israel
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (T.A.); (L.P.); (T.E.R.); (P.T.M.); (J.W.); (J.B.)
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA
| | - Sarah Weksler-Zangen
- Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem 9112102, Israel; (R.L.); (A.S.)
- The Hadassah Diabetes Center, Hadassah Medical Center, Jerusalem 9112102, Israel
- The Liver Research Laboratory, Hadassah Medical Center, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Viering D, Schlingmann KP, Hureaux M, Nijenhuis T, Mallett A, Chan MM, van Beek A, van Eerde AM, Coulibaly JM, Vallet M, Decramer S, Pelletier S, Klaus G, Kömhoff M, Beetz R, Patel C, Shenoy M, Steenbergen EJ, Anderson G, Bongers EM, Bergmann C, Panneman D, Rodenburg RJ, Kleta R, Houillier P, Konrad M, Vargas-Poussou R, Knoers NV, Bockenhauer D, de Baaij JH. Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA. J Am Soc Nephrol 2022; 33:305-325. [PMID: 34607911 PMCID: PMC8819995 DOI: 10.1681/asn.2021050596] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/06/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.
Collapse
Affiliation(s)
- Daan Viering
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Marguerite Hureaux
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France,Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew Mallett
- Department of Renal Medicine, Townsville University Hospital, Townsville, Australia,Queensland Conjoint Renal Genetics Service – Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Melanie M.Y. Chan
- Department of Renal Medicine, University College London, London, United Kingdom
| | - André van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Marion Vallet
- Department of Physiological Functional Investigations, Centre Hospitalier Universitaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Stéphane Decramer
- Pediatric Nephrology, Internal Medicine and Rheumatology, Southwest Renal Rare Diseases Centre (SORARE), University Children's Hospital, Toulouse, France
| | - Solenne Pelletier
- Department of Nephrology, University Hospital–Lyon Sud, Lyon, France
| | - Günter Klaus
- Kuratorium für Heimdialyse Pediatric Kidney Center, Marburg, Germany
| | - Martin Kömhoff
- University Children's Hospital, Philipps-University, Marburg, Germany
| | - Rolf Beetz
- Johannes Gutenberg Universität Mainz, Zentrum für Kinder- und Jugendmedizin, Mainz, Germany
| | - Chirag Patel
- Queensland Conjoint Renal Genetics Service – Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Mohan Shenoy
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Eric J. Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Glenn Anderson
- Department of Pathology, Great Ormond Street Hospital for Children National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Ernie M.H.F. Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carsten Bergmann
- Limbach Genetics, Medizinische Genetik Mainz, Prof. Bergmann & Kollegen, Mainz, Germany,Department of Medicine, Division of Nephrology, University Hospital Freiburg, Germany
| | - Daan Panneman
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Richard J. Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom,Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Pascal Houillier
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France,Centre de Recherche des Cordeliers, Sorbonne Université, Institut National de la Santé et de Recherche Médicale (INSERM), Université de Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France,Department of Physiology, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Rosa Vargas-Poussou
- Reference Center for Hereditary Kidney and Childhood Diseases (Maladies rénales héréditaires de l'enfant et de l'adulte [MARHEA]), Paris, France,Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France,Centre de Recherche des Cordeliers, Sorbonne Université, Institut National de la Santé et de Recherche Médicale (INSERM), Université de Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Detlef Bockenhauer
- Department of Renal Medicine, University College London, London, United Kingdom,Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
6
|
Joseph S, Li M, Zhang S, Horne L, Stacpoole PW, Wohlgemuth SE, Edison AS, Wood C, Keller-Wood M. Sodium dichloroacetate stimulates cardiac mitochondrial metabolism and improves cardiac conduction in the ovine fetus during labor. Am J Physiol Regul Integr Comp Physiol 2022; 322:R83-R98. [PMID: 34851727 PMCID: PMC8791792 DOI: 10.1152/ajpregu.00185.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous studies in our laboratory have suggested that the increase in stillbirth in pregnancies complicated by chronic maternal stress or hypercortisolemia is associated with cardiac dysfunction in late stages of labor and delivery. Transcriptomics analysis of the overly represented differentially expressed genes in the fetal heart of hypercortisolemic ewes indicated involvement of mitochondrial function. Sodium dichloroacetate (DCA) has been used to improve mitochondrial function in several disease states. We hypothesized that administration of DCA to laboring ewes would improve both cardiac mitochondrial activity and cardiac function in their fetuses. Four groups of ewes and their fetuses were studied: control, cortisol-infused (1 g/kg/day from 115 to term; CORT), DCA-treated (over 24 h), and DCA + CORT-treated; oxytocin was delivered starting 48 h before the DCA treatment. DCA significantly decreased cardiac lactate, alanine, and glucose/glucose-6-phosphate and increased acetylcarnitine/isobutyryl-carnitine. DCA increased mitochondrial activity, increasing oxidative phosphorylation (PCI, PCI + II) per tissue weight or per unit of citrate synthase. DCA also decreased the duration of the QRS, attenuating the prolongation of the QRS observed in CORT fetuses. The effect to reduce QRS duration with DCA treatment correlated with increased glycerophosphocholine and serine and decreased phosphorylcholine after DCA treatment. There were negative correlations of acetylcarnitine/isobutyryl-carnitine to both heart rate (HR) and mean arterial pressure (MAP). These results suggest that improvements in mitochondrial respiration with DCA produced changes in the cardiac lipid metabolism that favor improved conduction in the heart. DCA may therefore be an effective treatment of fetal cardiac metabolic disturbances in labor that can contribute to impairments of fetal cardiac conduction.
Collapse
Affiliation(s)
- Serene Joseph
- 1Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| | - Mengchen Li
- 2Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Sicong Zhang
- 3Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Lloyd Horne
- 4Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Peter. W. Stacpoole
- 4Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Stephanie E. Wohlgemuth
- 5Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, Florida
| | - Arthur S. Edison
- 3Department of Biochemistry and Molecular Biology and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Charles Wood
- 2Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Maureen Keller-Wood
- 1Department of Pharmacodynamics, University of Florida College of Pharmacy, Gainesville, Florida
| |
Collapse
|
7
|
Lewis MT, Blain GM, Hart CR, Layec G, Rossman MJ, Park SY, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE, Bledsoe AD, Amann M, Richardson RS. Acute high-intensity exercise and skeletal muscle mitochondrial respiratory function: role of metabolic perturbation. Am J Physiol Regul Integr Comp Physiol 2021; 321:R687-R698. [PMID: 34549627 DOI: 10.1152/ajpregu.00158.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.
Collapse
Affiliation(s)
- Matthew T Lewis
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Gregory M Blain
- LAMHESS, University Nice Sophia Antipolis, Nice, France.,LAMHESS, University of Toulon, La Garde, France
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Matthew J Rossman
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Song-Young Park
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,School of Health and Kinesiology, University of Nebraska, Omaha, Nebraska
| | - Joel D Trinity
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Simranjit K Sidhu
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Discipline of Physiology, School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua C Weavil
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Thomas J Hureau
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,LAMHESS, University Nice Sophia Antipolis, Nice, France.,LAMHESS, University of Toulon, La Garde, France
| | - Jacob E Jessop
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Amber D Bledsoe
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Markus Amann
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
8
|
Lee CQE, Kerouanton B, Chothani S, Zhang S, Chen Y, Mantri CK, Hock DH, Lim R, Nadkarni R, Huynh VT, Lim D, Chew WL, Zhong FL, Stroud DA, Schafer S, Tergaonkar V, St John AL, Rackham OJL, Ho L. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat Commun 2021; 12:2130. [PMID: 33837217 PMCID: PMC8035321 DOI: 10.1038/s41467-021-22397-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Mito-SEPs are small open reading frame-encoded peptides that localize to the mitochondria to regulate metabolism. Motivated by an intriguing negative association between mito-SEPs and inflammation, here we screen for mito-SEPs that modify inflammatory outcomes and report a mito-SEP named "Modulator of cytochrome C oxidase during Inflammation" (MOCCI) that is upregulated during inflammation and infection to promote host-protective resolution. MOCCI, a paralog of the NDUFA4 subunit of cytochrome C oxidase (Complex IV), replaces NDUFA4 in Complex IV during inflammation to lower mitochondrial membrane potential and reduce ROS production, leading to cyto-protection and dampened immune response. The MOCCI transcript also generates miR-147b, which targets the NDUFA4 mRNA with similar immune dampening effects as MOCCI, but simultaneously enhances RIG-I/MDA-5-mediated viral immunity. Our work uncovers a dual-component pleiotropic regulation of host inflammation and immunity by MOCCI (C15ORF48) for safeguarding the host during infection and inflammation.
Collapse
Affiliation(s)
- Cheryl Q. E. Lee
- grid.414735.00000 0004 0367 4692Institute of Medical Biology, A*STAR, Singapore, Singapore
| | - Baptiste Kerouanton
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Sonia Chothani
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Shan Zhang
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Ying Chen
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Chinmay Kumar Mantri
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Emerging Infectious Diseases, Singapore, Singapore
| | - Daniella Helena Hock
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC Australia
| | - Radiance Lim
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Rhea Nadkarni
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Vinh Thang Huynh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Daryl Lim
- grid.418377.e0000 0004 0620 715XGenome Institute Singapore, A*STAR, Singapore, Singapore
| | - Wei Leong Chew
- grid.418377.e0000 0004 0620 715XGenome Institute Singapore, A*STAR, Singapore, Singapore
| | - Franklin L. Zhong
- grid.59025.3b0000 0001 2224 0361Nanyang Technological University, Skin Diseases and Wound Repair Program, Singapore, Singapore ,grid.185448.40000 0004 0637 0221Skin Research Institute of Singapore, A*STAR, Singapore, Singapore
| | - David Arthur Stroud
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, The Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Melbourne, VIC Australia
| | - Sebastian Schafer
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore ,grid.419385.20000 0004 0620 9905National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ashley L. St John
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Emerging Infectious Diseases, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore ,grid.189509.c0000000100241216Department of Pathology, Duke University Medical Center, Durham, NC USA
| | - Owen J. L. Rackham
- grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore
| | - Lena Ho
- grid.414735.00000 0004 0367 4692Institute of Medical Biology, A*STAR, Singapore, Singapore ,grid.428397.30000 0004 0385 0924Duke-NUS Medical School, Program in Cardiovascular and Metabolic Disorders, Singapore, Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| |
Collapse
|
9
|
Kalpage HA, Wan J, Morse PT, Lee I, Hüttemann M. Brain-Specific Serine-47 Modification of Cytochrome c Regulates Cytochrome c Oxidase Activity Attenuating ROS Production and Cell Death: Implications for Ischemia/Reperfusion Injury and Akt Signaling. Cells 2020; 9:E1843. [PMID: 32781572 PMCID: PMC7465522 DOI: 10.3390/cells9081843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported that serine-47 (S47) phosphorylation of cytochrome c (Cytc) in the brain results in lower cytochrome c oxidase (COX) activity and caspase-3 activity in vitro. We here analyze the effect of S47 modification in fibroblast cell lines stably expressing S47E phosphomimetic Cytc, unphosphorylated WT, or S47A Cytc. Our results show that S47E Cytc results in partial inhibition of mitochondrial respiration corresponding with lower mitochondrial membrane potentials (ΔΨm) and reduced reactive oxygen species (ROS) production. When exposed to an oxygen-glucose deprivation/reoxygenation (OGD/R) model simulating ischemia/reperfusion injury, the Cytc S47E phosphomimetic cell line showed minimal ROS generation compared to the unphosphorylated WT Cytc cell line that generated high levels of ROS upon reoxygenation. Consequently, the S47E Cytc cell line also resulted in significantly lower cell death upon exposure to OGD/R, confirming the cytoprotective role of S47 phosphorylation of Cytc. S47E Cytc also resulted in lower cell death upon H2O2 treatment. Finally, we propose that pro-survival kinase Akt (protein kinase B) is a likely mediator of the S47 phosphorylation of Cytc in the brain. Akt inhibitor wortmannin abolished S47 phosphorylation of Cytc, while the Akt activator SC79 maintained S47 phosphorylation of Cytc. Overall, our results suggest that loss of S47 phosphorylation of Cytc during brain ischemia drives reperfusion injury through maximal electron transport chain flux, ΔΨm hyperpolarization, and ROS-triggered cell death.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Paul T. Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Korea;
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA; (H.A.K.); (J.W.); (P.T.M.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
10
|
Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol 2020; 121:105704. [PMID: 32023432 DOI: 10.1016/j.biocel.2020.105704] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022]
Abstract
Cytochrome c (Cytc)1is a cellular life and death decision molecule that regulates cellular energy supply and apoptosis through tissue specific post-translational modifications. Cytc is an electron carrier in the mitochondrial electron transport chain (ETC) and thus central for aerobic energy production. Under conditions of cellular stress, Cytc release from the mitochondria is a committing step for apoptosis, leading to apoptosome formation, caspase activation, and cell death. Recently, Cytc was shown to be a target of cellular signaling pathways that regulate the functions of Cytc by tissue-specific phosphorylations. So far five phosphorylation sites of Cytc have been mapped and functionally characterized, Tyr97, Tyr48, Thr28, Ser47, and Thr58. All five phosphorylations partially inhibit respiration, which we propose results in optimal intermediate mitochondrial membrane potentials and low ROS production under normal conditions. Four of the phosphorylations result in inhibition of the apoptotic functions of Cytc, suggesting a cytoprotective role for phosphorylated Cytc. Interestingly, these phosphorylations are lost during stress conditions such as ischemia. This results in maximal ETC flux during reperfusion, mitochondrial membrane potential hyperpolarization, excessive ROS generation, and apoptosis. We here present a new model proposing that the electron transfer from Cytc to cytochrome c oxidase is the rate-limiting step of the ETC, which is regulated via post-translational modifications of Cytc. This regulation may be dysfunctional in disease conditions such as ischemia-reperfusion injury and neurodegenerative disorders through increased ROS, or cancer, where post-translational modifications on Cytc may provide a mechanism to evade apoptosis.
Collapse
|
11
|
Scott KY, Matthew R, Woolcock J, Silva M, Lemieux H. Adjustments in the control of mitochondrial respiratory capacity to tolerate temperature fluctuations. ACTA ACUST UNITED AC 2019; 222:jeb.207951. [PMID: 31439652 DOI: 10.1242/jeb.207951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
As the world's climate changes, life faces an evolving thermal environment. Mitochondrial oxidative phosphorylation (OXPHOS) is critical to ensure sufficient cellular energy production, and it is strongly influenced by temperature. The thermally induced changes to the regulation of specific steps within the OXPHOS process are poorly understood. In our study, we used the eurythermal species of planarian Dugesia tigrina to study the thermal sensitivity of the OXPHOS process at 10, 15, 20, 25 and 30°C. We conducted cold acclimation experiments where we measured the adjustment of specific steps in OXPHOS at two assay temperatures (10 and 20°C) following 4 weeks of acclimation under normal (22°C) or low (5°C) temperature conditions. At the low temperature, the contribution of the NADH pathway to the maximal OXPHOS capacity, in a combined pathway (NADH and succinate), was reduced. There was partial compensation by an increased contribution of the succinate pathway. As the temperature decreased, OXPHOS became more limited by the capacity of the phosphorylation system. Acclimation to the low temperature resulted in positive adjustments of the NADH pathway capacity due, at least in part, to an increase in complex I activity. The acclimation also resulted in a better match between OXPHOS and phosphorylation system capacities. Both of these adjustments following acclimation were specific to the low assay temperature. We conclude that there is substantial plasticity in the mitochondrial OXPHOS process following thermal acclimation in D. tigrina, and this probably contributes to the wide thermal range of the species.
Collapse
Affiliation(s)
- Katrina Y Scott
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Rebecca Matthew
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Jennifer Woolcock
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9
| | - Maise Silva
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9.,Faculdade de Tecnologia e Ciências, Salvador, Bahia, 41741-590, Brazil
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, AB, Canada, T6C 4G9 .,Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2R7
| |
Collapse
|
12
|
Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem J 2019; 476:2463-2486. [PMID: 31431479 PMCID: PMC6735661 DOI: 10.1042/bcj20190405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Cellular senescence is an endpoint of chemotherapy, and targeted therapies in melanoma and the senescence-associated secretory phenotype (SASP) can affect tumor growth and microenvironment, influencing treatment outcomes. Metabolic interventions can modulate the SASP, and an enhanced mitochondrial energy metabolism supports resistance to therapy in melanoma cells. Herein, we assessed the mitochondrial function of therapy-induced senescent melanoma cells obtained after exposing the cells to temozolomide (TMZ), a methylating chemotherapeutic agent. Senescence induction in melanoma was accompanied by a substantial increase in mitochondrial basal, ATP-linked, and maximum respiration rates and in coupling efficiency, spare respiratory capacity, and respiratory control ratio. Further examinations revealed an increase in mitochondrial mass and length. Alterations in mitochondrial function and morphology were confirmed in isolated senescent cells, obtained by cell-size sorting. An increase in mitofusin 1 and 2 (MFN1 and 2) expression and levels was observed in senescent cells, pointing to alterations in mitochondrial fusion. Silencing mitofusin expression with short hairpin RNA (shRNA) prevented the increase in mitochondrial length, oxygen consumption rate and secretion of interleukin 6 (IL-6), a component of the SASP, in melanoma senescent cells. Our results represent the first in-depth study of mitochondrial function in therapy-induced senescence in melanoma. They indicate that senescence increases mitochondrial mass, length and energy metabolism; and highlight mitochondria as potential pharmacological targets to modulate senescence and the SASP.
Collapse
|
13
|
Abou Anni IS, Zebral YD, Afonso SB, Moreno Abril SI, Lauer MM, Bianchini A. Life-time exposure to waterborne copper III: Effects on the energy metabolism of the killifish Poecilia vivipara. CHEMOSPHERE 2019; 227:580-588. [PMID: 31009864 DOI: 10.1016/j.chemosphere.2019.04.080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Copper ions (Cu) are essential to life maintenance, nonetheless, elevated concentrations can be hazardous. Acute and sub-chronic toxic effects of this metal are well known and are usually related to enzymatic inhibition, elevated ROS production and dysfunction of energy metabolism. Despite that, chronic studies are extremely rare. Therefore, the aim of this study was to assess the effects of chronic exposure to 5, 9 and 20 μg/L Cu (28 ad 345 days) on the energy metabolism and survival of the killifish Poecilia vivipara. To accomplish that, we evaluated the activity of enzymes related to aerobic (pyruvate kinase (PK); citrate synthase (CS)) and anaerobic metabolism (lactate dehydrogenase (LDH)) in whole-body (28 days) or in gills, liver and muscle (345 days) of exposed fish. Additionally, whole-body oxygen consumption was evaluated in fish exposed for 28 days and hepatic and muscular expression of genes involved in mitochondrial metabolism (cox I, II and III and atp5a1) was assessed in animals exposed for 345 days. Finally, final survival was evaluated. Following 28 days, Cu did not affect survival neither enzyme activities. However, increased whole-body oxygen consumption was observed in comparison to control condition. After 345 days, 76.8%, 63.9%, 60.9% and 0% survival were observed for control, 5, 9 and 20 μg/L groups, respectively. Animals exposed to 5 and 9 μg/L had a significant reduction in branchial and muscular LDH activity and in hepatic PK activity. Also, exposure to 9 μg/L significantly increased hepatic CS activity. For gene expression, Cu down-regulated muscular cox II (9 μg/L) and III (5 and 9 μg/L), and up-regulated hepatic atp5a1 (9 μg/L). Findings reported in the present study indicate that chronic exposure to Cu induces tissue-specific responses in key aspects of the energetic metabolism. In gills and muscle, Cu leads to reduced energy production through inhibition of anaerobic pathways and mitochondrial respiratory chain. This effect is paralleled by an increased ATP consumption in the liver, characterized by the augmented CS activity and atp5a1 expression. Finally, reduced PK activity indicate that oxidative stress may be involved with the observed outcomes.
Collapse
Affiliation(s)
- Iuri Salim Abou Anni
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sidnei Braz Afonso
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Sandra Isabel Moreno Abril
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Mariana Machado Lauer
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação Em Ciências Fisiológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande, Avenida Itália Km 8, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
14
|
Layec G, Blain GM, Rossman MJ, Park SY, Hart CR, Trinity JD, Gifford JR, Sidhu SK, Weavil JC, Hureau TJ, Amann M, Richardson RS. Acute High-Intensity Exercise Impairs Skeletal Muscle Respiratory Capacity. Med Sci Sports Exerc 2019; 50:2409-2417. [PMID: 30102675 DOI: 10.1249/mss.0000000000001735] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE The effect of an acute bout of exercise, especially high-intensity exercise, on the function of mitochondrial respiratory complexes is not well understood, with potential implications for both the healthy population and patients undergoing exercise-based rehabilitation. Therefore, this study sought to comprehensively examine respiratory flux through the different complexes of the electron transport chain in skeletal muscle mitochondria before and immediately after high-intensity aerobic exercise. METHODS Muscle biopsies of the vastus lateralis were obtained at baseline and immediately after a 5-km time trial performed on a cycle ergometer. Mitochondrial respiratory flux through the complexes of the electron transport chain was measured in permeabilized skeletal muscle fibers by high-resolution respirometry. RESULTS Complex I + II state 3 (state 3CI + CII) respiration, a measure of oxidative phosphorylation capacity, was diminished immediately after the exercise (pre, 27 ± 3 ρm·mg·s; post, 17 ± 2 ρm·mg·s; P < 0.05). This decreased oxidative phosphorylation capacity was predominantly the consequence of attenuated complex II-driven state 3 (state 3CII) respiration (pre, 17 ± 1 ρm·mg·s; post, 9 ± 2 ρm·mg·s; P < 0.05). Although complex I-driven state 3 (3CI) respiration was also lower (pre, 20 ± 2 ρm·mg·s; post, 14 ± 4 ρm·mg·s), this did not reach statistical significance (P = 0.27). In contrast, citrate synthase activity, proton leak (state 2 respiration), and complex IV capacity were not significantly altered immediately after the exercise. CONCLUSIONS These findings reveal that acute high-intensity aerobic exercise significantly inhibits skeletal muscle state 3CII and oxidative phosphorylation capacity. This, likely transient, mitochondrial defect might amplify the exercise-induced development of fatigue and play an important role in initiating exercise-induced mitochondrial adaptations.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | | | - Matthew J Rossman
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Song Y Park
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Corey R Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - Joel D Trinity
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Jayson R Gifford
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Simranjit K Sidhu
- Department of Medicine, University of Utah, Salt Lake City, UT.,Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, AUSTRALIA
| | - Joshua C Weavil
- Department of Medicine, University of Utah, Salt Lake City, UT
| | - Thomas J Hureau
- Department of Medicine, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT.,Mitochondria, Oxidative Stress and Muscular Protection Laboratory, EA 3072, University of Strasbourg, Strasbourg, FRANCE
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| | - Russell S Richardson
- Department of Medicine, University of Utah, Salt Lake City, UT.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT
| |
Collapse
|
15
|
Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Hüttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J 2019; 33:1540-1553. [PMID: 30222078 PMCID: PMC6338631 DOI: 10.1096/fj.201801417r] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/14/2018] [Indexed: 02/02/2023]
Abstract
Cytochrome c (Cyt c) plays a vital role in the mitochondrial electron transport chain (ETC). In addition, it is a key regulator of apoptosis. Cyt c has multiple other functions including ROS production and scavenging, cardiolipin peroxidation, and mitochondrial protein import. Cyt c is tightly regulated by allosteric mechanisms, tissue-specific isoforms, and post-translational modifications (PTMs). Distinct residues of Cyt c are modified by PTMs, primarily phosphorylations, in a highly tissue-specific manner. These modifications downregulate mitochondrial ETC flux and adjust the mitochondrial membrane potential (ΔΨm), to minimize reactive oxygen species (ROS) production under normal conditions. In pathologic and acute stress conditions, such as ischemia-reperfusion, phosphorylations are lost, leading to maximum ETC flux, ΔΨm hyperpolarization, excessive ROS generation, and the release of Cyt c. It is also the dephosphorylated form of the protein that leads to maximum caspase activation. We discuss the complex regulation of Cyt c and propose that it is a central regulatory step of the mammalian ETC that can be rate limiting in normal conditions. This regulation is important because it maintains optimal intermediate ΔΨm, limiting ROS generation. We examine the role of Cyt c PTMs, including phosphorylation, acetylation, methylation, nitration, nitrosylation, and sulfoxidation and consider their potential biological significance by evaluating their stoichiometry.-Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., Mantena, N., Malek, M. H., Podgorski, I., Heath, E. I., Vaishnav, A., Edwards, B. F., Grossman, L. I., Sanderson, T. H., Lee, I., Hüttemann, M. Tissue-specific regulation of cytochrome c by post-translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis.
Collapse
Affiliation(s)
- Hasini A. Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Viktoriia Bazylianska
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Maurice A. Recanati
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Nikhil Mantena
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Moh H. Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Elizabeth I. Heath
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Brian F. Edwards
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Thomas H. Sanderson
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Emergency Medicine, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, South Korea
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
- Cardiovascular Research Institute, Wayne State University School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
16
|
Vogt S, Irqsusi M, Naraghi H, Sattler A, Ruppert V, Weber P, Rhiel A, Ramzan R. Mitochondrial active and relaxed state respiration after heat shock mRNA response in the heart. J Therm Biol 2019; 80:106-112. [PMID: 30784473 DOI: 10.1016/j.jtherbio.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Induction of Heat Shock Proteins results in cytoprotection. Beneficial effect results from transcription and translational cellular components' involvement that defends metabolism and thus induce ischemic protection of the tissue. Mitochondrial respiration is also involved in stress- induced conditions. It is not a uniform process. Cytochrome c Oxidase (CytOx) representing complex IV of the Electron Transfer Chain (ETC) has a regulatory role for mitochondrial respiratory activity, which is tested in our study after hsp induction. Moreover, protein translation for mitochondrial components was probed by the detection of MT-CO1 for Subunit 1 of CytOx neosynthesis. Wistar rats were subjected to whole-body hyperthermia at 42.0-42.5 °C for 15 min followed by a normothermic recovery period. Heat shock response was monitored time dependent from LV biopsies of all control and heat treated animals with PCR-analysis for hsp 32, 60, 70.1, 70.2, 90 and MT-CO1 expression at 15, 30, 45, 60, 120 and 360 min recovery (n = 5 in each group), respectively. Enzymatic activity of CytOx were evaluated polarographically. High energy phosphates were detected by chromatographic analysis. The mRNA expression of MT-CO1 peaked at 60 min and was accompanied by hsp 32 (r = 0.457; p = 0.037) and hsp 70.2 (r = 0.615; p = 0.003) upregulation. With hsp induction, mitochondrial respiration was increased initially. Enzymatic activity reconciled from active into relaxed status wherein CytOx activity was completely inhibited by ATP. Myocardial ATP content increased from stress induced point i.e. < 1 µmol g-1 protein w/w to finally 1.5 ± 0.53 µmol g-1 protein w/w at 120 min recovery interval. Hyperthermic, myocardial hsp- induction goes along with increased CytOx activity representing an increased "active" mitochondrial respiration. In parallel, de -novo holoenzyme assembly of CytOx begins as shown by MT-CO1 upregulation at 60 min recovery time crossing with a final return to the physiological "relaxed" state and ATP -inhibited respiration.
Collapse
Affiliation(s)
- Sebastian Vogt
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany.
| | - Marc Irqsusi
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Hamid Naraghi
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Alexander Sattler
- Center for Internal Medicine, Cardiology, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Volker Ruppert
- Center for Internal Medicine, Cardiology, Universitätsklinikum Marburg und Giessen GmbH, Germany
| | - Petra Weber
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| | - Annika Rhiel
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| | - Rabia Ramzan
- Cardiovascular Surgery, Universitätsklinikum Marburg und Giessen GmbH, Germany; Cardiovascular Research Lab, Biochemical Pharmacological Center, Philipps, University Marburg, Germany
| |
Collapse
|
17
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Sanderson TH, Wider JM, Lee I, Reynolds CA, Liu J, Lepore B, Tousignant R, Bukowski MJ, Johnston H, Fite A, Raghunayakula S, Kamholz J, Grossman LI, Przyklenk K, Hüttemann M. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep 2018; 8:3481. [PMID: 29472564 PMCID: PMC5823933 DOI: 10.1038/s41598-018-21869-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/13/2018] [Indexed: 12/17/2022] Open
Abstract
The interaction of light with biological tissue has been successfully utilized for multiple therapeutic purposes. Previous studies have suggested that near infrared light (NIR) enhances the activity of mitochondria by increasing cytochrome c oxidase (COX) activity, which we confirmed for 810 nm NIR. In contrast, scanning the NIR spectrum between 700 nm and 1000 nm revealed two NIR wavelengths (750 nm and 950 nm) that reduced the activity of isolated COX. COX-inhibitory wavelengths reduced mitochondrial respiration, reduced the mitochondrial membrane potential (ΔΨm), attenuated mitochondrial superoxide production, and attenuated neuronal death following oxygen glucose deprivation, whereas NIR that activates COX provided no benefit. We evaluated COX-inhibitory NIR as a potential therapy for cerebral reperfusion injury using a rat model of global brain ischemia. Untreated animals demonstrated an 86% loss of neurons in the CA1 hippocampus post-reperfusion whereas inhibitory NIR groups were robustly protected, with neuronal loss ranging from 11% to 35%. Moreover, neurologic function, assessed by radial arm maze performance, was preserved at control levels in rats treated with a combination of both COX-inhibitory NIR wavelengths. Taken together, our data suggest that COX-inhibitory NIR may be a viable non-pharmacologic and noninvasive therapy for the treatment of cerebral reperfusion injury.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Joseph M Wider
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Icksoo Lee
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,College of Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Christian A Reynolds
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Bradley Lepore
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Reneé Tousignant
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Melissa J Bukowski
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hollie Johnston
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Alemu Fite
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sarita Raghunayakula
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - John Kamholz
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lawrence I Grossman
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Karin Przyklenk
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Maik Hüttemann
- Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 2017; 7:2840. [PMID: 28588260 PMCID: PMC5460290 DOI: 10.1038/s41598-017-02789-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
Collapse
|
20
|
Tissue- and Condition-Specific Isoforms of Mammalian Cytochrome c Oxidase Subunits: From Function to Human Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1534056. [PMID: 28593021 PMCID: PMC5448071 DOI: 10.1155/2017/1534056] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023]
Abstract
Cytochrome c oxidase (COX) is the terminal enzyme of the electron transport chain and catalyzes the transfer of electrons from cytochrome c to oxygen. COX consists of 14 subunits, three and eleven encoded, respectively, by the mitochondrial and nuclear DNA. Tissue- and condition-specific isoforms have only been reported for COX but not for the other oxidative phosphorylation complexes, suggesting a fundamental requirement to fine-tune and regulate the essentially irreversible reaction catalyzed by COX. This article briefly discusses the assembly of COX in mammals and then reviews the functions of the six nuclear-encoded COX subunits that are expressed as isoforms in specialized tissues including those of the liver, heart and skeletal muscle, lung, and testes: COX IV-1, COX IV-2, NDUFA4, NDUFA4L2, COX VIaL, COX VIaH, COX VIb-1, COX VIb-2, COX VIIaH, COX VIIaL, COX VIIaR, COX VIIIH/L, and COX VIII-3. We propose a model in which the isoforms mediate the interconnected regulation of COX by (1) adjusting basal enzyme activity to mitochondrial capacity of a given tissue; (2) allosteric regulation to adjust energy production to need; (3) altering proton pumping efficiency under certain conditions, contributing to thermogenesis; (4) providing a platform for tissue-specific signaling; (5) stabilizing the COX dimer; and (6) modulating supercomplex formation.
Collapse
|
21
|
Bourguignon A, Rameau A, Toullec G, Romestaing C, Roussel D. Increased mitochondrial energy efficiency in skeletal muscle after long-term fasting: its relevance to animal performance. ACTA ACUST UNITED AC 2017; 220:2445-2451. [PMID: 28455442 DOI: 10.1242/jeb.159087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/21/2017] [Indexed: 01/10/2023]
Abstract
In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin (Aptenodytes patagonicus) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency.
Collapse
Affiliation(s)
- Aurore Bourguignon
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, 69622 Villeurbanne cedex, France
| | - Anaïs Rameau
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, 69622 Villeurbanne cedex, France
| | - Gaëlle Toullec
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, 69622 Villeurbanne cedex, France
| | - Caroline Romestaing
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, 69622 Villeurbanne cedex, France
| | - Damien Roussel
- Université de Lyon, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023 CNRS, Université Claude Bernard Lyon 1, ENTPE, 69622 Villeurbanne cedex, France
| |
Collapse
|
22
|
Li C, White SH, Warren LK, Wohlgemuth SE. Effects of aging on mitochondrial function in skeletal muscle of American American Quarter Horses. J Appl Physiol (1985) 2016; 121:299-311. [PMID: 27283918 PMCID: PMC5040552 DOI: 10.1152/japplphysiol.01077.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function.
Collapse
Affiliation(s)
- Chengcheng Li
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Sarah H White
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | - Lori K Warren
- Department of Animal Sciences, University of Florida, Gainesville, Florida
| | | |
Collapse
|
23
|
Lee I, Hüttemann M, Malek MH. (-)-Epicatechin Attenuates Degradation of Mouse Oxidative Muscle Following Hindlimb Suspension. J Strength Cond Res 2016; 30:1-10. [PMID: 26382133 DOI: 10.1519/jsc.0000000000001205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The purpose of this study was to conduct a 14-day hindlimb suspension (HS) with and without (-)-epicatechin supplementation to determine whether (-)-epicatechin treatment can attenuate the loss in muscle degradation, angiogenesis, and mitochondrial signaling in oxidative skeletal muscle. Adult mice were randomized into 3 groups: (a) control (C); (b) HS with vehicle (HS-V); and (c) HS with (-)-epicatechin (HS-(-)-Epi). Animals in the HS-(-)-Epi group received (-)-epicatechin (1.0 mg · kg(-1) of body mass) twice daily through oral gavage. For markers related to muscle degradation, the HS-V group had significantly higher protein expression compared with the control and HS-(-)-Epi groups. Moreover, protein expression for myosin heavy chain type I was significantly reduced by approximately 45% in the HS-V group compared with the control and HS-(-)-Epi groups. In addition, capillarity contact and capillary-to-fiber ratio were significantly higher in the HS-(-)-Epi group compared with the HS-V group. Furthermore, protein expression for thrombospondin-1 was significantly higher in HS-V group compared with the control and HS-(-)-Epi groups. Hindlimb suspension also significantly reduced protein expression for mitochondrial signaling compared with the control and HS-(-)-Epi groups. These findings suggest that (-)-epicatechin supplementation attenuates degradation in oxidative muscles after HS.
Collapse
Affiliation(s)
- Icksoo Lee
- 1College of Medicine, Dankook University, Cheonan-si, Republic of Korea; 2Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan; 3Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan; and 4Integrative Physiology of Exercise Laboratory, Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
24
|
Müller-Höcker J, Schäfer S, Krebs S, Blum H, Zsurka G, Kunz WS, Prokisch H, Seibel P, Jung A. Oxyphil cell metaplasia in the parathyroids is characterized by somatic mitochondrial DNA mutations in NADH dehydrogenase genes and cytochrome c oxidase activity-impairing genes. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 184:2922-35. [PMID: 25418474 DOI: 10.1016/j.ajpath.2014.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 02/01/2023]
Abstract
Oxyphil cell transformation of epithelial cells due to the accumulation of mitochondria occurs often during cellular aging. To understand the pathogenic mechanisms, we studied mitochondrial DNA (mtDNA) alterations in the three cell types of the parathyroids using multiplex real-time PCR and next-generation sequencing. mtDNA was analyzed from cytochrome c oxidase (COX)-positive and COX-negative areas of 19 parathyroids. Mitochondria-rich pre-oxyphil/oxyphil cells were more prone to develop COX defects than the mitochondria-poor clear chief cells (P < 0.001). mtDNA increased approximately 2.5-fold from clear chief to oxyphil cells. In COX deficiency, the increase was even more pronounced, and COX-negative oxyphil cells had approximately two times more mtDNA than COX-positive oxyphil cells (P < 0.001), illustrating the influence of COX deficiency on mtDNA biosynthesis, probably as a consequence of insufficient ATP synthesis. Next-generation sequencing revealed a broad spectrum of putative pathogenic mtDNA point mutations affecting NADH dehydrogenase and COX genes as well as regulatory elements of mtDNA. NADH dehydrogenase gene mutations preferentially accumulated in COX-positive pre-oxyphil/oxyphil cells and, therefore, could be essential for inducing oxyphil cell transformation by increasing mtDNA/mitochondrial biogenesis. In contrast, COX-negative cells predominantly harbored mutations in the MT-CO1 and MT-CO3 genes and in regulatory mtDNA elements, but only rarely NADH dehydrogenase mutations. Thus, multiple hits in NADH dehydrogenase and COX activity-impairing genes represent the molecular basis of oxyphil cell transformation in the parathyroids.
Collapse
Affiliation(s)
- Josef Müller-Höcker
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabine Schäfer
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Krebs
- Gene Center of the Ludwig-Maximilians-Universität München, Campus Großhadern, Munich, Germany
| | - Helmut Blum
- Gene Center of the Ludwig-Maximilians-Universität München, Campus Großhadern, Munich, Germany
| | - Gábor Zsurka
- Division of Neurochemistry, Department of Epileptology and Life and Brain Center, University of Bonn, Bonn, Germany
| | - Wolfram S Kunz
- Division of Neurochemistry, Department of Epileptology and Life and Brain Center, University of Bonn, Bonn, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Peter Seibel
- Molekulare Zellbiologie, Biotechnological Biomedical Center, Universität Leipzig, Leipzig, Germany
| | - Andreas Jung
- Institute for Pathology of the Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium and German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
25
|
Molecular Mechanisms and Therapeutic Effects of (-)-Epicatechin and Other Polyphenols in Cancer, Inflammation, Diabetes, and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:181260. [PMID: 26180580 PMCID: PMC4477097 DOI: 10.1155/2015/181260] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 12/31/2014] [Indexed: 01/13/2023]
Abstract
With recent insight into the mechanisms involved in diseases, such as cardiovascular disease, cancer, stroke, neurodegenerative diseases, and diabetes, more efficient modes of treatment are now being assessed. Traditional medicine including the use of natural products is widely practiced around the world, assuming that certain natural products contain the healing properties that may in fact have a preventative role in many of the diseases plaguing the human population. This paper reviews the biological effects of a group of natural compounds called polyphenols, including apigenin, epigallocatechin gallate, genistein, and (-)-epicatechin, with a focus on the latter. (-)-Epicatechin has several unique features responsible for a variety of its effects. One of these is its ability to interact with and neutralize reactive oxygen species (ROS) in the cell. (-)-Epicatechin also modulates cell signaling including the MAP kinase pathway, which is involved in cell proliferation. Mutations in this pathway are often associated with malignancies, and the use of (-)-epicatechin holds promise as a preventative agent and as an adjunct for chemotherapy and radiation therapy to improve outcome. This paper discusses the potential of some phenolic compounds to maintain, protect, and possibly reinstate health.
Collapse
|
26
|
Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol 2015; 308:R724-33. [PMID: 25695290 DOI: 10.1152/ajpregu.00461.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
Exercise efficiency is an important determinant of exercise capacity. However, little is known about the physiological factors that can modulate muscle efficiency during exercise. We examined whether improved O2 availability would 1) impair mitochondrial efficiency and shift the energy production toward aerobic ATP synthesis and 2) reduce the ATP cost of dynamic contraction owing to an improved neuromuscular efficiency, such that 3) whole body O2 cost would remain unchanged. We used (31)P-magnetic resonance spectroscopy, surface electromyography, and pulmonary O2 consumption (V̇o2p) measurements in eight active subjects during 6 min of dynamic knee-extension exercise under different fractions of inspired O2 (FiO2 , 0.21 in normoxia and 1.0 in hyperoxia). V̇o2p (755 ± 111 ml/min in normoxia and 799 ± 188 ml/min in hyperoxia, P > 0.05) and O2 cost (P > 0.05) were not significantly different between normoxia and hyperoxia. In contrast, the total ATP synthesis rate and the ATP cost of dynamic contraction were significantly lower in hyperoxia than normoxia (P < 0.05). As a result, the ratio of the rate of oxidative ATP synthesis from the quadriceps to V̇o2p was lower in hyperoxia than normoxia but did not reach statistical significance (16 ± 3 mM/ml in normoxia and 12 ± 5 mM/ml in hyperoxia, P = 0.07). Together, these findings reveal dynamic and independent regulations of mitochondrial and contractile efficiency as a consequence of O2 availability in young active individuals. Furthermore, muscle efficiency appears to be already optimized in normoxia and is unlikely to contribute to the well-established improvement in exercise capacity induced by hyperoxia.
Collapse
Affiliation(s)
- Gwenael Layec
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France; Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Aurélien Bringard
- Département des Neurosciences Fondamentales, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Yann Le Fur
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Jean-Paul Micallef
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and Institut National de la Santé et de la Recherche Médicale ADR 08, Montpellier, France
| | - Christophe Vilmen
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - Stéphane Perrey
- Movement To Health (M2H), EuroMov, Montpellier-1 University, Montpellier, France; and
| | - Patrick J Cozzone
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Center for Magnetic Resonance in Biology and Medicine, UMR 7339, Marseille, France
| |
Collapse
|
27
|
D'Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, Manzari C, Mastropasqua F, Prazzoli GM, Picardi E, Gissi C, Horner D, Reyes A, Sbisà E, Tullo A, Pesole G. Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 2014; 20:13-21. [PMID: 25446395 DOI: 10.1016/j.mito.2014.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 01/12/2023]
Abstract
Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.
Collapse
Affiliation(s)
- Anna Maria D'Erchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Anna Atlante
- Istituto di Biomembrane e Bioenergetica, CNR, via Amendola 165/A, Bari 70126, Italy
| | - Gemma Gadaleta
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Matteo Chiara
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Caterina De Virgilio
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Caterina Manzari
- Istituto di Biomembrane e Bioenergetica, CNR, via Amendola 165/A, Bari 70126, Italy
| | - Francesca Mastropasqua
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Gian Marco Prazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Ernesto Picardi
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy
| | - Carmela Gissi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - David Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Aurelio Reyes
- Mitochondrial Biology Unit, Medical Research Council, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Elisabetta Sbisà
- Istituto di Tecnologie Biomediche- Sede di Bari, CNR, Via Amendola 122/D, Bari 70126, Italy
| | - Apollonia Tullo
- Istituto di Tecnologie Biomediche- Sede di Bari, CNR, Via Amendola 122/D, Bari 70126, Italy
| | - Graziano Pesole
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, Bari 70126, Italy; Istituto di Biomembrane e Bioenergetica, CNR, via Amendola 165/A, Bari 70126, Italy.
| |
Collapse
|
28
|
Mourier A, Ruzzenente B, Brandt T, Kühlbrandt W, Larsson NG. Loss of LRPPRC causes ATP synthase deficiency. Hum Mol Genet 2014; 23:2580-92. [PMID: 24399447 PMCID: PMC3990160 DOI: 10.1093/hmg/ddt652] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Defects of the oxidative phosphorylation system, in particular of cytochrome-c oxidase (COX, respiratory chain complex IV), are common causes of Leigh syndrome (LS), which is a rare neurodegenerative disorder with severe progressive neurological symptoms that usually present during infancy or early childhood. The COX-deficient form of LS is commonly caused by mutations in genes encoding COX assembly factors, e.g. SURF1, SCO1, SCO2 or COX10. However, other mutations affecting genes that encode proteins not directly involved in COX assembly can also cause LS. The leucine-rich pentatricopeptide repeat containing protein (LRPPRC) regulates mRNA stability, polyadenylation and coordinates mitochondrial translation. In humans, mutations in Lrpprc cause the French Canadian type of LS. Despite the finding that LRPPRC deficiency affects the stability of most mitochondrial mRNAs, its pathophysiological effect has mainly been attributed to COX deficiency. Surprisingly, we show here that the impaired mitochondrial respiration and reduced ATP production observed in Lrpprc conditional knockout mouse hearts is caused by an ATP synthase deficiency. Furthermore, the appearance of inactive subassembled ATP synthase complexes causes hyperpolarization and increases mitochondrial reactive oxygen species production. Our findings shed important new light on the bioenergetic consequences of the loss of LRPPRC in cardiac mitochondria.
Collapse
Affiliation(s)
- Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, Cologne 50931, Germany and
| | | | | | | | | |
Collapse
|
29
|
Role of mitochondria-cytoskeleton interactions in respiration regulation and mitochondrial organization in striated muscles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:232-45. [PMID: 24189374 DOI: 10.1016/j.bbabio.2013.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 09/28/2013] [Accepted: 10/28/2013] [Indexed: 01/08/2023]
Abstract
The aim of this work was to study the regulation of respiration and energy fluxes in permeabilized oxidative and glycolytic skeletal muscle fibers, focusing also on the role of cytoskeletal protein tubulin βII isotype in mitochondrial metabolism and organization. By analyzing accessibility of mitochondrial ADP, using respirometry and pyruvate kinase-phosphoenolpyruvate trapping system for ADP, we show that the apparent affinity of respiration for ADP can be directly linked to the permeability of the mitochondrial outer membrane (MOM). Previous studies have shown that MOM permeability in cardiomyocytes can be regulated by VDAC interaction with cytoskeletal protein, βII tubulin. We found that in oxidative soleus skeletal muscle the high apparent Km for ADP is associated with low MOM permeability and high expression of non-polymerized βII tubulin. Very low expression of non-polymerized form of βII tubulin in glycolytic muscles is associated with high MOM permeability for adenine nucleotides (low apparent Km for ADP).
Collapse
|
30
|
Amadoro G, Corsetti V, Florenzano F, Atlante A, Ciotti MT, Mongiardi MP, Bussani R, Nicolin V, Nori SL, Campanella M, Calissano P. AD-linked, toxic NH2 human tau affects the quality control of mitochondria in neurons. Neurobiol Dis 2013; 62:489-507. [PMID: 24411077 DOI: 10.1016/j.nbd.2013.10.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/10/2013] [Accepted: 10/16/2013] [Indexed: 12/01/2022] Open
Abstract
Functional as well as structural alterations in mitochondria size, shape and distribution are precipitating, early events in progression of Alzheimer's Disease (AD). We reported that a 20-22kDa NH2-tau fragment (aka NH2htau), mapping between 26 and 230 amino acids of the longest human tau isoform, is detected in cellular and animal AD models and is neurotoxic in hippocampal neurons. The NH2htau -but not the physiological full-length protein- interacts with Aβ at human AD synapses and cooperates with it in inhibiting the mitochondrial ANT-1-dependent ADP/ATP exchange. Here we show that the NH2htau also adversely affects the interplay between the mitochondria dynamics and their selective autophagic clearance. Fragmentation and perinuclear mislocalization of mitochondria with smaller size and density are early found in dying NH2htau-expressing neurons. The specific effect of NH2htau on quality control of mitochondria is accompanied by (i) net reduction in their mass in correlation with a general Parkin-mediated remodeling of membrane proteome; (ii) their extensive association with LC3 and LAMP1 autophagic markers; (iii) bioenergetic deficits and (iv) in vitro synaptic pathology. These results suggest that NH2htau can compromise the mitochondrial biology thereby contributing to AD synaptic deficits not only by ANT-1 inactivation but also, indirectly, by impairing the quality control mechanism of these organelles.
Collapse
Affiliation(s)
- G Amadoro
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100-00133, Rome, Italy; European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65-00143, Rome, Italy.
| | - V Corsetti
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65-00143, Rome, Italy
| | - F Florenzano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65-00143, Rome, Italy; Institute of Cellular Biology and Neurobiology (IBCN), CNR, IRCSS Fondazione Santa Lucia, Via del Fosso di Fiorano 64-65-00143, Rome, Italy
| | - A Atlante
- Insitute of Biomembrane and Bioenergetic (IBBE), CNR, Via Amendola 165/A-70126, Bari, Italy
| | - M T Ciotti
- Institute of Cellular Biology and Neurobiology (IBCN), CNR, IRCSS Fondazione Santa Lucia, Via del Fosso di Fiorano 64-65-00143, Rome, Italy
| | - M P Mongiardi
- Institute of Cellular Biology and Neurobiology (IBCN), CNR, IRCSS Fondazione Santa Lucia, Via del Fosso di Fiorano 64-65-00143, Rome, Italy
| | - R Bussani
- UCO Anatomy and Pathological Histology, Hospital of Cattinara, Strada di Fiume 447-34149, Trieste Italy
| | - V Nicolin
- University of Trieste, Clinical Department of Medical, Surgical and Health Science-section of Human Morphology, Via Manzoni 16-34138, Trieste, Italy
| | - S L Nori
- University of Salerno, Department of Pharmaceutical and Biomedical Sciences (FARMABIOMED), NANOMATES, Via Ponte don Melillo 1-85084, Fisciano (SA), Italy
| | - M Campanella
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65-00143, Rome, Italy; Department of Comparative Biomedical Sciences, The Royal Veterinary College, and Consortium for Mitochondrial Research, University College London, Royal College Street, NW1 0TU, United Kingdom
| | - P Calissano
- European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65-00143, Rome, Italy
| |
Collapse
|
31
|
Jacobs RA, Meinild AK, Nordsborg NB, Lundby C. Lactate oxidation in human skeletal muscle mitochondria. Am J Physiol Endocrinol Metab 2013; 304:E686-94. [PMID: 23384769 DOI: 10.1152/ajpendo.00476.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lactate is an important intermediate metabolite in human bioenergetics and is oxidized in many different tissues including the heart, brain, kidney, adipose tissue, liver, and skeletal muscle. The mechanism(s) explaining the metabolism of lactate in these tissues, however, remains unclear. Here, we analyze the ability of skeletal muscle to respire lactate by using an in situ mitochondrial preparation that leaves the native tubular reticulum and subcellular interactions of the organelle unaltered. Skeletal muscle biopsies were obtained from vastus lateralis muscle in 16 human subjects. Samples were chemically permeabilized with saponin, which selectively perforates the sarcolemma and facilitates the loss of cytosolic content without altering mitochondrial membranes, structure, and subcellular interactions. High-resolution respirometry was performed on permeabilized muscle biopsy preparations. By use of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P ≤ 0.003). The addition of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within the mitochondrial intermembrane space with the pyruvate subsequently taken into the mitochondrial matrix where it enters the TCA cycle and is ultimately oxidized.
Collapse
Affiliation(s)
- Robert A Jacobs
- Zurich Center for Integrative Human Physiology, Zurich, Switzerland.
| | | | | | | |
Collapse
|
32
|
Vielhaber S, Debska-Vielhaber G, Peeva V, Schoeler S, Kudin AP, Minin I, Schreiber S, Dengler R, Kollewe K, Zuschratter W, Kornblum C, Zsurka G, Kunz WS. Mitofusin 2 mutations affect mitochondrial function by mitochondrial DNA depletion. Acta Neuropathol 2013; 125:245-56. [PMID: 22926664 DOI: 10.1007/s00401-012-1036-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/13/2012] [Accepted: 08/18/2012] [Indexed: 12/01/2022]
Abstract
Charcot-Marie-Tooth neuropathy type 2A (CMT2A) is associated with heterozygous mutations in the mitochondrial protein mitofusin 2 (Mfn2) that is intimately involved with the outer mitochondrial membrane fusion machinery. The precise consequences of these mutations on oxidative phosphorylation are still a matter of dispute. Here, we investigate the functional effects of MFN2 mutations in skeletal muscle and cultured fibroblasts of four CMT2A patients applying high-resolution respirometry. While maximal activities of respiration of saponin-permeabilized muscle fibers and digitonin-permeabilized fibroblasts were only slightly affected by the MFN2 mutations, the sensitivity of active state oxygen consumption to azide, a cytochrome c oxidase (COX) inhibitor, was increased. The observed dysfunction of the mitochondrial respiratory chain can be explained by a twofold decrease in mitochondrial DNA (mtDNA) copy numbers. The only patient without detectable alterations of respiratory chain in skeletal muscle also had a normal mtDNA copy number. We detected higher levels of mtDNA deletions in CMT2A patients, which were more pronounced in the patient without mtDNA depletion. Detailed analysis of mtDNA deletion breakpoints showed that many deleted molecules were lacking essential parts of mtDNA required for replication. This is in line with the lack of clonal expansion for the majority of observed mtDNA deletions. In contrast to the copy number reduction, deletions are unlikely to contribute to the detected respiratory impairment because of their minor overall amounts in the patients. Taken together, our findings corroborate the hypothesis that MFN2 mutations alter mitochondrial oxidative phosphorylation by affecting mtDNA replication.
Collapse
Affiliation(s)
- Stefan Vielhaber
- Department of Neurology, University of Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Jacobs RA, Diaz V, Soldini L, Haider T, Thomassen M, Nordsborg NB, Gassmann M, Lundby C. Fast-Twitch Glycolytic Skeletal Muscle Is Predisposed to Age-Induced Impairments in Mitochondrial Function. J Gerontol A Biol Sci Med Sci 2013; 68:1010-22. [DOI: 10.1093/gerona/gls335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Schwenzer H, Zoll J, Florentz C, Sissler M. Pathogenic implications of human mitochondrial aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:247-92. [PMID: 23824528 DOI: 10.1007/128_2013_457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria are considered as the powerhouse of eukaryotic cells. They host several central metabolic processes fueling the oxidative phosphorylation pathway (OXPHOS) that produces ATP from its precursors ADP and inorganic phosphate Pi (PPi). The respiratory chain complexes responsible for the OXPHOS pathway are formed from complementary sets of protein subunits encoded by the nuclear genome and the mitochondrial genome, respectively. The expression of the mitochondrial genome requires a specific and fully active translation machinery from which aminoacyl-tRNA synthetases (aaRSs) are key actors. Whilst the macromolecules involved in mammalian mitochondrial translation have been under investigation for many years, there has been an explosion of interest in human mitochondrial aaRSs (mt-aaRSs) since the discovery of a large (and growing) number of mutations in these genes that are linked to a variety of neurodegenerative disorders. Herein we will review the present knowledge on mt-aaRSs in terms of their biogenesis, their connection to mitochondrial respiration, i.e., the respiratory chain (RC) complexes, and to the mitochondrial translation machinery. The pathology-related mutations detected so far are described, with special attention given to their impact on mt-aaRSs biogenesis, functioning, and/or subsequent activities. The collected data to date shed light on the diverse routes that are linking primary molecular possible impact of a mutation to its phenotypic expression. It is envisioned that a variety of mechanisms, inside and outside the translation machinery, would play a role on the heterogeneous manifestations of mitochondrial disorders.
Collapse
Affiliation(s)
- Hagen Schwenzer
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, IBMC, 15 rue René Descartes, 67084, Strasbourg Cedex, France,
| | | | | | | |
Collapse
|
35
|
Jacobs RA, Díaz V, Meinild AK, Gassmann M, Lundby C. The C57Bl/6 mouse serves as a suitable model of human skeletal muscle mitochondrial function. Exp Physiol 2012. [PMID: 23180810 DOI: 10.1113/expphysiol.2012.070037] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is debatable whether differences in mitochondrial function exist across skeletal muscle types and whether mouse skeletal muscle mitochondrial function can serve as a valid model for human skeletal muscle mitochondrial function. The aims of this study were to compare and contrast three different mouse skeletal muscles and to identify the mouse muscle that most closely resembles human skeletal muscle respiratory capacity and control. Mouse quadriceps (QUAD(M)), soleus (SOL(M)) and gastrocnemius (GAST(M)) skeletal muscles were obtained from 8- to 10-week-old healthy mice (n = 8), representing mixed, oxidative and glycolytic muscle, respectively. Skeletal muscle samples were also collected from young, active, healthy human subjects (n = 8) from the vastis lateralis (QUAD(H)). High-resolution respirometry was used to examine mitochondrial function in all skeletal muscle samples, and mitochondrial content was quantified with citrate synthase activity. Mass-specific respiration was higher across all respiratory states in SOL(M) versus both GAST(M) and QUAD(H) (P < 0.01). When controlling for mitochondrial content, however, SOL(M) respiration was lower than GAST(M) and QUAD(H) (P < 0.05 and P < 0.01, respectively). When comparing respiratory capacity between mouse and human muscle, QUAD(M) exhibited only one different respiratory state when compared with QUAD(H). These results demonstrate that qualitative differences in mitochondrial function exist between different mouse skeletal muscles types when respiratory capacity is normalized to mitochondrial content, and that skeletal muscle respiratory capacity in young, healthy QUAD(M) does correspond well with that of young, healthy QUAD(H).
Collapse
Affiliation(s)
- Robert A Jacobs
- Institute of Physiology and Zurich Center for Integrative Human Physiology, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
36
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. J Bioenerg Biomembr 2012; 45:25-35. [DOI: 10.1007/s10863-012-9473-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
37
|
|
38
|
Arnold S. Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:305-39. [PMID: 22729864 DOI: 10.1007/978-1-4614-3573-0_13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A hallmark of neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, and stroke is a malfunction of mitochondria including cytochrome c oxidase (COX), the terminal enzyme complex of the respiratory chain. COX is ascribed a key role based on mainly two regulatory mechanisms. These are the expression of isoforms and the binding of specific allosteric factors to nucleus--encoded subunits. These characteristics represent a unique feature of COX compared with the other respiratory chain complexes. Additional regulatory mechanisms, such as posttranslational modification, substrate availability, and allosteric feedback inhibition by products of the COX reaction, control the enzyme activity in a complex way. In many tissues and cell types, COX represents the rate-limiting enzyme of the respiratory chain which further emphasizes the impact of the regulation of COX as a central site for regulating energy metabolism and oxidative stress. Two of the best-analyzed regulatory mechanisms of COX to date are the allosteric feedback inhibition of the enzyme by its indirect product ATP and the expression of COX subunit IV isoforms. This ATP feedback inhibition of COX requires the expression of COX isoform IV-1. At high ATP/ADP ratios, ADP is exchanged for ATP at the matrix side of COX IV-1 leading to an inhibition of COX activity, thus enabling COX to sense the energy level and to adjust ATP synthesis to energy demand. However, under hypoxic, toxic, and degenerative conditions, COX isoform IV-2 expression is up-regulated and exchanged for COX IV-1 in the enzyme complex. This COX IV isoform switch causes an abolition of the allosteric ATP feedback inhibition of COX and consequently the loss of sensing the energy level. Thus, COX activity is increased leading to higher levels of ATP in neural cells independently of the cellular energy level. Concomitantly, ROS production is increased. Thus, under pathological conditions, neural cells are provided with ATP to meet the energy demand, but at the expense of elevated oxidative stress. This mechanism explains the functional relevance of COX subunit IV isoform expression for cellular energy sensing, ATP production, and oxidative stress levels. This, in turn, affects neural cell function, signaling, and -survival. Thus, COX is a crucial factor in etiology, progression, and prevalence of numerous human neurodegenerative diseases and represents an important target for developing diagnostic and therapeutic tools against those diseases.
Collapse
Affiliation(s)
- Susanne Arnold
- Institute for Neuroanatomy, RWTH Aachen University, Wendlingweg 2, Aachen, Germany.
| |
Collapse
|
39
|
Al-Hasan YM, Evans LC, Pinkas GA, Dabkowski ER, Stanley WC, Thompson LP. Chronic hypoxia impairs cytochrome oxidase activity via oxidative stress in selected fetal Guinea pig organs. Reprod Sci 2012; 20:299-307. [PMID: 22923417 DOI: 10.1177/1933719112453509] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We hypothesized that chronic hypoxia disrupts mitochondrial function via oxidative stress in fetal organs. Pregnant guinea pig sows were exposed to either normoxia or hypoxia (10.5% O2, 14 days) in the presence or absence of the antioxidant, N-acetylcysteine (NAC). Near-term anesthetized fetuses were delivered via hysterotomy, and fetal livers, hearts, lungs, and forebrains harvested. We quantified the effects of chronic hypoxia on cytochrome oxidase (CCO) activity and 2 factors known to regulate CCO activity: malondialdehyde (MDA) and CCO subunit 4 (COX4). Hypoxia increased the MDA levels in fetal liver, heart, and lung with a corresponding reduction in CCO activity, prevented by prenatal NAC. The COX4 expression paralleled CCO activity in fetal liver and lung, but was unaltered in fetal hearts due to hypoxia. Hypoxia reduced the brain COX4 expression despite having no effect on CCO activity. This study identifies the mitochondrion as an important target site in tissue-specific oxidative stress for the induction of fetal hypoxic injury.
Collapse
Affiliation(s)
- Yazan M Al-Hasan
- Department of Physiology, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
40
|
In situ quantification of mitochondrial respiration in permeabilized fibers of a marine invertebrate with low aerobic capacity. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:429-35. [DOI: 10.1016/j.cbpa.2012.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/01/2012] [Accepted: 01/01/2012] [Indexed: 11/22/2022]
|
41
|
Horan MP, Pichaud N, Ballard JWO. Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. ACTA ACUST UNITED AC 2012; 67:1022-35. [DOI: 10.1093/gerona/glr263] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Mitochondrion 2011; 12:46-56. [PMID: 21640202 DOI: 10.1016/j.mito.2011.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 04/04/2011] [Accepted: 05/18/2011] [Indexed: 11/21/2022]
Abstract
Mitochondrial dysfunction is increasingly recognized as a major factor in the etiology and progression of numerous human diseases, such as (neuro-)degeneration, ischemia reperfusion injury, cancer, and diabetes. Cytochrome c oxidase (COX) represents the rate-limiting enzyme of the mitochondrial respiratory chain and is thus predestined for being a central site of regulation of oxidative phosphorylation, proton pumping efficiency, ATP and reactive oxygen species production, which in turn affect cell signaling and survival. A unique feature of COX is its regulation by various factors and mechanisms interacting with the nucleus-encoded subunits, whose actual functions we are only beginning to understand.
Collapse
|
43
|
Quarato G, Piccoli C, Scrima R, Capitanio N. Variation of flux control coefficient of cytochrome c oxidase and of the other respiratory chain complexes at different values of protonmotive force occurs by a threshold mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1114-24. [PMID: 21565165 DOI: 10.1016/j.bbabio.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/10/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022]
Abstract
The metabolic control analysis was applied to digitonin-permeabilized HepG2 cell line to assess the flux control exerted by cytochrome c oxidase on the mitochondrial respiration. Experimental conditions eliciting different energy/respiratory states in mitochondria were settled. The results obtained show that the mitochondrial electrochemical potential accompanies a depressing effect on the control coefficient exhibited by the cytochrome c oxidase. Both the components of the protonmotive force, i.e. the voltage (ΔΨ(m)) and the proton (ΔpH(m)) gradient, displayed a similar effect. Quantitative estimation of the ΔΨ(m) unveiled that the voltage-dependent effect on the control coefficient of cytochrome c oxidase takes place sharply in a narrow range of membrane potential from 170-180 to 200-210mV consistent with the physiologic transition from state 3 to state 4 of respiration. Extension of the metabolic flux control analysis to the NADH dehydrogenase and bc(1) complexes of the mitochondrial respiratory chain resulted in a similar effect. A mechanistic model is put forward whereby the respiratory chain complexes are proposed to exist in a voltage-mediated threshold-controlled dynamic equilibrium between supercomplexed and isolated states.
Collapse
|
44
|
Pichaud N, Ballard JWO, Tanguay RM, Blier PU. Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. Am J Physiol Regul Integr Comp Physiol 2011; 301:R48-59. [PMID: 21451139 DOI: 10.1152/ajpregu.00542.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In ectotherms, the external temperature is experienced by the mitochondria, and the mitochondrial respiration of different genotypes is likely to change as a result. Using high-resolution respirometry with permeabilized fibers (an in situ approach), we tried to identify differences in mitochondrial performance and thermal sensitivity of two Drosophila simulans populations with two different mitochondrial types (siII and siIII) and geographical distributions. Maximal state 3 respiration rates obtained with electrons converging at the Q junction of the electron transport system (ETS) differed between the mitotypes at 24°C. Catalytic capacities were higher in flies harboring siII than in those harboring siIII mitochondrial DNA (2,129 vs. 1,390 pmol O(2)·s(-1)·mg protein(-1)). The cytochrome c oxidase activity was also higher in siII than siIII flies (3,712 vs. 2,688 pmol O(2)·s(-1)·mg protein(-1)). The higher catalytic capacity detected in the siII mitotype could provide an advantage in terms of intensity of aerobic activity, endurance, or both, if the intensity of exercise that can be aerobically performed is partly dictated by the aerobic capacity of the tissue. Moreover, thermal sensitivity results showed that even if temperature affects the catalytic capacity of the different enzymes of the ETS, both mitotypes revealed high tolerance to temperature variation. Previous in vitro study failed to detect any consistent functional mitochondrial differences between the same mitotypes. We conclude that the in situ approach is more sensitive and that the ETS is a robust system in terms of functional and regulatory properties across a wide range of temperatures.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Laboratoire de biologie intégrative, Département de biologie, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski, QC, Canada
| | | | | | | |
Collapse
|
45
|
Niehusmann P, Surges R, von Wrede RD, Elger CE, Wellmer J, Reimann J, Urbach H, Vielhaber S, Bien CG, Kunz WS. Mitochondrial dysfunction due to Leber's hereditary optic neuropathy as a cause of visual loss during assessment for epilepsy surgery. Epilepsy Behav 2011; 20:38-43. [PMID: 21145289 DOI: 10.1016/j.yebeh.2010.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Assessment for epilepsy surgery may require invasive measures such as implantation of intracranial electrodes or the Wada test. These investigations are commonly well tolerated. However, complications, including visual disturbances of various etiologies, have been reported. Here we describe two patients with pharmacoresistant temporal lobe epilepsy (TLE) who displayed loss of vision in the context of presurgical assessment and in whom mutations associated with Leber's hereditary optic neuropathy (LHON) were detected. Genetic analysis revealed in one patient the frequent mitochondrial G11778A LHON mutation in ND4. In the second patient, the mitochondrial C4640A mutation in ND2 was detected. This rare LHON mutation enhanced the sensitivity of the patient's muscle and brain tissue to amobarbital, a known blocker of the mitochondrial respiratory chain. Mitochondrial dysfunction has been reported in epilepsy. Thus, the presence of LHON mutations can be a rare cause of visual disturbances in patients with epilepsy and may have predisposed to development of epilepsy.
Collapse
Affiliation(s)
- Pitt Niehusmann
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tight control of mitochondrial membrane potential by cytochrome c oxidase. Mitochondrion 2010; 11:334-41. [PMID: 21147274 DOI: 10.1016/j.mito.2010.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/23/2022]
Abstract
In the present work we have critically examined the use of the KCN-titration technique in the study of the control of the cellular respiration by cytochrome c oxidase (COX) in the presence of the mitochondrial membrane potential (Δψ(mito)) in HepG2 cells. We clearly show that the apparent high inhibition threshold of COX in the presence of maximal Δψ(mito) is due to the KCN-induced decrease of Δψ(mito) and not to a low control of COX on the mitochondrial respiration. The tight control exerted by COX on the Δψ(mito) provides further insights for understanding the pathogenetic mechanisms associated with mitochondrial defects in human neuromuscular degenerative disorders.
Collapse
|
47
|
Fernández-Vizarra E, Enríquez JA, Pérez-Martos A, Montoya J, Fernández-Silva P. Tissue-specific differences in mitochondrial activity and biogenesis. Mitochondrion 2010; 11:207-13. [PMID: 20933104 DOI: 10.1016/j.mito.2010.09.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/03/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
Each cell type develops and maintains a specific oxidative phosphorylation (OXPHOS) capacity to satisfy its metabolic and energetic demands. This implies that there are differences between tissues in mitochondrial number, function, protein composition and morphology. The OXPHOS system biogenesis requires the coordinated expression of both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) expression can be regulated at different levels (replication, transcription, translation and post-translational levels) to contribute to the final observed OXPHOS activities. By analyzing five mammalian tissues, we evaluated the differences in the cellular amount of mtDNA and its correlation with the final observed mitochondrial activity.
Collapse
Affiliation(s)
- Erika Fernández-Vizarra
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Pedro Cerbuna, 12. 50009 Zaragoza, Spain
| | | | | | | | | |
Collapse
|
48
|
Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal 2010; 13:157-92. [PMID: 19939208 PMCID: PMC2925289 DOI: 10.1089/ars.2009.2657] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The diverse physiological actions of the "biologic gases," O2, CO, NO, and H2S, have attracted much interest. Initially viewed as toxic substances, CO, NO, and H2S play important roles as signaling molecules. The multiplicity of gas actions and gas targets and the difficulty in measuring local gas concentrations obscures detailed mechanisms whereby gases exert their actions, and many questions remain unanswered. It is now readily apparent, however, that heme-based proteins play central roles in gas-generation/reception mechanisms and provide a point where multiple gases can interact. In this review, we consider a number of key issues related to "gas biology," including the effective tissue concentrations of these gases and the importance and significance of the physical proximity of gas-producing and gas-receptor/sensors. We also take an integrated approach to the interaction of gases by considering the physiological significance of CO, NO, and H2S on mitochondrial cytochrome c oxidase, a key target and central mediator of mitochondrial respiration. Additionally, we consider the effects of biologic gases on mitochondrial biogenesis and "suspended animation." By evaluating gas-mediated control functions from both in vitro and in vivo perspectives, we hope to elaborate on the complex multiple interactions of O2, NO, CO, and H2S.
Collapse
Affiliation(s)
- Mayumi Kajimura
- Department of Biochemistry and Integrative Medical Biology, School of Medicine, Keio University , Tokyo, Japan.
| | | | | | | | | |
Collapse
|
49
|
Hilton Z, Clements KD, Hickey AJR. Temperature sensitivity of cardiac mitochondria in intertidal and subtidal triplefin fishes. J Comp Physiol B 2010; 180:979-90. [DOI: 10.1007/s00360-010-0477-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/21/2010] [Accepted: 04/23/2010] [Indexed: 12/01/2022]
|
50
|
Capacity of oxidative phosphorylation in human skeletal muscle. Int J Biochem Cell Biol 2009; 41:1837-45. [DOI: 10.1016/j.biocel.2009.03.013] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 01/09/2023]
|