1
|
Nielsen JR, Lewis MJ, Huang WE. Construction and Characterization of MoClo-Compatible Vectors for Modular Protein Expression in E. coli. ACS Synth Biol 2025; 14:398-406. [PMID: 39801078 PMCID: PMC11852211 DOI: 10.1021/acssynbio.4c00564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 02/22/2025]
Abstract
Cloning methods are fundamental to synthetic biology research. The capability to generate custom DNA constructs exhibiting predictable protein expression levels is crucial to the engineering of biology. Golden Gate cloning, a modular cloning (MoClo) technique, enables rapid and reliable one-pot assembly of genetic parts. In this study, we expand on the existing MoClo toolkits by constructing and characterizing compatible low- (p15A) and medium-copy (pBR322) destination vectors. Together with existing high-copy vectors, these backbones enable a protein expression range covering a 500-fold difference in normalized fluorescence output. We further characterize the expression- and burden profiles of each vector and demonstrate their use for the optimization of growth-coupled enzyme expression. The optimal expression of adhE (encoding alcohol dehydrogenase) for ethanol-dependent growth of Escherichia coli is determined using randomized Golden Gate Assembly, creating a diverse library of constructs with varying expression strengths and plasmid copy numbers. Through selective growth experiments, we show that relatively low expression levels of adhE facilitated optimal growth using ethanol as the sole carbon source, demonstrating the importance of adding low-copy vectors to the MoClo vector repertoire. This study emphasizes the importance of varying vector copy numbers in selection experiments to balance expression levels and burden, ensuring accurate identification of optimal conditions for growth. The vectors developed in this work are publicly available via Addgene (catalog #217582-217609).
Collapse
Affiliation(s)
- Jochem R. Nielsen
- Department of Engineering
Science, University of Oxford, Oxford OX1 3PJ, U.K.
| | - Michael J. Lewis
- Department of Engineering
Science, University of Oxford, Oxford OX1 3PJ, U.K.
| | - Wei E. Huang
- Department of Engineering
Science, University of Oxford, Oxford OX1 3PJ, U.K.
| |
Collapse
|
2
|
Li P, Lin Z, Li C, Luo Q, Weng S, Zeng Y, Lan Z, Wang W, Zhang Y. New insight into Clostridium butyricum-ferroferric oxide hybrid system in exogenous carbon dioxide-assisted anaerobic fermentation for acetate and butyrate production. BIORESOURCE TECHNOLOGY 2024; 414:131576. [PMID: 39374832 DOI: 10.1016/j.biortech.2024.131576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Mixotrophic cultivation, utilizing both gas and organic substances, is commonly employed to minimize the carbon loss during anaerobic fermentation of bulk chemicals. Herein, a novel Clostridium butyricum-ferroferric oxide (Fe3O4) hybrid system, enhanced by exogenous carbon dioxide (CO2), was proposed to improve carbon recovery and optimize metabolite production. The results demonstrated that exogenous CO2 improved metabolite selectivity towards acetate/butyrate, while also accelerating CO2 fixation. Compared to pure Clostridium butyricum, the hybrid system significantly increased carbon conversion to primary metabolites, boosting butyrate and acetate production by 18.7 % and 18.4 %, respectively. Enzyme activity assays revealed that Fe3O4 and exogenous CO2 acted synergistically, enhancing the activities of key enzymes involved in CO2 assimilation. Additionally, Fe3O4 facilitated intra- and extracellular electron transfer, further improving the fermentation process. This study offers new insights into the combined effects of exogenous CO2 and Fe3O4 on anaerobic fermentation, providing an efficient strategy for carbon recovery and selective acetate/butyrate production.
Collapse
Affiliation(s)
- Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhiwen Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Chenyi Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Qingyi Luo
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Sishuo Weng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yue Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhenzhen Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Wei Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
3
|
Fan L, Zhu Z, Zhao S, Panda S, Zhao Y, Chen J, Chen L, Chen J, He J, Zhou K, Wang L. Blended nexus molecules promote CO 2 to l-tyrosine conversion. SCIENCE ADVANCES 2024; 10:eado1352. [PMID: 39241062 PMCID: PMC11378904 DOI: 10.1126/sciadv.ado1352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/31/2024] [Indexed: 09/08/2024]
Abstract
Using CO2 as the primary feedstock offers the potential for high-value utilization of CO2 while forging sustainable pathways for producing valuable natural products, such as l-tyrosine. Cascade catalysis is a promising approach but limited by stringent purity demands of nexus molecules. We developed an abiotic/biotic cascade catalysis using blended nexus molecules for l-tyrosine synthesis. Specifically, we begin by constructing a solid-state reactor to reduce CO2 electrochemically, yielding a mixture of acetic acid and ethanol, which serves as the blended nexus molecules. Subsequently, we use genetic engineering to introduce an ethanol utilization pathway and a tyrosine producing pathway to Escherichia coli to facilitate l-tyrosine production. The ethanol pathway synergistically cooperated with the acetic acid pathway, boosting l-tyrosine production rate (nearly five times higher compared to the strain without ethanol utilization pathway) and enhancing carbon efficiency. Our findings demonstrate that using blended nexus molecules could potentially offer a more favorable strategy for the cascade catalysis aimed at producing valuable natural products.
Collapse
Affiliation(s)
- Lei Fan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zihan Zhu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Smaranika Panda
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yilin Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jingyi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
4
|
Sun M, Gao AX, Liu X, Bai Z, Wang P, Ledesma-Amaro R. Microbial conversion of ethanol to high-value products: progress and challenges. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:115. [PMID: 39160588 PMCID: PMC11334397 DOI: 10.1186/s13068-024-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.
Collapse
Affiliation(s)
- Manman Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Institute of Hefei Artificial Intelligence Breeding Accelerator, Hefei, 230000, China.
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
5
|
Gong Z, Zhang W, Chen J, Li J, Tan T. Upcycling CO2 into succinic acid via electrochemical and engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2024; 406:130956. [PMID: 38871229 DOI: 10.1016/j.biortech.2024.130956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Converting CO2 into value-added chemicals still remains a grand challenge. Succinic acid has long been considered as one of the top building block chemicals. This study reported efficiently upcycling CO2 into succinic acid by combining between electrochemical and engineered Escherichia coli. In this process, the Cu-organic framework catalyst was synthesized for electrocatalytic CO2-to-ethanol conversion with high Faradaic efficiency (FE, 84.7 %) and relative purity (RP, 95 wt%). Subsequently, an engineered E. coli with efficiently assimilating CO2-derived ethanol to produce succinic acid was constructed by combining computational design and metabolic engineering, and the succinic acid titer reached 53.8 mM with the yield of 0.41 mol/mol, which is 82 % of the theoretical yield. This study effort to link the two processes of efficient ethanol synthesis by electrocatalytic CO2 and succinic acid production from CO2-derived ethanol, paving a way for the production of succinic acid and other value-added chemicals by converting CO2 into ethanol.
Collapse
Affiliation(s)
- Zhijin Gong
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiayao Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingchuan Li
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Konno N, Maeno S, Tanizawa Y, Arita M, Endo A, Iwasaki W. Evolutionary paths toward multi-level convergence of lactic acid bacteria in fructose-rich environments. Commun Biol 2024; 7:902. [PMID: 39048718 PMCID: PMC11269746 DOI: 10.1038/s42003-024-06580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Convergence provides clues to unveil the non-random nature of evolution. Intermediate paths toward convergence inform us of the stochasticity and the constraint of evolutionary processes. Although previous studies have suggested that substantial constraints exist in microevolutionary paths, it remains unclear whether macroevolutionary convergence follows stochastic or constrained paths. Here, we performed comparative genomics for hundreds of lactic acid bacteria (LAB) species, including clades showing a convergent gene repertoire and sharing fructose-rich habitats. By adopting phylogenetic comparative methods we showed that the genomic convergence of distinct fructophilic LAB (FLAB) lineages was caused by parallel losses of more than a hundred orthologs and the gene losses followed significantly similar orders. Our results further suggested that the loss of adhE, a key gene for phenotypic convergence to FLAB, follows a specific evolutionary path of domain architecture decay and amino acid substitutions in multiple LAB lineages sharing fructose-rich habitats. These findings unveiled the constrained evolutionary paths toward the convergence of free-living bacterial clades at the genomic and molecular levels.
Collapse
Affiliation(s)
- Naoki Konno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Shintaro Maeno
- Research Center for Advance Science and Innovation Organization for Research Initiatives, Yamaguchi University, Yamaguchi, Yamaguchi, Japan
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Masanori Arita
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akihito Endo
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan.
- Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Rohaun SK, Sethu R, Imlay JA. Microbes vary strategically in their metalation of mononuclear enzymes. Proc Natl Acad Sci U S A 2024; 121:e2401738121. [PMID: 38743623 PMCID: PMC11127058 DOI: 10.1073/pnas.2401738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Studies have determined that nonredox enzymes that are cofactored with Fe(II) are the most oxidant-sensitive targets inside Escherichia coli. These enzymes use Fe(II) cofactors to bind and activate substrates. Because of their solvent exposure, the metal can be accessed and oxidized by reactive oxygen species, thereby inactivating the enzyme. Because these enzymes participate in key physiological processes, the consequences of stress can be severe. Accordingly, when E. coli senses elevated levels of H2O2, it induces both a miniferritin and a manganese importer, enabling the replacement of the iron atom in these enzymes with manganese. Manganese does not react with H2O2 and thereby preserves enzyme activity. In this study, we examined several diverse microbes to identify the metal that they customarily integrate into ribulose-5-phosphate 3-epimerase, a representative of this enzyme family. The anaerobe Bacteroides thetaiotaomicron, like E. coli, uses iron. In contrast, Bacillus subtilis and Lactococcus lactis use manganese, and Saccharomyces cerevisiae uses zinc. The latter organisms are therefore well suited to the oxidizing environments in which they dwell. Similar results were obtained with peptide deformylase, another essential enzyme of the mononuclear class. Strikingly, heterologous expression experiments show that it is the metal pool within the organism, rather than features of the protein itself, that determine which metal is incorporated. Further, regardless of the source organism, each enzyme exhibits highest turnover with iron and lowest turnover with zinc. We infer that the intrinsic catalytic properties of the metal cannot easily be retuned by evolution of the polypeptide.
Collapse
Affiliation(s)
| | | | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, IL61801
| |
Collapse
|
8
|
Ying JP, Fu CM, Wu YC, Chen YM, Liu XY, Zhang QL, Liu H, Liang MZ. Combined analysis of transcriptomics and metabolomics provide insights into the antibacterial mechanism of bacteriocin XJS01 against multidrug-resistant Staphylococcus aureus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170412. [PMID: 38281634 DOI: 10.1016/j.scitotenv.2024.170412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Multidrug-resistant (MDR) bacteria are widespread in the environment and pose a serious threat to public health. It has been shown that bacteriocins have a great potential in controlling MDR pathogens, including Staphylococcus aureus. A previously reported Lactobacillus salivarius bacteriocin XJS01 exhibited good antibacterial activity against MDR S. aureus 2612:1606BL1486 (henceforth referred to as S. aureus_26), but its molecular mechanism remains unknown. Herein, we investigated the antibacterial mechanism of XJS01 on S. aureus_26 using an approach combining transcriptomics and metabolomics. The results showed that XJS01 induced significant changes at both transcriptional and metabolic levels in S. aureus_26. In total, 231 differentially expressed genes (DEGs) and 206 differentially abundance metabolites (DAMs) were identified in S. aureus_26 treated with 1 × MIC (minimum inhibition concentration) XJS01 compared with untreated (XJS01-free) cells (control). Functional analysis revealed that these DEGs and DAMs, alone with the related pathways and biological processes, were typically involved in stress response, being primarily related to metal uptake, cell virulence, self-help mechanism, amino acid and energy metabolism, bacterial stress response (e.g., two-component system), and membrane transport (e.g., phosphotransferase system). Overall, this study uncovered the multi-target effects of bacteriocins against MDR S. aureus at the genome-wide transcriptional and metabolic levels. These findings might be useful in the development of bacteriocins for the control of MDR S. aureus and other drug-resistant bacteria.
Collapse
Affiliation(s)
- Jian-Ping Ying
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Guangxi, Qinzhou 535011, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Chao-Min Fu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Yan-Chun Wu
- E.N.T. Department, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Yunnan, Chuxiong 675000, China
| | - Ya-Mei Chen
- E.N.T. Department, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Yunnan, Chuxiong 675000, China
| | - Xiao-Yu Liu
- E.N.T. Department, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Yunnan, Chuxiong 675000, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China.
| | - Hui Liu
- E.N.T. Department, The People's Hospital of Chuxiong Yi Autonomous Prefecture, Yunnan, Chuxiong 675000, China.
| | - Ming-Zhong Liang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Guangxi, Qinzhou 535011, China.
| |
Collapse
|
9
|
Cao Y, Niu W, Guo J, Guo J, Liu H, Liu H, Xian M. Production of Optically Pure ( S)-3-Hydroxy-γ-butyrolactone from d-Xylose Using Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20167-20176. [PMID: 38088131 DOI: 10.1021/acs.jafc.3c06589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Biocatalysis has advantages in asymmetric synthesis due to the excellent stereoselectivity of enzymes. The present study established an efficient biosynthesis pathway for optically pure (S)-3-hydroxy-γ-butyrolactone [(S)-3HγBL] production using engineered Escherichia coli. We mimicked the 1,2,4-butanetriol biosynthesis route and constructed a five-step pathway consisting of d-xylose dehydrogenase, d-xylonolactonase, d-xylonate dehydratase, 2-keto acid decarboxylase, and aldehyde dehydrogenase. The engineered strain harboring the five enzymes could convert d-xylose to 3HγBL with glycerol as the carbon source. Stereochemical analysis by chiral GC proved that the microbially synthesized product was a single isomer, and the enantiomeric excess (ee) value reached 99.3%. (S)-3HγBL production was further enhanced by disrupting the branched pathways responsible for d-xylose uptake and intermediate reduction. Fed-batch fermentation of the best engineered strain showed the highest (S)-3HγBL titer of 3.5 g/L. The volumetric productivity and molar yield of (S)-3HγBL on d-xylose reached 50.6 mg/(L·h) and 52.1%, respectively. The final fermentation product was extracted, purified, and confirmed by NMR. This process utilized renewable d-xylose as the feedstock and offered an alternative approach for the production of the valuable chemical.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Wei Niu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
10
|
Oh E, Choi SJ, Han S, Lee KH, Choi HJ. Highly Effective Salt-Activated Alcohol-Based Disinfectants with Enhanced Antimicrobial Activity. ACS NANO 2023; 17:17811-17825. [PMID: 37639494 DOI: 10.1021/acsnano.3c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Surfaces contaminated with pathogens raise concerns about the increased risk of disease transmission and infection. To clean biocontaminated surfaces, alcohol-based disinfectants have been predominantly used for disinfecting high-touch areas in diverse settings. However, due to its limited antimicrobial activities and concern over the emergence of alcohol-tolerant strains, much effort has been made to develop highly efficient disinfectant formulations. In this study, we hypothesize that the addition of a physical pathogen inactivation mechanism by salt recrystallization (besides the existing chemical inactivation mechanism by alcohol in such formulations) can improve inactivation efficiency by preventing the emergence of alcohol tolerance. To this end, we employed the drying-induced salt recrystallization process to implement the concept of highly efficient alcohol-based disinfectant formulations. To identify the individual and combined effects of isopropyl alcohol (IPA) and NaCl, time-dependent morphological/structural changes of various IPA solutions containing NaCl have been characterized by optical microscopy/X-ray diffraction analysis. Their antimicrobial activities have been tested on surfaces (glass slide, polystyrene Petri dish, and stainless steel) contaminated with Gram-positive/negative bacteria (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica subsp. enterica Typhimurium) and viruses (A/PR8/34 H1N1 influenza virus and HCoV-OC43 human coronavirus). We found that additional salt crystallization during the drying of the alcohol solution facilitated stronger biocidal effects than IPA-only formulations, regardless of the types of solid surfaces and pathogens, including alcohol-tolerant strains adapted from wild-type Escherichia coli MG1655. Our findings can be useful in developing highly effective disinfectant formulations by minimizing the use of toxic antimicrobial substances to improve public health and safety.
Collapse
Affiliation(s)
- Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Seung Joon Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
11
|
Lu J, Wang Y, Xu M, Fei Q, Gu Y, Luo Y, Wu H. Efficient biosynthesis of 3-hydroxypropionic acid from ethanol in metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2022; 363:127907. [PMID: 36087655 DOI: 10.1016/j.biortech.2022.127907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Engineering microbial cell factories to convert CO2-based feedstock into chemicals and fuels provide a feasible carbon-neutral route for the third-generation biorefineries. Ethanol became one of the major products of syngas fermentation by engineered acetogens. The key building block chemical 3-hydroxypropionic acid (3-HP) can be synthesized from ethanol by the malonyl-CoA pathway with CO2 fixation. In this study, the effect of two ethanol consumption pathways on 3-HP synthesis were studied as well as the effect of TCA cycle, gluconeogenesis pathway, and transhydrogenase. And the 3-HP synthesis pathway was also optimized. The engineered strain synthesized 1.66 g/L of 3-HP with a yield of 0.24 g/g. Furthermore, the titer and the yield of 3-HP increased to 13.17 g/L and 0.57 g/g in the whole-cell biocatalysis system. This study indicated that ethanol as feedstock had the potential to synthesize 3-HP, which provided an alternative route for future biorefinery.
Collapse
Affiliation(s)
- Juefeng Lu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuying Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingcheng Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
12
|
Proteomic Profiling of Outer Membrane Vesicles Released by Escherichia coli LPS Mutants Defective in Heptose Biosynthesis. J Pers Med 2022; 12:jpm12081301. [PMID: 36013250 PMCID: PMC9410366 DOI: 10.3390/jpm12081301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli releases outer membrane vesicles (OMVs) into the extracellular environment. OMVs, which contain the outer membrane protein, lipopolysaccharides (LPS), and genetic material, play an important role in immune response modulation. An isobaric tag for relative and absolute quantitation (iTRAQ) analysis was used to investigate OMV constituent proteins and their functions in burn trauma. OMV sizes ranged from 50 to 200 nm. Proteomics and Gene Ontology analysis revealed that ΔrfaC and ΔrfaG were likely involved in the upregulation of the structural constituent of ribosomes for the outer membrane and of proteins involved in protein binding and OMV synthesis. ΔrfaL was likely implicated in the downregulation of the structural constituent of the ribosome, translation, and cytosolic large ribosomal subunit. Kyoto Encyclopedia of Genes and Genomes analysis indicated that ΔrfaC and ΔrfaG downregulated ACP, ACEF, and ADHE genes; ΔrfaL upregulated ACP, ACEF, and ADHE genes. Heat map analysis demonstrated upregulation of galF, clpX, accA, fabB, and grpE and downregulation of pspA, ydiY, rpsT, and rpmB. These results suggest that RfaC, RfaG, and RfaL proteins were involved in outer membrane and LPS synthesis. Therefore, direct contact between wounds and LPS may lead to apoptosis, reduction in local cell proliferation, and delayed wound healing.
Collapse
|
13
|
Zhu L, Zhang J, Yang J, Jiang Y, Yang S. Strategies for optimizing acetyl-CoA formation from glucose in bacteria. Trends Biotechnol 2021; 40:149-165. [PMID: 33965247 DOI: 10.1016/j.tibtech.2021.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022]
Abstract
Acetyl CoA is an important precursor for various chemicals. We provide a metabolic engineering guideline for the production of acetyl-CoA and other end products from a bacterial chassis. Among 13 pathways that produce acetyl-CoA from glucose, 11 lose carbon in the process, and two do not. The first 11 use the Embden-Meyerhof-Parnas (EMP) pathway to produce redox cofactors and gain or lose ATP. The other two pathways function via phosphoketolase with net consumption of ATP, so they must therefore be combined with one of the 11 glycolytic pathways or auxiliary pathways. Optimization of these pathways can maximize the theoretical acetyl-CoA yield, thereby minimizing the overall cost of subsequent acetyl-CoA-derived molecules. Other strategies for generating hyper-producer strains are also addressed.
Collapse
Affiliation(s)
- Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai 200240, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawei Yang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China; Shanghai Taoyusheng Biotechnology Company Ltd, Shanghai 200032, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China.
| |
Collapse
|
14
|
Chen C, Huang K, Li X, Tian H, Yu H, Huang J, Yuan H, Zhao S, Shao L. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis. Appl Microbiol Biotechnol 2021; 105:3691-3704. [PMID: 33852024 DOI: 10.1007/s00253-021-11276-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA-knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. KEY POINTS: • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Ke Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xiaohong Li
- Shanghai Customs P. R. China Technical Center For Animal, Plant And Food Inspection And Quarantine, Shanghai, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Juan Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, People's Republic of China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
Cao Y, Mu H, Guo J, Liu H, Zhang R, Liu W, Xian M, Liu H. Metabolic engineering of Escherichia coli for the utilization of ethanol. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2020; 27:1. [PMID: 31993378 PMCID: PMC6975068 DOI: 10.1186/s40709-020-0111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The fuel ethanol industry has made tremendous progress in the last decades. Ethanol can be obtained by fermentation using a variety of biomass materials as the feedstocks. However, few studies have been conducted on ethanol utilization by microorganisms. The price of petroleum-derived ethanol, easily made by the hydrolysis of ethylene, is even lower than that of bioethanol. If ethanol can be metabolized by microorganisms to produce value-added chemicals, it will open a new door for the utilization of inexpensive ethanol resources. RESULTS We constructed an engineered Escherichia coli strain which could utilize ethanol as the sole carbon source. The alcohol dehydrogenase and aldehyde dehydrogenase from Aspergillus nidulans was introduced into E. coli and the recombinant strain acquired the ability to grow on ethanol. Cell growth continued when ethanol was supplied after glucose starvation and 2.24 g L-1 of ethanol was further consumed during the shake-flasks fermentation process. Then ethanol was further used for the production of mevalonic acid by heterologously expressing its biosynthetic pathway. Deuterium-labeled ethanol-D6 as the feedstock confirmed that mevalonic acid was synthesized from ethanol. CONCLUSIONS This study demonstrated the possibility of using ethanol as the carbon source by engineered E. coli strains. It can serve as the basis for the construction of more robust strains in the future though the catabolic capacity of ethanol should be further improved.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Hui Mu
- Energy Research Institute, Shandong Key Laboratory of Biomass Gasification Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Hui Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
16
|
Liang H, Ma X, Ning W, Liu Y, Sinskey AJ, Stephanopoulos G, Zhou K. Constructing an ethanol utilization pathway in Escherichia coli to produce acetyl-CoA derived compounds. Metab Eng 2020; 65:223-231. [PMID: 33248272 DOI: 10.1016/j.ymben.2020.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 11/15/2020] [Indexed: 01/05/2023]
Abstract
Engineering microbes to utilize non-conventional substrates could create short and efficient pathways to convert substrate into product. In this study, we designed and constructed a two-step heterologous ethanol utilization pathway (EUP) in Escherichia coli by using acetaldehyde dehydrogenase (encoded by ada) from Dickeya zeae and alcohol dehydrogenase (encoded by adh2) from Saccharomyces cerevisiae. This EUP can convert ethanol into acetyl-CoA without ATP consumption, and generate two molecules of NADH per molecule of ethanol. We optimized the expression of these two genes and found that ethanol consumption could be improved by expressing them in a specific order (ada-adh2) with a constitutive promoter (PgyrA). The engineered E. coli strain with EUP consumed approximately 8 g/L of ethanol in 96 h when it was used as sole carbon source. Subsequently, we combined EUP with the biosynthesis of polyhydroxybutyrate (PHB), a biodegradable polymer derived from acetyl-CoA. The engineered E. coli strain carrying EUP and PHB biosynthetic pathway produced 1.1 g/L of PHB from 10 g/L of ethanol and 1 g/L of aspartate family amino acids in 96 h. We also engineered a E. coli strain to produce 24 mg/L of prenol in an ethanol-containing medium, supporting the feasibility of converting ethanol into different classes of acetyl-CoA derived compounds.
Collapse
Affiliation(s)
- Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore
| | - Wenbo Ning
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Yurou Liu
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Anthony J Sinskey
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Biology, Massachusetts Institute of Technology, United States
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical Engineering, Massachusetts Institute of Technology, United States.
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Efficient, Simple Production of Corresponding Alcohols from Supplemented C2-C8 Carboxylic Acids in Escherichia coli Using Acyl-CoA Transferase from Megasphaera hexanoica. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0163-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Sun S, Ding Y, Liu M, Xian M, Zhao G. Comparison of Glucose, Acetate and Ethanol as Carbon Resource for Production of Poly(3-Hydroxybutyrate) and Other Acetyl-CoA Derivatives. Front Bioeng Biotechnol 2020; 8:833. [PMID: 32850713 PMCID: PMC7396591 DOI: 10.3389/fbioe.2020.00833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/11/2023] Open
Abstract
Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible thermoplastic, and synthesized from the central metabolite acetyl-CoA. The acetyl-CoA synthesis from glucose presents low atomic economy due to the release of CO2 in pyruvate decarboxylation. As ethanol and acetate can be converted into acetyl-CoA directly, they were used as carbon source for PHB production in this study. The reductase mutant AdhE A267T/E568K was introduced into Escherichia coli to enable growth on ethanol, and acetate utilization was improved by overexpression of acetyl-CoA synthetase ACS. Comparison of the PHB production using glucose, ethanol or acetate as sole carbon source showed that the production and yield from ethanol was much higher than those from glucose and acetate, and metabolome analysis revealed the differences in metabolism of glucose, ethanol and acetate. Furthermore, other acetyl-CoA derived chemicals including 3-hydroxypropionate and phloroglucinol were produced from those three feedstocks, and similar results were achieved, suggesting that ethanol could be a suitable carbon source for the production of acetyl-CoA derivatives.
Collapse
Affiliation(s)
- Shenmei Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Min Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Guang Zhao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
19
|
Wenk S, Schann K, He H, Rainaldi V, Kim S, Lindner SN, Bar-Even A. An "energy-auxotroph" Escherichia coli provides an in vivo platform for assessing NADH regeneration systems. Biotechnol Bioeng 2020; 117:3422-3434. [PMID: 32658302 DOI: 10.1002/bit.27490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
An efficient in vivo regeneration of the primary cellular resources NADH and ATP is vital for optimizing the production of value-added chemicals and enabling the activity of synthetic pathways. Currently, such regeneration routes are tested and characterized mainly in vitro before being introduced into the cell. However, in vitro measurements could be misleading as they do not reflect enzyme activity under physiological conditions. Here, we construct an in vivo platform to test and compare NADH regeneration systems. By deleting dihydrolipoyl dehydrogenase in Escherichia coli, we abolish the activity of pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase. When cultivated on acetate, the resulting strain is auxotrophic to NADH and ATP: acetate can be assimilated via the glyoxylate shunt but cannot be oxidized to provide the cell with reducing power and energy. This strain can, therefore, serve to select for and test different NADH regeneration routes. We exemplify this by comparing several NAD-dependent formate dehydrogenases and methanol dehydrogenases. We identify the most efficient enzyme variants under in vivo conditions and pinpoint optimal feedstock concentrations that maximize NADH biosynthesis while avoiding cellular toxicity. Our strain thus provides a useful platform for comparing and optimizing enzymatic systems for cofactor regeneration under physiological conditions.
Collapse
Affiliation(s)
- Sebastian Wenk
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karin Schann
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hai He
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Vittorio Rainaldi
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Seohyoung Kim
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Systems and Synthetic Metabolism Lab, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
20
|
Méheust R, Castelle CJ, Matheus Carnevali PB, Farag IF, He C, Chen LX, Amano Y, Hug LA, Banfield JF. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME JOURNAL 2020; 14:2907-2922. [PMID: 32681159 DOI: 10.1038/s41396-020-0716-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 01/09/2023]
Abstract
Currently described members of Elusimicrobia, a relatively recently defined phylum, are animal-associated and rely on fermentation. However, free-living Elusimicrobia have been detected in sediments, soils and groundwater, raising questions regarding their metabolic capacities and evolutionary relationship to animal-associated species. Here, we analyzed 94 draft-quality, non-redundant genomes, including 30 newly reconstructed genomes, from diverse animal-associated and natural environments. Genomes group into 12 clades, 10 of which previously lacked reference genomes. Groundwater-associated Elusimicrobia are predicted to be capable of heterotrophic or autotrophic lifestyles, reliant on oxygen or nitrate/nitrite-dependent respiration, or a variety of organic compounds and Rhodobacter nitrogen fixation (Rnf) complex-dependent acetogenesis with hydrogen and carbon dioxide as the substrates. Genomes from two clades of groundwater-associated Elusimicrobia often encode a new group of nitrogenase paralogs that co-occur with an extensive suite of radical S-Adenosylmethionine (SAM) proteins. We identified similar genomic loci in genomes of bacteria from the Gracilibacteria phylum and the Myxococcales order and predict that the gene clusters reduce a tetrapyrrole, possibly to form a novel cofactor. The animal-associated Elusimicrobia clades nest phylogenetically within two free-living-associated clades. Thus, we propose an evolutionary trajectory in which some Elusimicrobia adapted to animal-associated lifestyles from free-living species via genome reduction.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Paula B Matheus Carnevali
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Ibrahim F Farag
- School of Marine Science and Policy, University of Delaware, Lewes, DE, 19968, USA
| | - Christine He
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA.,Innovative Genomics Institute, Berkeley, CA, 94720, USA
| | - Yuki Amano
- Nuclear Fuel Cycle Engineering Laboratories, Japan Atomic Energy Agency, Tokai-mura, Ibaraki, Japan
| | - Laura A Hug
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, 94720, USA. .,Innovative Genomics Institute, Berkeley, CA, 94720, USA.
| |
Collapse
|
21
|
Filamentation of the bacterial bi-functional alcohol/aldehyde dehydrogenase AdhE is essential for substrate channeling and enzymatic regulation. Nat Commun 2020; 11:1426. [PMID: 32188856 PMCID: PMC7080775 DOI: 10.1038/s41467-020-15214-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
Acetaldehyde-alcohol dehydrogenase (AdhE) enzymes are a key metabolic enzyme in bacterial physiology and pathogenicity. They convert acetyl-CoA to ethanol via an acetaldehyde intermediate during ethanol fermentation in an anaerobic environment. This two-step reaction is associated to NAD+ regeneration, essential for glycolysis. The bifunctional AdhE enzyme is conserved in all bacterial kingdoms but also in more phylogenetically distant microorganisms such as green microalgae. It is found as an oligomeric form called spirosomes, for which the function remains elusive. Here, we use cryo-electron microscopy to obtain structures of Escherichia coli spirosomes in different conformational states. We show that spirosomes contain active AdhE monomers, and that AdhE filamentation is essential for its activity in vitro and function in vivo. The detailed analysis of these structures provides insight showing that AdhE filamentation is essential for substrate channeling within the filament and for the regulation of enzyme activity.
Collapse
|
22
|
Pseudofructophilic Leuconostoc citreum Strain F192-5, Isolated from Satsuma Mandarin Peel. Appl Environ Microbiol 2019; 85:AEM.01077-19. [PMID: 31399409 DOI: 10.1128/aem.01077-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/04/2019] [Indexed: 01/05/2023] Open
Abstract
Fructophilic lactic acid bacteria (FLAB), composed of Fructobacillus spp., Lactobacillus kunkeei, and Lactobacillus apinorum, are unique in that they prefer d-fructose over d-glucose as a carbon source. Strain F192-5, isolated from the peel of a satsuma mandarin and identified as Leuconostoc citreum, grows well on d-fructose but poorly on d-glucose and produces mainly lactate and acetate, with trace amounts of ethanol, from the metabolism of d-glucose. These characteristics are identical to those of obligate FLAB. However, strain F192-5 ferments a greater variety of carbohydrates than known FLAB. Comparative analyses of the genomes of strain F192-5 and reference strains of L. citreum revealed no signs of specific gene reductions, especially genes involved in carbohydrate transport and metabolism, in the genome of F192-5. The bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) is conserved in strain F192-5 but is not transcribed. This is most likely due to a deletion in the promoter region upstream of the adhE gene. Strain F192-5 did, however, ferment d-glucose when transformed with a plasmid containing the allochthonous adhE gene. L. citreum F192-5 is an example of a pseudo-FLAB strain with a deficiency in d-glucose metabolism. This unique phenotypic characteristic appears to be strain specific within the species L. citreum This might be one of the strategies lactic acid bacteria use to adapt to diverse environmental conditions.IMPORTANCE Obligate fructophilic lactic acid bacteria (FLAB) lack the metabolic pathways used in the metabolism of most carbohydrates and differ from other lactic acid bacteria in that they prefer to ferment d-fructose instead of d-glucose. These characteristics are well conserved at the genus or species level. Leuconostoc citreum F192-5 shows similar growth characteristics. However, the strain is metabolically and genomically different from obligate FLAB. This is an example of a strain that evolved a pseudo-FLAB phenotype to adapt to a fructose-rich environment.
Collapse
|
23
|
AcrR and Rex Control Mannitol and Sorbitol Utilization through Their Cross-Regulation of Aldehyde-Alcohol Dehydrogenase (AdhE) in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85:AEM.02035-18. [PMID: 30530710 DOI: 10.1128/aem.02035-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is a versatile bacterium that occupies a wide range of environmental niches. In this study, we found that a bifunctional aldehyde-alcohol dehydrogenase-encoding gene, adhE, was responsible for L. plantarum being able to utilize mannitol and sorbitol through cross-regulation by two DNA-binding regulators. In L. plantarum NF92, adhE was greatly induced, and the growth of an adhE-disrupted (ΔadhE) strain was repressed when sorbitol or mannitol instead of glucose was used as a carbon source. The results of enzyme activity and metabolite assays demonstrated that AdhE could catalyze the synthesis of ethanol in L. plantarum NF92 when sorbitol or mannitol was used as the carbon source. AcrR and Rex were two transcriptional factors screened by an affinity isolation method and verified to regulate the expression of adhE DNase I footprinting assay results showed that they shared a binding site (GTTCATTAATGAAC) in the adhE promoter. Overexpression and knockout of AcrR showed that AcrR was a novel regulator to promote the transcription of adhE The activator AcrR and repressor Rex may cross-regulate adhE when L. plantarum NF92 utilizes sorbitol or mannitol. Thus, a model of the control of adhE by AcrR and Rex during L. plantarum NF92 utilization of mannitol or sorbitol was proposed.IMPORTANCE The function and regulation of AdhE in the important probiotic genus Lactobacillus are rarely reported. Here we demonstrated that AdhE is responsible for sorbitol and mannitol utilization and is cross-regulated by two transcriptional regulators in L. plantarum NF92, which had not been reported previously. This is important for L. plantarum to compete and survive in some harsh environments in which sorbitol or mannitol could be used as carbon source. A novel transcriptional regulator AcrR was identified to be important to promote the expression of adhE, which was unknown before. The cross-regulation of adhE by AcrR and Rex is important to balance the level of NADH in the cell during sorbitol or mannitol utilization.
Collapse
|
24
|
Maeno S, Kajikawa A, Dicks L, Endo A. Introduction of bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) in Fructobacillus fructosus settled its fructophilic characteristics. Res Microbiol 2018; 170:35-42. [PMID: 30291951 DOI: 10.1016/j.resmic.2018.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/13/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
Abstract
Fructophilic lactic acid bacteria (FLAB) are unique in the sense that they prefer D-fructose over D-glucose as main carbon source. If D-glucose is metabolised, electron acceptors are required and significant levels of acetate are produced. These bacteria are found in environments rich in D-fructose, such as flowers, fruits and the gastrointestinal tract of insects feeding on fructose-rich diets. Fructobacillus spp. are representatives of this unique group, and their fructophilic characteristics are well conserved. In this study, the bifunctional alcohol/acetaldehyde dehydrogenase gene (adhE) from Leuconostoc mesenteroides NRIC 1541T was cloned into a plasmid and transferred to Fructobacillus fructosus NRIC 1058T. Differences in biochemical characteristics between the parental strain (NRIC 1058T) and the transformants were compared. Strain 1-11, transformed with the adhE gene, did not show any fructophilic characteristics, and the strain grew well on D-glucose without external electron acceptors. Accumulation of acetic acid, which was originally seen in the parental strain, was replaced with ethanol in the transformed strain. Furthermore, in silico analyses revealed that strain NRIC 1058T lacked the sugar transporters/permeases and enzymes required for conversion of metabolic intermediates. This may be the reason for poor carbohydrate metabolic properties recorded for FLAB.
Collapse
Affiliation(s)
- Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, 099-2493, Hokkaido, Japan.
| | - Akinobu Kajikawa
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 156-0083, Tokyo, Japan.
| | - Leon Dicks
- Department of Microbiology, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa.
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, 099-2493, Hokkaido, Japan.
| |
Collapse
|
25
|
Sweeney JB, Murphy CD, McDonnell K. Development of a bacterial propionate-biosensor for anaerobic digestion monitoring. Enzyme Microb Technol 2018; 109:51-57. [DOI: 10.1016/j.enzmictec.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 11/30/2022]
|
26
|
Sellés Vidal L, Kelly CL, Mordaka PM, Heap JT. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:327-347. [PMID: 29129662 DOI: 10.1016/j.bbapap.2017.11.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 11/27/2022]
Abstract
NAD(P)H-dependent oxidoreductases catalyze the reduction or oxidation of a substrate coupled to the oxidation or reduction, respectively, of a nicotinamide adenine dinucleotide cofactor NAD(P)H or NAD(P)+. NAD(P)H-dependent oxidoreductases catalyze a large variety of reactions and play a pivotal role in many central metabolic pathways. Due to the high activity, regiospecificity and stereospecificity with which they catalyze redox reactions, they have been used as key components in a wide range of applications, including substrate utilization, the synthesis of chemicals, biodegradation and detoxification. There is great interest in tailoring NAD(P)H-dependent oxidoreductases to make them more suitable for particular applications. Here, we review the main properties and classes of NAD(P)H-dependent oxidoreductases, the types of reactions they catalyze, some of the main protein engineering techniques used to modify their properties and some interesting examples of their modification and application.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ciarán L Kelly
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Paweł M Mordaka
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - John T Heap
- Centre for Synthetic Biology and Innovation, Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
| |
Collapse
|
27
|
Abstract
Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGE) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts, resolved by compensatory adaptation of the chromosome, the MGE or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intragenomic coevolution between Escherichia coli and the multi-drug resistant (MDR) plasmid RK2. Tetracycline treatments, including monotherapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux-pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprised of multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages.
Collapse
|
28
|
Cao H, Wei D, Yang Y, Shang Y, Li G, Zhou Y, Ma Q, Xu Y. Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci Rep 2017; 7:44150. [PMID: 28300180 PMCID: PMC5353561 DOI: 10.1038/srep44150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Understanding ethanol-induced stresses and responses in biofuel-producing bacteria at systems level has significant implications in engineering more efficient biofuel producers. We present a computational study of transcriptomic and genomic data of both ethanol-stressed and ethanol-adapted E. coli cells with computationally predicated ethanol-binding proteins and experimentally identified ethanol tolerance genes. Our analysis suggests: (1) ethanol damages cell wall and membrane integrity, causing increased stresses, particularly reactive oxygen species, which damages DNA and reduces the O2 level; (2) decreased cross-membrane proton gradient from membrane damage, coupled with hypoxia, leads to reduced ATP production by aerobic respiration, driving cells to rely more on fatty acid oxidation, anaerobic respiration and fermentation for ATP production; (3) the reduced ATP generation results in substantially decreased synthesis of macromolecules; (4) ethanol can directly bind 213 proteins including transcription factors, altering their functions; (5) all these changes together induce multiple stress responses, reduced biosynthesis, cell viability and growth; and (6) ethanol-adapted E. coli cells restore the majority of these reduced activities through selection of specific genomic mutations and alteration of stress responses, ultimately restoring normal ATP production, macromolecule biosynthesis, and growth. These new insights into the energy and mass balance will inform design of more ethanol-tolerant strains.
Collapse
Affiliation(s)
- Huansheng Cao
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Du Wei
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yuedong Yang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr., Southport, QLD 4222, Australia
| | - Yu Shang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Gaoyang Li
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr., Southport, QLD 4222, Australia
| | - Qin Ma
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| |
Collapse
|
29
|
Liew F, Henstra AM, Kӧpke M, Winzer K, Simpson SD, Minton NP. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng 2017; 40:104-114. [PMID: 28111249 PMCID: PMC5367853 DOI: 10.1016/j.ymben.2017.01.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/01/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023]
Abstract
Gas fermentation using acetogenic bacteria such as Clostridium autoethanogenum offers an attractive route for production of fuel ethanol from industrial waste gases. Acetate reduction to acetaldehyde and further to ethanol via an aldehyde: ferredoxin oxidoreductase (AOR) and alcohol dehydrogenase has been postulated alongside the classic pathway of ethanol formation via a bi-functional aldehyde/alcohol dehydrogenase (AdhE). Here we demonstrate that AOR is critical to ethanol formation in acetogens and inactivation of AdhE led to consistently enhanced autotrophic ethanol production (up to 180%). Using ClosTron and allelic exchange mutagenesis, which was demonstrated for the first time in an acetogen, we generated single mutants as well as double mutants for both aor and adhE isoforms to confirm the role of each gene. The aor1+2 double knockout strain lost the ability to convert exogenous acetate, propionate and butyrate into the corresponding alcohols, further highlighting the role of these enzymes in catalyzing the thermodynamically unfavourable reduction of carboxylic acids into alcohols. 180% improvement in C. autoethanogenum ethanol production via metabolic engineering. Confirmed role of AOR in autotrophic ethanol production of acetogens. Generated both aor and adhE mutants of C. autoethanogenum.. Demonstrated allelic exchange mutagenesis for stable deletions in acetogens. Inactivation of adhE and aor2, but not aor1, improves autotrophic ethanol production.
Collapse
Affiliation(s)
- Fungmin Liew
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK; LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Anne M Henstra
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Michael Kӧpke
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Klaus Winzer
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Sean D Simpson
- LanzaTech Inc., 8045 Lamon Avenue, Suite 400, Skokie, IL, USA
| | - Nigel P Minton
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
30
|
Both adhE and a Separate NADPH-Dependent Alcohol Dehydrogenase Gene, adhA, Are Necessary for High Ethanol Production in Thermoanaerobacterium saccharolyticum. J Bacteriol 2017; 199:JB.00542-16. [PMID: 27849176 DOI: 10.1128/jb.00542-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/10/2016] [Indexed: 01/01/2023] Open
Abstract
Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at about 90% of the theoretical maximum yield (2 ethanol molecules per glucose equivalent) and a titer of 70 g/liter. Its ethanol-producing ability has drawn attention to its metabolic pathways, which could potentially be transferred to other organisms of interest. Here, we report that the iron-containing AdhA is important for ethanol production in the high-ethanol strain of T. saccharolyticum (LL1049). A single-gene deletion of adhA in LL1049 reduced ethanol production by ∼50%, whereas multiple gene deletions of all annotated alcohol dehydrogenase genes except adhA and adhE did not affect ethanol production. Deletion of adhA in wild-type T.saccharolyticum reduced NADPH-linked alcohol dehydrogenase (ADH) activity (acetaldehyde-reducing direction) by 93%.IMPORTANCE In this study, we set out to identify the alcohol dehydrogenases necessary for high ethanol production in T. saccharolyticum Based on previous work, we had assumed that adhE was the primary alcohol dehydrogenase gene. Here, we show that both adhA and adhE are needed for high ethanol yield in the engineered strain LL1049. This is the first report showing adhA is important for ethanol production in a native adhA host, which has important implications for achieving higher ethanol yields in other microorganisms.
Collapse
|
31
|
Ghosh IN, Landick R. OptSSeq: High-Throughput Sequencing Readout of Growth Enrichment Defines Optimal Gene Expression Elements for Homoethanologenesis. ACS Synth Biol 2016; 5:1519-1534. [PMID: 27404024 DOI: 10.1021/acssynbio.6b00121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosome-binding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate to ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe2+-dependent AdhB and Zn2+-dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.
Collapse
Affiliation(s)
- Indro Neil Ghosh
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| | - Robert Landick
- DOE
Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin 53726, United States
| |
Collapse
|
32
|
Scheel RA, Ji L, Lundgren BR, Nomura CT. Enhancing poly(3-hydroxyalkanoate) production in Escherichia coli by the removal of the regulatory gene arcA. AMB Express 2016; 6:120. [PMID: 27878786 PMCID: PMC5120623 DOI: 10.1186/s13568-016-0291-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
Recombinant Escherichia coli is a desirable platform for the production of many biological compounds including poly(3-hydroxyalkanoates), a class of naturally occurring biodegradable polyesters with promising biomedical and material applications. Although the controlled production of desirable polymers is possible with the utilization of fatty acid feedstocks, a central challenge to this biosynthetic route is the improvement of the relatively low polymer yield, a necessary factor of decreasing the production costs. In this study we sought to address this challenge by deleting arcA and ompR, two global regulators with the capacity to inhibit the uptake and activation of exogenous fatty acids. We found that polymer yields in a ΔarcA mutant increased significantly with respect to the parental strain. In the parental strain, PHV yields were very low but improved 64-fold in the ΔarcA mutant (1.92-124 mg L-1) The ΔarcA mutant also allowed for modest increases in some medium chain length polymer yields, while weight average molecular weights improved by approximately 1.5-fold to 12-fold depending on the fatty acid substrate utilized. These results were supported by an analysis of differential gene expression, which showed that the key genes (fadD, fadL, and fadE) encoding fatty acid degradation enzymes were all upregulated by 2-, 10-, and 31-fold in an ΔarcA mutant, respectively. Additionally, the short chain length fatty acid uptake genes atoA, atoE and atoD were upregulated by 103-, 119-, and 303-fold respectively, though these values are somewhat inflated due to low expression in the parental strain. Overall, this study demonstrates that arcA is an important target to improve PHA production from fatty acids.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Liyuan Ji
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Center for Applied Microbiology, State University of New York College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 USA
- Hubei Collaborative Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
33
|
Guerrero-Torres V, Rios-Lozano M, Badillo-Corona JA, Chairez I, Garibay-Orijel C. Robust Parameter Identification to Perform the Modeling of pta and poxB Genes Deletion Effect on Escherichia Coli. Appl Biochem Biotechnol 2016; 179:1418-34. [PMID: 27093969 DOI: 10.1007/s12010-016-2074-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 04/03/2016] [Indexed: 11/27/2022]
Abstract
The aim of this study was to design a robust parameter identification algorithm to characterize the effect of gene deletion on Escherichia coli (E. coli) MG1655. Two genes (pta and poxB) in the competitive pathways were deleted from this microorganism to inhibit pyruvate consumption. This condition deviated the E. coli metabolism toward the Krebs cycle. As a consequence, the biomass, substrate (glucose), lactic, and acetate acids as well as ethanol concentrations were modified. A hybrid model was proposed to consider the effect of gene deletion on the metabolism of E. coli. The model parameters were estimated by the application of a least mean square method based on the instrument variable technique. To evaluate the parametric identifier method, a set of robust exact differentiators, based on the super-twisting algorithm, was implemented. The hybrid model was successfully characterized by the parameters obtained from experimental information of E. coli MG1655. The significant difference between parameters obtained with wild-type strain and the modified (with deleted genes) justifies the application of the parametric identification algorithm. This characterization can be used to optimize the production of different byproducts of commercial interest.
Collapse
Affiliation(s)
| | - M Rios-Lozano
- SEPI-UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - I Chairez
- Department of Bioprocesses-UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - C Garibay-Orijel
- Department of Bioprocesses-UPIBI, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
34
|
Liu Z, Liu P, Xiao D, Zhang X. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. J Ind Microbiol Biotechnol 2016; 43:851-60. [PMID: 26946319 DOI: 10.1007/s10295-016-1751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/16/2016] [Indexed: 11/29/2022]
Abstract
Redox imbalance has been regarded as the key limitation for anaerobic isobutanol production in metabolically engineered Escherichia coli strains. In this work, the ethanol synthetic pathway was recruited to solve the NADH redundant problem while the pentose phosphate pathway was modulated to solve the NADPH deficient problem for anaerobic isobutanol production. Recruiting the ethanol synthetic pathway in strain AS108 decreased isobutanol yield from 0.66 to 0.29 mol/mol glucose. It was found that there was a negative correlation between aldehyde/alcohol dehydrogenase (AdhE) activity and isobutanol production. Decreasing AdhE activity increased isobutanol yield from 0.29 to 0.6 mol/mol. On the other hand, modulation of the glucose 6-phosphate dehydrogenase gene of the pentose phosphate pathway increased isobutanol yield from 0.29 to 0.41 mol/mol. Combination of these two strategies had a synergistic effect on improving isobutanol production. Isobutanol titer and yield of the best strain ZL021 were 53 mM and 0.74 mol/mol, which were 51 % and 12 % higher than the starting strain AS108, respectively. The total alcohol yield of strain ZL021 was 0.81 mol/mol, which was 23 % higher than strain AS108.
Collapse
Affiliation(s)
- Zichun Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Pingping Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
35
|
Shasmal M, Dey S, Shaikh TR, Bhakta S, Sengupta J. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed. Sci Rep 2016; 6:19936. [PMID: 26822933 PMCID: PMC4731797 DOI: 10.1038/srep19936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/21/2015] [Indexed: 11/24/2022] Open
Abstract
It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosome.
Collapse
Affiliation(s)
- Manidip Shasmal
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Sandip Dey
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Tanvir R Shaikh
- Structural Biology Programme, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Sayan Bhakta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Jayati Sengupta
- Structural Biology &Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| |
Collapse
|
36
|
Schadeweg V, Boles E. n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:44. [PMID: 26913077 PMCID: PMC4765181 DOI: 10.1186/s13068-016-0456-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Butanol isomers are regarded as more suitable fuel substitutes than bioethanol. n-Butanol is naturally produced by some Clostridia species, but due to inherent problems with clostridial fermentations, industrially more relevant organisms have been genetically engineered for n-butanol production. Although the yeast Saccharomyces cerevisiae holds significant advantages in terms of scalable industrial fermentation, n-butanol yields and titers obtained so far are only low. RESULTS Here we report a thorough analysis and significant improvements of n-butanol production from glucose with yeast via the acetoacetyl-CoA-derived pathway. First, we established an improved n-butanol pathway by testing various isoenzymes of different pathway reactions. This resulted in n-butanol titers around 15 mg/L in synthetic medium after 74 h. As the initial substrate of the n-butanol pathway is acetyl-coenzyme A (acetyl-CoA) and most intermediates are bound to coenzyme A (CoA), we increased CoA synthesis by overexpression of the pantothenate kinase coaA gene from Escherichia coli. Supplementation with pantothenate increased n-butanol production up to 34 mg/L. Additional reduction of ethanol formation by deletion of alcohol dehydrogenase genes ADH1-5 led to n-butanol titers of 71 mg/L. Further expression of a mutant form of an ATP independent acetylating acetaldehyde dehydrogenase, adhE(A267T/E568K), converting acetaldehyde into acetyl-CoA, resulted in 95 mg/L n-butanol. In the final strain, the n-butanol pathway genes, coaA and adhE (A267T/E568K), were stably integrated into the yeast genome, thereby deleting another alcohol dehydrogenase gene, ADH6, and GPD2-encoding glycerol-3-phosphate dehydrogenase. This led to a further decrease in ethanol and glycerol by-product formation and elevated redox power in the form of NADH. With the addition of pantothenate, this strain produced n-butanol up to a titer of 130 ± 20 mg/L and a yield of 0.012 g/g glucose. These are the highest values reported so far for S. cerevisiae in synthetic medium via an acetoacetyl-CoA-derived n-butanol pathway. CONCLUSIONS By gradually increasing substrate supply and redox power in the form of CoA, acetyl-CoA, and NADH, and decreasing ethanol and glycerol formation, we could stepwise increase n-butanol production in S. cerevisiae. However, still further bottlenecks in the n-butanol pathway must be deciphered and improved for industrially relevant n-butanol production levels.
Collapse
Affiliation(s)
- Virginia Schadeweg
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt Am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt Am Main, Germany
| |
Collapse
|
37
|
Schadeweg V, Boles E. Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:257. [PMID: 27924150 PMCID: PMC5123364 DOI: 10.1186/s13068-016-0673-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/17/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND n-Butanol can serve as an excellent gasoline substitute. Naturally, it is produced by some Clostridia species which, however, exhibit only limited suitability for industrial n-butanol production. The yeast Saccharomyces cerevisiae would be an ideal host due to its high robustness in fermentation processes. Nevertheless, n-butanol yields and titers obtained so far with genetically engineered yeast strains are only low. RESULTS In our recent work, we showed that n-butanol production via a clostridial acetoacetyl-CoA-derived pathway in engineered yeast was limited by the availability of coenzyme A (CoA) and cytosolic acetyl-CoA. Increasing their levels resulted in a strain producing up to 130 mg/L n-butanol under anaerobic conditions. Here, we show that under aerobic conditions. this strain can even produce up to 235 mg/L n-butanol probably due to a more efficient NADH re-oxidation. Nevertheless, expression of a bacterial water-forming NADH oxidase (nox) significantly reduced n-butanol production although it showed a positive effect on growth and glucose consumption. Screening for an improved version of an acetyl-CoA forming NAD+-dependent acetylating acetaldehyde dehydrogenase, adhEA267T/E568K/R577S, and its integration into n-butanol-producing strain further improved n-butanol production. Moreover, deletion of the competing NADP+-dependent acetaldehyde dehydrogenase Ald6 had a superior effect on n-butanol formation. To increase the endogenous supply of CoA, amine oxidase Fms1 was overexpressed together with pantothenate kinase coaA from Escherichia coli, and could completely compensate the beneficial effect on n-butanol synthesis of addition of pantothenate to the medium. By overexpression of each of the enzymes of n-butanol pathway in the n-butanol-producing yeast strain, it turned out that trans-2-enoyl-CoA reductase (ter) was limiting n-butanol production. Additional overexpression of ter finally resulted in a yeast strain producing n-butanol up to a titer of 0.86 g/L and a yield of 0.071 g/g glucose. CONCLUSIONS By further optimizing substrate supply and redox power in the form of coenzyme A, acetyl-CoA and NADH, n-butanol production with engineered yeast cells could be improved to levels never reached before with S. cerevisiae via an acetoacetyl-CoA-derived pathway in synthetic medium. Moreover, our results indicate that the NAD+/NADH redox balance and the trans-2-enoyl-CoA reductase reaction seem to be bottlenecks for n-butanol production with yeast.
Collapse
Affiliation(s)
- Virginia Schadeweg
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue Str.9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
38
|
Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers. Biotechnol Adv 2015; 33:1671-84. [DOI: 10.1016/j.biotechadv.2015.08.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022]
|
39
|
Abstract
Pyruvate and acetyl-CoA form the backbone of central metabolism. The nonoxidative cleavage of pyruvate to acetyl-CoA and formate by the glycyl radical enzyme pyruvate formate lyase is one of the signature reactions of mixed-acid fermentation in enterobacteria. Under these conditions, formic acid accounts for up to one-third of the carbon derived from glucose. The further metabolism of acetyl-CoA to acetate via acetyl-phosphate catalyzed by phosphotransacetylase and acetate kinase is an exemplar of substrate-level phosphorylation. Acetyl-CoA can also be used as an acceptor of the reducing equivalents generated during glycolysis, whereby ethanol is formed by the polymeric acetaldehyde/alcohol dehydrogenase (AdhE) enzyme. The metabolism of acetyl-CoA via either the acetate or the ethanol branches is governed by the cellular demand for ATP and the necessity to reoxidize NADH. Consequently, in the absence of an electron acceptor mutants lacking either branch of acetyl-CoA metabolism fail to cleave pyruvate, despite the presence of PFL, and instead reduce it to D-lactate by the D-lactate dehydrogenase. The conversion of PFL to the active, radical-bearing species is controlled by a radical-SAM enzyme, PFL-activase. All of these reactions are regulated in response to the prevalent cellular NADH:NAD+ ratio. In contrast to Escherichia coli and Salmonella species, some genera of enterobacteria, e.g., Klebsiella and Enterobacter, produce the more neutral product 2,3-butanediol and considerable amounts of CO2 as fermentation products. In these bacteria, two molecules of pyruvate are converted to α-acetolactate (AL) by α-acetolactate synthase (ALS). AL is then decarboxylated and subsequently reduced to the product 2,3-butandiol.
Collapse
|
40
|
Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77. J Biosci Bioeng 2015. [PMID: 26216639 DOI: 10.1016/j.jbiosc.2015.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acetaldehyde-alcohol dehydrogenase (ADHE) is a bifunctional enzyme consisting of two domains of an N-terminal acetaldehyde dehydrogenase (ALDH) and a C-terminal alcohol dehydrogenase (ADH). The enzyme is known to be important in the cellular alcohol metabolism. However, the role of coenzyme A-acylating ADHE responsible for ethanol production from acetyl-CoA remains uncertain. Here, we present the purification and biochemical characterization of an ADHE from Citrobacter sp. S-77 (ADHE(S77)). Interestingly, the ADHE(S77) was unable to be solubilized from membrane with detergents either 1% Triton X-100 or 1% Sulfobetaine 3-12. However, the enzyme was easily dissociated from membrane by high-salt buffers containing either 1.0 M NaCl or (NH(4))(2)SO(4) without detergents. The molecular weight of a native protein was estimated as approximately 400 kDa, consisting of four identical subunits of 96.3 kDa. Based on the specific activity and kinetic analysis, the ADHES77 tended to have catalytic reaction towards acetaldehyde elimination rather than acetaldehyde formation. Our experimental observation suggests that the ADHES77 may play a pivotal role in modulating intracellular acetaldehyde concentration.
Collapse
|
41
|
Cofactor Specificity of the Bifunctional Alcohol and Aldehyde Dehydrogenase (AdhE) in Wild-Type and Mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 2015; 197:2610-9. [PMID: 26013492 DOI: 10.1128/jb.00232-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are thermophilic bacteria that have been engineered to produce ethanol from the cellulose and hemicellulose fractions of biomass, respectively. Although engineered strains of T. saccharolyticum produce ethanol with a yield of 90% of the theoretical maximum, engineered strains of C. thermocellum produce ethanol at lower yields (∼50% of the theoretical maximum). In the course of engineering these strains, a number of mutations have been discovered in their adhE genes, which encode both alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) enzymes. To understand the effects of these mutations, the adhE genes from six strains of C. thermocellum and T. saccharolyticum were cloned and expressed in Escherichia coli, the enzymes produced were purified by affinity chromatography, and enzyme activity was measured. In wild-type strains of both organisms, NADH was the preferred cofactor for both ALDH and ADH activities. In high-ethanol-producing (ethanologen) strains of T. saccharolyticum, both ALDH and ADH activities showed increased NADPH-linked activity. Interestingly, the AdhE protein of the ethanologenic strain of C. thermocellum has acquired high NADPH-linked ADH activity while maintaining NADH-linked ALDH and ADH activities at wild-type levels. When single amino acid mutations in AdhE that caused increased NADPH-linked ADH activity were introduced into C. thermocellum and T. saccharolyticum, ethanol production increased in both organisms. Structural analysis of the wild-type and mutant AdhE proteins was performed to provide explanations for the cofactor specificity change on a molecular level. IMPORTANCE This work describes the characterization of the AdhE enzyme from different strains of C. thermocellum and T. saccharolyticum. C. thermocellum and T. saccharolyticum are thermophilic anaerobes that have been engineered to make high yields of ethanol and can solubilize components of plant biomass and ferment the sugars to ethanol. In the course of engineering these strains, several mutations arose in the bifunctional ADH/ALDH protein AdhE, changing both enzyme activity and cofactor specificity. We show that changing AdhE cofactor specificity from mostly NADH linked to mostly NADPH linked resulted in higher ethanol production by C. thermocellum and T. saccharolyticum.
Collapse
|
42
|
The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa). Int J Mol Sci 2015; 16:1293-311. [PMID: 25574602 PMCID: PMC4307304 DOI: 10.3390/ijms16011293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022] Open
Abstract
Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.
Collapse
|
43
|
Oslund RC, Kee JM, Couvillon AD, Bhatia V, Perlman DH, Muir TW. A phosphohistidine proteomics strategy based on elucidation of a unique gas-phase phosphopeptide fragmentation mechanism. J Am Chem Soc 2014; 136:12899-911. [PMID: 25156620 PMCID: PMC4183637 DOI: 10.1021/ja507614f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 01/25/2023]
Abstract
Protein histidine phosphorylation is increasingly recognized as a critical posttranslational modification (PTM) in central metabolism and cell signaling. Still, the detection of phosphohistidine (pHis) in the proteome has remained difficult due to the scarcity of tools to enrich and identify this labile PTM. To address this, we report the first global proteomic analysis of pHis proteins, combining selective immunoenrichment of pHis peptides and a bioinformatic strategy based on mechanistic insight into pHis peptide gas-phase fragmentation during LC-MS/MS. We show that collision-induced dissociation (CID) of pHis peptides produces prominent characteristic neutral losses of 98, 80, and 116 Da. Using isotopic labeling studies, we also demonstrate that the 98 Da neutral loss occurs via gas-phase phosphoryl transfer from pHis to the peptide C-terminal α-carboxylate or to Glu/Asp side chain residues if present. To exploit this property, we developed a software tool that screens LC-MS/MS spectra for potential matches to pHis-containing peptides based on their neutral loss pattern. This tool was integrated into a proteomics workflow for the identification of endogenous pHis-containing proteins in cellular lysates. As an illustration of this strategy, we analyzed pHis peptides from glycerol-fed and mannitol-fed Escherichia coli cells. We identified known and a number of previously speculative pHis sites inferred by homology, predominantly in the phosphoenolpyruvate:sugar transferase system (PTS). Furthermore, we identified two new sites of histidine phosphorylation on aldehyde-alcohol dehydrogenase (AdhE) and pyruvate kinase (PykF) enzymes, previously not known to bear this modification. This study lays the groundwork for future pHis proteomics studies in bacteria and other organisms.
Collapse
Affiliation(s)
- Rob C. Oslund
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jung-Min Kee
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Vivek
N. Bhatia
- Heartflow,
Inc., 1400 Seaport Boulevard,
Building B, Redwood City, California 94063, United States
| | - David H. Perlman
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department
of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Lewis-Sigler
Institute for Integrative Genomics and the Princeton Collaborative
Proteomics Mass Spectrometry Center, Princeton
University, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
44
|
Mangiapane E, Lamberti C, Pessione A, Galano E, Amoresano A, Pessione E. Selenium effects on the metabolism of a Se-metabolizingLactobacillus reuteri: analysis of envelope-enriched and extracellular proteomes. MOLECULAR BIOSYSTEMS 2014; 10:1272-80. [DOI: 10.1039/c3mb70557a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fixation of selenium byLactobacillus reuteriLb2 BM DSM 16143 into secreted proteins as selenocysteine.
Collapse
Affiliation(s)
- E. Mangiapane
- Department of Life Sciences and Systems Biology
- University of Turin
- Torino
- Italy
| | - C. Lamberti
- CNR ISPA
- c/o Bioindustry Park S. Fumero
- Colleretto Giacosa
- Italy
| | - A. Pessione
- Department of Life Sciences and Systems Biology
- University of Turin
- Torino
- Italy
| | - E. Galano
- Department of Chemical Sciences
- University of Naples “Federico II”
- Napoli
- Italy
| | - A. Amoresano
- Department of Chemical Sciences
- University of Naples “Federico II”
- Napoli
- Italy
| | - E. Pessione
- Department of Life Sciences and Systems Biology
- University of Turin
- Torino
- Italy
| |
Collapse
|
45
|
Srirangan K, Akawi L, Liu X, Westbrook A, Blondeel EJM, Aucoin MG, Moo-Young M, Chou CP. Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:139. [PMID: 24074355 PMCID: PMC3850637 DOI: 10.1186/1754-6834-6-139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. RESULTS E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. CONCLUSIONS The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions.
Collapse
Affiliation(s)
- Kajan Srirangan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lamees Akawi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xuejia Liu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Adam Westbrook
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Eric JM Blondeel
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
46
|
Extance J, Crennell SJ, Eley K, Cripps R, Hough DW, Danson MJ. Structure of a bifunctional alcohol dehydrogenase involved in bioethanol generation inGeobacillus thermoglucosidasius. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2104-15. [DOI: 10.1107/s0907444913020349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022]
Abstract
Bifunctional alcohol/aldehyde dehydrogenase (ADHE) enzymes are found within many fermentative microorganisms. They catalyse the conversion of an acyl-coenzyme A to an alcoholviaan aldehyde intermediate; this is coupled to the oxidation of two NADH molecules to maintain the NAD+pool during fermentative metabolism. The structure of the alcohol dehydrogenase (ADH) domain of an ADHE protein from the ethanol-producing thermophileGeobacillus thermoglucosidasiushas been determined to 2.5 Å resolution. This is the first structure to be reported for such a domain.In silicomodelling has been carried out to generate a homology model of the aldehyde dehydrogenase domain, and this was subsequently docked with the ADH-domain structure to model the structure of the complete ADHE protein. This model suggests, for the first time, a structural mechanism for the formation of the large multimeric assemblies or `spirosomes' that are observed for this ADHE protein and which have previously been reported for ADHEs from other organisms.
Collapse
|
47
|
Liu C, Wang Q, Xian M, Ding Y, Zhao G. Dissection of malonyl-coenzyme A reductase of Chloroflexus aurantiacus results in enzyme activity improvement. PLoS One 2013; 8:e75554. [PMID: 24073271 PMCID: PMC3779250 DOI: 10.1371/journal.pone.0075554] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022] Open
Abstract
The formation of fusion protein in biosynthetic pathways usually improves metabolic efficiency either channeling intermediates and/or colocalizing enzymes. In the metabolic engineering of biochemical pathways, generating unnatural protein fusions between sequential biosynthetic enzymes is a useful method to increase system efficiency and product yield. Here, we reported a special case. The malonyl-CoA reductase (MCR) of Chloroflexus aurantiacus catalyzes the conversion of malonyl-CoA to 3-hydroxypropionate (3HP), and is a key enzyme in microbial production of 3HP, an important platform chemical. Functional domain analysis revealed that the N-terminal region of MCR (MCR-N; amino acids 1-549) and the C-terminal region of MCR (MCR-C; amino acids 550-1219) were functionally distinct. The malonyl-CoA was reduced into free intermediate malonate semialdehyde with NADPH by MCR-C fragment, and further reduced to 3HP by MCR-N fragment. In this process, the initial reduction of malonyl-CoA was rate limiting. Site-directed mutagenesis demonstrated that the TGXXXG(A)X(1-2)G and YXXXK motifs were important for enzyme activities of both MCR-N and MCR-C fragments. Moreover, the enzyme activity increased when MCR was separated into two individual fragments. Kinetic analysis showed that MCR-C fragment had higher affinity for malonyl-CoA and 4-time higher Kcat/Km value than MCR. Dissecting MCR into MCR-N and MCR-C fragments also had a positive effect on the 3HP production in a recombinant Escherichia coli strain. Our study showed the feasibility of protein dissection as a new strategy in biosynthetic systems.
Collapse
Affiliation(s)
- Changshui Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mo Xian
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Key Laboratory of Biobased Materials, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Yamei Ding
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Guang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Key Laboratory of Biobased Materials, Chinese Academy of Sciences, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
48
|
Lorenz E, Klatte S, Wendisch VF. Reductive amination by recombinant Escherichia coli: whole cell biotransformation of 2-keto-3-methylvalerate to L-isoleucine. J Biotechnol 2013; 168:289-94. [PMID: 23831557 DOI: 10.1016/j.jbiotec.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 10/26/2022]
Abstract
A whole cell biotransformation system for reductive amination has been studied in recombinant Escherichia coli cells. Reductive amination of 2-keto-3-methylvalerate to L-isoleucine by a two-enzyme-cascade was achieved by overproduction of endogenous L-alanine dependent transaminase AvtA and heterologous L-alanine dehydrogenase from Bacillus subtilis in recombinant E. coli. Up to 100 mM L-isoleucine were produced from 100 mM 2-keto-3-methylvalerate and 100 mM ammonium sulfate. Regeneration of NADH as cofactor in the whole cell system was driven by glucose catabolism. The effects of defined gene deletions in the central carbon metabolism on biotransformation were tested. Strains lacking the NuoG subunit of NADH:ubiquinone oxidoreductase (complex I) or aceA encoding the glyoxylate cycle enzyme isocitrate lyase exhibited increased biotransformation rates.
Collapse
Affiliation(s)
- Elisabeth Lorenz
- Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, D-33615 Bielefeld, Germany
| | | | | |
Collapse
|
49
|
Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. MICROBIOLOGY-SGM 2013; 159:1437-1446. [PMID: 23637459 DOI: 10.1099/mic.0.066258-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.
Collapse
Affiliation(s)
- Sylvia I Pavlova
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ling Jin
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stephen R Gasparovich
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lin Tao
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Carere CR, Rydzak T, Verbeke TJ, Cicek N, Levin DB, Sparling R. Linking genome content to biofuel production yields: a meta-analysis of major catabolic pathways among select H2 and ethanol-producing bacteria. BMC Microbiol 2012; 12:295. [PMID: 23249097 PMCID: PMC3561251 DOI: 10.1186/1471-2180-12-295] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022] Open
Abstract
Background Fermentative bacteria offer the potential to convert lignocellulosic waste-streams into biofuels such as hydrogen (H2) and ethanol. Current fermentative H2 and ethanol yields, however, are below theoretical maxima, vary greatly among organisms, and depend on the extent of metabolic pathways utilized. For fermentative H2 and/or ethanol production to become practical, biofuel yields must be increased. We performed a comparative meta-analysis of (i) reported end-product yields, and (ii) genes encoding pyruvate metabolism and end-product synthesis pathways to identify suitable biomarkers for screening a microorganism’s potential of H2 and/or ethanol production, and to identify targets for metabolic engineering to improve biofuel yields. Our interest in H2 and/or ethanol optimization restricted our meta-analysis to organisms with sequenced genomes and limited branched end-product pathways. These included members of the Firmicutes, Euryarchaeota, and Thermotogae. Results Bioinformatic analysis revealed that the absence of genes encoding acetaldehyde dehydrogenase and bifunctional acetaldehyde/alcohol dehydrogenase (AdhE) in Caldicellulosiruptor, Thermococcus, Pyrococcus, and Thermotoga species coincide with high H2 yields and low ethanol production. Organisms containing genes (or activities) for both ethanol and H2 synthesis pathways (i.e. Caldanaerobacter subterraneus subsp. tengcongensis, Ethanoligenens harbinense, and Clostridium species) had relatively uniform mixed product patterns. The absence of hydrogenases in Geobacillus and Bacillus species did not confer high ethanol production, but rather high lactate production. Only Thermoanaerobacter pseudethanolicus produced relatively high ethanol and low H2 yields. This may be attributed to the presence of genes encoding proteins that promote NADH production. Lactate dehydrogenase and pyruvate:formate lyase are not conducive for ethanol and/or H2 production. While the type(s) of encoded hydrogenases appear to have little impact on H2 production in organisms that do not encode ethanol producing pathways, they do influence reduced end-product yields in those that do. Conclusions Here we show that composition of genes encoding pathways involved in pyruvate catabolism and end-product synthesis pathways can be used to approximate potential end-product distribution patterns. We have identified a number of genetic biomarkers for streamlining ethanol and H2 producing capabilities. By linking genome content, reaction thermodynamics, and end-product yields, we offer potential targets for optimization of either ethanol or H2 yields through metabolic engineering.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, Canada R3T 5V6
| | | | | | | | | | | |
Collapse
|