1
|
Neumaier EE, Rothhammer V, Linnerbauer M. The role of midkine in health and disease. Front Immunol 2023; 14:1310094. [PMID: 38098484 PMCID: PMC10720637 DOI: 10.3389/fimmu.2023.1310094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Midkine (MDK) is a neurotrophic growth factor highly expressed during embryogenesis with important functions related to growth, proliferation, survival, migration, angiogenesis, reproduction, and repair. Recent research has indicated that MDK functions as a key player in autoimmune disorders of the central nervous system (CNS), such as Multiple Sclerosis (MS) and is a promising therapeutic target for the treatment of brain tumors, acute injuries, and other CNS disorders. This review summarizes the modes of action and immunological functions of MDK both in the peripheral immune compartment and in the CNS, particularly in the context of traumatic brain injury, brain tumors, neuroinflammation, and neurodegeneration. Moreover, we discuss the role of MDK as a central mediator of neuro-immune crosstalk, focusing on the interactions between CNS-infiltrating and -resident cells such as astrocytes, microglia, and oligodendrocytes. Finally, we highlight the therapeutic potential of MDK and discuss potential therapeutic approaches for the treatment of neurological disorders.
Collapse
Affiliation(s)
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | | |
Collapse
|
2
|
Majaj M, Weckbach LT. Midkine-A novel player in cardiovascular diseases. Front Cardiovasc Med 2022; 9:1003104. [PMID: 36204583 PMCID: PMC9530663 DOI: 10.3389/fcvm.2022.1003104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/18/2022] Open
Abstract
Midkine (MK) is a 13-kDa heparin-binding cytokine and growth factor with anti-apoptotic, pro-angiogenic, pro-inflammatory and anti-infective functions, that enable it to partake in a series of physiological and pathophysiological processes. In the past, research revolving around MK has concentrated on its roles in reproduction and development, tissue protection and repair as well as inflammatory and malignant processes. In the recent few years, MK's implication in a wide scope of cardiovascular diseases has been rigorously investigated. Nonetheless, there is still no broadly accepted consensus on whether MK exerts generally detrimental or favorable effects in cardiovascular diseases. The truth probably resides somewhere in-between and depends on the underlying physiological or pathophysiological condition. It is therefore crucial to thoroughly examine and appraise MK's participation in cardiovascular diseases. In this review, we introduce the MK gene and protein, its multiple receptors and signaling pathways along with its expression in the vascular system and its most substantial functions in cardiovascular biology. Further, we recapitulate the current evidence of MK's expression in cardiovascular diseases, addressing the various sources and modes of MK expression. Moreover, we summarize the most significant implications of MK in cardiovascular diseases with particular emphasis on MK's advantageous and injurious functions, highlighting its ample diagnostic and therapeutic potential. Also, we focus on conflicting roles of MK in a number of cardiovascular diseases and try to provide some clarity and guidance to MK's multifaceted roles. In summary, we aim to pave the way for MK-based diagnostics and therapies that could present promising tools in the diagnosis and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Marina Majaj
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ludwig T. Weckbach
- Walter Brendel Centre for Experimental Medicine, Biomedical Centre, Institute for Cardiovascular Physiology und Pathophysiology, Ludwig-Maximilians-University Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V, Berlin, Germany
| |
Collapse
|
3
|
Li D, Velazquez JJ, Ding J, Hislop J, Ebrahimkhani MR, Bar-Joseph Z. TraSig: inferring cell-cell interactions from pseudotime ordering of scRNA-Seq data. Genome Biol 2022; 23:73. [PMID: 35255944 PMCID: PMC8900372 DOI: 10.1186/s13059-022-02629-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
A major advantage of single cell RNA-sequencing (scRNA-Seq) data is the ability to reconstruct continuous ordering and trajectories for cells. Here we present TraSig, a computational method for improving the inference of cell-cell interactions in scRNA-Seq studies that utilizes the dynamic information to identify significant ligand-receptor pairs with similar trajectories, which in turn are used to score interacting cell clusters. We applied TraSig to several scRNA-Seq datasets and obtained unique predictions that improve upon those identified by prior methods. Functional experiments validate the ability of TraSig to identify novel signaling interactions that impact vascular development in liver organoids.Software https://github.com/doraadong/TraSig .
Collapse
Affiliation(s)
- Dongshunyi Li
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
| | - Jeremy J Velazquez
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, Quebec, Canada
| | - Joshua Hislop
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, 15213, PA, USA.
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, 15261, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, 15219, PA, USA.
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon Universit, Pittsburgh, 15213, PA, USA
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, 15213, PA, USA
| |
Collapse
|
4
|
Protein tyrosine phosphatases in skeletal development and diseases. Bone Res 2022; 10:10. [PMID: 35091552 PMCID: PMC8799702 DOI: 10.1038/s41413-021-00181-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Skeletal development and homeostasis in mammals are modulated by finely coordinated processes of migration, proliferation, differentiation, and death of skeletogenic cells originating from the mesoderm and neural crest. Numerous molecular mechanisms are involved in these regulatory processes, one of which is protein posttranslational modifications, particularly protein tyrosine phosphorylation (PYP). PYP occurs mainly through the action of protein tyrosine kinases (PTKs), modifying protein enzymatic activity, changing its cellular localization, and aiding in the assembly or disassembly of protein signaling complexes. Under physiological conditions, PYP is balanced by the coordinated action of PTKs and protein tyrosine phosphatases (PTPs). Dysregulation of PYP can cause genetic, metabolic, developmental, and oncogenic skeletal diseases. Although PYP is a reversible biochemical process, in contrast to PTKs, little is known about how this equilibrium is modulated by PTPs in the skeletal system. Whole-genome sequencing has revealed a large and diverse superfamily of PTP genes (over 100 members) in humans, which can be further divided into cysteine (Cys)-, aspartic acid (Asp)-, and histidine (His)-based PTPs. Here, we review current knowledge about the functions and regulatory mechanisms of 28 PTPs involved in skeletal development and diseases; 27 of them belong to class I and II Cys-based PTPs, and the other is an Asp-based PTP. Recent progress in analyzing animal models that harbor various mutations in these PTPs and future research directions are also discussed. Our literature review indicates that PTPs are as crucial as PTKs in supporting skeletal development and homeostasis.
Collapse
|
5
|
Hussain Y, Mirzaei S, Ashrafizadeh M, Zarrabi A, Hushmandi K, Khan H, Daglia M. Quercetin and Its Nano-Scale Delivery Systems in Prostate Cancer Therapy: Paving the Way for Cancer Elimination and Reversing Chemoresistance. Cancers (Basel) 2021; 13:1602. [PMID: 33807174 PMCID: PMC8036441 DOI: 10.3390/cancers13071602] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer is the second most leading and prevalent malignancy around the world, following lung cancer. Prostate cancer is characterized by the uncontrolled growth of cells in the prostate gland. Prostate cancer morbidity and mortality have grown drastically, and intensive prostate cancer care is unlikely to produce adequate outcomes. The synthetic drugs for the treatment of prostate cancer in clinical practice face several challenges. Quercetin is a natural flavonoid found in fruits and vegetables. Apart from its beneficial effects, its plays a key role as an anti-cancer agent. Quercetin has shown anticancer potential, both alone and in combination. Therefore, the current study was designed to collect information from the literature regarding its therapeutic significance in the treatment of prostate cancer. Studies performed both in vitro and in vivo have confirmed that quercetin effectively prevents prostate cancer through different underlying mechanisms. Promising findings have also been achieved in clinical trials regarding the pharmacokinetics and human applications of quercetin. In the meantime, epidemiological studies have shown a negative correlation between the consumption of quercetin and the incidence of prostate cancer, and have indicated a chemopreventive effect of quercetin on prostate cancer in animal models. The major issues associated with quercetin are its low bioavailability and rapid metabolism, and these require priority attention. Chemoresistance is another main negative feature concerning prostate cancer treatment. This review highlights the chemotherapeutic effect, chemo preventive effect, and chemoresistance elimination potential of quercetin in prostate cancer. The underlying mechanisms for elimination of prostate cancer and eradication of resistance, either alone or in combination with other agents, are also discussed. In addition, the nanoscale delivery of quercetin is underpinned along with possible directions for future study.
Collapse
Affiliation(s)
- Yaseen Hussain
- Lab of Control Release and Drug Delivery System, College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Campbell WA, Fritsch-Kelleher A, Palazzo I, Hoang T, Blackshaw S, Fischer AJ. Midkine is neuroprotective and influences glial reactivity and the formation of Müller glia-derived progenitor cells in chick and mouse retinas. Glia 2021; 69:1515-1539. [PMID: 33569849 DOI: 10.1002/glia.23976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/03/2023]
Abstract
Recent studies suggest midkine (MDK) is involved in the development and regeneration of the zebrafish retina. We investigate the expression patterns of MDK and related factors, roles in neuronal survival, and influence upon the formation of Müller glia-derived progenitor cells (MGPCs) in chick and mouse model systems. By using single-cell RNA-sequencing, we find that MDK and pleiotrophin (PTN), a MDK-related cytokine, are upregulated by Müller glia (MG) during later stages of development in chick. While PTN is downregulated, MDK is dramatically upregulated in mature MG after retinal damage or FGF2 and insulin treatment. By comparison, MDK and PTN are downregulated by MG in damaged mouse retinas. In both chick and mouse retinas, exogenous MDK induces expression of cFos and pS6 in MG. In the chick, MDK significantly decreases numbers dying neurons, reactive microglia, and proliferating MGPCs, whereas PTN has no effect. Inhibition of MDK-signaling with Na3 VO4 blocks neuroprotective effects with an increase in the number of dying cells and negates the pro-proliferative effects on MGPCs in damaged retinas. Inhibitors of PP2A and Pak1, which are associated with MDK-signaling through integrin β1, suppressed the formation of MGPCs in damaged chick retinas. In mice, MDK promotes a small but significant increase in proliferating MGPCs in damaged retinas and potently decreases the number of dying cells. We conclude that MDK expression is dynamically regulated in Müller glia during embryonic maturation, following retinal injury, and during reprogramming into MGPCs. MDK mediates glial activity, neuronal survival, and the re-programming of Müller glia into proliferating MGPCs.
Collapse
Affiliation(s)
- Warren A Campbell
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Amanda Fritsch-Kelleher
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Thanh Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Cai YQ, Lv Y, Mo ZC, Lei J, Zhu JL, Zhong QQ. Multiple pathophysiological roles of midkine in human disease. Cytokine 2020; 135:155242. [PMID: 32799009 DOI: 10.1016/j.cyto.2020.155242] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Midkine (MK) is a low molecular-weight protein that was first identified as the product of a retinoic acid-responsive gene involved in embryonic development. Recent studies have indicated that MK levels are related to various diseases, including cardiovascular disease (CVD), renal disease and autoimmune disease. MK is a growth factor involved in multiple pathophysiological processes, such as inflammation, the repair of damaged tissues and cancer. The pathophysiological roles of MK are diverse. MK enhances the recruitment and migration of inflammatory cells upon inflammation directly and also through induction of chemokines, and contributes to tissue damage. In lung endothelial cells, oxidative stress increased the expression of MK, which induced angiotensin-converting enzyme (ACE) expression and the consequent conversion from Ang I to Ang II, leading to further oxidative stress. MK inhibited cholesterol efflux from macrophages by reducing ATP-binding cassette transporter A1 (ABCA1) expression, which is involved in lipid metabolism, suggesting that MK is an important positive factor involved in inflammation, oxidative stress and lipid metabolism. Furthermore, MK can regulate the expansion, differentiation and activation of T cells as well as B-cell survival; mediate angiogenic and antibacterial activity; and possess anti-apoptotic activity. In this paper, we summarize the pathophysiological roles of MK in human disease.
Collapse
Affiliation(s)
- Ya-Qin Cai
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yuncheng Lv
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhong-Cheng Mo
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China; Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiashun Lei
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Qiao-Qing Zhong
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
8
|
Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene 2019; 39:2040-2054. [PMID: 31801970 DOI: 10.1038/s41388-019-1124-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022]
Abstract
Midkine is a heparin-binding growth factor, originally reported as the product of a retinoic acid-responsive gene during embryogenesis, but currently viewed as a multifaceted factor contributing to both normal tissue homeostasis and disease development. Midkine is abnormally expressed at high levels in various human malignancies and acts as a mediator for the acquisition of critical hallmarks of cancer, including cell growth, survival, metastasis, migration, and angiogenesis. Several studies have investigated the role of midkine as a cancer biomarker for the detection, prognosis, and management of cancer, as well as for monitoring the response to cancer treatment. Moreover, several efforts are also being made to elucidate its underlying mechanisms in therapeutic resistance and immunomodulation within the tumor microenvironment. We hereby summarize the current knowledge on midkine expression and function in cancer development and progression, and highlight its promising potential as a cancer biomarker and as a future therapeutic target in personalized cancer medicine.
Collapse
|
9
|
Karadeniz Z, Aynacıoğlu AŞ, Bilir A, Tuna MY. Inhibition of midkine by metformin can contribute to its anticancer effects in malignancies: A proposal mechanism of action of metformin in context of endometrial cancer prevention and therapy. Med Hypotheses 2019; 134:109420. [PMID: 31634770 DOI: 10.1016/j.mehy.2019.109420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/10/2023]
Abstract
Metformin, a drug widely used in the treatment of type II diabetes mellitus (T2DM), has been the focus of interest as a potential therapeutic agent for certain types of malignancies, including gynaecological cancers [i.e. endometrial cancer (EC)]. Although the exact mechanism behind the potential anticancer activity of metformin is still not completely understood, certain studies have suggested that different effects on cell functions, such as inhibition of cell migration, apoptosis and tumor cell proliferation, are involved in its preventive and therapeutic effects in certain types of malignancies, including EC. In contrast, midkine (MK), a heparin-binding growth factor and cytokine, which induces carcinogenesis and chemoresistance, promotes the development and progression of many malignant tumours by increasing diverse cell functions such as cell proliferation, cell survival and antiapoptotic activities via mainly the activation of phosphatidyl inositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. The same pathways are also subject to certain therapeutic effects of metformin, although this cytokine and this drug have some different mechanism of action pathways as well. Taken together, MK and metformin appear to have opposite effects in various biological processes such as apoptosis, cell proliferation, cell survival, cell migration, and angiogenesis. On the other hand, MK activates PI3K and MAPK cell signal pathways, whereas metformin inhibits these two pathways. It seems likely that almost all the pathways and cell functions, which play important roles in malignancies, are inhibited by metformin and activated by MK. Given the opposite relationship between the actions of metformin and MK, we hypothesize that metformin may act like a novel MK inhibitor in some malignancies. We also discuss the possible relationship between metformin and MK in the context of EC, the most common gynecological cancer worldwide, which incidence is rising rapidly, in parallel with the increase in obesity, T2DM and insulin resistance. In this respect, the therapeutic use of metformin may improve the survival of EC or other cancers, via inhibiting or overcoming the unwanted effects of MK in carcinogenesis.
Collapse
Affiliation(s)
- Zeliha Karadeniz
- Department of Gynecology and Obstetrics, Istanbul Aydin University, Medical Faculty, Florya Main Campus, Kücükcekmece, 34295 Istanbul, Turkey
| | - A Şükrü Aynacıoğlu
- Department of Medical Pharmacology, Istanbul Aydin University, Medical Faculty, Florya Main Campus, Kücükcekmece, 34295 Istanbul, Turkey.
| | - Ayhan Bilir
- Department of Histology and Embryology, Istanbul Aydin University, Medical Faculty, Florya Main Campus, Kücükcekmece, 34295 Istanbul, Turkey
| | - M Yakup Tuna
- Department of Anatomy, Istanbul Aydin University, Medical Faculty, Florya Main Campus, Kücükcekmece, 34295 Istanbul, Turkey
| |
Collapse
|
10
|
Erdogan S, Turkekul K, Dibirdik I, Doganlar ZB, Doganlar O, Bilir A. Midkine silencing enhances the anti–prostate cancer stem cell activity of the flavone apigenin: cooperation on signaling pathways regulated by ERK, p38, PTEN, PARP, and NF-κB. Invest New Drugs 2019; 38:246-263. [DOI: 10.1007/s10637-019-00774-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
|
11
|
Kastana P, Choleva E, Poimenidi E, Karamanos N, Sugahara K, Papadimitriou E. Insight into the role of chondroitin sulfate E in angiogenesis. FEBS J 2019; 286:2921-2936. [DOI: 10.1111/febs.14830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/05/2019] [Accepted: 03/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Pinelopi Kastana
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Evangelia Poimenidi
- Laboratory of Molecular Pharmacology Department of Pharmacy University of Patras Greece
| | - Nikos Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Res. Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - Kazuyuki Sugahara
- Faculty of Pharmacy Department of Pathobiochemistry Meijo University Nagoya Japan
| | | |
Collapse
|
12
|
Cui R, Lwigale P. Expression of the heparin-binding growth factors Midkine and pleiotrophin during ocular development. Gene Expr Patterns 2019; 32:28-37. [PMID: 30825522 DOI: 10.1016/j.gep.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
Midkine (MDK) and Pleiotrophin (PTN) belong to a group of heparin-binding growth factors that has been shown to have pleiotropic functions in various biological processes during development and disease. Development of the vertebrate eye is a multistep process that involves coordinated interactions between neuronal and non-neuronal cells, but very little is known about the potential function of MDK and PTN in these processes. In this study, we demonstrate by section in situ hybridization, the spatiotemporal expression of MDK and PTN during ocular development in chick and mouse. We show that MDK and PTN are expressed in dynamic patterns that overlap in a few non-neuronal tissues in the anterior eye and in neuronal cell layers of the posterior eye. We show that the expression patterns of MDK and PTN are only conserved in a few tissues in chick and mouse but they overlap with the expression of some of their receptors LRP1, RPTPZ, ALK, NOTCH2, ITGβ1, SDC1, and SDC3. The dynamic expression patterns of MDK, PTN and their receptors suggest that they function together during the multistep process of ocular development and they may play important roles in cell proliferation, adhesion, and migration of neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Ruda Cui
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Peter Lwigale
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
13
|
Erdogan S, Turkekul K, Dibirdik I, Doganlar O, Doganlar ZB, Bilir A, Oktem G. Midkine downregulation increases the efficacy of quercetin on prostate cancer stem cell survival and migration through PI3K/AKT and MAPK/ERK pathway. Biomed Pharmacother 2018; 107:793-805. [DOI: 10.1016/j.biopha.2018.08.061] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/15/2023] Open
|
14
|
Weckbach LT, Preissner KT, Deindl E. The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. Int J Mol Sci 2018; 19:E2559. [PMID: 30158425 PMCID: PMC6163309 DOI: 10.3390/ijms19092559] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces in blood circulation such as shear stress play a predominant role in many physiological and pathophysiological processes related to vascular responses or vessel remodeling. Arteriogenesis, defined as the growth of pre-existing arterioles into functional collateral arteries compensating for stenosed or occluded arteries, is such a process. Midkine, a pleiotropic protein and growth factor, has originally been identified to orchestrate embryonic development. In the adult organism its expression is restricted to distinct tissues (including tumors), whereby midkine is strongly expressed in inflamed tissue and has been shown to promote inflammation. Recent investigations conferred midkine an important function in vascular remodeling and growth. In this review, we introduce the midkine gene and protein along with its cognate receptors, and highlight its role in inflammation and the vascular system with special emphasis on arteriogenesis, particularly focusing on shear stress-mediated vascular cell proliferation and vasodilatation.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Medizinische Klinik und Poliklinik I, Klinikum der Universität, LMU Munich, 81377 Munich, Germany.
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany.
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35390 Giessen, Germany.
| | - Elisabeth Deindl
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
15
|
Inhibition of Midkine Suppresses Prostate Cancer CD133 + Stem Cell Growth and Migration. Am J Med Sci 2017; 354:299-309. [DOI: 10.1016/j.amjms.2017.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022]
|
16
|
The natural flavonoid apigenin sensitizes human CD44 + prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother 2017; 88:210-217. [DOI: 10.1016/j.biopha.2017.01.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 11/21/2022] Open
|
17
|
Jia Q, Meng Z, Xu K, He X, Tan J, Zhang G, Li X, Liu N, Hu T, Zhou P, Wang S, Upadhyaya A, Liu X, Wang H, Zhang C. Serum midkine as a surrogate biomarker for metastatic prediction in differentiated thyroid cancer patients with positive thyroglobulin antibody. Sci Rep 2017; 7:43516. [PMID: 28240744 PMCID: PMC5378906 DOI: 10.1038/srep43516] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/26/2017] [Indexed: 02/08/2023] Open
Abstract
Serum thyroglobulin (Tg) is the main post-operative tumor biomarker for patients with differentiated thyroid cancer (DTC). However, the presence of thyroglobulin antibodies (TgAb) can interfere with Tg level and invalidate the test. In this study, we aimed to investigate the predicative value of midkine (MK) as a cancer biomarker for DTC patients with positive TgAb before the first 131I therapy. MK levels were measured by enzyme-linked immunosorbent assay in 151 recruited DTC patients after exercising strict inclusion and exclusion criteria. There were 28 TgAb positive DTC patients with metastases and 123 DTC patients without metastases. The value of pre-131I-ablative MK to predict metastasis was assessed by receiver operating characteristic (ROC) curves in these two groups of patients. MK levels in the TgAb positive DTC patients were significantly higher than the DTC patients without metastases. ROC showed good predictability of MK, with an area under the curve of 0.856 (P < 0.001), and a diagnostic accuracy of 83% at the optimal cut-off value of 550 pg/ml. In conclusion, we show that MK can potentially be used as a surrogate biomarker for predicting DTC metastases when Tg is not suitable due to TgAb positivity.
Collapse
Affiliation(s)
- Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Ke Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Micro-environment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Guizhi Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xue Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Na Liu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Tianpeng Hu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Pingping Zhou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Sen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Arun Upadhyaya
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Xiaoxia Liu
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Huiying Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chunmei Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| |
Collapse
|
18
|
Şalaru DL, Arsenescu-Georgescu C, Chatzikyrkou C, Karagiannis J, Fischer A, Mertens PR. Midkine, a heparin-binding growth factor, and its roles in atherogenesis and inflammatory kidney diseases. Nephrol Dial Transplant 2016; 31:1781-1787. [DOI: 10.1093/ndt/gfw083] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/04/2016] [Indexed: 01/07/2023] Open
|
19
|
Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, Soderblom E, Thompson JW, Mayer-Salman M, Himburg HA, Moylan CA, Guy CD, Garman KS, Premont RT, Chute JP, Diehl AM. Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut 2016; 65:683-92. [PMID: 25596181 PMCID: PMC4504836 DOI: 10.1136/gutjnl-2014-308176] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The ductular reaction (DR) involves mobilisation of reactive-appearing duct-like cells (RDC) along canals of Hering, and myofibroblastic (MF) differentiation of hepatic stellate cells (HSC) in the space of Disse. Perivascular cells in stem cell niches produce pleiotrophin (PTN) to inactivate the PTN receptor, protein tyrosine phosphatase receptor zeta-1 (PTPRZ1), thereby augmenting phosphoprotein-dependent signalling. We hypothesised that the DR is regulated by PTN/PTPRZ1 signalling. DESIGN PTN-GFP, PTN-knockout (KO), PTPRZ1-KO, and wild type (WT) mice were examined before and after bile duct ligation (BDL) for PTN, PTPRZ1 and the DR. RDC and HSC from WT, PTN-KO, and PTPRZ1-KO mice were also treated with PTN to determine effects on downstream signaling phosphoproteins, gene expression, growth, and migration. Liver biopsies from patients with DRs were also interrogated. RESULTS Although quiescent HSC and RDC lines expressed PTN and PTPRZ1 mRNAs, neither PTN nor PTPRZ1 protein was demonstrated in healthy liver. BDL induced PTN in MF-HSC and increased PTPRZ1 in MF-HSC and RDC. In WT mice, BDL triggered a DR characterised by periportal accumulation of collagen, RDC and MF-HSC. All aspects of this DR were increased in PTN-KO mice and suppressed in PTPRZ1-KO mice. In vitro studies revealed PTN-dependent accumulation of phosphoproteins that control cell-cell adhesion and migration, with resultant inhibition of cell migration. PTPRZ1-positive cells were prominent in the DRs of patients with ductal plate defects and adult cholestatic diseases. CONCLUSIONS PTN, and its receptor, PTPRZ1, regulate the DR to liver injury by controlling the migration of resident cells in adult liver progenitor niches.
Collapse
Affiliation(s)
| | - Anikia Tucker
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | | | | | - Steve S Choi
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Leandi Kruger
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - Erik Soderblom
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | - J Will Thompson
- Proteomics Center, Duke University, Durham, North Carolina, USA
| | | | - Heather A Himburg
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Cynthia A Moylan
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Cynthia D Guy
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Katherine S Garman
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA Section of Gastroenterology, Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Richard T Premont
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| | - John P Chute
- Division of Hematology and Oncology, UCLA, Los Angeles, California, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
20
|
Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area. Mol Neurobiol 2016; 54:495-510. [DOI: 10.1007/s12035-015-9631-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/15/2015] [Indexed: 01/04/2023]
|
21
|
Çetin Sorkun H, Akbulut M, Enli Y, Tepeli E, Özkan S, Erdem E. Quantitative comparison of immunohistochemical and PCR analysis of midkine expression in breast cancer types and serum midkine level. Turk J Med Sci 2016; 46:219-27. [PMID: 27511357 DOI: 10.3906/sag-1411-158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/07/2015] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM Midkine (MK), a heparin-binding growth factor, has an important role in cancer progression. The aim of this study was to determine MK expression in breast tissue and the preoperative and postoperative serum levels of patients with breast cancer. MATERIALS AND METHODS Sixty-one patients with breast cancer participated in our study. The MK serum levels were measured pre- and postoperatively for these patients. We also analyzed breast tissues of the 61 patients immunohistochemically. We examined serum midkine levels in 49 healthy volunteers. RESULTS MK expression was observed in 44 (72.1%) of 61 breast cancer patients. In breast cancer patients the serum MK levels (3.68 ± 2.13 ng/mL (mean ± SD)) were significantly higher than in the control group (1.77 ± 0.38 ng/mL) before tumor removal (P = 0.000). After tumor removal, serum MK levels (2.47 ± 1.00 ng/mL) were significantly (P = 0.000) decreased according to preoperative levels. Increased serum levels of MK were related with tumor stages when clinical parameters were analyzed. CONCLUSION We found that increased serum MK levels and protein expressions were associated with the carcinogenesis of breast cancer. MK levels decreased after tumor removal. According to our findings, MK might be a useful tumor marker for patients with breast cancer.
Collapse
Affiliation(s)
- Hülya Çetin Sorkun
- Denizli Health Services Vocational School, Pamukkale University, Denizli, Turkey
| | - Metin Akbulut
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Yaşar Enli
- Department of Biochemistry, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Emre Tepeli
- Department of Medical Biology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Sevgi Özkan
- School of Health, Pamukkale University, Denizli, Turkey
| | - Ergün Erdem
- Department of General Surgery, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
22
|
Serinkan Cinemre FB, Cinemre H, Karacaer C, Aydemir B, Nalbant A, Kaya T, Tamer A. Midkine in vitamin D deficiency and its association with anti-Saccharomyces cerevisiae antibodies. Inflamm Res 2015; 65:143-50. [PMID: 26566633 DOI: 10.1007/s00011-015-0898-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES AND DESIGN The growth factor midkine (MK) is a protein that is involved in cancer, inflammation, immunity. Vitamin D is a potent immunomodulator. Anti-Saccharomyces cerevisiae antibody (ASCA) is reported in autoimmune disorders, some of which are among the causes of vitamin D deficiency. The objective of this study was to investigate a possible association of MK and ASCA with vitamin D deficiency. MATERIALS AND METHODS 208 adults presented to internal medicine outpatient clinic for history and physical examination has been studied. Serum biochemistry, vitamin D, MK, ASCA-IgG and -IgA, IL-1β, IL-6, IL-8, TNF-α, PDGF, VEGF were obtained. RESULTS Vitamin D deficiency was 74.2%. Serum MK level was significantly higher in vitamin D-deficient compared to vitamin D-sufficient individuals (1138.1 ± 262.8 vs 958.6 ± 189 pg/mL, respectively; P < 0.009). Serum MK levels were also significantly higher in both ASCA-IgG and -IgA positives compared to negatives (1318.5 ± 160.3 vs 1065.5 ± 256.1, P = 0.008 and 1347.7 ± 229.7 vs 1070.1 ± 250.9 pg/mL, P = 0.011, respectively). Vitamin D was significantly lower in ASCA positives (P = 0.044).Vitamin D showed positive correlation with IL-1β (r 0.338, P < 0.009) and negative correlation with VEGF (r -0.366, P < 0.004). CONCLUSIONS MK was significantly elevated in vitamin D deficiency and associated with ASCA positivity which was significantly increased in vitamin D deficiency. These findings suggested that molecular mechanism of vitamin D deficiency may be related with some inflammatory processes.
Collapse
Affiliation(s)
- F B Serinkan Cinemre
- Department of Biochemistry, Sakarya Üniversitesi Tıp Fakültesi Dekanlığı, Sakarya University School of Medicine, Korucuk Kampüsü, Konuralp Bulvarı No:81/1, 54187, Sakarya, Turkey.
| | - Hakan Cinemre
- Department of Internal Medicine, Sakarya University School of Medicine, Sakarya, Turkey
| | - Cengiz Karacaer
- Department of Internal Medicine, Sakarya University School of Medicine, Sakarya, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Sakarya University School of Medicine, Sakarya, Turkey
| | - Ahmet Nalbant
- Department of Internal Medicine, Sakarya University School of Medicine, Sakarya, Turkey
| | - Tezcan Kaya
- Department of Internal Medicine, Sakarya University School of Medicine, Sakarya, Turkey
| | - Ali Tamer
- Department of Internal Medicine, Sakarya University School of Medicine, Sakarya, Turkey
| |
Collapse
|
23
|
Gao J, Wang H, Li J, Jia S, Han W, Yu Y. Eukaryotic Expression and Purification of Native Form of Mouse Midkine from Pichia pastoris. Appl Biochem Biotechnol 2015; 178:490-503. [PMID: 26498023 DOI: 10.1007/s12010-015-1889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
To confirm the treating effectiveness of midkine as an articular protective agent, mouse midkine (mMK) was produced for the pre-clinic long-term studies in mice. The protein was expressed under the control of the AOX1 gene promoter in Pichia pastoris, X-33 strain, and secreted into fermentation broth through high-density fermentation. Approximately 380 mg mMK, containing authentic and truncated forms, was secreted into 1 liter induction medium and 280 mg mMK was obtained after one-step purification on a 50 ml SP Sepharose Fast Flow column. The purified protein was characterized and identified to be the mature, authentic form of mMK. N-terminal five amino acid sequence was determined to be K-K-K-E-K. SDS-PAGE analysis indicated that the molecular weight of the product was about 13 KDa. The purity of the purified rmMK protein was determined to be 99% by high performance liquid chromatography. The biological activity of final product was verified via migration assay on osteoblast-like UMR-106 cells.
Collapse
Affiliation(s)
- Jin Gao
- School of Pharmacy, Shanghai Jiao Tong University, Room 6214, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Haixia Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Room 3409, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jingjing Li
- School of Pharmacy, Shanghai Jiao Tong University, Room 6214, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Shixiang Jia
- General regeneratives Limited, Shanghai, 200203, People's Republic of China
| | - Wei Han
- School of Pharmacy, Shanghai Jiao Tong University, Room 6214, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Yan Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Room 3409, 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
24
|
García-Pérez D, Laorden ML, Milanés MV. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol 2015; 19:pyv077. [PMID: 26164717 PMCID: PMC4772269 DOI: 10.1093/ijnp/pyv077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Most classes of addictive substances alter the function and structural plasticity of the brain reward circuitry. Midkine (MK) and pleiotrophin (PTN) are growth/differentiation cytokines which, similarly to neurotrophins, play an important role in repair, neurite outgrowth, and cell differentiation. PTN or MK signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), leads to the activation of extracellular signal-regulated kinases and thymoma viral proto-oncogene. This activation induces morphological changes and modulates addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. METHODS In the present work we studied the effect of acute morphine administration, chronic morphine administration, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the nucleus accumbens. RESULTS Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were up-regulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminoceptive neurons expressed RPTPβ/ζ. CONCLUSIONS All these observations suggest that the neurotrophic and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by cytokines.
Collapse
Affiliation(s)
- Daniel García-Pérez
- Group of Cellular and Molecular Pharmacology, University of Murcia, Campus de Espinardo, Murcia, Spain (Mr García-Pérez, Drs Laorden, and Milanés); IMIB, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain (Mr García-Pérez, Drs Laorden, and Milanés).
| | | | | |
Collapse
|
25
|
Li F, Tian P, Zhang J, Kou C. The clinical and prognostic significance of midkine in breast cancer patients. Tumour Biol 2015; 36:9789-94. [PMID: 26159850 DOI: 10.1007/s13277-015-3710-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/23/2015] [Indexed: 02/03/2023] Open
Abstract
Midkine overexpression has been shown to be a tumor biomarker in several types of human cancer, but little is known about the clinical significance of midkine in breast cancer patients. The aim of this study was to analyze the expression of midkine in breast cancer and its correlation with clinicopathological characteristics, including breast cancer patient's survival. The expression status of midkine in breast cancer from Gene Expression Omnibus (GEO accession number: GDS3853) was observed initially. Furthermore, the expression of midkine messenger RNA (mRNA) and protein was examined in breast cancer and normal mammary tissues through real-time PCR and immunohistochemistry. Moreover, the relationship of midkine protein expression with clinical characteristics of 170 breast cancer patients was analyzed by immunohistochemistry. In our results, midkine was up-expressed in breast cancer tissues compared with normal mammary tissues in microarray data (GDS3853). Midkine mRNA and protein expression was significantly increased in breast cancer tissues than in normal mammary tissues. By immunohistochemistry, high levels of midkine protein were positively associated with the status of clinical stage, T classification, N classification, and M classification in breast cancer patients. Furthermore, midkine overexpression was an independent poor prognostic indicator for the survival of patients with breast cancer. In conclusion, overexpression of midkine protein serves as an unfavorable prognostic biomarker in breast cancer patients.
Collapse
Affiliation(s)
- Fuguang Li
- Department of General Surgery, The Central Hospital of Ankang City, Ankang, Shanxi, 725000, China
| | - Peijun Tian
- Department of Hematology, The Central Hospital of Ankang City, Ankang, Shanxi, 725000, China
| | - Jun Zhang
- Department of General Surgery, The Central Hospital of Ankang City, Ankang, Shanxi, 725000, China
| | - Changyuan Kou
- Department of Oncology, The Central Hospital of Ankang City, Ankang, Shanxi, 725000, China.
| |
Collapse
|
26
|
Gao J, Wang H. Prokaryotic Expression, Refolding and Purification of High-Purity Mouse Midkine in Escherichia coli. Appl Biochem Biotechnol 2015; 176:454-66. [PMID: 25813669 DOI: 10.1007/s12010-015-1587-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/12/2015] [Indexed: 11/26/2022]
Abstract
To evaluate the clinic safety of human Midkine as an articular protective agent, recombinant mouse Midkine (rmMK) was prepared in prokaryotic system for the pre-clinic long-term studies in mice. The open reading frame of mouse Midkine (mMK) was sub-cloned onto expression vector pET30a (+) and transformed into Escherichia coli BL21 (DE3) strain line. The rmMK protein, with a Met fused at N terminus of native mMK for expression initiating, proved to be expressed in inclusion bodies and turned out to be soluble post-denaturation and renaturation. The soluble rmMK was purified successfully with ion exchange and affinity chromatography and characterised good enough to meet the requirements for animal use. Eventually, 13.2-mg rmMK with high quality and bioactivity was obtained from 1 L LB culture, and the total recovery was 11.4%. The present work laid a good foundation for pilot- or large-scale production of rmMK in prokaryotic system.
Collapse
Affiliation(s)
- Jin Gao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | |
Collapse
|
27
|
Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5. PLoS One 2015; 10:e0119361. [PMID: 25742295 PMCID: PMC4351203 DOI: 10.1371/journal.pone.0119361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptor kinase-interactor 1 (Git1) is involved in cell motility control by serving as an adaptor that links signaling proteins such as Pix and PAK to focal adhesion proteins. We previously demonstrated that Git1 was a multiply tyrosine-phosphorylated protein, its primary phosphorylation site was Tyr-554 in the vicinity of the focal adhesion targeting-homology (FAH) domain, and this site was selectively dephosphorylated by protein tyrosine phosphatase receptor type Z (Ptprz). In the present study, we showed that Tyr-554 phosphorylation reduced the association of Git1 with the FAH-domain-binding proteins, paxillin and Hic-5, based on immunoprecipitation experiments using the Tyr-554 mutants of Git1. The Tyr-554 phosphorylation of Git1 was higher, and its binding to paxillin was consistently lower in the brains of Ptprz-deficient mice than in those of wild-type mice. We then investigated the role of Tyr-554 phosphorylation in cell motility control using three different methods: random cell motility, wound healing, and Boyden chamber assays. The shRNA-mediated knockdown of endogenous Git1 impaired cell motility in A7r5 smooth muscle cells. The motility defect was rescued by the exogenous expression of wild-type Git1 and a Git1 mutant, which only retained Tyr-554 among the multiple potential tyrosine phosphorylation sites, but not by the Tyr-554 phosphorylation-defective or phosphorylation-state mimic Git1 mutant. Our results suggested that cyclic phosphorylation-dephosphorylation at Tyr-554 of Git1 was crucial for dynamic interactions between Git1 and paxillin/Hic-5 in order to ensure coordinated cell motility.
Collapse
|
28
|
Kadomatsu K, Bencsik P, Görbe A, Csonka C, Sakamoto K, Kishida S, Ferdinandy P. Therapeutic potential of midkine in cardiovascular disease. Br J Pharmacol 2014; 171:936-44. [PMID: 24286213 DOI: 10.1111/bph.12537] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Ischaemic heart disease, stroke and their pathological consequences are life-threatening conditions that account for about half of deaths in developed countries. Pathology of these diseases includes cell death due to ischaemia/reperfusion injury, vascular stenosis and cardiac remodelling. The growth factor midkine plays a pivotal role in these events. Midkine shows an acute cytoprotective effect in ischaemia/reperfusion injury at least in part via its anti-apoptotic effect. Moreover, while midkine promotes endothelial cell proliferation, it also recruits inflammatory cells to lesions. These activities eventually enhance angiogenesis, thereby preventing cardiac tissue remodelling. However, midkine's activity in recruiting inflammatory cells into the vascular wall also triggers neointima formation, and consequently, vascular stenosis. Moreover, midkine is induced in cancer tissues where it enhances angiogenesis. Therefore, midkine may promote tumour formation through its angiogenic and anti-apoptotic activity. This review focuses on the roles of midkine in ischaemic cardiovascular disease and their pathological consequences, that is angiogenesis, vascular stenosis, and cardiac remodelling, and discusses the possible therapeutic potential of modulation of midkine in these diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Deng C, Qian J, Zhang M, Li X. Improvement of radiotherapy-induced lacrimal gland injury by induced pluripotent stem cell-derived conditioned medium via MDK and inhibition of the p38/JNK pathway. Int J Mol Sci 2014; 15:18407-21. [PMID: 25314301 PMCID: PMC4227222 DOI: 10.3390/ijms151018407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/20/2022] Open
Abstract
Radiation therapy is the most widely used and effective treatment for orbital tumors, but it causes dry eye due to lacrimal gland damage. Induced pluripotent stem cell-derived conditioned medium (iPSC-CM) has been shown to rescue different types of tissue damage. The present study investigated the mechanism of the potential radioprotective effect of IPS cell-derived conditioned medium (iPSC-CM) on gamma-irradiation-induced lacrimal gland injury (RILI) in experimental mice. In this study, we found that iPSC-CM ameliorated RILI. iPSC-CM markedly decreased radiotherapy induced inflammatory processes, predominantly through suppressing p38/JNK signaling. Further signaling pathway analyses indicated that iPSC-CM could suppress Akt (Protein Kinase B, PKB) phosphorylation. High levels of midkine (MDK) were also found in iPSC-CM and could be involved in lacrimal gland regeneration by promoting cell migration and proliferation. Thus, our study indicates that inhibiting the p38/JNK pathway or increasing the MDK level might be a therapeutic target for radiation-induced lacrimal gland injury.
Collapse
Affiliation(s)
- Yanqing Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| | - Chenliang Deng
- Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200031, China.
| | - Jiang Qian
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| | - Mingui Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| | - Xiaofeng Li
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.
| |
Collapse
|
30
|
Pantazaka E, Papadimitriou E. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochim Biophys Acta Gen Subj 2014; 1840:2643-50. [DOI: 10.1016/j.bbagen.2014.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/18/2022]
|
31
|
Liedert A, Schinke T, Ignatius A, Amling M. The role of midkine in skeletal remodelling. Br J Pharmacol 2014; 171:870-8. [PMID: 24102259 PMCID: PMC3925025 DOI: 10.1111/bph.12412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/02/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Bone tissue is subjected to continuous remodelling, replacing old or damaged bone throughout life. In bone remodelling, the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts ensure the maintenance of bone mass and strength. In early life, the balance of these cellular activities is tightly regulated by various factors, including systemic hormones, the mechanical environment and locally released growth factors. Age-related changes in the activity of these factors in bone remodelling can result in diseases with low bone mass, such as osteoporosis. Osteoporosis is a systemic and age-related skeletal disease characterized by low bone mass and structural degeneration of bone tissue, predisposing the patient to an increased fracture risk. The growth factor midkine (Mdk) plays a key role in bone remodelling and it is expressed during bone formation and fracture repair. Using a mouse deficient in Mdk, our group have identified this protein as a negative regulator of bone formation and mechanically induced bone remodelling. Thus, specific Mdk antagonists might represent a therapeutic option for diseases characterized by low bone mass, such as osteoporosis. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- A Liedert
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | | | | | | |
Collapse
|
32
|
Muramatsu T. Structure and function of midkine as the basis of its pharmacological effects. Br J Pharmacol 2014; 171:814-26. [PMID: 23992440 PMCID: PMC3925020 DOI: 10.1111/bph.12353] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/31/2013] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Midkine (MK) is a heparin-binding growth factor or cytokine and forms a small protein family, the other member of which is pleiotrophin. MK enhances survival, migration, cytokine expression, differentiation and other activities of target cells. MK is involved in various physiological processes, such as development, reproduction and repair, and also plays important roles in the pathogenesis of inflammatory and malignant diseases. MK is largely composed of two domains, namely a more N-terminally located N-domain and a more C-terminally located C-domain. Both domains are basically composed of three antiparallel β-sheets. In addition, there are short tails in the N-terminal and C-terminal sides and a hinge connecting the two domains. Several membrane proteins have been identified as MK receptors: receptor protein tyrosine phosphatase Z1 (PTPζ), low-density lipoprotein receptor-related protein, integrins, neuroglycan C, anaplastic lymphoma kinase and Notch-2. Among them, the most established one is PTPζ. It is a transmembrane tyrosine phophatase with chondroitin sulfate, which is essential for high-affinity binding with MK. PI3K and MAPK play important roles in the downstream signalling system of MK, while transcription factors affected by MK signalling include NF-κB, Hes-1 and STATs. Because of the involvement of MK in various physiological and pathological processes, MK itself as well as pharmaceuticals targeting MK and its signalling system are expected to be valuable for the treatment of numerous diseases. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
- T Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasakicho, Nisshinn, Aichi, 470-0195, Japan. ,
| |
Collapse
|
33
|
Ikeda S, Yamada M. Midkine and cytoplasmic maturation of mammalian oocytes in the context of ovarian follicle physiology. Br J Pharmacol 2014; 171:827-36. [PMID: 23889362 PMCID: PMC3925021 DOI: 10.1111/bph.12311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Midkine (MK) was originally characterized as a member of a distinct family of neurotrophic factors functioning in the CNS. However, it was later discovered that MK is abundantly expressed in ovarian follicles. Since then, the physiological roles of this molecule in the ovary have been steadily investigated. During the in vitro maturation (IVM) of oocytes MK was shown to promote the cytoplasmic maturation of oocytes, as indicated by post-fertilization development. This effect of MK could be mediated via its pro-survival (anti-apoptotic) effects on the cumulus-granulosa cells that surround oocytes. The oocyte competence-promoting effects of MK are discussed in the context of the recently discovered involvement of MK in the full maturation of ovarian follicles. MK was at the frontline of a new paradigm for neurotrophic factors as oocytetrophic factors. MK may promote the developmental competence of oocytes via common signalling molecules with the other neurotrophic factor(s). Alternatively or concomitantly, MK may also interact with various transmembrane molecules on cumulus-granulosa cells, which are important for ovarian follicle growth, dominance and differentiation, and act as a unique pro-survival factor in ovarian follicles, such that MK promotes oocyte competence. MK, along with other ovarian neurotrophic factors, may contribute to the optimization of the IVM system. LINKED ARTICLES This article is part of a themed section on Midkine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-4.
Collapse
Affiliation(s)
| | - Masayasu Yamada
- Laboratory of Reproductive Biology Graduate School of Agriculture, Kyoto UniversityKyoto, Japan
| |
Collapse
|
34
|
Midkine overcomes neurite outgrowth inhibition of chondroitin sulfate proteoglycan without glial activation and promotes functional recovery after spinal cord injury. Neurosci Lett 2013; 550:150-5. [PMID: 23811026 DOI: 10.1016/j.neulet.2013.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 02/04/2023]
Abstract
Injuries in the mammalian central nervous system induce a variety of factors which promote or inhibit neuronal axon regeneration/sprouting. However, the inhibitory activities are much stronger, and indeed are the major obstacle to functional recovery. Chondroitin sulfate proteoglycans (CSPGs) are produced by activated glial cells, and are among the strongest inhibitors. Here, we investigated the role of the growth factor midkine (MK), which binds to CSPGs, in neuronal injury. MK expression was induced by spinal cord injury, and was mainly produced by activated astrocytes. A prolonged culture of neurons also produced MK. MK not only enhanced neurite outgrowth on the substratum coated with poly-l-lysine, but also overcame the neurite growth inhibition by the CSPG substratum. Moreover, we found that MK activated neither astrocytes nor microglia as evaluated by morphological changes and cell proliferation or nitric oxide production. These properties would be advantageous for the treatment of neuronal injuries in vivo. Therefore, we next explored the therapeutic effect of MK in a rat spinal cord injury model. MK or vehicle was administered intrathecally for 2 weeks using an osmotic pump after spinal cord contusion injury. Rats treated with MK showed significantly better functional recovery after 5 weeks. These results suggest that MK may offer a potent alternative for the treatment of neuronal injuries without activating glial cells.
Collapse
|
35
|
Nandi S, Cioce M, Yeung YG, Nieves E, Tesfa L, Lin H, Hsu AW, Halenbeck R, Cheng HY, Gokhan S, Mehler MF, Stanley ER. Receptor-type protein-tyrosine phosphatase ζ is a functional receptor for interleukin-34. J Biol Chem 2013; 288:21972-86. [PMID: 23744080 DOI: 10.1074/jbc.m112.442731] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin-34 (IL-34) is highly expressed in brain. IL-34 signaling via its cognate receptor, colony-stimulating factor-1 receptor (CSF-1R), is required for the development of microglia. However, the differential expression of IL-34 and the CSF-1R in brain suggests that IL-34 may signal via an alternate receptor. By IL-34 affinity chromatography of solubilized mouse brain membrane followed by mass spectrometric analysis, we identified receptor-type protein-tyrosine phosphatase ζ (PTP-ζ), a cell surface chondroitin sulfate (CS) proteoglycan, as a novel IL-34 receptor. PTP-ζ is primarily expressed on neural progenitors and glial cells and is highly expressed in human glioblastomas. IL-34 selectively bound PTP-ζ in CSF-1R-deficient U251 human glioblastoma cell lysates and inhibited the proliferation, clonogenicity, and motility of U251 cells in a PTP-ζ-dependent manner. These effects were correlated with an increase in tyrosine phosphorylation of the previously identified PTP-ζ downstream effectors focal adhesion kinase and paxillin. IL-34 binding to U251 cells was abrogated by chondroitinase ABC treatment, and CS competed with IL-34 for binding to the extracellular domain of PTP-ζ and to the cells, indicating a dependence of binding on PTP-ζ CS moieties. This study identifies an alternate receptor for IL-34 that may mediate its action on novel cellular targets.
Collapse
Affiliation(s)
- Sayan Nandi
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nordin A, Wang W, Welén K, Damber JE. Midkine is associated with neuroendocrine differentiation in castration-resistant prostate cancer. Prostate 2013; 73:657-67. [PMID: 23129424 DOI: 10.1002/pros.22607] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is an incurable disease and both androgen-deprivation therapy (ADT) and neuroendocrine differentiation (NED) are closely related to CRPC transition. More knowledge concerning neuroendocrine (NE)-transformed PC cells, the NED process and its association with CRPC, is needed. Expression of growth factor midkine (MDK) is correlated with poor clinical outcomes in various human cancers, including PC. In the present study, we have evaluated MDK expression and NED in two separate tumor groups: early and advanced PC. METHODS Immunohistochemical analysis of MDK, the neuronal marker tubulin-beta III (TUBB3) and the NE-marker chromogranin A (CGA) in a human archival material consisting of hormone naive (HN)/stage T1b (n = 29) and CRPC (n = 24) tumors. Triple immunofluorescent imaging was performed on a selection of specimens. RESULTS MDK, TUBB3, and CGA were upregulated in CRPC compared to HN tumors. MDK was highly associated to the expression of both CGA and TUBB3, and identified MDK-positive NE-like looking cells found to co-express CGA or, more commonly, CGA together with TUBB3. CGA and TUBB3 staining displayed a partial expression overlap, an overlap almost exclusively displaying also MDK expression. CONCLUSIONS MDK upregulation in CRPC is associated with NED (shown by its relation to CGA and TUBB3). The results suggest that MDK represents an over-bridging marker between different populations of NE-like tumor cells, possibly as part of the NED process and associated CRPC transition, something that needs to be evaluated experimentally as does the applicability of MDK as a future target.
Collapse
Affiliation(s)
- Anna Nordin
- Department of Urology, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | | | | |
Collapse
|
37
|
Kadomatsu K, Kishida S, Tsubota S. The heparin-binding growth factor midkine: the biological activities and candidate receptors. J Biochem 2013; 153:511-21. [PMID: 23625998 DOI: 10.1093/jb/mvt035] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heparin-binding growth factor midkine (MK) comprises a family with pleiotrophin/heparin-binding growth-associated molecule. The biological phenomena in which MK is involved can be categorized into five areas: (i) cancer, (ii) inflammation/immunity, (iii) blood pressure, (iv) development and (v) tissue protection. The phenotypes are clear in vivo, but the mechanisms by which MK exerts these actions are not fully understood. Candidate receptors for MK include anaplastic lymphoma kinase, protein tyrosine phosphatase ζ, Notch2, LDL receptor-related protein 1, integrins and proteoglycans. Some physical associations between these candidate receptors are also known. Because of the striking in vivo phenotypes after manipulation of MK, MK could be an important molecular target for the treatment of various diseases. To this end, it will be important to pursue studies to fully understand the mechanisms of MK action.
Collapse
Affiliation(s)
- Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | |
Collapse
|
38
|
Monocyte Migration Driven by Galectin-3 Occurs through Distinct Mechanisms Involving Selective Interactions with the Extracellular Matrix. ISRN INFLAMMATION 2013; 2013:259256. [PMID: 24049657 PMCID: PMC3767352 DOI: 10.1155/2013/259256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/28/2013] [Indexed: 12/18/2022]
Abstract
Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin.
Collapse
|
39
|
Wellstein A. ALK receptor activation, ligands and therapeutic targeting in glioblastoma and in other cancers. Front Oncol 2012; 2:192. [PMID: 23267434 PMCID: PMC3525999 DOI: 10.3389/fonc.2012.00192] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 11/27/2012] [Indexed: 11/13/2022] Open
Abstract
The intracellular anaplastic lymphoma kinase (ALK) fragment shows striking homology with members of the insulin receptor family and was initially identified as an oncogenic fusion protein resulting from a translocation in lymphoma and more recently in a range of cancers. The full-length ALK transmembrane receptor of ~220 kDa was identified based on this initial work. This tyrosine kinase receptor and its ligands, the growth factors pleiotrophin (PTN) and midkine (MK) are highly expressed during development of the nervous system and other organs. Each of these genes has been implicated in malignant progression of different tumor types and shown to alter phenotypes as well as signal transduction in cultured normal and tumor cells. Beyond its role in cancer, the ALK receptor pathway is thought to contribute to nervous system development, function, and repair, as well as metabolic homeostasis and the maintenance of tissue regeneration. ALK receptor activity in cancer can be up-regulated by amplification, overexpression, ligand binding, mutations in the intracellular domain of the receptor and by activity of the receptor tyrosine phosphatase PTPRz. Here we discuss the evidence for ligand control of ALK activity as well as the potential prognostic and therapeutic implications from gene expression and functional studies. An analysis of 18 published gene expression data sets from different cancers shows that overexpression of ALK, its smaller homolog LTK (leukocyte tyrosine kinase) and the ligands PTN and MK in cancer tissues from patients correlate significantly with worse course and outcome of the disease. This observation together with preclinical functional studies suggests that this pathway could be a valid therapeutic target for which complementary targeting strategies with small molecule kinase inhibitors as well as antibodies to ligands or the receptors may be used.
Collapse
Affiliation(s)
- Anton Wellstein
- Lombardi Cancer Center, Georgetown UniversityWashington, DC, USA
| |
Collapse
|
40
|
Abstract
Midkine (MK) is a heparin-binding growth factor involved in various cellular processes such as cellular proliferation, survival, and migration. In addition to these typical growth factor activities, MK exhibits several other activities related to fibrinolysis, blood pressure, host defense and other processes. Many cell-surface receptors have been identified to account for the multiple biological activities of MK. The expression of MK is frequently upregulated in many types of human carcinoma. Moreover, blood MK levels are closely correlated with patient outcome. Knockdown and blockade of MK suppress tumorigenesis and tumor development. Thus, MK serves as a tumor marker and a molecular target for cancer therapy. Furthermore, there is growing evidence that MK plays pivotal roles in neural and inflammatory diseases. Understanding of the mechanisms of action of MK is expected to create new therapeutic options for several human diseases.
Collapse
Affiliation(s)
- Kazuma Sakamoto
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
41
|
Weckbach LT, Muramatsu T, Walzog B. Midkine in inflammation. ScientificWorldJournal 2011; 11:2491-505. [PMID: 22235180 PMCID: PMC3253530 DOI: 10.1100/2011/517152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/07/2011] [Indexed: 01/06/2023] Open
Abstract
The 13 kDa heparin-binding growth factor midkine (MK) was originally identified as a molecule involved in the orchestration of embryonic development. Recent studies provided evidence for a new role of MK in acute and chronic inflammatory processes. Accordingly, several inflammatory diseases including nephritis, arthritis, atherosclerosis, colitis, and autoimmune encephalitis have been shown to be alleviated in the absence of MK in animal models. Reduced leukocyte recruitment to the sites of inflammation was found to be one important mechanism attenuating chronic inflammation when MK was absent. Furthermore, MK was found to modulate expression of proinflammatory cytokines and the expansion of regulatory T-cells. Here, we review the current understanding of the role of MK in different inflammatory disorders and summarize the knowledge of MK biology.
Collapse
Affiliation(s)
- Ludwig T Weckbach
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, 80336 Munich, Germany
| | | | | |
Collapse
|
42
|
Colombo C, Creighton CJ, Ghadimi MP, Bolshakov S, Warneke CL, Zhang Y, Lusby K, Zhu S, Lazar AJ, West RB, van de Rijn M, Lev D. Increased midkine expression correlates with desmoid tumour recurrence: a potential biomarker and therapeutic target. J Pathol 2011; 225:574-82. [PMID: 21826666 DOI: 10.1002/path.2951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/17/2011] [Accepted: 06/05/2011] [Indexed: 12/18/2022]
Abstract
Desmoid tumours (DTs) are soft tissue monoclonal neoplasms exhibiting a unique phenotype, consisting of aggressive local invasiveness without metastatic capacity. While DTs can infrequently occur as part of familial adenomatosis polyposis, most cases arise sporadically. Sporadic DTs harbour a high prevalence of CTNNB1 mutations and hence increased β-catenin signalling. However, β-catenin downstream transcriptional targets and other molecular deregulations operative in DT inception and progression are currently not well defined, contributing to the lack of sensitive molecular prognosticators and efficacious targeted therapeutic strategies. We compared the gene expression profiles of 14 sporadic DTs to those of five corresponding normal tissues and six solitary fibrous tumour specimens. A DT expression signature consisting of 636 up- and 119 down-regulated genes highly enriched for extracellular matrix, cell adhesion and wound healing-related proteins was generated. Furthermore, 98 (15%) of the over-expressed genes were demonstrated to contain a TCF/LEF consensus binding site in their promoters, possibly heralding direct β-catenin downstream targets relevant to DT. The protein products of three of the up-regulated DT genes: ADAM12, MMP2 and midkine, were found to be commonly expressed in a large cohort of human DT samples assembled on a tissue microarray. Interestingly, enhanced midkine expression significantly correlated with a higher propensity and decreased time for primary DT recurrence (log-rank p = 0.0025). Finally, midkine was found to enhance the migration and invasion of primary DT cell cultures. Taken together, these studies provide insights into potential DT molecular aberrations and novel β-catenin transcriptional targets. Further studies to confirm the utility of midkine as a clinical DT molecular prognosticator and a potential therapeutic target are therefore warranted. Raw gene array data can be found at: http://smd.stanford.edu/
Collapse
Affiliation(s)
- Chiara Colombo
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center (MDACC), Houston, TX 77054, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hatori K, Takeichi O, Ogiso B, Maeno M, Komiyama K. Midkine expression in human periapical granulomas. J Endod 2011; 37:781-5. [PMID: 21787488 DOI: 10.1016/j.joen.2011.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/18/2011] [Accepted: 03/18/2011] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The expression of midkine (MK), a heparin-binding growth factor, is increased in various human tumors, making it a promising tumor marker and target for tumor therapy. MK is also related to the regulation of the development and etiology of chronic or autoimmune diseases; however, the involvement of MK in apical periodontitis has never been examined. This study compared the localization of MK-expressing cells and MK messenger RNA expression in periapical granulomas with healthy gingival tissues. METHODS Periapical lesions were removed surgically from chronic apical periodontitis patients, and serial tissue sections were stained with hematoxylin-eosin. The lesions diagnosed as periapical granulomas pathologically were examined by immunohistochemistry using human MK monoclonal antibodies. MK messenger RNA expression was also detected using real-time polymerase chain reaction analysis. Healthy gingival tissues were analyzed in the same manner. RESULTS MK was expressed by inflammatory cells, such as macrophages, lymphocytes, and neutrophils, as well as by endothelial cells in periapical granulomas but not in healthy gingival tissues. The MK-expressing inflammatory cells were seen adjacent to blood vessels, which contained MK-expressing endothelial cells, suggesting the interaction of MK among these cells during the process of inflammatory cell infiltration. Quantitative analysis of MK messenger RNA expression revealed that periapical granulomas expressed significantly more MK than healthy gingival tissues. CONCLUSIONS These findings suggest that MK is involved in the pathogenesis of periapical granulomas.
Collapse
Affiliation(s)
- Keisuke Hatori
- Nihon University Graduate School of Dentistry, Nihon, Japan
| | | | | | | | | |
Collapse
|
44
|
Ikesue M, Matsui Y, Ohta D, Danzaki K, Ito K, Kanayama M, Kurotaki D, Morimoto J, Kojima T, Tsutsui H, Uede T. Syndecan-4 Deficiency Limits Neointimal Formation After Vascular Injury by Regulating Vascular Smooth Muscle Cell Proliferation and Vascular Progenitor Cell Mobilization. Arterioscler Thromb Vasc Biol 2011; 31:1066-74. [DOI: 10.1161/atvbaha.110.217703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Syndecan-4 (Syn4) is a heparan sulfate proteoglycan and works as a coreceptor for various growth factors. We examined whether Syn4 could be involved in the development of neointimal formation in vivo.
Methods and Results—
Wild-type (WT) and Syn4-deficient (Syn4
−/−
) mice were subjected to wire-induced femoral artery injury.
Syn4
mRNA was upregulated after vascular injury in WT mice. Neointimal formation was attenuated in Syn4
−/−
mice, concomitantly with the reduction of Ki67-positive vascular smooth muscle cells (VSMCs). Basic-fibroblast growth factor– or platelet-derived growth factor-BB–induced proliferation, extracellular signal-regulated kinase activation, and expression of cyclin D1 and Bcl-2 were impaired in VSMCs from Syn4
−/−
mice. To examine the role of Syn4 in bone marrow (BM)–derived vascular progenitor cells (VPCs) and vascular walls, we generated chimeric mice by replacing the BM cells of WT and Syn4
−/−
mice with those of WT or Syn4
−/−
mice. Syn4 expressed by both vascular walls and VPCs contributed to the neointimal formation after vascular injury. Although the numbers of VPCs were compatible between WT and Syn4
−/−
mice, mobilization of VPCs from BM after vascular injury was defective in Syn4
−/−
mice.
Conclusion—
Syn4 deficiency limits neointimal formation after vascular injury by regulating VSMC proliferation and VPC mobilization. Therefore, Syn4 may be a novel therapeutic target for preventing arterial restenosis after angioplasty.
Collapse
Affiliation(s)
- Masahiro Ikesue
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Yutaka Matsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daichi Ohta
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Keiko Danzaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Koyu Ito
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Masashi Kanayama
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Daisuke Kurotaki
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Junko Morimoto
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Tetsuhito Kojima
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Hiroyuki Tsutsui
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| | - Toshimitsu Uede
- From the Division of Molecular Immunology (M.I., D.O., K.D., K.I., M.K., J.M., T.U.) and Department of Matrix Medicine (Y.M., D.K., T.U.), Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan; Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan (T.K.); Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan (H.T.)
| |
Collapse
|
45
|
Muramatsu T. Midkine: a promising molecule for drug development to treat diseases of the central nervous system. Curr Pharm Des 2011; 17:410-23. [PMID: 21375488 PMCID: PMC3267162 DOI: 10.2174/138161211795164167] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
Abstract
Midkine (MK) is a heparin-binding cytokine, and promotes growth, survival, migration and other activities of target cells. After describing the general properties of MK, this review focuses on MK and MK inhibitors as therapeutics for diseases in the central nervous system. MK is strongly expressed during embryogenesis especially at the midgestation period, but is expressed only at restricted sites in adults. MK expression is induced upon tissue injury such as ischemic brain damage. Since exogenously administered MK or the gene transfer of MK suppresses neuronal cell death in experimental systems, MK has the potential to treat cerebral infarction. MK might become important also in the treatment of neurodegenerative diseases such as Alzheimer's disease. MK is involved in inflammatory diseases by enhancing migration of leukocytes, inducing chemokine production and suppressing regulatory T cells. Since an aptamer to MK suppresses experimental autoimmune encephalitis, MK inhibitors are promising for the treatment of multiple sclerosis. MK is overexpressed in most malignant tumors including glioblastoma, and is involved in tumor invasion. MK inhibitors may be of value in the treatment of glioblastoma. Furthermore, an oncolytic adenovirus, whose replication is under the control of the MK promoter, inhibits the growth of glioblastoma xenografts. MK inhibitors under development include antibodies, aptamers, glycosaminoglycans, peptides and low molecular weight compounds. siRNA and antisense oligoDNA have proved effective against malignant tumors and inflammatory diseases in experimental systems. Practical information concerning the development of MK and MK inhibitors as therapeutics is described in the final part of the review.
Collapse
Affiliation(s)
- Takashi Muramatsu
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan.
| |
Collapse
|
46
|
Linking L1CAM-mediated signaling to NF-κB activation. Trends Mol Med 2010; 17:178-87. [PMID: 21195665 DOI: 10.1016/j.molmed.2010.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/19/2010] [Accepted: 11/19/2010] [Indexed: 01/13/2023]
Abstract
The cell adhesion molecule L1 (L1CAM) was originally identified as a neural adhesion molecule essential for neurite outgrowth and axon guidance. Many studies have now shown that L1CAM is overexpressed in human carcinomas and associated with poor prognosis. So far, L1CAM-mediated cellular signaling has been largely attributed to an association with growth factor receptors, referred to as L1CAM-'assisted' signaling. New data demonstrate that L1CAM can signal via two additional mechanisms: 'forward' signaling via regulated intramembrane proteolysis and 'reverse' signaling via the activation of the transcription factor nuclear factor (NF)-κB. Taken together, these findings lead to a new understanding of L1CAM downstream signaling that is fundamental for the development of anti-L1CAM antibody-mediated therapeutics in human tumor cells.
Collapse
|
47
|
Tham M, Ramasamy S, Gan HT, Ramachandran A, Poonepalli A, Yu YH, Ahmed S. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS One 2010; 5:e15341. [PMID: 21179491 PMCID: PMC3001889 DOI: 10.1371/journal.pone.0015341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
Understanding how autocrine/paracrine factors regulate neural stem cell (NSC) survival and growth is fundamental to the utilization of these cells for therapeutic applications and as cellular models for the brain. In vitro, NSCs can be propagated along with neural progenitors (NPs) as neurospheres (nsphs). The nsph conditioned medium (nsph-CM) contains cell-secreted factors that can regulate NSC behavior. However, the identity and exact function of these factors within the nsph-CM has remained elusive. We analyzed the nsph-CM by mass spectrometry and identified DSD-1-proteoglycan, a chondroitin sulfate proteoglycan (CSPG), apolipoprotein E (ApoE) and cystatin C as components of the nsph-CM. Using clonal assays we show that CSPG and ApoE are responsible for the ability of the nsph-CM to stimulate nsph formation whereas cystatin C is not involved. Clonal nsphs generated in the presence of CSPG show more than four-fold increase in NSCs. Thus CSPG specifically enhances the survival of NSCs. CSPG also stimulates the survival of embryonic stem cell (ESC)-derived NSCs, and thus may be involved in the developmental transition of ESCs to NSCs. In addition to its role in NSC survival, CSPG maintains the three dimensional structure of nsphs. Lastly, CSPG's effects on NSC survival may be mediated by enhanced signaling via EGFR, JAK/STAT3 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Muly Tham
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Srinivas Ramasamy
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Hui Theng Gan
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Ashray Ramachandran
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Anuradha Poonepalli
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Yuan Hong Yu
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
| | - Sohail Ahmed
- Neural Stem Cell Laboratory, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
48
|
Matsui T, Ichihara-Tanaka K, Lan C, Muramatsu H, Kondou T, Hirose C, Sakuma S, Muramatsu T. Midkine inhibitors: application of a simple assay procedure to screening of inhibitory compounds. Int Arch Med 2010; 3:12. [PMID: 20565917 PMCID: PMC2898662 DOI: 10.1186/1755-7682-3-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/21/2010] [Indexed: 02/04/2023] Open
Abstract
Background Midkine is a heparin-binding cytokine and is involved in etiology of various diseases. Thus, midkine inhibitors are expected to be helpful in treatment of many diseases. Methods We developed a simple assay for midkine activity based on midkine-dependent migration of osteblastic cells. Midkine inhibitors were searched as materials that inhibit this midkine activity. To develop peptides that inhibit midkine activity, we constructed models in which C-terminal half of midkine interacted with α4β1-integrin. Low molecular weight compounds which are expected to bind to midkine with high affinity were searched by in silico screening with the aid of Presto-X2 program. Results Among peptides in putative binding sites of midkine and the integrin, a peptide derived from β1-integrin and that derived from the first β sheet of the C-terminal half of midkine significantly inhibited midkine activity. Two low molecular weight compounds found by in silico screening exhibited no toxicity to target cells, but inhibited midkine activity. They are trifluoro compounds: one (PubChem 4603792) is 2-(2,6-dimethylpiperidin-1-yl)-4-thiophen-2-yl-6-(trifluoromethy)pyrimidine, and the other has a related structure. Conclusions The assay procedure is helpful in screening midkine inhibitors. All reagents described here might become mother material to develop clinically effective midkine inhibitors.
Collapse
Affiliation(s)
- Takashi Matsui
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rice GE, Edgell TA, Autelitano DJ. Evaluation of midkine and anterior gradient 2 in a multimarker panel for the detection of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:62. [PMID: 20525245 PMCID: PMC3161349 DOI: 10.1186/1756-9966-29-62] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/03/2010] [Indexed: 11/10/2022]
Abstract
The aims of this study were: to characterise and compare plasma concentrations of midkine (MDK) in normal healthy women with concentrations observed in women with ovarian cancer; and to establish and compare the performance of MDK with that of anterior gradient 2 protein (AGR2) and CA125 in the development of multi-analyte classification algorithms for ovarian cancer. Median plasma concentrations of immunoreactive MDK, AGR2 and CA125 were significantly greater in the case cohort (909 pg/ml, 765 pg/ml and 502 U/ml, respectively n = 46) than in the control cohort (383 pg/ml, 188 pg/ml and 13 U/ml, respectively n = 61) (p < 0.001). The area under the receiver operator characteristic curve (AUC) for MDK and AGR2 was not significantly different (0.734 ± 0.046 and 0.784 ± 0.049, respectively, mean ± SE) but were both significantly less than the AUC for CA125 (0.934 ± 0.030, p < 0.003). When subjected to stochastic gradient boosted logistic regression modelling, the AUC of the multi-analyte panel (MDK, AGR2 and CA125, 0.988 ± 0.010) was significantly greater than that of CA125 alone (0.934 ± 0.030, p = 0.035). The sensitivity and specificity of the multi-analyte algorithm were 95.2 and 97.7%, respectively. Within the study cohort, CA125 displayed a sensitivity and specificity of 87.0 and 94.6%, respectively. The data obtained in this study confirm that both MDK and AGR2 individually display utility as biomarkers for ovarian cancer and that in a multi-analyte panel significantly improve the diagnostic utility of CA125 in symptomatic women.
Collapse
|
50
|
Abstract
AIM To characterize the expression and function of midkine (MK) in an in vitro embryonic stem cell (ESC) culture system. METHODS To investigate the potential roles of MK, the expression of MK in ESCs was evaluated by RT-PCR and immunocytochemistry. The effects of MK on the self-renewal of ESCs were measured using alkaline phosphatase assays, immunocytochemistry, RT-PCR and colony-forming assays. The mechanism of the growth-promoting effect of MK in mESCs was assessed by cell cycle analysis and Western blot analysis. RESULTS MK is expressed in mouse embryonic stem cells (mESCs), human embryonic stem cells (hESCs) and mouse embryonic fibroblasts (MEFs). MK promotes proliferation and self-renewal of mESCs both in feeder and feeder free culture systems. It also promotes self-renewal and proliferation of hESCs. Further study showed that MK promotes the growth of mESCs by inhibiting apoptosis while accelerating the progression toward the S phase, and enhances mESC self-renewal through PI3K/Akt signaling pathway. CONCLUSION MK plays profound roles in ESCs. MK/PTPzeta signaling pathway is a novel pathway in the signal network maintaining pluripotency of ESCs. The results extend our knowledge on pluripotency control of ESCs and the relationship between ESCs and cancers.
Collapse
|