1
|
Ferreira MM, Farias KS, Zugaib M, Alves AMM, Amaral GV, Santos MLDC, Freitas ADS, Santana BCG, dos Santos Júnior SL, Mora-Ocampo IY, Santos AS, da Silva MF, Andrade BS, Pirovani CP. TcSERPIN, an inhibitor that interacts with cocoa defense proteins and has biotechnological potential against human pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1337750. [PMID: 38348273 PMCID: PMC10859438 DOI: 10.3389/fpls.2024.1337750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
In plants, serpins are a superfamily of serine and cysteine protease inhibitors involved in stress and defense mechanisms, with potential for controlling agricultural pests, making them important biotechnological tools. The objective of this study was to characterize a serpin from Theobroma cacao, called TcSERPIN, to identify its endogenous targets and determine its function and biotechnological potential. TcSERPIN has 390 amino acid residues and shows conservation of the main active site, RCL. Cis-elements related to light, stress, hormones, anaerobic induction, cell cycle regulation and defense have been identified in the gene's regulatory region. TcSERPIN transcripts are accumulated in different tissues of Theobroma cacao. Furthermore, in plants infected with Moniliophtora perniciosa and Phytophthora palmivora, the expression of TcSERPIN was positively regulated. The protein spectrum, rTcSERPIN, reveals a typical β-sheet pattern and is thermostable at pH 8, but loses its structure with temperature increases above 66°C at pH 7. At the molar ratios of 0.65 and 0.49, rTcSERPIN inhibited 55 and 28% of the activity of papain from Carica papaya and trypsin from Sus scrofa, respectively. The protease trap containing immobilized rTcSERPIN captured endogenous defense proteins from cocoa extracts that are related to metabolic pathways, stress and defense. The evaluation of the biotechnological potential against geohelminth larvae showed that rTcSERPIN and rTcCYS4 (Theobroma cacao cystatin 4) reduced the movement of larvae after 24 hours. The results of this work show that TcSERPIN has ideal biochemical characteristics for biotechnological applications, as well as potential for studies of resistance to phytopathogens of agricultural crops.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Keilane Silva Farias
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Akyla Maria Martins Alves
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Geiseane Velozo Amaral
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Luíza do Carmo Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Andria dos Santos Freitas
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Brenda Conceição Guimarães Santana
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Sérgio Liberato dos Santos Júnior
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Irma Yuliana Mora-Ocampo
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Marcelo Fernandes da Silva
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional (LBQC), Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
2
|
Ferreira MM, Santos AS, Santos AS, Zugaib M, Pirovani CP. Plant Serpins: Potential Inhibitors of Serine and Cysteine Proteases with Multiple Functions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3619. [PMID: 37896082 PMCID: PMC10609998 DOI: 10.3390/plants12203619] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 10/29/2023]
Abstract
Plant serpins are a superfamily of protein inhibitors that have been continuously studied in different species and have great biotechnological potential. However, despite ongoing studies with these inhibitors, the biological role of this family in the plant kingdom has not yet been fully clarified. In order to obtain new insights into the potential of plant serpins, this study presents the first systematic review of the topic, whose main objective was to scrutinize the published literature to increase knowledge about this superfamily. Using keywords and the eligibility criteria defined in the protocol, we selected studies from the Scopus, PubMed, and Web of Science databases. According to the eligible studies, serpins inhibit different serine and non-serine proteases from plants, animals, and pathogens, and their expression is affected by biotic and abiotic stresses. Moreover, serpins like AtSerpin1, OSP-LRS, MtSer6, AtSRP4, AtSRP5, and MtPiI4, act in resistance and are involved in stress-induced cell death in the plant. Also, the system biology analysis demonstrates that serpins are related to proteolysis control, cell regulation, pollen development, catabolism, and protein dephosphorylation. The information systematized here contributes to the design of new studies of plant serpins, especially those aimed at exploring their biotechnological potential.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Ariana Silva Santos
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | | | - Maria Zugaib
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| | - Carlos Priminho Pirovani
- Center for Biotechnology and Genetics, Department of Biological Sciences, Santa Cruz State University, Ilhéus 45662-900, BA, Brazil; (A.S.S.); (M.Z.); (C.P.P.)
| |
Collapse
|
3
|
Huang Y, Jonsson NN, McLaughlin M, Burchmore R, Johnson PCD, Jones RO, McGill S, Brady N, Weidt S, Eckersall PD. Quantitative TMT-based proteomics revealing host, dietary and microbial proteins in bovine faeces including barley serpin Z4, a prominent component in the head of beer. J Proteomics 2023; 285:104941. [PMID: 37285906 DOI: 10.1016/j.jprot.2023.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
There has been little information about the proteome of bovine faeces or about the contribution to the faecal proteome of proteins from the host, the feed or the intestinal microbiome. Here, the bovine faecal proteome and the origin of its component proteins was assessed, while also determining the effect of treating barley, the major carbohydrate in the feed, with either ammonia (ATB) or sodium propionate (PTB) preservative. Healthy continental crossbreed steers were allocated to two groups and fed on either of the barley-based diets. Five faecal samples from each group were collected on Day 81 of the trial and analysed by quantitative proteomics using nLC-ESI-MS/MS after tandem mass tag labelling. In total, 281 bovine proteins, 199 barley proteins, 176 bacterial proteins and 190 archaeal proteins were identified in the faeces. Mucosal pentraxin, albumin and digestive enzymes were among bovine proteins identified. Serpin Z4 a protease inhibitor was the most abundant barley protein identified which is also found in barley-based beer, while numerous microbial proteins were identified, many originating bacteria from Clostridium, while Methanobrevibacter was the dominant archaeal genus. Thirty-nine proteins were differentially abundant between groups, the majority being more abundant in the PTB group compared to the ATB group. SIGNIFICANCE: Proteomic examination of faeces is becoming a valuable means to assess the health of the gastro-intestinal tract in several species, but knowledge on the proteins present in bovine faeces is limited. This investigation aimed to characterise the proteome of bovine faecal extracts in order to evaluate the potential for investigations of the proteome as a means to assess the health, disease and welfare of cattle in the future. The investigation was able to identify proteins in bovine faeces that had been (i) produced by the individual cattle, (ii) present in the barley-based feed eaten by the cattle or (iii) produced by bacteria and other microbes in the rumen or intestines. Bovine proteins identified included mucosal pentraxin, serum albumin and a variety of digestive enzymes. Barley proteins found in the faeces included serpin Z4, a protease inhibitor that is also found in beer having survived the brewing process. Bacterial and archaeal proteins in the faecal extracts were related to several pathways related to the metabolism of carbohydrates. The recognition of the range of proteins that can be identified in bovine faeces raises the possibility that non-invasive sample collection of this material could provide a novel diagnostic approach to cattle health and welfare.
Collapse
Affiliation(s)
- Y Huang
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - N N Jonsson
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - M McLaughlin
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - R Burchmore
- Institute of Infection, Immunity & Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - P C D Johnson
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - R O Jones
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - S McGill
- Institute of Infection, Immunity & Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - N Brady
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK
| | - S Weidt
- Institute of Infection, Immunity & Inflammation and Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - P D Eckersall
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, G61 1QH, UK; Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
4
|
Zhang Z, Bao J, Chen Q, He J, Li X, Zhang J, Liu Z, Wu Y, Wang Y, Lu Y. The Chromosome-Level Genome Assembly of Bean Blossom Thrips ( Megalurothrips usitatus) Reveals an Expansion of Protein Digestion-Related Genes in Adaption to High-Protein Host Plants. Int J Mol Sci 2023; 24:11268. [PMID: 37511029 PMCID: PMC10379191 DOI: 10.3390/ijms241411268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Megalurothrips usitatus (Bagnall) is a destructive pest of legumes, such as cowpea. The biology, population dynamics and control strategies of this pest have been well studied. However, the lack of a high-quality reference genome for M. usitatus has hindered the understanding of key biological questions, such as the mechanism of adaptation to feed preferentially on high-protein host plants and the resistance to proteinase inhibitors (PIs). In this study, we generated a high-resolution chromosome-level reference genome assembly (247.82 Mb, 16 chromosomes) of M. usitatus by combining Oxford Nanopore Technologies (ONT) and Hi-C sequencing. The genome assembly showed higher proportions of GC and repeat content compared to other Thripinae species. Genome annotation revealed 18,624 protein-coding genes, including 4613 paralogs that were preferentially located in TE-rich regions. GO and KEGG enrichment analyses of the paralogs revealed significant enrichment in digestion-related genes. Genome-wide identification uncovered 506 putative digestion-related enzymes; of those, proteases, especially their subgroup serine proteases (SPs), are significantly enriched in paralogs. We hypothesized that the diversity and expansion of the digestion-related genes, especially SPs, could be driven by mobile elements (TEs), which promote the adaptive evolution of M. usitatus to high-protein host plants with high serine protease inhibitors (SPIs). The current study provides a valuable genomic resource for understanding the genetic variation among different pest species adapting to different plant hosts.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qizhang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianyun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiahui Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Zhixing Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yixuan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha 410125, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Dong C, Huang TC, Roberts TH. Genes Encoding Structurally Conserved Serpins in the Wheat Genome: Identification and Expression Profiles during Plant Development and Abiotic and Biotic Stress. Int J Mol Sci 2023; 24:ijms24032707. [PMID: 36769030 PMCID: PMC9917288 DOI: 10.3390/ijms24032707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Serpins constitute a family of proteins with a very wide distribution in nature. Serpins have a well-conserved tertiary structure enabling irreversible protease inhibition or other specific biochemical functions. We examined the 189 putative wheat serpin genes previously identified by Benbow et al. (2019) via analysis of gene annotations (RefSeq v1.0) and combined our previous examinations of wheat ESTs and the 454 genome assembly. We found that 81 of the 189 putative serpin genes, plus two manually annotated genes, encode full-length, structurally conserved serpins. Expression of these serpin genes during wheat development and disease/abiotic stress responses was analysed using a publicly available RNAseq database. Results showed that the wheat LR serpins, homologous to Arabidopsis AtSerpin1 and barley BSZx, are ubiquitously expressed across all tissues throughout the wheat lifecycle, whereas the expression of other wheat serpin genes is tissue-specific, including expression only in the grain, only in the root, and only in the anther and microspore. Nine serpin genes were upregulated in both biotic and abiotic responses. Two genes in particular were highly expressed during disease and abiotic challenges. Our findings provide valuable information for further functional study of the wheat serpins, which in turn may lead to their application as molecular markers in wheat breeding.
Collapse
Affiliation(s)
- Chongmei Dong
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Plant Breeding Institute, University of Sydney, Cobbitty, NSW 2570, Australia
| | - Ting-Chun Huang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Thomas H. Roberts
- School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
- Correspondence:
| |
Collapse
|
6
|
Swamy MJ, Bobbili KB, Mondal S, Narahari A, Datta D. Cucurbitaceae phloem exudate lectins: Purification, molecular characterization and carbohydrate binding characteristics. PHYTOCHEMISTRY 2022; 201:113251. [PMID: 35644485 DOI: 10.1016/j.phytochem.2022.113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Much of the plant lectin research was focused on these proteins from seeds, whereas lectins from other plant tissues have been less investigated. Although presence of lectins in the phloem exudate of Cucurbitaceae species was reported over 40 years ago, only a few proteins from this family have been purified and characterized with respect to ligand binding properties, primary and secondary structures, while no 3D structure of a member of this family is known so far. Unlike lectins from other plant families and sources (e.g., seeds and tubers), which exhibit specificity towards different carbohydrate structures, all the Cucurbitaceae phloem exudate lectins characterized so far have been shown to recognize only chitooligosaccharides or glycans containing chitooligosaccharides. Interestingly, some of these proteins also bind various types of RNAs, suggesting that they may also play a role in the transport of RNA information molecules in the phloem. The present review gives an overview of the current knowledge of Cucurbitaceae phloem exudate lectins with regard to their purification, determination of primary and secondary structures, elucidation of thermodynamics and kinetics of carbohydrate binding and computational modeling to get information on their 3D structures. Finally, future perspectives of research on this important class of proteins are considered.
Collapse
Affiliation(s)
- Musti J Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India.
| | | | - Saradamoni Mondal
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | | | - Debparna Datta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
7
|
Tolstyko EA, Chergintsev DA, Tolicheva OA, Vinogradova DS, Konevega AL, Morozov SY, Solovyev AG. RNA Binding by Plant Serpins in vitro. BIOCHEMISTRY. BIOKHIMIIA 2021; 86:1214-1224. [PMID: 34903159 DOI: 10.1134/s0006297921100059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serpins constitute a large family of protease inhibitors with regulatory functions found in all living organisms. Most plant serpins have not been functionally characterized, with the exception of Arabidopsis thaliana AtSerpin1, an inhibitor of pro-apoptotic proteases, which is involved in the regulation of the programmed cell death induction, and Cucurbita maxima CmPS1, a phloem protein, which presumably inhibits insect digestive proteases and binds RNA. CmPS1 interacts most efficiently with highly structured RNA; in particular, it forms a specific complex with tRNA. Here, we demonstrated that AtSerpin1 also forms a complex with tRNA. Analysis of tRNA species bound by AtSerpin1 and CmPS1 in the presence of tRNA excess revealed that both proteins have no strict selectivity for individual tRNAs, suggesting specific interaction of AtSerpin1 and CmPS1 proteins with elements of the secondary/tertiary structure universal for all tRNAs. Analysis of CmPS1 binding of the microRNA precursor pre-miR390 and its mutants demonstrated that the pre-miR390 mutant with a perfect duplex in the hairpin stem lost the ability to form a discrete complex with CmPS1, whereas another variant of pre-miR390 with the native unpaired nucleotide residues in the stem retained this ability. These data indicate that specific interactions of plant serpins with structured RNA are based on the recognition of structurally unique spatial motifs formed with the participation of unpaired nucleotide residues in the RNA duplexes.
Collapse
Affiliation(s)
- Eugene A Tolstyko
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Denis A Chergintsev
- Department of Plant Physiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga A Tolicheva
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - Dariya S Vinogradova
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,NanoTemper Technologies Rus, Saint Petersburg, 191167, Russia
| | - Andrey L Konevega
- Konstantinov St.-Petersburg Nuclear Physics Institute of National Research Center "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.,Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia.,National Research Center "Kurchatov Institute", Moscow, 123182, Russia
| | - Sergey Y Morozov
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
8
|
Zhang C, Wei J, Naing ZL, Soe ET, Liang G. Endogenous serpin reduces toxicity of Bacillus thuringiensis Cry1Ac against Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104837. [PMID: 33993962 DOI: 10.1016/j.pestbp.2021.104837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/14/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Bt protoxins are required to convert to a smaller activated form by insect midgut proteases to exert toxicity against insect pests. Serine protease inhibitors (serpins) play a valuable part in gut protease of insect that hamper digestive proteases activity of insects. Whether the insect serpins induced by Bt protoxin affect the insecticidal activity were rare studied. Here, we identified a serpin-e gene from Helicoverpa armigera, which had potential RCL (Reactive Center Loop) region near the C-terminus like other serpin proteins. It widely expressed in different development stages and in various tissues, but highest expressed in fourth-instar larvae and in larval hemolymph. This Haserpin-e could be induced by Cry1Ac protoxin in vivo and inhibit the midgut proteases to activate Cry1Ac in vitro. Importantly, the functional study indicated it could inhibit the process from Cry1Ac protoxin to activated toxin, and led to the reduction of Cry1Ac insecticide activity to cotton bollworm. Based on our results, we proposed that Haserpin-e involved in the toxicity of Cry1Ac to cotton bollworm by blocking the serine protease to activate the protoxin.
Collapse
Affiliation(s)
- Caihong Zhang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Jizhen Wei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zaw Lin Naing
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Ei Thinzar Soe
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China
| | - Gemei Liang
- State key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, PR China.
| |
Collapse
|
9
|
Spence MA, Mortimer MD, Buckle AM, Minh BQ, Jackson CJ. A Comprehensive Phylogenetic Analysis of the Serpin Superfamily. Mol Biol Evol 2021; 38:2915-2929. [PMID: 33744972 PMCID: PMC8233489 DOI: 10.1093/molbev/msab081] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Serine protease inhibitors (serpins) are found in all kingdoms of life and play essential roles in multiple physiological processes. Owing to the diversity of the superfamily, phylogenetic analysis is challenging and prokaryotic serpins have been speculated to have been acquired from Metazoa through horizontal gene transfer due to their unexpectedly high homology. Here, we have leveraged a structural alignment of diverse serpins to generate a comprehensive 6,000-sequence phylogeny that encompasses serpins from all kingdoms of life. We show that in addition to a central “hub” of highly conserved serpins, there has been extensive diversification of the superfamily into many novel functional clades. Our analysis indicates that the hub proteins are ancient and are similar because of convergent evolution, rather than the alternative hypothesis of horizontal gene transfer. This work clarifies longstanding questions in the evolution of serpins and provides new directions for research in the field of serpin biology.
Collapse
Affiliation(s)
- Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Matthew D Mortimer
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, VIC, Australia
| | - Bui Quang Minh
- Research School of Computing and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT, Australia.,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Chen G, Li R, Shen X. ApSerpin-ZX from Agapanthus praecox, is a potential cryoprotective agent to plant cryopreservation. Cryobiology 2020; 98:103-111. [PMID: 33316226 DOI: 10.1016/j.cryobiol.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Cryopreservation-induced cell death is regarded as an important problem faced by cryobiologists. Oxidative stress and programmed cell death are detrimental to cell survival. Serine protease inhibitors (serpins) inhibit pro-cell-death proteases and play a pro-survival role in excessive cell death induced by abiotic stress. In this study, ApSerpin-ZX was isolated from Agapanthus praecox and characterized as a protective protein in plant cryopreservation. The mRNA level of ApSerpin-ZX was elevated under abiotic stress, such as salt, osmosis, oxidative, cold, and cryoinjury. The purified recombinant protein expressed in E. coli was added to the plant vitrification solution and used for A. praecox embryogenic callus cryopreservation. The concentration of 0.6-4.8 mg∙L-1 of ApSerpin-ZX protein was beneficial to the survival of cryopreserved embryogenic callus of A. praecox. The most effective concentration was 1.2 mg∙L-1, which elevated the survival by 37.15%. Subsequently, the cryopreservation procedure with 1.2 mg∙L-1 of ApSerpin-ZX protein was regarded as the treated group, compared to standard procedure, to determine the physiological mechanism of ApSerpin-ZX protein on cryopreserved cell. The MDA and H2O2 contents were significantly decreased in the treated group, along with reduced OH· generation activity in the recovery stage. After the addition of ApSerpin-ZX, the POD and CAT activities keep increased, while SOD activity increased only after dehydration. Besides, the caspase-1-like and caspase-3-like activities were lower than the standard procedure. This study indicated that ApSerpin-ZX was a potential cryoprotective agent that alleviated oxidative stress and cell death induced by cryopreservation.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ruilian Li
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaohui Shen
- School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
11
|
Rehman S, Jørgensen B, Aziz E, Batool R, Naseer S, Rasmussen SK. Genome Wide Identification and Comparative Analysis of the Serpin Gene Family in Brachypodium and Barley. PLANTS 2020; 9:plants9111439. [PMID: 33114466 PMCID: PMC7692276 DOI: 10.3390/plants9111439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
Serpins (serine protease inhibitors) constitute one of the largest and most widely distributed superfamilies of protease inhibitors and have been identified in nearly all organisms. To gain significant insights, a comprehensive in silico analysis of the serpin gene family was carried out in the model plant for temperate grasses Brachypodium distachyon and barley Hordeum vulgare using bioinformatic tools at the genome level for the first time. We identified a total of 27 BdSRPs and 25 HvSRP genes in Brachypodium and barley, respectively, showing an unexpectedly high gene number in these model plants. Gene structure, conserved motifs and phylogenetic comparisons of serpin genes supported the role of duplication events in the expansion and evolution of serpin gene family. Further, purifying selection pressure was found to be a main driving force in the evolution of serpin genes. Genome synteny analysis indicated that BdSRP genes were present in syntenic regions of barley, rice, sorghum and maize, suggesting that they evolved before the divergence of these species from common ancestor. The distinct expression pattern in specific tissues further suggested a specialization of functions during development and in plant defense. These results suggest that the LR serpins (serpins with Leu-Arg residues at P2-P1') identified here can be utilized as candidates for exploitation in disease resistance, pest control and preventing stress-induced cell death. Additionally, serpins were identified that could lead to further research aimed at validating and functionally characterizing the role of potential serpin genes from other plants.
Collapse
Affiliation(s)
- Shazia Rehman
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi 46200, Pakistan
- Department of Botany, Govt. Gordon College Rawalpindi, Rawalpindi 46000, Pakistan
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
| | - Ejaz Aziz
- Department of Botany, Government Degree College Khanpur, Haripur 22650, Pakistan;
| | - Riffat Batool
- University Institute of Biochemistry and Biotechnology, PMAS, Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan;
| | - Samar Naseer
- Department of Biology and Environmental Science, Faculty of Sciences, Allama Iqbal Open University, Islamabad 44000, Pakistan;
| | - Søren K. Rasmussen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Correspondence: (S.R.); (S.K.R.)
| |
Collapse
|
12
|
Tolstyko EA, Lezzhov AA, Morozov SY, Solovyev AG. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110602. [PMID: 32900440 DOI: 10.1016/j.plantsci.2020.110602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/20/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
The conducting sieve tubes of the phloem consist of sieve elements (SEs), which are enucleate cells incapable of transcription and translation. Nevertheless, SEs contain a large variety of RNAs, and long-distance RNA trafficking via the phloem has been documented. The phloem transport of certain RNAs, as well as the further unloading of these RNAs at target tissues, is essential for plant individual development and responses to environmental cues. The translocation of such RNAs via the phloem is believed to be directed by RNA structural elements serving as phloem transport signals (PTSs), which are recognized by proteins that direct the PTS-containing RNAs into the phloem translocation pathway. The ability of phloem transport has been reported for several classes of structured RNAs including viroids, genuine tRNAs, mRNAs with tRNA sequences embedded into mRNA untranslated regions, tRNA-like structures in the genomic RNAs of plant viruses, and micro-RNA (miRNA) precursors (pri-miRNA). Here, three distinct types of such RNAs are discussed, along with the proteins that may specifically interact with these structures in the phloem. Three-dimensional (3D) motifs, which are characteristic of imperfect RNA duplexes, are discussed as elements of phloem-mobile structured RNAs specifically recognized by proteins involved in phloem transport, thus serving as PTSs.
Collapse
Affiliation(s)
- Eugeny A Tolstyko
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia
| | - Alexander A Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, 119991, Russia
| | - Sergey Y Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | - Andrey G Solovyev
- Department of Virology, Biological Faculty, Moscow State University, Moscow, 119234, Russia; Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Singh S, Singh A, Kumar S, Mittal P, Singh IK. Protease inhibitors: recent advancement in its usage as a potential biocontrol agent for insect pest management. INSECT SCIENCE 2020; 27:186-201. [PMID: 30230264 DOI: 10.1111/1744-7917.12641] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 05/13/2023]
Abstract
Plant-derived protease inhibitors (PIs) are a promising defensin for crop improvement and insect pest management. Although agronomist made significant efforts in utilizing PIs for managing insect pests, the potentials of PIs are still obscured. Insect ability to compensate nutrient starvation induced by dietary PI feeding using different strategies, that is, overexpression of PI-sensitive protease, expression of PI-insensitive proteases, degradation of PI, has made this innumerable collection of PIs worthless. A practical challenge for agronomist is to identify potent PI candidates, to limit insect compensatory responses and to elucidate insect compensatory and resistance mechanisms activated upon herbivory. This knowledge could be further efficiently utilized to identify potential targets for RNAi-mediated pest control. These vital genes of insects could be functionally annotated using the advanced gene-editing technique, CRISPR/Cas9. Contemporary research is exploiting different in silico and modern molecular biology techniques to utilize PIs in controlling insect pests efficiently. This review is structured to update recent advancements in this field, along with its chronological background.
Collapse
Affiliation(s)
- Sujata Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, Delhi, India
| | - Sumit Kumar
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Pooja Mittal
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Laboratory, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
14
|
Detection and in vitro studies of Cucurbita maxima phloem serpin-1 RNA-binding properties. Biochimie 2020; 170:118-127. [PMID: 31935442 DOI: 10.1016/j.biochi.2020.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 11/22/2022]
Abstract
Apart from being a conduit for photoassimilate transport in plants, the phloem serves as a pathway for transport of proteins and RNAs from sites of their synthesis to distant plant parts. As demonstrated for mRNAs and small RNAs such as miRNA and siRNA, their phloem transport is largely involved in responses to environmental cues including stresses and pathogen attacks. RNA molecules are believed to be transported in the phloem in the form of complexes with RNA-binding proteins; however, proteins forming such complexes are generally poorly studied. Here, we demonstrate that the Cucurbita maxima phloem serpin-1 (CmPS1), which has been previously described as a functional protease inhibitor capable of long-distance transport via the phloem, is able to bind RNA in vitro. Among different RNAs tested, CmPS1 exhibits a preference for imperfect RNA duplexes and the highest affinity to tRNA. A characteristic complex formed by CmPS1 with tRNA is not observed upon CmPS1 binding to tRNA-like structures of plant viruses. Mutational analysis demonstrates that the CmPS1 N-terminal region is not involved in RNA binding. Since antithrombin-III, the human protease inhibitor of serpin family most closely sequence-related to CmPS1, is found to be unable to bind RNA, one can suggest that, in its evolution, CmPS1 has gained the RNA binding capability as an additional function likely relevant to its specific activities in the plant phloem.
Collapse
|
15
|
Hellinger R, Gruber CW. Peptide-based protease inhibitors from plants. Drug Discov Today 2019; 24:1877-1889. [PMID: 31170506 PMCID: PMC6753016 DOI: 10.1016/j.drudis.2019.05.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
Proteases have an important role in homeostasis, and dysregulation of protease function can lead to pathogenesis. Therefore, proteases are promising drug targets in cancer, inflammation, and neurodegenerative disease research. Although there are well-established pharmaceuticals on the market, drug development for proteases is challenging. This is often caused by the limited selectivity of currently available lead compounds. Proteinaceous plant protease inhibitors are a diverse family of (poly)peptides that are important to maintain physiological homeostasis and to serve the innate defense machinery of the plant. In this review, we provide an overview of the diversity of plant peptide- and protein-based protease inhibitors (PIs), provide examples of such compounds that target human proteases, and discuss opportunities for these molecules in protease drug discovery and development.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria
| | - Christian W Gruber
- Center for Pharmacology and Physiology, Medical University of Vienna, Schwarzspanierstr. 17, 1090 Vienna, Austria.
| |
Collapse
|
16
|
Cohen M, Davydov O, Fluhr R. Plant serpin protease inhibitors: specificity and duality of function. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2077-2085. [PMID: 30721992 DOI: 10.1093/jxb/ery460] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/19/2018] [Indexed: 05/24/2023]
Abstract
The serpins are a family of structurally conserved protease inhibitors found in all animal and plant kingdoms. After interaction with their cognate substrate(s), their native energetically stressed state is relaxed by hydrolysis, resulting in a semi-stable covalent bond that disables the protease. The inherent flexible serpin structure supports additional non-inhibitory functions. This review will focus on several biological functions attributed to plant serpins, ranging from specific cell death protease inhibitors to a stabilizing role for β-amylase in seeds. Functional conservation of a particular serpin type, the LR serpins, is suggested by its compelling ubiquity throughout the plant kingdom. The multiple target specificity of plant serpins including the LR serpins enables them to perform dual functions that are not mutually exclusive both as a regulator of cell death and as a protective anti-pathogenic protein.
Collapse
Affiliation(s)
- Maja Cohen
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Olga Davydov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Robert Fluhr
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Clemente M, Corigliano MG, Pariani SA, Sánchez-López EF, Sander VA, Ramos-Duarte VA. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int J Mol Sci 2019; 20:E1345. [PMID: 30884891 PMCID: PMC6471620 DOI: 10.3390/ijms20061345] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 11/12/2022] Open
Abstract
The serine protease inhibitors (SPIs) are widely distributed in living organisms like bacteria, fungi, plants, and humans. The main function of SPIs as protease enzymes is to regulate the proteolytic activity. In plants, most of the studies of SPIs have been focused on their physiological role. The initial studies carried out in plants showed that SPIs participate in the regulation of endogenous proteolytic processes, as the regulation of proteases in seeds. Besides, it was observed that SPIs also participate in the regulation of cell death during plant development and senescence. On the other hand, plant SPIs have an important role in plant defense against pests and phytopathogenic microorganisms. In the last 20 years, several transgenic plants over-expressing SPIs have been produced and tested in order to achieve the increase of the resistance against pathogenic insects. Finally, in molecular farming, SPIs have been employed to minimize the proteolysis of recombinant proteins expressed in plants. The present review discusses the potential biotechnological applications of plant SPIs in the agriculture field.
Collapse
Affiliation(s)
- Marina Clemente
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Mariana G Corigliano
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Sebastián A Pariani
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Edwin F Sánchez-López
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Valeria A Sander
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| | - Víctor A Ramos-Duarte
- Instituto Tecnológico Chascomús (INTECH), UNSAM-CONICET, Chascomús, Provincia de Buenos Aires B7130, Argentina.
| |
Collapse
|
18
|
Bao J, Pan G, Poncz M, Wei J, Ran M, Zhou Z. Serpin functions in host-pathogen interactions. PeerJ 2018; 6:e4557. [PMID: 29632742 PMCID: PMC5889911 DOI: 10.7717/peerj.4557] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/09/2018] [Indexed: 01/20/2023] Open
Abstract
Serpins are a broadly distributed superfamily of protease inhibitors that are present in all kingdoms of life. The acronym, serpin, is derived from their function as potent serine proteases inhibitors. Early studies of serpins focused on their functions in haemostasis since modulating serine proteases activities are essential for coagulation. Additional research has revealed that serpins function in infection and inflammation, by modulating serine and cysteine proteases activities. The aim of this review is to summarize the accumulating findings and current understanding of the functions of serpins in host-pathogen interactions, serving as host defense proteins as well as pathogenic factors. We also discuss the potential crosstalk between host and pathogen serpins. We anticipate that future research will elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jialing Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Mortimer Poncz
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.,Division of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Maoshuang Ran
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Srikanth S, Chen Z. Plant Protease Inhibitors in Therapeutics-Focus on Cancer Therapy. Front Pharmacol 2016; 7:470. [PMID: 28008315 PMCID: PMC5143346 DOI: 10.3389/fphar.2016.00470] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
Plants are known to have many secondary metabolites and phytochemical compounds which are highly explored at biochemical and molecular genetics level and exploited enormously in the human health care sector. However, there are other less explored small molecular weight proteins, which inhibit proteases/proteinases. Plants are good sources of protease inhibitors (PIs) which protect them against diseases, insects, pests, and herbivores. In the past, proteinaceous PIs were considered primarily as protein-degrading enzymes. Nevertheless, this view has significantly changed and PIs are now treated as very important signaling molecules in many biological activities such as inflammation, apoptosis, blood clotting and hormone processing. In recent years, PIs have been examined extensively as therapeutic agents, primarily to deal with various human cancers. Interestingly, many plant-based PIs are also found to be effective against cardiovascular diseases, osteoporosis, inflammatory diseases and neurological disorders. Several plant PIs are under further evaluation in in vitro clinical trials. Among all types of PIs, Bowman-Birk inhibitors (BBI) have been studied extensively in the treatment of many diseases, especially in the field of cancer prevention. So far, crops such as beans, potatoes, barley, squash, millet, wheat, buckwheat, groundnut, chickpea, pigeonpea, corn, and pineapple have been identified as good sources of PIs. The PI content of such foods has a significant influence on human health disorders, particularly in the regions where people mostly depend on these kind of foods. These natural PIs vary in concentration, protease specificity, heat stability, and sometimes several PIs may be present in the same species or tissue. However, it is important to carry out individual studies to identify the potential effects of each PI on human health. PIs in plants make them incredible sources to determine novel PIs with specific pharmacological and therapeutic effects due to their peculiarity and superabundance.
Collapse
Affiliation(s)
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
20
|
Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay. Arch Biochem Biophys 2016; 604:128-42. [PMID: 27372899 DOI: 10.1016/j.abb.2016.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/23/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022]
Abstract
Pro-coagulant, anti-coagulant and fibrinolytic pathways are responsible for maintaining hemostatic balance under physiological conditions. Any deviation from these pathways would result in hypercoagulability leading to life threatening diseases like myocardial infarction, stroke, portal vein thrombosis, deep vein thrombosis (DVT) and pulmonary embolism (PE). Angiogenesis is the process of sprouting of new blood vessels from pre-existing ones and plays a critical role in vascular repair, diabetic retinopathy, chronic inflammation and cancer progression. Serpins; a superfamily of protease inhibitors, play a key role in regulating both angiogenesis and coagulation. They are characterized by the presence of highly conserved secondary structure comprising of 3 β-sheets and 7-9 α-helices. Inhibitory role of serpins is modulated by binding to cofactors, specially heparin and heparan sulfate proteoglycans (HSPGs) present on cell surfaces and extracellular matrix. Heparin and HSPGs are the mainstay of anti-coagulant therapy and also have therapeutic potential as anti-angiogenic inhibitors. Many of the heparin binding serpins that regulate coagulation cascade are also potent inhibitors of angiogenesis. Understanding the molecular mechanism of the switch between their specific anti-coagulant and anti-angiogenic role during inflammation, stress and regular hemostasis is important. In this review, we have tried to integrate the role of different serpins, their interaction with cofactors and their interplay in regulating coagulation and angiogenesis.
Collapse
|
21
|
Grosse-Holz FM, van der Hoorn RAL. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants. THE NEW PHYTOLOGIST 2016; 210:794-807. [PMID: 26800491 DOI: 10.1111/nph.13839] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/01/2015] [Indexed: 05/13/2023]
Abstract
Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design.
Collapse
Affiliation(s)
- Friederike M Grosse-Holz
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
22
|
Serra-Soriano M, Navarro JA, Genoves A, Pallás V. Comparative proteomic analysis of melon phloem exudates in response to viral infection. J Proteomics 2015; 124:11-24. [PMID: 25892132 DOI: 10.1016/j.jprot.2015.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Phloem vasculature is the route that most plant viruses use to spread widely around the plant. In addition, phloem sap transports signals that trigger systemic defense responses to infection. We investigated the proteome-level changes that occur in phloem sap during virus infection using the 2D-DIGE technique. Total proteins were extracted from phloem exudates of healthy and Melon necrotic spot virus infected melon plants and analyzed by 2D-DIGE. A total of 1046 spots were detected but only 25 had significant changes in abundance. After mass spectrometry, 19 different proteins corresponding to 22 spots were further identified (13 of them up-accumulated and 9 down-accumulated). Most of them were involved in controlling redox balance and cell death. Only two of the differentially altered proteins had never been described to be present in the phloem before: a carboxylesterase and the fumarylacetoacetate hydrolase 1, both considered negative regulators of cell death. RT-PCR analysis of phloem sap RNAs revealed that the transcripts corresponding to some of the identified protein could be also loaded into the sieve elements. The impact of these proteins in the host response against viral infections and the potential involvement in regulating development, growth and stress response in melon plants is discussed. BIOLOGICAL SIGNIFICANCE Despite the importance of phloem as an integrative pathway for resource distribution, signaling and plant virus transport little is known about the modifications induced by these pathogens in phloem sap proteome. Only one previous study has actually examined the phloem sap proteome during viral infection using conventional two-dimensional electrophoresis. Since the major limitation of this technique has been its low sensitivity, the authors only identified five phloem proteins with altered abundance. To circumvent this issue we use two-dimensional difference in-gel electrophoresis (2D DIGE) technique, which combined with DeCyder Differential Analysis Software allows a more accurate and sensitive quantitative analysis than with conventional 2D PAGE. We identified 19 different proteins which accumulation in phloem sap was altered during a compatible plant virus infection including redox and hypersensitivity response-related proteins. Therefore, this work would help to understand the basic processes that occur in phloem during plant-virus interaction.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Ainhoa Genoves
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas) Avenida Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
23
|
Ghosh D, Xu J. Abiotic stress responses in plant roots: a proteomics perspective. FRONTIERS IN PLANT SCIENCE 2014; 5:6. [PMID: 24478786 PMCID: PMC3900766 DOI: 10.3389/fpls.2014.00006] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops.
Collapse
Affiliation(s)
- Dipanjana Ghosh
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| | - Jian Xu
- Department of Biological Sciences, NUS Centre for BioImaging Sciences, National University of SingaporeSingapore
| |
Collapse
|
24
|
Ota E, Tsuchiya W, Yamazaki T, Nakamura M, Hirayama C, Konno K. Purification, cDNA cloning and recombinant protein expression of a phloem lectin-like anti-insect defense protein BPLP from the phloem exudate of the wax gourd, Benincasa hispida. PHYTOCHEMISTRY 2013; 89:15-25. [PMID: 23453909 DOI: 10.1016/j.phytochem.2013.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 12/29/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Latex and other exudates in plants contain various proteins that are thought to play important defensive roles against herbivorous insects and pathogens. Herein, the defensive effects of phloem exudates against the Eri silkworm, Samia ricini (Saturniidae, Lepidoptera) in several cucurbitaceous plants were investigated. It was found that phloem exudates are responsible for the defensive activities of cucurbitaceous plants, such as the wax gourd Benincasa hispida and Cucumis melo, especially in B. hispida, whose leaves showed the strongest growth-inhibitory activity of all the cucurbitaceous plants tested. A 35 kDa proteinaceous growth-inhibitory factor against insects designated BPLP (B. hispida Phloem Lectin-like Protein) was next isolated and purified from the B. hispida exudate, using anion exchange and gel filtration chromatography. A very low concentration (70 μg/g) of BPLP significantly inhibited growth of S. ricini larvae. The full-length cDNA (1076 bp) encoding BPLP was cloned and its nucleotide sequence was determined. The deduced amino acid sequence of BPLP had 51% identity with a cucurbitaceous phloem lectin (phloem protein 2, PP2), and showed binding specificity to oligomers of N-acetylglucosamine. Some features of BPLP indicated that it does not have a cysteine residue and it is composed of two repeats of similar sequences, suggesting that BPLP is distinct from PP2. Recombinant BPLP, obtained by expressing the cDNA in Escherichia coli, showed both chitin-binding lectin activity and growth-inhibitory activity against S. ricini larvae. The present study thus provides experimental evidence that phloem exudates of Cucurbitaceae plants, analogous to plant latex, play defensive roles against insect herbivores, especially against chewing insects, and contain defensive substances toxic to them.
Collapse
Affiliation(s)
- Eiji Ota
- National Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Francis SE, Ersoy RA, Ahn JW, Atwell BJ, Roberts TH. Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. BMC Genomics 2012; 13:449. [PMID: 22947050 PMCID: PMC3534287 DOI: 10.1186/1471-2164-13-449] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/19/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Most members of the serpin family of proteins are potent, irreversible inhibitors of specific serine or cysteine proteinases. Inhibitory serpins are distinguished from members of other families of proteinase inhibitors by their metastable structure and unique suicide-substrate mechanism. Animal serpins exert control over a remarkable diversity of physiological processes including blood coagulation, fibrinolysis, innate immunity and aspects of development. Relatively little is known about the complement of serpin genes in plant genomes and the biological functions of plant serpins. RESULTS A structurally refined amino-acid sequence alignment of the 14 full-length serpins encoded in the genome of the japonica rice Oryza sativa cv. Nipponbare (a monocot) showed a diversity of reactive-centre sequences (which largely determine inhibitory specificity) and a low degree of identity with those of serpins in Arabidopsis (a eudicot). A new convenient and functionally informative nomenclature for plant serpins in which the reactive-centre sequence is incorporated into the serpin name was developed and applied to the rice serpins. A phylogenetic analysis of the rice serpins provided evidence for two main clades and a number of relatively recent gene duplications. Transcriptional analysis showed vastly different levels of basal expression among eight selected rice serpin genes in callus tissue, during seedling development, among vegetative tissues of mature plants and throughout seed development. The gene OsSRP-LRS (Os03g41419), encoding a putative orthologue of Arabidopsis AtSerpin1 (At1g47710), was expressed ubiquitously and at high levels. The second most highly expressed serpin gene was OsSRP-PLP (Os11g11500), encoding a non-inhibitory serpin with a surprisingly well-conserved reactive-centre loop (RCL) sequence among putative orthologues in other grass species. CONCLUSIONS The diversity of reactive-centre sequences among the putatively inhibitory serpins of rice point to a range of target proteases with different proteolytic specificities. Large differences in basal expression levels of the eight selected rice serpin genes during development further suggest a range of functions in regulation and in plant defence for the corresponding proteins.
Collapse
Affiliation(s)
- Sheila E Francis
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Renan A Ersoy
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Joon-Woo Ahn
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Abstract
Protease inhibitors of the serpin family are ubiquitous in the plant kingdom but relatively little is known about their biological functions in comparison with their counterparts in animals. X-ray crystal structures have provided crucial insights into animal serpin functions. The recently solved structure of AtSerpin1 from Arabidopsis thaliana, which has the highly conserved reactive center P2-P1' Leu-Arg-Xaa (Xaa = small residue), displays both conserved and plant-specific serpin features. Sequence homology suggests that AtSerpin1 belongs to serpin Clade B, composed of intracellular mammalian serpins, which is consistent with the lack of strong evidence for secretion of serpins from plant cells. The major in vivo target protease for AtSerpin1 is the papain-like cysteine RD21 protease, a match reminiscent of the inhibition of cathepsins K, L and S by the Clade-B mammalian serpin, SCCA-1 (SERPINB3). The function of AtSerpin1 and other serpins that contain P2-P1' Leu-Arg-Xaa (the 'LR' serpins) in plants remains unknown. However, based on its homology and interactive partners, AtSerpin1 and perhaps other serpins are likely to be involved in regulating programmed cell death or associated processes such as senescence. Abundant accumulation of serpins in seeds and their presence in phloem sap suggest additional functions in plant defense by irreversible inhibition of digestive proteases from pests or pathogens. Here we review the most recent findings in plant serpin biology, focusing on advances in describing the structure and inhibitory specificity of the LR serpins.
Collapse
Affiliation(s)
- Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | |
Collapse
|
27
|
Alvarez-Alfageme F, Maharramov J, Carrillo L, Vandenabeele S, Vercammen D, Van Breusegem F, Smagghe G. Potential use of a serpin from Arabidopsis for pest control. PLoS One 2011; 6:e20278. [PMID: 21655276 PMCID: PMC3104999 DOI: 10.1371/journal.pone.0020278] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible. Experimental GM plants producing plant protease inhibitors have been shown to confer resistance against a wide range of agricultural pests. In this study we assessed the potential of AtSerpin1, a serpin from Arabidopsis thaliana (L). Heynh., for pest control. In vitro assays were conducted with a wide range of pests that rely mainly on either serine or cysteine proteases for digestion and also with three non-target organisms occurring in agricultural crops. AtSerpin1 inhibited proteases from all pest and non-target species assayed. Subsequently, the cotton leafworm Spodoptera littoralis Boisduval and the pea aphid Acyrthosiphon pisum (Harris) were fed on artificial diets containing AtSerpin1, and S. littoralis was also fed on transgenic Arabidopsis plants overproducing AtSerpin1. AtSerpin1 supplied in the artificial diet or by transgenic plants reduced the growth of S. littoralis larvae by 65% and 38%, respectively, relative to controls. Nymphs of A. pisum exposed to diets containing AtSerpin1 suffered high mortality levels (LC50 = 637 µg ml−1). The results indicate that AtSerpin1 is a good candidate for exploitation in pest control.
Collapse
Affiliation(s)
- Fernando Alvarez-Alfageme
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- * E-mail: (F-AA); (GS)
| | - Jafar Maharramov
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Laura Carrillo
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Steven Vandenabeele
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Dominique Vercammen
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Frank Van Breusegem
- VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Gent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- * E-mail: (F-AA); (GS)
| |
Collapse
|
28
|
Ferry N, Stavroulakis S, Guan W, Davison GM, Bell HA, Weaver RJ, Down RE, Gatehouse JA, Gatehouse AMR. Molecular interactions between wheat and cereal aphid (Sitobion avenae): analysis of changes to the wheat proteome. Proteomics 2011; 11:1985-2002. [PMID: 21500340 DOI: 10.1002/pmic.200900801] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 12/20/2022]
Abstract
Aphids are major insect pests of cereal crops, acting as virus vectors as well as causing direct damage. The responses of wheat to infestation by cereal aphid (Sitobion avenae) were investigated in a proteomic analysis. Approximately, 500 protein spots were reproducibly detected in the extracts from leaves of wheat seedlings after extraction and 2-DE. Sixty-seven spots differed significantly between control and infested plants following 24 h of aphid feeding, with 27 and 11 up-regulated, and 8 and 21 down-regulated, in local or systemic tissues, respectively. After 8 days, 80 protein spots differed significantly between control and aphid treatments with 13 and 18 up-regulated and 27 and 22 down-regulated in local or systemic tissues, respectively. As positive controls, plants were treated with salicylic acid or methyl jasmonate; 81 and 37 differentially expressed protein spots, respectively, were identified for these treatments. Approximately, 50% of differentially expressed protein spots were identified by PMF, revealing that the majority of proteins altered by aphid infestation were involved in metabolic processes and photosynthesis. Other proteins identified were involved in signal transduction, stress and defence, antioxidant activity, regulatory processes, and hormone responses. Responses to aphid attack at the proteome level were broadly similar to basal non-specific defence and stress responses in wheat, with evidence of down-regulation of insect-specific defence mechanisms, in agreement with the observed lack of aphid resistance in commercial wheat lines.
Collapse
Affiliation(s)
- Natalie Ferry
- School of Environment and Life Science, Salford University, Salford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Malter D, Wolf S. Melon phloem-sap proteome: developmental control and response to viral infection. PROTOPLASMA 2011; 248:217-224. [PMID: 20924770 DOI: 10.1007/s00709-010-0215-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 09/22/2010] [Indexed: 05/27/2023]
Abstract
In addition to small molecules such as sugars and amino acids, phloem sap contains macromolecules, including mRNA and proteins. It is generally assumed that all molecules in the phloem sap are on the move from source to sink, but recent evidence suggests that the macromolecules' direction of movement can be controlled by endogenous plant mechanisms. To test the hypothesis that the phloem-sap protein profile is affected by local metabolic activities, we analyzed the phloem-sap proteome in young and mature tissues of melon plants. We also examined the effect of cucumber mosaic virus (CMV) infection and expression of CMV movement protein in transgenic melon plants on the phloem protein profile. Sap collected from cut sections of young stems or petioles contained specific proteins that were absent from sap collected from mature stems or petioles. Most of these proteins were involved in defense response and protection from oxidative stress, suggesting that they play a role in maintaining safe activity of the sieve tubes in young tissues. Phloem sap collected from CMV-infected plants and transgenic plants expressing the CMV movement protein contained only a few additional proteins with molecular masses of 18 to 75 kDa. Here again, most of the additional proteins were associated with stress responses. Our study indicated that the proteome of phloem sap is dynamic and under developmental control. Entry and exit of proteins from the sieve tube can be regulated at the tissue level. Moreover, the plant can maintain regulation of protein trafficking from companion cells to sieve elements under viral infection or other perturbations in plasmodesmal function.
Collapse
Affiliation(s)
- Dikla Malter
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | |
Collapse
|
31
|
Puthoff DP, Holzer FM, Perring TM, Walling LL. Tomato pathogenesis-related protein genes are expressed in response to Trialeurodes vaporariorum and Bemisia tabaci biotype B feeding. J Chem Ecol 2010; 36:1271-85. [PMID: 20927641 PMCID: PMC2980633 DOI: 10.1007/s10886-010-9868-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/10/2010] [Accepted: 09/20/2010] [Indexed: 12/25/2022]
Abstract
The temporal and spatial expression of tomato wound- and defense-response genes to Bemisia tabaci biotype B (the silverleaf whitefly) and Trialeurodes vaporariorum (the greenhouse whitefly) feeding were characterized. Both species of whiteflies evoked similar changes in tomato gene expression. The levels of RNAs for the methyl jasmonic acid (MeJA)- or ethylene-regulated genes that encode the basic β-1,3-glucanase (GluB), basic chitinase (Chi9), and Pathogenesis-related protein-1 (PR-1) were monitored. GluB and Chi9 RNAs were abundant in infested leaves from the time nymphs initiated feeding (day 5). In addition, GluB RNAs accumulated in apical non-infested leaves. PR-1 RNAs also accumulated after whitefly feeding. In contrast, the ethylene- and salicylic acid (SA)-regulated Chi3 and PR-4 genes had RNAs that accumulated at low levels and GluAC RNAs that were undetectable in whitefly-infested tomato leaves. The changes in Phenylalanine ammonia lyase5 (PAL5) were variable; in some, but not all infestations, PAL5 RNAs increased in response to whitefly feeding. PAL5 RNA levels increased in response to MeJA, ethylene, and abscisic acid, and declined in response to SA. Transcripts from the wound-response genes, leucine aminopeptidase (LapA1) and proteinase inhibitor 2 (pin2), were not detected following whitefly feeding. Furthermore, whitefly infestation of transgenic LapA1:GUS tomato plants showed that whitefly feeding did not activate the LapA1 promoter, although crushing of the leaf lamina increased GUS activity up to 40 fold. These studies indicate that tomato plants perceive B. tabaci and T. vaporariorum in a manner similar to baterical pathogens and distinct from tissue-damaging insects.
Collapse
Affiliation(s)
- David P Puthoff
- Department of Biology, Frostburg State University, Frostburg, MD 21532, USA
| | | | | | | |
Collapse
|
32
|
Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PMG, Roberts TH, Fluhr R. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 2010; 285:13550-60. [PMID: 20181955 DOI: 10.1074/jbc.m109.095075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ahn JW, Atwell BJ, Roberts TH. Serpin genes AtSRP2 and AtSRP3 are required for normal growth sensitivity to a DNA alkylating agent in Arabidopsis. BMC PLANT BIOLOGY 2009; 9:52. [PMID: 19426562 PMCID: PMC2689219 DOI: 10.1186/1471-2229-9-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/11/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND The complex responses of plants to DNA damage are incompletely understood and the role of members of the serpin protein family has not been investigated. Serpins are functionally diverse but structurally conserved proteins found in all three domains of life. In animals, most serpins have regulatory functions through potent, irreversible inhibition of specific serine or cysteine proteinases via a unique suicide-substrate mechanism. Plant serpins are also potent proteinase inhibitors, but their physiological roles are largely unknown. RESULTS Six Arabidopsis genes encoding full-length serpins were differentially expressed in developing seedlings and mature tissues. Basal levels of AtSRP2 (At2g14540) and AtSRP3 (At1g64030) transcripts were highest in reproductive tissues. AtSRP2 was induced 5-fold and AtSRP3 100-fold after exposure of seedlings to low concentrations of methyl methanesulfonate (MMS), a model alkylating reagent that causes DNA damage. Homozygous T-DNA insertion mutants atsrp2 and atsrp3 exhibited no differential growth when mutant and wild-type plants were left untreated or exposed to gamma-radiation or ultraviolet light. In contrast, atsrp2 and atsrp3 plants exhibited greater root length, leaf number and overall size than wild-type plants when exposed to MMS. Neither of the two serpins was required for meiosis. GFP-AtSRP2 was localized to the nucleus, whereas GFP-AtSRP3 was cytosolic, suggesting that they target different proteinases. Induction of cell cycle- and DNA damage-related genes AtBRCA1, AtBARD1, AtRAD51, AtCYCB1;1 and AtCYCD1;1, but not AtATM, was reduced relative to wild-type in atsrp2 and atsrp3 mutants exposed to MMS. CONCLUSION Expression of specific serpin genes (AtSRP2 and AtSRP3 in Arabidopsis) is required for normal responses of plants following exposure to alkylating genotoxins such as MMS.
Collapse
Affiliation(s)
- Joon-Woo Ahn
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde NSW 2109, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde NSW 2109, Australia
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde NSW 2109, Australia
| |
Collapse
|
34
|
[Phloem, transport between organs and long-distance signalling]. C R Biol 2008; 331:334-46. [PMID: 18472079 DOI: 10.1016/j.crvi.2008.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 03/03/2008] [Accepted: 03/05/2008] [Indexed: 01/17/2023]
Abstract
Phloem plays a major role in carbohydrate partitioning in the plant. It also controls the redistribution of various metabolites such as amino acids, vitamins, hormones, and ions. The molecular mechanisms responsible for phloem loading and unloading have been particularly well characterised, with the identification of sucrose and polyol transporters. The discovery of the role of phloem in the long-distance translocation of macromolecules, proteins, mRNA and small RNA has modified our understanding of the regulation of the coordination of some developmental and adaptation processes. This review details recent results concerning the transport and long-distance signalling that take place in the phloem.
Collapse
|
35
|
Serpins in plants and green algae. Funct Integr Genomics 2007; 8:1-27. [PMID: 18060440 DOI: 10.1007/s10142-007-0059-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 09/06/2007] [Accepted: 09/15/2007] [Indexed: 01/02/2023]
Abstract
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.
Collapse
|
36
|
Wang ZY, Ding LW, Ge ZJ, Wang Z, Wang F, Li N, Xu ZF. Purification and characterization of native and recombinant SaPIN2a, a plant sieve element-localized proteinase inhibitor. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:757-66. [PMID: 17870592 DOI: 10.1016/j.plaphy.2007.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 07/20/2007] [Indexed: 05/17/2023]
Abstract
SaPIN2a encodes a proteinase inhibitor in nightshade (Solanum americanum), which is specifically localized to the enucleate sieve elements. It has been proposed to play an important role in phloem development by regulating proteolysis in sieve elements. In this study, we purified and characterized native SaPIN2a from nightshade stems and recombinant SaPIN2a expressed in Escherichia coli. Purified native SaPIN2a was found as a charge isomer family of homodimers, and was weakly glycosylated. Native SaPIN2a significantly inhibited serine proteinases such as trypsin, chymotrypsin, and subtilisin, with the most potent inhibitory activity on subtilisin. It did not inhibit cysteine proteinase papain and aspartic proteinase cathepsin D. Recombinant SaPIN2a had a strong inhibitory effect on chymotrypsin, but its inhibitory activities toward trypsin and especially toward subtilisin were greatly reduced. In addition, native SaPIN2a can effectively inhibit midgut trypsin-like activities from Trichoplusia ni and Spodoptera litura larvae, suggesting a potential for the production of insect-resistant transgenic plants.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inzé D, Harris JL, Van Breusegem F. Serpin1 of Arabidopsis thaliana is a Suicide Inhibitor for Metacaspase 9. J Mol Biol 2006; 364:625-36. [PMID: 17028019 DOI: 10.1016/j.jmb.2006.09.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 01/05/2023]
Abstract
Metacaspases are distant relatives of animal caspases found in plants, fungi and protozoa. We demonstrated previously that two type II metacaspases of Arabidopsis thaliana, AtMC4 and AtMC9 are Arg/Lys-specific cysteine-dependent proteases. We screened a combinatorial tetrapeptide library of 130,321 substrates with AtMC9. Here, we show that AtMC9 is a strict Arg/Lys-specific protease. Based on the position-specific scoring matrix derived from the substrate library results, the tetrapeptide Val-Arg-Pro-Arg was identified as an optimized substrate. AtMC9 had a kcat/KM of 4.6x10(5) M-1 s-1 for Ac-Val-Arg-Pro-Arg-amido-4-methyl-coumarin, representing a more than 10-fold improvement over existing fluorogenic substrates. A yeast two-hybrid screen with catalytically inactive AtMC9 as bait identified a serine protease inhibitor, designated AtSerpin1, which was found to be a potent inhibitor of AtMC9 activity in vitro through cleavage of its reactive center loop and covalent binding to AtMC9. On the basis of the substrate profiling of AtMC9 and confirmation through site-directed mutagenesis, the inhibitory P4-P1 cleavage site of AtSerpin1 was determined to be Ile-Lys-Leu-Arg351. Further mutagenesis of the AtSerpin1 inhibitory cleavage site modulated AtMC9 inhibition positively or negatively. Both AtMC9 and AtSerpin1 were localized in the extracellular space, suggesting an in vivo interaction as well. To our knowledge, this is the first report of plant protease inhibition by a plant serpin.
Collapse
Affiliation(s)
- Dominique Vercammen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Law RHP, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. An overview of the serpin superfamily. Genome Biol 2006; 7:216. [PMID: 16737556 PMCID: PMC1779521 DOI: 10.1186/gb-2006-7-5-216] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serpins are a broadly distributed family of protease inhibitors that use a conformational change to inhibit target enzymes. They are central in controlling many important proteolytic cascades, including the mammalian coagulation pathways. Serpins are conformationally labile and many of the disease-linked mutations of serpins result in misfolding or in pathogenic, inactive polymers.
Collapse
Affiliation(s)
- Ruby HP Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Qingwei Zhang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Sheena McGowan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Gary A Silverman
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Wilson Wong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Carlos J Rosado
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Chris G Langendorf
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- ARC Centre for Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Rob N Pike
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - Philip I Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Victorian Bioinformatics Consortium, Monash University, Clayton Campus, Melbourne VIC 3800, Australia
- Magee-Womens Research Institute, Children's Hospital of Pittsburgh, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
39
|
Lough TJ, Lucas WJ. Integrative plant biology: role of phloem long-distance macromolecular trafficking. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:203-32. [PMID: 16669761 DOI: 10.1146/annurev.arplant.56.032604.144145] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent studies have revealed the operation of a long-distance communication network operating within the vascular system of higher plants. The evolutionary development of this network reflects the need to communicate environmental inputs, sensed by mature organs, to meristematic regions of the plant. One consequence of such a long-distance signaling system is that newly forming organs can develop properties optimized for the environment into which they will emerge, mature, and function. The phloem translocation stream of the angiosperms contains, in addition to photosynthate and other small molecules, a variety of macromolecules, including mRNA, small RNA, and proteins. This review highlights recent progress in the characterization of phloem-mediated transport of macromolecules as components of an integrated long-distance signaling network. Attention is focused on the role played by these proteins and RNA species in coordination of developmental programs and the plant's response to both environmental cues and pathogen challenge. Finally, the importance of developing phloem transcriptome and proteomic databases is discussed within the context of advances in plant systems biology.
Collapse
|
40
|
Kehr J. Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:767-74. [PMID: 16495410 DOI: 10.1093/jxb/erj087] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The phloem is a well-known target of sucking and piercing insects that utilize the transported fluid as their major nutrient source. In addition to small molecules like sugars and amino acids, phloem sap of higher land plants contains proteins that can accumulate up to high concentrations. Although the knowledge about the identities of these phloem sap proteins is increasing, the functions of most of them are still poorly understood. Since many phloem sap proteins have predicted roles in wound and defence responses, they constitute a class of compounds that can potentially influence plant-insect interactions. However, there are as yet no studies published that have examined direct effects of phloem sap proteins on insect feeding or vice versa. This review summarizes the current knowledge about the identities of phloem sap proteins, focused on polypeptides with probable functions in wound and defence reactions, and their potential impact on plant-insect interactions is discussed.
Collapse
Affiliation(s)
- Julia Kehr
- Max Planck Institute of Molecular Plant Physiology, Department Willmitzer, Am Mühlenberg 1, D-14424 Potsdam, Germany.
| |
Collapse
|
41
|
la Cour Petersen M, Hejgaard J, Thompson GA, Schulz A. Cucurbit phloem serpins are graft-transmissible and appear to be resistant to turnover in the sieve element-companion cell complex. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:3111-20. [PMID: 16246856 DOI: 10.1093/jxb/eri308] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Serpins are unique inhibitors of serine proteases that are located in various plant tissues and organs. An orthologue of the pumpkin (Cucurbita maxima) phloem serpin CmPS-1 was amplified from cucumber (Cucumis sativus) RNA by RT-PCR, cloned, and designated as CsPS-1 (GenBank accession no. AJ866989). Alternative amino acid sequences in the reactive centre loop suggest distinct inhibitory specificity between CmPS-1 and CsPS-1. A difference in the electrophoretic mobility of these serpins was used in heterografts to establish that serpins are phloem-mobile. Immuno light microscopy revealed that the phloem serpins are localized exclusively to sieve elements (SE), while the phloem filament protein CmPP1, used as a reference, is localized to both SEs and companion cells (CCs). Similar to CmPS-1, CsPS-1 accumulates over time in phloem exudates, indicating that serpins differ from other phloem-mobile proteins whose concentrations appear to be stable in phloem exudates. These differences could reflect alternative mechanisms regulating protein turnover and/or inaccessibility of protein degradation. The functionality of the pore/plasmodesma units connecting SEs and CCs was tested with graft-transmitted CmPP1 as a transport marker. The occurrence of CmPP1 in the CCs of the Cucumis graft partner shows that translocated 88 kDa phloem filament protein monomers can symplasmically exit the SE and accumulate in the CC. By contrast, serial sections probed with the serpin antibody demonstrate that the 43 kDa serpin does not enter CCs. Collectively, these data indicate that CCs play a decisive role in homeostasis of exudate proteins; proteins not accessing the CCs accumulate in SEs and display a time-dependent increase in concentration.
Collapse
Affiliation(s)
- Mette la Cour Petersen
- Department of Plant Biology, Royal Veterinary and Agricultural University (KVL), Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
42
|
Abstract
The interaction of proteinase inhibitors produced, in most cases, by host organisms and the invasive proteinases of pathogens or parasites or the dietary proteinases of predators, results in an evolutionary 'arms race' of rapid and ongoing change in both interacting proteins. The importance of these interactions in pathogenicity and predation is indicated by the high level and diversity of observable evolutionary activity that has been found. At the initial level of evolutionary change, recruitment of other functional protein-folding families has occurred, with the more recent evolution of one class of proteinase inhibitor from another, using the same mechanism and proteinase contact residues. The combination of different inhibitor domains into a single molecule is also observed. The basis from which variation is possible is shown by the high rate of retention of gene duplication events and by the associated process of inhibitory domain multiplication. At this level of reorganization, mutually exclusive splicing is also observed. Finally, the major mechanism by which variation is achieved rapidly is hypervariation of contact residues, an almost ubiquitous feature of proteinase inhibitors. The diversity of evolutionary mechanisms in a single class of proteins is unlikely to be common, because few systems are under similar pressure to create variation. Proteinase inhibitors are therefore a potential model system in which to study basic evolutionary process such as functional diversification.
Collapse
Affiliation(s)
- John T Christeller
- Horticulture and Food Research Institute of NZ, Palmerston North, New Zealand.
| |
Collapse
|
43
|
Abstract
Serpins are the largest family of protease inhibitors and are fundamental for the control of proteolysis in multicellular eukaryotes. Most eukaryote serpins inhibit serine or cysteine proteases, however, noninhibitory members have been identified that perform diverse functions in processes such as hormone delivery and tumour metastasis. More recently inhibitory serpins have been identified in prokaryotes and unicellular eukaryotes, nevertheless, the precise molecular targets of these molecules remains to be identified. The serpin mechanism of protease inhibition is unusual and involves a major conformational rearrangement of the molecule concomitant with a distortion of the target protease. As a result of this requirement, serpins are susceptible to mutations that result in polymerization and conformational diseases such as the human serpinopathies. This review reports on recent major discoveries in the serpin field, based upon presentations made at the 4th International Symposium on Serpin Structure, Function and Biology (Cairns, Australia).
Collapse
Affiliation(s)
- James C Whisstock
- The Department of Biochemistry and Molecular Biology, Monash University Clayton Campus, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
44
|
Hejgaard J, Laing WA, Marttila S, Gleave AP, Roberts TH. Serpins in fruit and vegetative tissues of apple (Malus domestica): expression of four serpins with distinct reactive centres and characterisation of a major inhibitory seed form, MdZ1b. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:517-527. [PMID: 32689152 DOI: 10.1071/fp04220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 04/12/2005] [Indexed: 06/11/2023]
Abstract
Most serpins irreversibly inhibit serine proteinases of the chymotrypsin family using a suicide-substrate-based mechanism. Serpins are present in all domains of life, but physiological functions in the plant kingdom are yet to be elucidated. Inhibitory properties of many abundant cereal grain serpins are well characterised, but serpins have not been identified in eudicot seeds. In apple (Malus domestica Borkh.), the origin of 88 serpin expressed sequence tags (ESTs) identified among 160 000 ESTs from 30 cultivar-, tissue- and time-specific libraries showed that serpin genes are expressed in a wide variety of tissues, including developing and mature fruits, seeds and vegetative buds as well as developing, mature and senescing leaves. Analysis of 46 sequences, most full-length, identified serpins with four distinct reactive centres belonging to two subfamilies (MdZ1 and MdZ2) with ~85% amino acid sequence identity. MdZ1 included three molecular forms with identical reactive centre loop (RCL) sequences except for three different, but related, residues at P2 (Asp, Asn or Glu). A major seed serpin, MdZ1b, with P2-P1' Glu-Arg-Arg was purified from decorticated seeds and characterised kinetically. MdZ1b was a fast inhibitor of bovine and porcine trypsin (second-order association rate constant k a ~4 × 106 m -1 s-1 and stoichiometry of inhibition SI = 1). Human plasmin and urokinase-type plasminogen activator (u-PA), but not thrombin, were inhibited at lower rates (k a ~104 m -1 s-1). Chymotrypsin was inhibited at the same site (k a~4 × 103 m -1 s-1), but a significant part of MdZ1b was cleaved as substrate (SI > 2). Unexpectedly, the MdZ1b-trypsin complex was relatively short-lived with a first-order dissociation rate constant k d in the order of 10-4 s-1. The bulk of mature seed MdZ1b was localised to the cotyledons. The content of MdZ1b in ripe apples was 5-26 µg per seed, whereas MdZ1b could not be detected in the cortex or skin. Localisation and inhibitory specificity of serpins in monocot and eudicot plants are compared and putative functions are discussed.
Collapse
Affiliation(s)
- Jørn Hejgaard
- Biochemistry and Nutrition Group, BioCentrum, Building 224, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - William A Laing
- Horticulture and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand
| | - Salla Marttila
- Department of Crop Science, Swedish University of Agricultural Sciences, PO Box 44, SE-23053 Alnarp, Sweden
| | - Andrew P Gleave
- Horticulture and Food Research Institute of New Zealand, PB 92169, Auckland, New Zealand
| | - Thomas H Roberts
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
45
|
|
46
|
Roberts TH, Hejgaard J, Saunders NFW, Cavicchioli R, Curmi PMG. Serpins in unicellular Eukarya, Archaea, and Bacteria: sequence analysis and evolution. J Mol Evol 2005; 59:437-47. [PMID: 15638455 DOI: 10.1007/s00239-004-2635-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most serpins irreversibly inactivate specific serine proteinases of the chymotrypsin family. Inhibitory serpins are unusual proteins in that their native structure is metastable, and rapid conversion to a relaxed state is required to trap target enzymes in a covalent complex. The evolutionary origin of the serpin fold is unresolved, and while serpins in animals are known to be involved in the regulation of a remarkable diversity of metabolic processes, the physiological functions of homologues from other phyla are unknown. Addressing these questions, here we analyze serpin genes identified in unicellular eukaryotes: the green alga Chlamydomonas reinhardtii, the dinoflagellate Alexandrium tamarense, and the human pathogens Entamoeba spp., Eimera tenella, Toxoplasma gondii, and Giardia lamblia. We compare these sequences to others, particularly those in the complete genome sequences of Archaea, where serpins were found in only 4 of 13 genera, and Bacteria, in only 9 of 56 genera. The serpins from unicellular organisms appear to be phylogenetically distinct from all of the clades of higher eukaryotic serpins. Most of the sequences from unicellular organisms have the characteristics of inhibitory serpins, and where multiple serpin genes are found in one genome, variability is displayed in the region of the reactive-center loop important for specificity. All the unicellular eukaryotic serpins have large hydrophobic or positively charged residues at the putative PI position. In contrast, none of the prokaryotic serpins has a residue of these types at the predicted P1 position, but many have smaller, neutral residues. Serpin evolution is discussed.
Collapse
Affiliation(s)
- Thomas H Roberts
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
47
|
Abstract
The evolution of intercellular communication had an important role in the increasing complexity of both multicellular and supracellular organisms. Plasmodesmata, the intercellular organelles of the plant kingdom, establish an effective pathway for local and long-distance signalling. In higher plants, this pathway involves the trafficking of proteins and various forms of RNA that function non-cell-autonomously to affect developmental programmes.
Collapse
Affiliation(s)
- William J Lucas
- Department of Plant Biology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
48
|
Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J. Proteomics of curcurbit phloem exudate reveals a network of defence proteins. PHYTOCHEMISTRY 2004; 65:1795-804. [PMID: 15276438 DOI: 10.1016/j.phytochem.2004.04.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/31/2004] [Indexed: 05/20/2023]
Abstract
Many different proteins can be separated from the sap of mature sieve tubes of different plant species. To date, only a limited number of those have been identified and functionally characterised. Due to sieve tubes inability of transcription and translation, the proteins are most probably synthesised in the intimately connected companion cells and transported into the sieve elements through plasmodesmata. The specific protein composition of phloem sap suggests an important role of these proteins not only for sieve tube maintenance, but also for whole plant physiology and development. Here we describe a comprehensive analysis of the phloem protein composition employing one- and high-resolution two-dimensional gel electrophoresis and partial sequencing by mass spectrometry. In this study more than 300 partial sequences generated by hybrid mass spectrometry were used to identify a total of 45 different proteins from the phloem exudates of cucumber (Cucumis sativus L. cv. Hoffmanns Giganta) and pumpkin (Cucurbita maxima Duch. cv. Gelber Zentner) plants. In addition to previously described phloem proteins, it was possible to localise proteins with high similarity to an acyl-CoA binding protein, a glyoxalase, a malate dehydrogenase, a rhodanese-like protein, a drought-induced protein, and a beta-glucosidase. The results indicate that the majority of the so far identified proteins are involved in stress and defence reactions.
Collapse
Affiliation(s)
- Christina Walz
- Department L. Willmitzer, Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14424 Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Keates SE, Kostman TA, Anderson JD, Bailey BA. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. PLANT PHYSIOLOGY 2003; 132:1610-22. [PMID: 12857840 PMCID: PMC167098 DOI: 10.1104/pp.102.019836] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2002] [Revised: 01/30/2003] [Accepted: 02/16/2003] [Indexed: 05/18/2023]
Abstract
Nep1 is an extracellular fungal protein that causes necrosis when applied to many dicotyledonous plants, including invasive weed species. Using transmission electron microscopy, it was determined that application of Nep1 (1.0 micro g mL(-)(1), 0.1% [v/v] Silwet-L77) to Arabidopsis and two invasive weed species, spotted knapweed (Centaurea maculosa) and dandelion (Taraxacum officinale), caused a reduction in the thickness of the cuticle and a breakdown of chloroplasts 1 to 4 h after treatment. Membrane breakdown was most severe in cells closest to the surface of application. Differential display was used to isolate cDNA clones from the three species showing differential expression in response to Nep1 treatment. Differential gene expression was observed for a putative serpin (CmSER-1) and a calmodulin-like (CmCAL-1) protein from spotted knapweed, and a putative protein phosphatase 2C (ToPP2C-1) and cytochrome P-450 (ToCYP-1) protein from dandelion. In addition, differential expression was observed for genes coding for a putative protein kinase (AtPK-1), a homolog (AtWI-12) of wound-induced WI12, a homolog (AtLEA-1) of late embryogenesis abundant LEA-5, a WRKY-18 DNA-binding protein (AtWRKY-18), and a phospholipase D (AtPLD-1) from Arabidopsis. Genes showing elevated mRNA levels in Nep1-treated (5 micro g mL(-)(1), 0.1% [v/v] Silwet-L77) leaves 15 min after Nep1 treatment included CmSER-1 and CmCAL-1 for spotted knapweed, ToCYP-1 and CmCAL-1 for dandelion, and AtPK-1, AtWRKY-18, AtWI-12, and AtLEA-1 for Arabidopsis. Levels of mRNA for AtPLD-1 (Arabidopsis) and ToPP2C-1 (dandelion) decreased rapidly in Silwet-L77-treated plants between 15 min and 4 h of treatment, but were maintained or decreased more slowly over time in Nep1-treated (5 micro g mL(-)(1), 0.1% [v/v] Silwet-L77) leaves. In general, increases in mRNA band intensities were in the range of two to five times, with only ToCYP-1 in dandelion exceeding an increase of 10 times. The identified genes have been shown to be involved or are related to gene families that are involved in plant stress responses, including wounding, drought, senescence, and disease resistance.
Collapse
Affiliation(s)
- Sarah E Keates
- Alternate Crops and Systems Laboratory, U.S. Department of Agriculture/Agricultural Research Service, Beltsville Area Research Center-West, Beltsville, Maryland 20705, USA
| | | | | | | |
Collapse
|
50
|
Rahbé Y, Ferrasson E, Rabesona H, Quillien L. Toxicity to the pea aphid Acyrthosiphon pisum of anti-chymotrypsin isoforms and fragments of Bowman-Birk protease inhibitors from pea seeds. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:299-306. [PMID: 12609515 DOI: 10.1016/s0965-1748(02)00244-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aphids feed on a protein-poor diet and are insensitive to several serine protease inhibitors. However, among the Bowman-Birk family of plant trypsin inhibitors (BBI), some members display significant toxicity to the pea aphid Acyrthosiphon pisum. A BBI isoform purified from pea seeds (PsTI-2) displays an IC50 of 41 microM and a LC50 of 48 microM at 7 days. Our data show that the chymotrypsin-directed active site from these bifunctional inhibitors is responsible for this activity, and that artificial cyclic peptides bearing the Bowman-Birk anti-chymotrypsin head induce much greater toxicity and growth inhibition than their anti-trypsin counterparts. The toxic syndrome included a rapid behavioural response of aphids on diets containing the toxic peptides, with induced restlessness after only 1 h of exposure to the chymotrypsin inhibitor. Nevertheless, chymotrypsin activity was not detected in aphid guts, using two chromogenic chymotrypsin substrates, and the physiological target of the chymotrypsin inhibitor remains unknown. These data show for the first time that plant chymotrypsin inhibitors, still widely unexplored, may act as paradoxical toxicants to aphids and serve as defensive metabolites for phloem-feeding insects.
Collapse
Affiliation(s)
- Y Rahbé
- UMR INRA-INSA de Lyon, Biologie Fonctionnelle Insectes et Interactions, Bat Louis-Pasteur, 20 av A Einstein, F-69621 Villeurbanne cedex, France.
| | | | | | | |
Collapse
|