1
|
Ridha F, Gromiha MM. MPA-MutPred: a novel strategy for accurately predicting the binding affinity change upon mutation in membrane protein complexes. Brief Bioinform 2024; 25:bbae598. [PMID: 39550225 PMCID: PMC11568875 DOI: 10.1093/bib/bbae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mutations in the interface of membrane protein (MP) complexes are key contributors to a broad spectrum of human diseases, primarily due to changes in their binding affinities. While various methods exist for predicting the mutation-induced changes in binding affinity (ΔΔG) in protein-protein complexes, none are specific to MP complexes. This study proposes a novel strategy for ΔΔG prediction in MP complexes, which combines linear and nonlinear models, to obtain a more robust model with improved prediction accuracy. We used multiple linear regression to extract informative features that influence the binding affinity in MP complexes, which included changes in the stability of the complex, conservation score, electrostatic interaction, relatively accessible surface area, and interface contacts. Further, using gradient boosting regressor on the selected features, we developed MPA-MutPred, a novel method specific for predicting the ΔΔG of membrane protein-protein complexes, and it is freely accessible at https://web.iitm.ac.in/bioinfo2/MPA-MutPred/. Our method achieved a correlation of 0.75 and a mean absolute error (MAE) of 0.73 kcal/mol in the jack-knife test conducted on a dataset of 770 mutants. We further validated the method using a blind test set of 86 mutations, obtaining a correlation of 0.85 and an MAE of 0.77 kcal/mol. We anticipate that this method can be used for large-scale studies to understand the influence of binding affinity change on disease-causing mutations in MP complexes, thereby aiding in the understanding of disease mechanisms and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Fathima Ridha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Daneels W, Van Parys A, Huyghe L, Rogge E, De Rouck S, Christiaen R, Zabeau L, Taveirne S, Van Dorpe J, Kley N, Cauwels A, Depla E, Tavernier J, Offner F. High efficacy of huCD20-targeted AcTaferon in humanized patient derived xenograft models of aggressive B cell lymphoma. Exp Hematol Oncol 2024; 13:59. [PMID: 38831452 PMCID: PMC11145843 DOI: 10.1186/s40164-024-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.
Collapse
Affiliation(s)
- Willem Daneels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
| | - Alexander Van Parys
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Elke Rogge
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Steffi De Rouck
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | | | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences BV, Ghent, Belgium
| | - Anje Cauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | - Jan Tavernier
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Fritz Offner
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Hernández González JE, de Araujo AS. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein-Protein Interfaces Considering Fixed and Variable Protonation States. J Chem Inf Model 2023; 63:6807-6822. [PMID: 37851531 DOI: 10.1021/acs.jcim.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The calculation of relative free energies (ΔΔG) for charge-changing mutations at protein-protein interfaces through alchemical methods remains challenging due to variations in the system's net charge during charging steps, the possibility of mutated and contacting ionizable residues occurring in various protonation states, and undersampling issues. In this study, we present a set of strategies, collectively termed TIRST/TIRST-H+, to address some of these challenges. Our approaches combine thermodynamic integration (TI) with the prediction of pKa shifts to calculate ΔΔG values. Moreover, special sets of restraints are employed to keep the alchemically transformed molecules separated. The accuracy of the devised approaches was assessed on a large and diverse data set comprising 164 point mutations of charged residues (Asp, Glu, Lys, and Arg) to Ala at the protein-protein interfaces of complexes with known three-dimensional structures. Mean absolute and root-mean-square errors ranging from 1.38 to 1.66 and 1.89 to 2.44 kcal/mol, respectively, and Pearson correlation coefficients of ∼0.6 were obtained when testing the approaches on the selected data set using the GPU-TI module of Amber18 suite and the ff14SB force field. Furthermore, the inclusion of variable protonation states for the mutated acid residues improved the accuracy of the predicted ΔΔG values. Therefore, our results validate the use of TIRST/TIRST-H+ in prospective studies aimed at evaluating the impact of charge-changing mutations to Ala on the stability of protein-protein complexes.
Collapse
|
4
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
5
|
Way JC, Burrill DR, Silver PA. Bioinspired Design of Artificial Signaling Systems. Biochemistry 2023; 62:178-186. [PMID: 35984429 PMCID: PMC9851155 DOI: 10.1021/acs.biochem.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.
Collapse
Affiliation(s)
- Jeffrey C. Way
- General
Biologics, Inc., 108
Fayerweather Street, Unit 2, Cambridge, Massachusetts 02138, United States
| | - Devin R. Burrill
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Fang J, Zhang Q, Xi Y, Lang L, Wang K, Li S. Analysis of the Differential Expression and Antiviral Activity of Porcine Interferon-α In Vitro. Int J Pept Res Ther 2023; 29:42. [PMID: 37065431 PMCID: PMC10082627 DOI: 10.1007/s10989-023-10508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/18/2023]
Abstract
Porcine interferon α (poIFN-α) is a crucial cytokine that can prevent and treat viral infections. Seventeen functional porcine IFN-α subtypes were found in the porcine genome. In this study, multiple sequence alignment was performed to analyze IFN-α protein structure and function. Phylogenetic tree analysis of the poIFN gene family defined the evolutionary relationship of various subtypes. PoIFN-αs, including poIFN-α1-17, were expressed in an Escherichia coli expression system. The antiviral activities of these IFN-α proteins against vesicular stomatitis virus (VSV) and pseudorabies virus (PRV) were examined in PK-15 cells. We found that the antiviral activity of different poIFN-α molecules greatly differed as follows: the poIFN-α14 and 17 subtypes had the greatest antiviral activities against VSV and PRV in PK-15 cells, poIFN-α1, 2, 3, and 8 exhibited lower biological activities, and poIFN-α4, 5, 6, 7, 9, 10, 11, 12, 13, and 16 had minimal or no effect in the tested target cell‒virus systems. Moreover, our studies demonstrated that the antiviral activity of IFN-α was positively correlated with the induction of IFN-stimulated genes, such as 2'-5' oligoadenylate synthetase 1 (OSA1), interferon-stimulated gene 15 (ISG15), myxoma resistance protein 1 (Mx1), and protein kinase R (PKR). Thus, our experimental results provide important information about the antiviral functions and mechanism of poIFN-α.
Collapse
Affiliation(s)
- Jianyu Fang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxian Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Xi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Keling Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
7
|
Aguilar MF, Garay AS, Attallah C, Rodrigues DE, Oggero M. Changes in antibody binding and functionality after humanizing a murine scFv anti-IFN-α2: From in silico studies to experimental analysis. Mol Immunol 2022; 151:193-203. [PMID: 36166900 DOI: 10.1016/j.molimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.
Collapse
Affiliation(s)
- María Fernanda Aguilar
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - A Sergio Garay
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Carolina Attallah
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - Daniel E Rodrigues
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina; INTEC, CONICET-UNL, Predio CONICET Santa Fe, Pje. "El Pozo", S3000 Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
8
|
Panday S, Alexov E. Protein-Protein Binding Free Energy Predictions with the MM/PBSA Approach Complemented with the Gaussian-Based Method for Entropy Estimation. ACS OMEGA 2022; 7:11057-11067. [PMID: 35415339 PMCID: PMC8991903 DOI: 10.1021/acsomega.1c07037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Here, we present a Gaussian-based method for estimation of protein-protein binding entropy to augment the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method for computational prediction of binding free energy (ΔG). The method is termed f5-MM/PBSA/E, where "E" stands for entropy and f5 for five adjustable parameters. The enthalpy components of ΔG (molecular mechanics, polar and non-polar solvation energies) are computed from a single implicit solvent generalized Born (GB) energy minimized structure of a protein-protein complex, while the binding entropy is computed using independently GB energy minimized unbound and bound structures. It should be emphasized that the f5-MM/PBSA/E method does not use snapshots, just energy minimized structures, and is thus very fast and computationally efficient. The method is trained and benchmarked in 5-fold validation test over a data set consisting of 46 protein-protein binding cases with experimentally determined dissociation constant K d values. This data set has been used for benchmarking in recently published protein-protein binding studies that apply conventional MM/PBSA and MM/PBSA with an enhanced sampling method. The f5-MM/PBSA/E tested on the same data set achieves similar or better performance than these computationally demanding approaches, making it an excellent choice for high throughput protein-protein binding affinity prediction studies.
Collapse
|
9
|
Chauhan P, Nair A, Patidar A, Dandapat J, Sarkar A, Saha B. A primer on cytokines. Cytokine 2021; 145:155458. [PMID: 33581983 DOI: 10.1016/j.cyto.2021.155458] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Cytokines are pleiotropic polypeptides that control the development of and responses mediated by immune cells. Cytokine classification predominantly relies on [1] the target receptor(s), [2] the primary structural features of the extracellular domains of their receptors, and [3] their receptor composition. Functionally, cytokines are either pro-inflammatory or anti-inflammatory, hematopoietic colony-stimulating factors, developmental and would healing maintaining immune homeostasis. When the balance in C can form complex networks amongst themselves that may affect the homeostasis and diseases. Cytokines can affect resistance and susceptibility for many diseases and their availability in the host cytokine production and interaction is disturbed, immunopathogenesis sets in. Therefore, cytokine-targeting bispecific, and chimeric antibodies form a significant mode of immnuo-therapeutics Although the field has grown deep and wide, many areas of cytokine biology remain unknown. Here, we have reviewed these cytokines along with the organization, signaling, and functions through respective cytokine-receptor-families. Being part of the special issue on the Role of Cytokines in Leishmaniasis, this review is intended to be used as an organized primer on cytokines and not a resource for detailed discussion- for which a two-volume Handbook of cytokines is available- on each of the cytokines. Priming the readers on cytokines, we next brief the role of cytokines in Leishmaniasis. In the brief, we do not provide an account of each of the involved cytokines known to date, instead, we offer a temporal relationship between the cytokines and the progress of the infection towards the alternate outcomes- healing or non-healing- of the infection.
Collapse
Affiliation(s)
- Prashant Chauhan
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Arathi Nair
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ashok Patidar
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Jagneshwar Dandapat
- P.G. Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar 751024, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune 411007, India; Trident Academy of Creative Technology, Bhubaneswar 751024, India; Department of Allied Health Sciences, BLDE (Deemed University), Vijayapura 562135, India.
| |
Collapse
|
10
|
de Weerd NA, Vivian JP, Lim SS, Huang SUS, Hertzog PJ. Structural integrity with functional plasticity: what type I IFN receptor polymorphisms reveal. J Leukoc Biol 2021; 108:909-924. [PMID: 33448473 DOI: 10.1002/jlb.2mr0420-152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The type I IFNs activate an array of signaling pathways, which are initiated after IFNs bind their cognate receptors, IFNα/β receptor (IFNAR)1 and IFNAR2. These signals contribute to many aspects of human health including defense against pathogens, cancer immunosurveillance, and regulation of inflammation. How these cytokines interact with their receptors influences the quality of these signals. As such, the integrity of receptor structure is pivotal to maintaining human health and the response to immune stimuli. This review brings together genome wide association studies and clinical reports describing the association of nonsynonymous IFNAR1 and IFNAR2 polymorphisms with clinical disease, including altered susceptibility to viral and bacterial pathogens, autoimmune diseases, cancer, and adverse reactions to live-attenuated vaccines. We describe the amino acid substitutions or truncations induced by these polymorphisms and, using the knowledge of IFNAR conformational changes, IFNAR-IFN interfaces and overall structure-function relationship of the signaling complexes, we hypothesize the effect of these polymorphisms on receptor structure. That these predicted changes to IFNAR structure are associated with clinical manifestations of human disease, highlights the importance of IFNAR structural integrity to maintaining functional quality of these receptor-mediated responses. Type I IFNs are pivotal to innate immune responses and ultimately, to human health. Understanding the consequences of altered structure on the actions of these clinically significant cell receptors provides important information on the roles of IFNARs in health and disease.
Collapse
Affiliation(s)
- Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Julian P Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute and Australian Research Council Centre for Excellence for Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Stephanie U-Shane Huang
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Department of Molecular and Translational Science, Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Fox LE, Locke MC, Lenschow DJ. Context Is Key: Delineating the Unique Functions of IFNα and IFNβ in Disease. Front Immunol 2020; 11:606874. [PMID: 33408718 PMCID: PMC7779635 DOI: 10.3389/fimmu.2020.606874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFNs) are critical effector cytokines of the immune system and were originally known for their important role in protecting against viral infections; however, they have more recently been shown to play protective or detrimental roles in many disease states. Type I IFNs consist of IFNα, IFNβ, IFNϵ, IFNκ, IFNω, and a few others, and they all signal through a shared receptor to exert a wide range of biological activities, including antiviral, antiproliferative, proapoptotic, and immunomodulatory effects. Though the individual type I IFN subtypes possess overlapping functions, there is growing appreciation that they also have unique properties. In this review, we summarize some of the mechanisms underlying differential expression of and signaling by type I IFNs, and we discuss examples of differential functions of IFNα and IFNβ in models of infectious disease, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Lindsey E. Fox
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Marissa C. Locke
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Deborah J. Lenschow
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
12
|
Schreiber G. The Role of Type I Interferons in the Pathogenesis and Treatment of COVID-19. Front Immunol 2020; 11:595739. [PMID: 33117408 PMCID: PMC7561359 DOI: 10.3389/fimmu.2020.595739] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Type I interferons (IFN-I) were first discovered over 60 years ago in a classical experiment by Isaacs and Lindenman, who showed that IFN-Is possess antiviral activity. Later, it became one of the first approved protein drugs using heterologous protein expression systems, which allowed its large-scale production. It has been approved, and widely used in a pleiotropy of diseases, including multiple-sclerosis, hepatitis B and C, and some forms of cancer. Preliminary clinical data has supported its effectiveness against potential pandemic pathogens such as Ebola and SARS. Still, more efficient and specific drugs have taken its place in treating such diseases. The COVID-19 global pandemic has again lifted the status of IFN-Is to become one of the more promising drug candidates, with initial clinical trials showing promising results in reducing the severity and duration of the disease. Although SARS-CoV-2 inhibits the production of IFNβ and thus obstructs the innate immune response to this virus, it is sensitive to the antiviral activity of externally administrated IFN-Is. In this review I discuss the diverse modes of biological actions of IFN-Is and how these are related to biophysical parameters of IFN-I-receptor interaction and cell-type specificity in light of the large variety of binding affinities of the different IFN-I subtypes towards the common interferon receptor. Furthermore, I discuss how these may guide the optimized use IFN-Is in combatting COVID-19.
Collapse
Affiliation(s)
- Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
13
|
Shamloo A, Rostami P, Mahmoudi A. PASylation Enhances the Stability, Potency, and Plasma Half-Life of Interferon α-2a: A Molecular Dynamics Simulation. Biotechnol J 2020; 15:e1900385. [PMID: 32277577 DOI: 10.1002/biot.201900385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/16/2020] [Indexed: 12/17/2022]
Abstract
In this study, the effectiveness of PASylation in enhancing the potency and plasma half-life of pharmaceutical proteins has been accredited as an alternative technique to the conventional methods such as PEGylation. Proline, alanine, and serine (PAS) chain has shown some advantages including biodegradability improvement and plasma half-life enhancement while lacking immunogenicity or toxicity. Although some experimental studies have been performed to find the mechanism behind PASylation, the detailed mechanism of PAS effects on the pharmaceutical proteins has remained obscure, especially at the molecular level. In this study, the interaction of interferon α-2a (IFN) and PAS chain is investigated using molecular dynamics simulation method. Several important parameters including secondary structure, root-mean-square distance, and solvent accessible surface area to investigate the stability, bioavailability, and bioactivity of the PASylated protein are studied. The results demonstrate that IFN conformation is not affected critically through PASylation while it results in improvement of the protein stability and bioactivity. Therefore, PASylation can be considered as a proper biological alternative technique to increase the plasma half-life of the biopharmaceutical proteins through enlarging apparent volume. The proposed simulation represents a computational approach that would provide a basis for the study of PASylated pharmaceutical proteins for different future applications.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of mechanical engineering, Sharif University of Technology, Azadi Ave. 11155-9567, Tehran, Iran
| | - Peyman Rostami
- Department of mechanical engineering, Sharif University of Technology, Azadi Ave. 11155-9567, Tehran, Iran
| | - Ashkan Mahmoudi
- Department of Aerospace Engineering, Sharif University of Technology, Azadi Ave. 11365-11155, Tehran, Iran
| |
Collapse
|
14
|
Flesch J, Kappen M, Drees C, You C, Piehler J. Self-assembly of robust gold nanoparticle monolayer architectures for quantitative protein interaction analysis by LSPR spectroscopy. Anal Bioanal Chem 2020; 412:3413-3422. [PMID: 32198532 PMCID: PMC7214499 DOI: 10.1007/s00216-020-02551-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Localized surface plasmon resonance (LSPR) detection offers highly sensitive label-free detection of biomolecular interactions. Simple and robust surface architectures compatible with real-time detection in a flow-through system are required for broad application in quantitative interaction analysis. Here, we established self-assembly of a functionalized gold nanoparticle (AuNP) monolayer on a glass substrate for stable, yet reversible immobilization of Histidine-tagged proteins. To this end, one-step coating of glass substrates with poly-L-lysine graft poly(ethylene glycol) functionalized with ortho-pyridyl disulfide (PLL-PEG-OPSS) was employed as a reactive, yet biocompatible monolayer to self-assemble AuNP into a LSPR active monolayer. Site-specific, reversible immobilization of His-tagged proteins was accomplished by coating the AuNP monolayer with tris-nitrilotriacetic acid (trisNTA) PEG disulfide. LSPR spectroscopy detection of protein binding on these biocompatible functionalized AuNP monolayers confirms high stability under various harsh analytical conditions. These features were successfully employed to demonstrate unbiased kinetic analysis of cytokine-receptor interactions. Graphical abstract ![]()
Collapse
Affiliation(s)
- Julia Flesch
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Marie Kappen
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Christoph Drees
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Changjiang You
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| | - Jacob Piehler
- Department of Biology/Chemistry, University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Barbarastr. 11, 49076, Osnabrück, Germany.
| |
Collapse
|
15
|
Talebi S, Saeedinia A, Zeinoddini M, Ahmadpour F, Sadeghizadeh M. Evaluation of a single amino acid substitution at position 79 of human IFN-α2b in interferon-receptor assembly and activity. Prep Biochem Biotechnol 2019; 49:735-743. [PMID: 31135267 DOI: 10.1080/10826068.2019.1566143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Type I interferons (IFNs) are homologous cytokines that bind to a cell surface receptor and establish signaling pathways that motivate immune responses. The purpose of the current study is to assess the activity of a novel-engineered IFN-α2b. The crystallographic structure of IFN-α2b and its receptors was acquired from Protein Data Bank. Various amino acid substitutions were designed based on structural properties and other biological characteristics of residues to find the most effective amino acid on IFN affinity to advanced activities. The IFN-α2b mutants and receptors have been modeled and the interactions between two proteins have been studied as in silico by protein-protein docking for both mutants and native forms. The proper nucleic acid sequence IFN-α2 (T79Q) has been prepared based on the selected mutant. The modified IFN gene was cloned in pcDNA 3.1(-) and introduced to Chinese Hamster Ovary (CHO) cell line. Antiviral and antiproliferative assays of native and IFN-α2 (T79Q) proteins were performed in vitro. The results showed two-fold increasing in IFN-α2 (T79Q) activity (antiviral and antiproliferative activity) in comparison to native IFN-α2b. This engineered IFN-α2b may have significant novel therapeutic applications and in silico studies can be an influential method for practical research function and structure of these molecules.
Collapse
Affiliation(s)
- Samira Talebi
- a Malek Ashtar University of Technology , Tehran , Iran.,b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | - Fathollah Ahmadpour
- b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Sadeghizadeh
- c Department of Genetics, School of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
16
|
Dose-Dependent Differences in HIV Inhibition by Different Interferon Alpha Subtypes While Having Overall Similar Biologic Effects. mSphere 2019; 4:4/1/e00637-18. [PMID: 30760614 PMCID: PMC6374594 DOI: 10.1128/msphere.00637-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elucidating the functional role of the IFN-α subtypes is of particular importance for the development of efficacious therapies using exogenous IFN-α. Specifically, this will help define whether IFN therapy should be based on the use of pathogen-dependent IFN subtypes or, rather, IFN mutants with optimized IFNAR binding properties. Type I interferons (IFNs) are key players in the antiviral immune response. Interferon alpha (IFN-α) belongs to this class of IFNs and comprises 12 subtypes that differ from each other in their binding affinities for a common receptor and, thus, in their signaling potencies. Recent data suggest that IFN-α6 and -α14 are the most potent IFN-α subtypes in restricting HIV replication when applied exogenously. However, in the context of antiviral therapy, IFNs are administered at high doses, which may compensate for differences in potency seen between IFN-α subtypes. In this study, we reexamined whether IFN-α subtypes induce different biological activities, with a focus on how IFN-α treatment dose affects cellular responses to HIV in primary CD4+ T cells, peripheral blood mononuclear cells (PBMCs), and macrophages. We found that the subtypes’ antiviral activities were dose dependent, with >90% inhibition of HIV replication at a high dose of all IFN-αs except the weak IFN-α/β receptor (IFNAR) binder, IFN-α1. The quality of the responses engendered by IFN-α1, -α2, -α6, and -α14 was highly comparable, with essentially the same set of genes induced by all four subtypes. Hierarchal cluster analysis revealed that the individual donors were stronger determinants for the IFN-stimulated-gene (ISG) responses than the specific IFN-α subtype used for stimulation. Notably, IFN-α2-derived mutants with substantially reduced IFNAR2 binding still inhibited HIV replication efficiently, whereas mutants with increased IFNAR1 binding potentiated antiviral activity. Overall, our results support the idea that IFN-α subtypes do not induce different biological responses, given that each subtype is exogenously applied at bioequivalent doses. IMPORTANCE Elucidating the functional role of the IFN-α subtypes is of particular importance for the development of efficacious therapies using exogenous IFN-α. Specifically, this will help define whether IFN therapy should be based on the use of pathogen-dependent IFN subtypes or, rather, IFN mutants with optimized IFNAR binding properties.
Collapse
|
17
|
Imada T, Moriya K, Uchiyama M, Inukai N, Hitotsuyanagi M, Masuda A, Suzuki T, Ayukawa S, Tagawa YI, Dohmae N, Kohara M, Yamamura M, Kiga D. A Highly Bioactive Lys-Deficient IFN Leads to a Site-Specific Di-PEGylated IFN with Equivalent Bioactivity to That of Unmodified IFN-α2b. ACS Synth Biol 2018; 7:2537-2546. [PMID: 30277749 DOI: 10.1021/acssynbio.8b00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although conjugation with polyethylene glycol (PEGylation) improves the pharmacokinetics of therapeutic proteins, it drastically decreases their bioactivity. Site-specific PEGylation counters the reduction in bioactivity, but developing PEGylated proteins with equivalent bioactivity to that of their unmodified counterparts remains challenging. This study aimed to generate PEGylated proteins with equivalent bioactivity to that of unmodified counterparts. Using interferon (IFN) as a model protein, a highly bioactive Lys-deficient protein variant generated using our unique directed evolution methods enables the design of a site-specific di-PEGylated protein. Antiviral activity of our di-PEGylated IFN was similar to that of unmodified IFN-α2b. The di-PEGylated IFN exhibited 3.0-fold greater antiviral activity than that of a commercial PEGylated IFN. Moreover, our di-PEGylated IFN showed higher in vitro and in vivo stability than those of unmodified IFN-α2b. Hence, we propose that highly bioactive Lys-deficient proteins solve the limitation of conventional PEGylation with respect to the reduction in bioactivity of PEGylated proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Akiko Masuda
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Takehiro Suzuki
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Shotaro Ayukawa
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| | | | - Naoshi Dohmae
- RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Michinori Kohara
- Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | - Daisuke Kiga
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, 169-8050, Japan
| |
Collapse
|
18
|
Hallen MA, Martin JW, Ojewole A, Jou JD, Lowegard AU, Frenkel MS, Gainza P, Nisonoff HM, Mukund A, Wang S, Holt GT, Zhou D, Dowd E, Donald BR. OSPREY 3.0: Open-source protein redesign for you, with powerful new features. J Comput Chem 2018; 39:2494-2507. [PMID: 30368845 PMCID: PMC6391056 DOI: 10.1002/jcc.25522] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 12/14/2022]
Abstract
We present osprey 3.0, a new and greatly improved release of the osprey protein design software. Osprey 3.0 features a convenient new Python interface, which greatly improves its ease of use. It is over two orders of magnitude faster than previous versions of osprey when running the same algorithms on the same hardware. Moreover, osprey 3.0 includes several new algorithms, which introduce substantial speedups as well as improved biophysical modeling. It also includes GPU support, which provides an additional speedup of over an order of magnitude. Like previous versions of osprey, osprey 3.0 offers a unique package of advantages over other design software, including provable design algorithms that account for continuous flexibility during design and model conformational entropy. Finally, we show here empirically that osprey 3.0 accurately predicts the effect of mutations on protein-protein binding. Osprey 3.0 is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source software. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark A. Hallen
- Department of Computer Science, Duke University, Durham, NC
27708
- Toyota Technological Institute at Chicago, Chicago, IL
60637
| | | | - Adegoke Ojewole
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Jonathan D. Jou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Anna U. Lowegard
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| | - Pablo Gainza
- Department of Computer Science, Duke University, Durham, NC
27708
| | | | - Aditya Mukund
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Siyu Wang
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - Graham T. Holt
- Program in Computational Biology and Bioinformatics, Duke
University Medical Center, Durham, NC 27710
| | - David Zhou
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Elizabeth Dowd
- Department of Computer Science, Duke University, Durham, NC
27708
| | - Bruce R. Donald
- Department of Computer Science, Duke University, Durham, NC
27708
- Department of Chemistry, Duke University, Durham, NC
27708
- Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710
| |
Collapse
|
19
|
Inflammatory profiles revealed the dysregulation of cytokines in adult patients of HFMD. Int J Infect Dis 2018; 79:12-20. [PMID: 30423459 DOI: 10.1016/j.ijid.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Adult patients of HFMD might act as potential enterovirus reservoirs. As enterovirus infection will cause acute inflammatory response, identifying the association between the dysregulation of cytokines and the development and prognosis of HFMD in adult patients has vital clinical significance. METHODS 60 patients from 266 laboratory-confirmed adult HFMD cases were included in this study, with 40 healthy adult subjects serving as the controls. Social-demographic data were collected through follow-up phone calls. Serum samples were collected from the participants. Enterovirus genotype was tested by RT-PCR, and the expression of cytokines were examined according to the manufacturer's instructions. Cases were classified using the cytokine profiles with machine learning algorithm. RESULTS Adult patients of HFMD presented with dysregulation of cytokines. 15 cytokines of adult patients were significantly elevated and 11 cytokines were decreased compared with those of controls. Correlation analysis showed some cytokines have positive correlation with the clinical characteristics and others have negative correlation. All of the enteroviral genotype presented cytokine dysregulation, and five cytokines were significantly different between genotypes. Using a random forest algorithm, we could classify the cytokine profiles into HFMD class and control class with a very high accuracy. CONCLUSION These findings suggested that cytokine expression was correlated with the enteroviral infection, genotype and clinical presentation. The inflammatory profiles could be developed as markers to identify HFMD cases with machine learning algorithm.
Collapse
|
20
|
A polymorphic residue that attenuates the antiviral potential of interferon lambda 4 in hominid lineages. PLoS Pathog 2018; 14:e1007307. [PMID: 30308076 PMCID: PMC6181419 DOI: 10.1371/journal.ppat.1007307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
As antimicrobial signalling molecules, type III or lambda interferons (IFNλs) are critical for defence against infection by diverse pathogens, including bacteria, fungi and viruses. Counter-intuitively, expression of one member of the family, IFNλ4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural frameshift mutation that abrogates IFNλ4 production improves HCV clearance. To further understand how genetic variation between and within species affects IFNλ4 function, we screened a panel of all known extant coding variants of human IFNλ4 for their antiviral potential and identify three that substantially affect activity: P70S, L79F and K154E. The most notable variant was K154E, which was found in African Congo rainforest ‘Pygmy’ hunter-gatherers. K154E greatly enhanced in vitro activity in a range of antiviral (HCV, Zika virus, influenza virus and encephalomyocarditis virus) and gene expression assays. Remarkably, E154 is the ancestral residue in mammalian IFNλ4s and is extremely well conserved, yet K154 has been fixed throughout evolution of the hominid genus Homo, including Neanderthals. Compared to chimpanzee IFNλ4, the human orthologue had reduced activity due to amino acid K154. Comparison of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNλ4 correlates with differences in antiviral gene expression in vivo during HCV infection. Mechanistically, our data show that the human-specific K154 negatively affects IFNλ4 activity through a novel means by reducing its secretion and potency. We thus demonstrate that attenuated activity of IFNλ4 is conserved among humans and postulate that differences in IFNλ4 activity between species contribute to distinct host-specific responses to—and outcomes of—infection, such as HCV infection. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose between 6 million and 360,000 years ago in Africa. Natural genetic variation and its influence on the outcome of viral infection is a topical area given the wealth of genetic data now available. However, understanding how clinical phenotype is affected by genetic variation at the molecular level is often lacking yet critical for any insight into immunity and disease. It is known that variants in the antiviral ‘interferon lambda 4’ (IFNL4) gene significantly influence outcome of hepatitis C virus (HCV) infection in humans. Counter-intuitively, those producing IFNL4 have greater risk of establishing chronic HCV infection, compared to individuals with an inactive variant, although the underlying mechanisms remain poorly understood. From a comprehensive screen of all natural human variants, we show that the most common form of IFNλ4 is less able to protect human cells from pathogenic virus infection than the equivalent protein from our closest living relative the chimpanzee. This is as a result of a single amino acid substitution that impedes its release from cells and reduces antiviral gene expression. Our observed differences in activity correlated with divergent host responses in HCV-infected livers from humans and chimpanzees. We suggest that human IFNL4 evolution places humans at a disadvantage when infected with pathogens such as HCV.
Collapse
|
21
|
George J, Mattapallil JJ. Interferon-α Subtypes As an Adjunct Therapeutic Approach for Human Immunodeficiency Virus Functional Cure. Front Immunol 2018; 9:299. [PMID: 29520278 PMCID: PMC5827157 DOI: 10.3389/fimmu.2018.00299] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/02/2018] [Indexed: 01/12/2023] Open
Abstract
Human immunodeficiency virus (HIV) establishes life-long latency in infected individuals. Although highly active antiretroviral therapy (HAART) has had a significant impact on the course of HIV infection leading to a better long-term outcome, the pool of latent reservoir remains substantial even under HAART. Numerous approaches have been under development with the goal of eradicating the latent HIV reservoir though with limited success. Approaches that combine immune-mediated control of HIV to activate both the innate and the adaptive immune system under suppressive therapy along with "shock and kill" drugs may lead to a better control of the reactivated virus. Interferon-α (IFN-α) is an innate cytokine that has been shown to activate intracellular defenses capable of restricting and controlling HIV. IFN-α, however, harbors numerous functional subtypes that have been reported to display different binding affinities and potency. Recent studies have suggested that certain subtypes such as IFN-α8 and IFN-α14 have potent anti-HIV activity with little or no immune activation, whereas other subtypes such as IFN-α4, IFN-α5, and IFN-α14 activate NK cells. Could these subtypes be used in combination with other strategies to reduce the latent viral reservoir? Here, we review the role of IFN-α subtypes in HIV infection and discuss the possibility that certain subtypes could be potential adjuncts to a "shock and kill" or therapeutic vaccination strategy leading to better control of the latent reservoir and subsequent functional cure.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University, Bethesda, MD, United States
| | | |
Collapse
|
22
|
Li H, Sharma N, General IJ, Schreiber G, Bahar I. Dynamic Modulation of Binding Affinity as a Mechanism for Regulating Interferon Signaling. J Mol Biol 2017; 429:2571-2589. [PMID: 28648616 PMCID: PMC5545807 DOI: 10.1016/j.jmb.2017.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/15/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Abstract
How structural dynamics affects cytokine signaling is under debate. Here, we investigated the dynamics of the type I interferon (IFN) receptor, IFNAR1, and its effect on signaling upon binding IFN and IFNAR2 using a combination of structure-based mechanistic studies, in situ binding, and gene induction assays. Our study reveals that IFNAR1 flexibility modulates ligand-binding affinity, which, in turn, regulates biological signaling. We identified the hinge sites and key interactions implicated in IFNAR1 inter-subdomain (SD1-SD4) movements. We showed that the predicted cooperative movements are essential to accommodate intermolecular interactions. Engineered disulfide bridges, computationally predicted to interfere with IFNAR1 dynamics, were experimentally confirmed. Notably, introducing disulfide bonds between subdomains SD2 and SD3 modulated IFN binding and activity in accordance with the relative attenuation of cooperative movements with varying distance from the hinge center, whereas locking the SD3-SD4 interface flexibility in favor of an extended conformer increased activity.
Collapse
Affiliation(s)
- Hongchun Li
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Nanaocha Sharma
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ignacio J General
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; School of Science and Technology, and CONICET, Universidad Nacional de San Martin, San Martin, Buenos Aires 1650, Argentina
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
23
|
Koturenkiene A, Makbul C, Herrmann C, Constantinescu-Aruxandei D. Kinetic characterization of apoptotic Ras signaling through Nore1-MST1 complex formation. Biol Chem 2017; 398:701-707. [PMID: 28141542 DOI: 10.1515/hsz-2016-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
Abstract
Ras-mediated apoptotic signaling is expected to be mediated via Rassf-MST complexes, but the system has been poorly characterized in vitro until now. Here we demonstrate that active H-Ras, Nore1A and MST1 form a stable ternary complex in vitro without other external factors, Nore1A interacting simultaneously with H-Ras and MST1 via its RBD and SARAH domain, respectively. Moreover, our data show for the first time that the SARAH domain of Nore1A plays a role in the Nore1A binding to H-Ras. Finally, we analyze the relation between the electrostatic and hydrophobic forces and kinetic constants of the Nore1A - H-Ras complex.
Collapse
Affiliation(s)
- Agne Koturenkiene
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Cihan Makbul
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr University Bochum, Universitätsstraße 150, D-44780 Bochum
| | | |
Collapse
|
24
|
Chuartzman SG, Nevo R, Waichman S, Shental D, Piehler J, Levy Y, Reich Z, Kapon R. Binding of interferon reduces the force of unfolding for interferon receptor 1. PLoS One 2017; 12:e0175413. [PMID: 28403186 PMCID: PMC5389645 DOI: 10.1371/journal.pone.0175413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/24/2017] [Indexed: 11/19/2022] Open
Abstract
Differential signaling of the type I interferon receptor (IFNAR) has been correlated with the ability of its subunit, IFNAR1, to differentially recognize a large spectrum of different ligands, which involves intricate conformational re-arrangements of multiple interacting domains. To shed light onto the structural determinants governing ligand recognition, we compared the force-induced unfolding of the IFNAR1 ectodomain when bound to interferon and when free, using the atomic force microscope and steered molecular dynamics simulations. Unexpectedly, we find that IFNAR1 is easier to mechanically unfold when bound to interferon than when free. Analysis of the structures indicated that the origin of the reduction in unfolding forces is a conformational change in IFNAR1 induced by ligand binding.
Collapse
Affiliation(s)
- Silvia G. Chuartzman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Dalit Shental
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (RK); (ZR)
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (RK); (ZR)
| |
Collapse
|
25
|
STAT2 is an essential adaptor in USP18-mediated suppression of type I interferon signaling. Nat Struct Mol Biol 2017; 24:279-289. [PMID: 28165510 PMCID: PMC5365074 DOI: 10.1038/nsmb.3378] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) are multifunctional cytokines that regulate immune responses and cellular functions but also can have detrimental effects on human health. A tight regulatory network therefore controls IFN signaling, which in turn may interfere with medical interventions. The JAK-STAT signaling pathway transmits the IFN extracellular signal to the nucleus, thus resulting in alterations in gene expression. STAT2 is a well-known essential and specific positive effector of type I IFN signaling. Here, we report that STAT2 is also a previously unrecognized, crucial component of the USP18-mediated negative-feedback control in both human and mouse cells. We found that STAT2 recruits USP18 to the type I IFN receptor subunit IFNAR2 via its constitutive membrane-distal STAT2-binding site. This mechanistic coupling of effector and negative-feedback functions of STAT2 may provide novel strategies for treatment of IFN-signaling-related human diseases.
Collapse
|
26
|
Chmiest D, Sharma N, Zanin N, Viaris de Lesegno C, Shafaq-Zadah M, Sibut V, Dingli F, Hupé P, Wilmes S, Piehler J, Loew D, Johannes L, Schreiber G, Lamaze C. Spatiotemporal control of interferon-induced JAK/STAT signalling and gene transcription by the retromer complex. Nat Commun 2016; 7:13476. [PMID: 27917878 PMCID: PMC5150223 DOI: 10.1038/ncomms13476] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/06/2016] [Indexed: 12/24/2022] Open
Abstract
Type-I interferons (IFNs) play a key role in the immune defences against viral and bacterial infections, and in cancer immunosurveillance. We have established that clathrin-dependent endocytosis of the type-I interferon (IFN-α/β) receptor (IFNAR) is required for JAK/STAT signalling. Here we show that the internalized IFNAR1 and IFNAR2 subunits of the IFNAR complex are differentially sorted by the retromer at the early endosome. Binding of the retromer VPS35 subunit to IFNAR2 results in IFNAR2 recycling to the plasma membrane, whereas IFNAR1 is sorted to the lysosome for degradation. Depletion of VPS35 leads to abnormally prolonged residency and association of the IFNAR subunits at the early endosome, resulting in increased activation of STAT1- and IFN-dependent gene transcription. These experimental data establish the retromer complex as a key spatiotemporal regulator of IFNAR endosomal sorting and a new factor in type-I IFN-induced JAK/STAT signalling and gene transcription.
Collapse
Affiliation(s)
- Daniela Chmiest
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie–Centre de Recherche, PSL Research University, 26 rue d'Ulm, F-75248 Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
| | - Nanaocha Sharma
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Natacha Zanin
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie–Centre de Recherche, PSL Research University, 26 rue d'Ulm, F-75248 Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
| | - Christine Viaris de Lesegno
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie–Centre de Recherche, PSL Research University, 26 rue d'Ulm, F-75248 Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
| | - Massiullah Shafaq-Zadah
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
- Endocytic Trafficking and Intracellular Delivery Laboratory, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
| | - Vonick Sibut
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
- INSERM U900, 75005 Paris, France
- Mines Paris-Tech, F-75272 Paris, France
| | - Florent Dingli
- Proteomics and Mass Spectrometry Laboratory, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
| | - Philippe Hupé
- Bioinformatics and Computational Systems Biology of Cancer, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
- INSERM U900, 75005 Paris, France
- Mines Paris-Tech, F-75272 Paris, France
- CNRS UMR144, 75005 Paris, France
| | - Stephan Wilmes
- Division of Biophysics, Department of Biology, University of Osnabrück, 49074 Osnabrück, Germany
| | - Jacob Piehler
- Division of Biophysics, Department of Biology, University of Osnabrück, 49074 Osnabrück, Germany
| | - Damarys Loew
- Proteomics and Mass Spectrometry Laboratory, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
| | - Ludger Johannes
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
- Endocytic Trafficking and Intracellular Delivery Laboratory, Institut Curie–Centre de Recherche, PSL Research University, F-75248 Paris, France
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Christophe Lamaze
- Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie–Centre de Recherche, PSL Research University, 26 rue d'Ulm, F-75248 Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1143, 75005 Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR 3666, 75005 Paris, France
| |
Collapse
|
27
|
George J, Renn L, Verthelyi D, Roederer M, Rabin RL, Mattapallil JJ. Early treatment with reverse transcriptase inhibitors significantly suppresses peak plasma IFNα in vivo during acute simian immunodeficiency virus infection. Cell Immunol 2016; 310:156-164. [PMID: 27622386 PMCID: PMC11348878 DOI: 10.1016/j.cellimm.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/04/2016] [Accepted: 09/04/2016] [Indexed: 02/07/2023]
Abstract
Innate interferons (IFN) are comprised of multiple Type I and III subtypes. The in vivo kinetics of subtype responses during human immunodeficiency virus (HIV) infection is not well defined. Using the acute simian immunodeficiency virus (SIV) infection model, we show that plasma IFNα levels peak at day 10 post-infection (pi) after which they rapidly declined. The mRNA expression of Type I and III IFN subtypes were significantly elevated in the lymph nodes (LN) at day 10 pi. Though the expression levels of all subtypes declined by day 14-31 pi, numerous subtypes remained elevated suggesting that ongoing viral replication in LN continues to drive induction of these subtypes. Interestingly, treatment with reverse transcriptase (RT) inhibitors at day 7 pi significantly suppressed plasma IFNα responses by day 10 pi that significantly correlated with cell-associated SIV DNA loads suggesting that RT byproducts such as viral DNA likely plays a role in driving IFN responses during acute SIV infection. Quantification of Type I and III subtype transcripts in sorted subsets of LN CD4+ and CD8+ T cells, CD14+/CD14- monocytes/macrophages, and total CD11c/CD123+ dendritic cells (DC) at day 10 pi showed that DC expressed ∼3-4 log more subtype transcripts as compared to the other subsets. Taken together, our results provide new insights into the kinetics of innate interferon responses during early stages of infection, and provide evidence that DC's are a major in vivo source of innate IFN during acute SIV infection.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lynnsey Renn
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Daniela Verthelyi
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institutes of Health, Bethesda, MD, United States
| | - Ronald L Rabin
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Joseph J Mattapallil
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
28
|
Spolaore B, Raboni S, Satwekar AA, Grigoletto A, Mero A, Montagner IM, Rosato A, Pasut G, Fontana A. Site-Specific Transglutaminase-Mediated Conjugation of Interferon α-2b at Glutamine or Lysine Residues. Bioconjug Chem 2016; 27:2695-2706. [PMID: 27731976 DOI: 10.1021/acs.bioconjchem.6b00468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interferon α (IFN α) subtypes are important protein drugs that have been used to treat infectious diseases and cancers. Here, we studied the reactivity of IFN α-2b to microbial transglutaminase (TGase) with the aim of obtaining a site-specific conjugation of this protein drug. Interestingly, TGase allowed the production of two monoderivatized isomers of IFN with high yields. Characterization by mass spectrometry of the two conjugates indicated that they are exclusively modified at the level of Gln101 if the protein is reacted in the presence of an amino-containing ligand (i.e., dansylcadaverine) or at the level of Lys164 if a glutamine-containing molecule is used (i.e., carbobenzoxy-l-glutaminyl-glycine, ZQG). We explained the extraordinary specificity of the TGase-mediated reaction on the basis of the conformational features of IFN. Indeed, among the 10 Lys and 12 Gln residues of the protein, only Gln101 and Lys164 are located in highly flexible protein regions. The TGase-mediated derivatization of IFN was then applied to the production of IFN derivatives conjugated to a 20 kDa polyethylene glycol (PEG), using PEG-NH2 for Gln101 derivatization and PEG modified with ZQG for Lys164 derivatization. The two mono-PEGylated isomers of IFN were obtained in good yields, purified, and characterized in terms of protein conformation, antiviral activity, and pharmacokinetics. Both conjugates maintained a native-like secondary structure, as indicated by far-UV circular dichroism spectra. Importantly, they disclosed good in vitro antiviral activity retention (about only 1.6- to 1.8-fold lower than that of IFN) and half-lives longer (about 5-fold) than that of IFN after intravenous administration to rats. Overall, these results provide evidence that TGase can be used for the development of site-specific derivatives of IFN α-2b possessing interesting antiviral and pharmacokinetic properties.
Collapse
Affiliation(s)
- Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Samanta Raboni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Abhijeet A Satwekar
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | - Anna Mero
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy
| | | | - Antonio Rosato
- Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padua , via Nicolò Giustiniani 2, 35124 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Francesco Marzolo 5, 35131 Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS , via Gattamelata 64, I-35128 Padua, Italy
| | - Angelo Fontana
- CRIBI Biotechnology Centre, University of Padua , viale Giuseppe Colombo 3, 35121 Padua, Italy
| |
Collapse
|
29
|
Pogue SL, Taura T, Bi M, Yun Y, Sho A, Mikesell G, Behrens C, Sokolovsky M, Hallak H, Rosenstock M, Sanchez E, Chen H, Berenson J, Doyle A, Nock S, Wilson DS. Targeting Attenuated Interferon-α to Myeloma Cells with a CD38 Antibody Induces Potent Tumor Regression with Reduced Off-Target Activity. PLoS One 2016; 11:e0162472. [PMID: 27611189 PMCID: PMC5017640 DOI: 10.1371/journal.pone.0162472] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Interferon-α (IFNα) has been prescribed to effectively treat multiple myeloma (MM) and other malignancies for decades. Its use has waned in recent years, however, due to significant toxicity and a narrow therapeutic index (TI). We sought to improve IFNα's TI by, first, attaching it to an anti-CD38 antibody, thereby directly targeting it to MM cells, and, second, by introducing an attenuating mutation into the IFNα portion of the fusion protein rendering it relatively inactive on normal, CD38 negative cells. This anti-CD38-IFNα(attenuated) immunocytokine, or CD38-Attenukine™, exhibits 10,000-fold increased specificity for CD38 positive cells in vitro compared to native IFNα and, significantly, is ~6,000-fold less toxic to normal bone marrow cells in vitro than native IFNα. Moreover, the attenuating mutation significantly decreases IFNα biomarker activity in cynomolgus macaques indicating that this approach may yield a better safety profile in humans than native IFNα or a non-attenuated IFNα immunocytokine. In human xenograft MM tumor models, anti-CD38-IFNα(attenuated) exerts potent anti-tumor activity in mice, inducing complete tumor regression in most cases. Furthermore, anti-CD38-IFNα(attenuated) is more efficacious than standard MM treatments (lenalidomide, bortezomib, dexamethasone) and exhibits strong synergy with lenalidomide and with bortezomib in xenograft models. Our findings suggest that tumor-targeted attenuated cytokines such as IFNα can promote robust tumor killing while minimizing systemic toxicity.
Collapse
Affiliation(s)
- Sarah L. Pogue
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
- * E-mail:
| | - Tetsuya Taura
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Mingying Bi
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Yong Yun
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Angela Sho
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Glen Mikesell
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - Collette Behrens
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Maya Sokolovsky
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Hussein Hallak
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Moti Rosenstock
- Teva Pharmaceuticals, Global Branded Biologics Division, Netanya, Israel
| | - Eric Sanchez
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Haiming Chen
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - James Berenson
- The Institute for Myeloma and Bone Cancer Research, West Hollywood, California, United States of America
| | - Anthony Doyle
- Teva Pharmaceuticals, Global Branded Biologics Division, Sydney, Australia
| | - Steffen Nock
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| | - David S. Wilson
- Teva Pharmaceuticals, Global Branded Biologics Division, Redwood City, California, United States of America
| |
Collapse
|
30
|
Wedeking T, Löchte S, Birkholz O, Wallenstein A, Trahe J, Klingauf J, Piehler J, You C. Spatiotemporally Controlled Reorganization of Signaling Complexes in the Plasma Membrane of Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5912-5918. [PMID: 26421417 DOI: 10.1002/smll.201502132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/18/2015] [Indexed: 06/05/2023]
Abstract
Triggered immobilization of proteins in the plasma membrane of living cells into functional micropatterns is established by using an adaptor protein, which is comprised of an antiGFP nanobody fused to the HaloTag protein. Efficient in situ reorganization of the type I interferon receptor subunits as well as intact, fully functional signaling complexes in living cells are achieved by this method.
Collapse
Affiliation(s)
- Tim Wedeking
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Sara Löchte
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Oliver Birkholz
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Alexander Wallenstein
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Julia Trahe
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Str. 31, Münster, 48149, Germany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, 48149, Germany
| | - Jacob Piehler
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| | - Changjiang You
- Department of BiologyUniversity of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany
| |
Collapse
|
31
|
High efficiency cell-specific targeting of cytokine activity. Nat Commun 2015; 5:3016. [PMID: 24398568 DOI: 10.1038/ncomms4016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/26/2013] [Indexed: 11/09/2022] Open
Abstract
Systemic toxicity currently prevents exploiting the huge potential of many cytokines for medical applications. Here we present a novel strategy to engineer immunocytokines with very high targeting efficacies. The method lies in the use of mutants of toxic cytokines that markedly reduce their receptor-binding affinities, and that are thus rendered essentially inactive. Upon fusion to nanobodies specifically binding to marker proteins, activity of these cytokines is selectively restored for cell populations expressing this marker. This 'activity-by-targeting' concept was validated for type I interferons and leptin. In the case of interferon, activity can be directed to target cells in vitro and to selected cell populations in mice, with up to 1,000-fold increased specific activity. This targeting strategy holds promise to revitalize the clinical potential of many cytokines.
Collapse
|
32
|
Wilmes S, Beutel O, Li Z, Francois-Newton V, Richter CP, Janning D, Kroll C, Hanhart P, Hötte K, You C, Uzé G, Pellegrini S, Piehler J. Receptor dimerization dynamics as a regulatory valve for plasticity of type I interferon signaling. ACTA ACUST UNITED AC 2015; 209:579-93. [PMID: 26008745 PMCID: PMC4442803 DOI: 10.1083/jcb.201412049] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type I interferons (IFNs) activate differential cellular responses through a shared cell surface receptor composed of the two subunits, IFNAR1 and IFNAR2. We propose here a mechanistic model for how IFN receptor plasticity is regulated on the level of receptor dimerization. Quantitative single-molecule imaging of receptor assembly in the plasma membrane of living cells clearly identified IFN-induced dimerization of IFNAR1 and IFNAR2. The negative feedback regulator ubiquitin-specific protease 18 (USP18) potently interferes with the recruitment of IFNAR1 into the ternary complex, probably by impeding complex stabilization related to the associated Janus kinases. Thus, the responsiveness to IFNα2 is potently down-regulated after the first wave of gene induction, while IFNβ, due to its ∼100-fold higher binding affinity, is still able to efficiently recruit IFNAR1. Consistent with functional data, this novel regulatory mechanism at the level of receptor assembly explains how signaling by IFNβ is maintained over longer times compared with IFNα2 as a temporally encoded cause of functional receptor plasticity.
Collapse
Affiliation(s)
- Stephan Wilmes
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Zhi Li
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Véronique Francois-Newton
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Christian P Richter
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Dennis Janning
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Cindy Kroll
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Patrizia Hanhart
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Katharina Hötte
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| | - Gilles Uzé
- Centre National de la Recherche Scientifique Montpellier, 34095 Montpellier, France
| | - Sandra Pellegrini
- Institut Pasteur, Cytokine Signaling Unit, Centre National de la Recherche Scientifique URA1961, 75724 Paris, France
| | - Jacob Piehler
- Department of Biology, Division of Biophysics, University of Osnabrück, 49074 Osnabrück, Germany
| |
Collapse
|
33
|
Designing cell-targeted therapeutic proteins reveals the interplay between domain connectivity and cell binding. Biophys J 2015; 107:2456-66. [PMID: 25418314 DOI: 10.1016/j.bpj.2014.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/11/2014] [Accepted: 10/03/2014] [Indexed: 01/22/2023] Open
Abstract
The therapeutic efficacy of cytokines is often hampered by severe side effects due to their undesired binding to healthy cells. One strategy for overcoming this obstacle is to tether cytokines to antibodies or antibody fragments for targeted cell delivery. However, how to modulate the geometric configuration and relative binding affinity of the two domains for optimal activity remains an outstanding question. As a result, many antibody-cytokine complexes do not achieve the desired level of cell-targeted binding and activity. Here, we address these design issues by developing a computational model to simulate the dynamics and binding kinetics of natural and engineered fusion proteins such as antibody-cytokine complexes. To verify the model, we developed a modular system in which an antibody fragment and a cytokine are conjugated via a DNA linker that allows for programmable linker geometry and protein spatial configuration. By assembling and testing several anti-CD20 antibody fragment-interferon ? complexes, we showed that varying the linker length and cytokine binding affinity controlled the magnitude of cell-targeted signaling activation in a manner that agreed with the model predictions, which were expressed as dose-signaling response curves. The simulation results also revealed that there is a range of cytokine binding affinities that would achieve optimal therapeutic efficacy. This rapid prototyping platform will facilitate the rational design of antibody-cytokine complexes for improved therapeutic outcomes.
Collapse
|
34
|
Oganesyan V, Peng L, Woods RM, Wu H, Dall'Acqua WF. Structural Insights into the Neutralization Properties of the Fully Human, Anti-interferon Monoclonal Antibody Sifalimumab. J Biol Chem 2015; 290:14979-85. [PMID: 25925951 PMCID: PMC4463443 DOI: 10.1074/jbc.m115.652156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Indexed: 01/18/2023] Open
Abstract
We report the three-dimensional structure of human interferon α-2A (IFN-α2A) bound to the Fab fragment of a therapeutic monoclonal antibody (sifalimumab; IgG1/κ). The structure of the corresponding complex was solved at a resolution of 3.0 Å using molecular replacement and constitutes the first reported structure of a human type I IFN bound to a therapeutic antibody. This study revealed the major contribution made by the first complementarity-determining region in each of sifalimumab light and heavy chains. These data also provided the molecular basis for sifalimumab mechanism of action. We propose that its interferon-neutralizing properties are the result of direct competition for IFN-α2A binding to the IFN receptor subunit 1 (IFNAR1) and do not involve inhibiting IFN-α2A binding to the IFN receptor subunit 2 (IFNAR2).
Collapse
Affiliation(s)
- Vaheh Oganesyan
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Li Peng
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Robert M Woods
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - Herren Wu
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| | - William F Dall'Acqua
- From the Department of Antibody Discovery and Protein Engineering, MedImmune LLC, Gaithersburg, Maryland 20878
| |
Collapse
|
35
|
Li J, Lehmann C, Chen X, Romerio F, Lu W. Total chemical synthesis of human interferon alpha-2b via native chemical ligation. J Pept Sci 2015; 21:554-60. [PMID: 25810135 DOI: 10.1002/psc.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 01/17/2015] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Abstract
Interferon-alpha (IFNα) is a cytokine that orchestrates innate and adaptive immune responses and potently inhibits proliferation of normal and tumor cells. These properties have warranted the use of IFNα in clinical practice for the treatment of several viral infections and malignancies. However, overexpression of IFNα leads to immunopathology observed in the context of chronic viral infections and autoimmune conditions. Thus, it is desirable to develop therapeutic approaches that aim at suppressing excessive IFNα production. To that end, artificial evolution of peptides from phage display libraries represents a strategy that seeks to disrupt the interaction between IFNα and its cell surface receptor and thus inhibit the ensuing biological effects. Mirror-image phage display that screens peptide libraries against the D-enantiomer is particularly attractive because it allows for identification of proteolysis-resistant D-peptide inhibitors. This approach, however, relies on the availability of chemically synthesized D-IFNα composed entirely of D-amino acids. Here, we describe the synthesis and biological properties of IFNα2b of 165 amino acid residues produced by native chemical ligation, which represents an important first step toward the discovery of D-peptide antagonists with potential therapeutic applications.
Collapse
Affiliation(s)
- Jing Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA.,Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Clara Lehmann
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA.,First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Xishan Chen
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD, 21201, USA
| |
Collapse
|
36
|
The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 2015; 36:139-49. [DOI: 10.1016/j.it.2015.01.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/16/2023]
|
37
|
Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interferon Cytokine Res 2015; 35:252-64. [PMID: 25714109 PMCID: PMC4389918 DOI: 10.1089/jir.2014.0227] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
While type I interferons (IFNs) are universally acknowledged for their antiviral and immunostimulatory functions, there is increasing appreciation of the detrimental effects of inappropriate, excessive, or mistimed type I IFN responses in viral and bacterial infections. The underlying mechanisms by which type I IFNs promote susceptibility or severity include direct tissue damage by apoptosis induction or suppression of proliferation in tissue cells, immunopathology due to excessive inflammation, and cell death induced by TRAIL- and Fas-expressing immune cells, as well as immunosuppression through IL-10, IL-27, PD-L1, IL-1Ra, and other regulatory molecules that antagonize the induction or action of IL-1, IL-12, IL-17, IFN-γ, KC, and other effectors of the immune response. Bacterial superinfections following influenza infection are a prominent example of a situation where type I IFNs can misdirect the immune response. This review discusses current understanding of the parameters of signal strength, duration, timing, location, and cellular recipients that determine whether type I IFNs have beneficial or detrimental effects in infection.
Collapse
Affiliation(s)
- Sophia Davidson
- 1 Division of Immunoregulation, MRC National Institute for Medical Research , Mill Hill, London, United Kingdom
| | | | | |
Collapse
|
38
|
Synergistic interaction between selective drugs in cell populations models. PLoS One 2015; 10:e0117558. [PMID: 25671700 PMCID: PMC4324767 DOI: 10.1371/journal.pone.0117558] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/29/2014] [Indexed: 01/01/2023] Open
Abstract
The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes.
Collapse
|
39
|
Löchte S, Waichman S, Beutel O, You C, Piehler J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. ACTA ACUST UNITED AC 2015; 207:407-18. [PMID: 25385185 PMCID: PMC4226739 DOI: 10.1083/jcb.201406032] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The use of micropatterned surfaces that bind HaloTag fusion proteins allows spatial organization of plasma membrane proteins for efficient visualization and quantification of protein–protein interactions in live cells. Interactions of proteins in the plasma membrane are notoriously challenging to study under physiological conditions. We report in this paper a generic approach for spatial organization of plasma membrane proteins into micropatterns as a tool for visualizing and quantifying interactions with extracellular, intracellular, and transmembrane proteins in live cells. Based on a protein-repellent poly(ethylene glycol) polymer brush, micropatterned surface functionalization with the HaloTag ligand for capturing HaloTag fusion proteins and RGD peptides promoting cell adhesion was devised. Efficient micropatterning of the type I interferon (IFN) receptor subunit IFNAR2 fused to the HaloTag was achieved, and highly specific IFN binding to the receptor was detected. The dynamics of this interaction could be quantified on the single molecule level, and IFN-induced receptor dimerization in micropatterns could be monitored. Assembly of active signaling complexes was confirmed by immunostaining of phosphorylated Janus family kinases, and the interaction dynamics of cytosolic effector proteins recruited to the receptor complex were unambiguously quantified by fluorescence recovery after photobleaching.
Collapse
Affiliation(s)
- Sara Löchte
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Sharon Waichman
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Oliver Beutel
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Changjiang You
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|
40
|
Lasfar A, Cook JR, Cohen Solal KA, Reuhl K, Kotenko SV, Langer JA, Laskin DL. Critical role of the endogenous interferon ligand-receptors in type I and type II interferons response. Immunology 2014; 142:442-52. [PMID: 24597649 DOI: 10.1111/imm.12273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 01/12/2023] Open
Abstract
Separate ligand-receptor paradigms are commonly used for each type of interferon (IFN). However, accumulating evidence suggests that type I and type II IFNs may not be restricted to independent pathways. Using different cell types deficient in IFNAR1, IFNAR2, IFNGR1, IFNGR2 and IFN-γ, we evaluated the contribution of each element of the IFN system to the activity of type I and type II IFNs. We show that deficiency in IFNAR1 or IFNAR2 is associated with impairment of type II IFN activity. This impairment, presumably resulting from the disruption of the ligand-receptor complex, is obtained in all cell types tested. However, deficiency of IFNGR1, IFNGR2 or IFN-γ was associated with an impairment of type I IFN activity in spleen cells only, correlating with the constitutive expression of type II IFN (IFN-γ) observed on those cells. Therefore, in vitro the constitutive expression of both the receptors and the ligands of type I or type II IFN is critical for the enhancement of the IFN activity. Any IFN deficiency can totally or partially impair IFN activity, suggesting the importance of type I and type II IFN interactions. Taken together, our results suggest that type I and type II IFNs may regulate biological activities through distinct as well as common IFN receptor complexes.
Collapse
Affiliation(s)
- Ahmed Lasfar
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Bis RL, Singh SM, Cabello-Villegas J, Mallela KMG. Role of benzyl alcohol in the unfolding and aggregation of interferon α-2a. J Pharm Sci 2014; 104:407-15. [PMID: 25100180 DOI: 10.1002/jps.24105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/18/2014] [Accepted: 07/08/2014] [Indexed: 12/29/2022]
Abstract
Benzyl alcohol (BA) is the most widely used antimicrobial preservative in multidose protein formulations, and has been shown to cause protein aggregation. Our previous work on a model protein cytochrome c demonstrated that this phenomenon occurs via partial unfolding. Here, we examine the validity of these results by investigating the effect of BA on a pharmaceutically relevant protein, interferon α-2a (IFNA2). IFNA2 therapeutic formulations available on the pharmaceutical market contain BA as a preservative. Isothermal aggregation kinetics and temperature scanning demonstrated that BA induced IFNA2 aggregation in a concentration-dependent manner. With increasing concentration of BA, the apparent aggregation temperature of IFNA2 linearly decreased. Denaturant melts measured using protein intrinsic fluorescence and that of the 1-anilinonaphthalene-8-sulfonic acid dye indicated that IFNA2 stability decreased with increasing BA concentration, populating a partially unfolded intermediate. Changes in nuclear magnetic resonance chemical shifts and hydrogen exchange rates identified the structural nature of this intermediate, which correlated with an aggregation "hot-spot" predicted by computational methods. These results indicate that BA induces IFNA2 aggregation by partial unfolding rather than global unfolding of the entire protein, and is consistent with our earlier conclusions from model protein studies.
Collapse
Affiliation(s)
- Regina L Bis
- Department of Pharmaceutical Sciences & Center for Pharmaceutical Biotechnology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045
| | | | | | | |
Collapse
|
42
|
Moraga I, Spangler J, Mendoza JL, Garcia KC. Multifarious determinants of cytokine receptor signaling specificity. Adv Immunol 2014; 121:1-39. [PMID: 24388212 DOI: 10.1016/b978-0-12-800100-4.00001-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines play crucial roles in regulating immune homeostasis. Two important characteristics of most cytokines are pleiotropy, defined as the ability of one cytokine to exhibit diverse functionalities, and redundancy, defined as the ability of multiple cytokines to exert overlapping activities. Identifying the determinants for unique cellular responses to cytokines in the face of shared receptor usage, pleiotropy, and redundancy will be essential in order to harness the potential of cytokines as therapeutics. Here, we discuss the biophysical (ligand-receptor geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters that contribute to the specificity of cytokine bioactivities. Whereas the role of extracellular ternary complex geometry in cytokine-induced signaling is still not completely elucidated, cytokine-receptor affinity is known to impact signaling through modulation of the stability and kinetics of ternary complex formation. Receptor trafficking also plays an important and likely underappreciated role in the diversification of cytokine bioactivities but it has been challenging to experimentally probe trafficking effects. We also review recent efforts to quantify levels of intracellular signaling components, as second messenger abundance can affect cytokine-induced bioactivities both quantitatively and qualitatively. We conclude by discussing the application of protein engineering to develop therapeutically relevant cytokines with reduced pleiotropy and redirected biological functionalities.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jamie Spangler
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Juan L Mendoza
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
43
|
Bhagawati M, You C, Piehler J. Quantitative real-time imaging of protein-protein interactions by LSPR detection with micropatterned gold nanoparticles. Anal Chem 2013; 85:9564-71. [PMID: 24016060 DOI: 10.1021/ac401673e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Localized surface plasmon resonance (LSPR) offers powerful means for sensitive label-free detection of protein-protein interactions in a highly multiplexed format. We have here established self-assembly and surface modification of plasmonic nanostructures on solid support suitable for quantitative protein-protein interaction analysis by spectroscopic and microscopic LSPR detection. These architectures were obtained by layer-by-layer assembly via electrostatic attraction. Gold nanoparticles (AuNP) were adsorbed on a biocompatible amine-terminated poly(ethylene glycol) (PEG) polymer brush and further functionalized by poly-l-lysine graft PEG (PLL-PEG) copolymers. Stable yet reversible protein immobilization was achieved via tris(nitrilotriacetic acid) groups incorporated into the PLL-PEG coating. Thus, site-specific immobilization of His-tagged proteins via complexed Ni(II) ions was achieved. Functional protein immobilization on the surface was confirmed by real-time detection of LSPR scattering by reflectance spectroscopy. Association and dissociation rate constants obtained for a reversible protein-protein interaction were in good agreement with the data obtained by other surface-sensitive detection techniques. For spatially resolved detection, AuNP were assembled into micropatterns by means of photolithographic uncaging of surface amines. LSPR imaging of reversible protein-protein interactions was possible in a conventional wide field microscope, yielding detection limits of ∼30 protein molecules within a diffraction-limited surface area.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Biology, University of Osnabrück , Barbarastrasse 11, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
44
|
A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase. Exp Cell Res 2013; 319:1471-81. [PMID: 23562842 DOI: 10.1016/j.yexcr.2013.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells.
Collapse
|
45
|
Waichman S, Roder F, Richter CP, Birkholz O, Piehler J. Diffusion and interaction dynamics of individual membrane protein complexes confined in micropatterned polymer-supported membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:570-577. [PMID: 23109503 DOI: 10.1002/smll.201201530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/12/2012] [Indexed: 06/01/2023]
Abstract
Micropatterned polymer-supported membranes (PSM) are established as a tool for confining the diffusion of transmembrane proteins for single molecule studies. To this end, a photochemical surface modification with hydrophobic tethers on a PEG polymer brush is implemented for capturing of lipid vesicles and subsequent fusion. Formation of contiguous membranes within micropatterns is confirmed by scanning force microscopy, fluorescence recovery after photobleaching (FRAP), and super-resolved single-molecule tracking and localization microscopy. Free diffusion of transmembrane proteins reconstituted into micropatterned PSM is demonstrated by FRAP and by single-molecule tracking. By exploiting the confinement of diffusion within micropatterned PSM, the diffusion and interaction dynamics of individual transmembrane receptors are quantitatively resolved.
Collapse
Affiliation(s)
- Sharon Waichman
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | | | | | | | | |
Collapse
|
46
|
A mathematical model for the rational design of chimeric ligands in selective drug therapies. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e26. [PMID: 23887616 PMCID: PMC3600755 DOI: 10.1038/psp.2013.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/03/2013] [Indexed: 11/08/2022]
Abstract
Chimeric drugs with selective potential toward specific cell types constitute one of the most promising forefronts of modern Pharmacology. We present a mathematical model to test and optimize these synthetic constructs, as an alternative to conventional empirical design. We take as a case study a chimeric construct composed of epidermal growth factor (EGF) linked to different mutants of interferon (IFN). Our model quantitatively reproduces all the experimental results, illustrating how chimeras using mutants of IFN with reduced affinity exhibit enhanced selectivity against cell overexpressing EGF receptor. We also investigate how chimeric selectivity can be improved based on the balance between affinity rates, receptor abundance, activity of ligand subunits, and linker length between subunits. The simplicity and generality of the model facilitate a straightforward application to other chimeric constructs, providing a quantitative systematic design and optimization of these selective drugs against certain cell-based diseases, such as Alzheimer's and cancer.CPT: Pharmacometrics & Systems Pharmacology (2013) 2, e26; doi:10.1038/psp.2013.2; advance online publication 13 February 2013.
Collapse
|
47
|
Piehler J, Thomas C, Garcia KC, Schreiber G. Structural and dynamic determinants of type I interferon receptor assembly and their functional interpretation. Immunol Rev 2012; 250:317-34. [PMID: 23046138 PMCID: PMC3986811 DOI: 10.1111/imr.12001] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type I interferons (IFNs) form a network of homologous cytokines that bind to a shared, heterodimeric cell surface receptor and engage signaling pathways that activate innate and adaptive immune responses. The ability of IFNs to mediate differential responses through the same cell surface receptor has been subject of a controversial debate and has important medical implications. During the past decade, a comprehensive insight into the structure, energetics, and dynamics of IFN recognition by its two-receptor subunits, as well as detailed correlations with their functional properties on the level of signal activation, gene expression, and biological responses were obtained. All type I IFNs bind the two-receptor subunits at the same sites and form structurally very similar ternary complexes. Differential IFN activities were found to be determined by different lifetimes and ligand affinities toward the receptor subunits, which dictate assembly and dynamics of the signaling complex in the plasma membrane. We present a simple model, which explains differential IFN activities based on rapid endocytosis of signaling complexes and negative feedback mechanisms interfering with ternary complex assembly. More insight into signaling pathways as well as endosomal signaling and trafficking will be required for a comprehensive understanding, which will eventually lead to therapeutic applications of IFNs with increased efficacy.
Collapse
Affiliation(s)
- Jacob Piehler
- Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Christoph Thomas
- Departments of Molecular and Cellular Physiology, and Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - K. Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Lavoie TB, Kalie E, Crisafulli-Cabatu S, Abramovich R, DiGioia G, Moolchan K, Pestka S, Schreiber G. Binding and activity of all human alpha interferon subtypes. Cytokine 2012; 56:282-9. [PMID: 21856167 DOI: 10.1016/j.cyto.2011.07.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/03/2011] [Accepted: 07/15/2011] [Indexed: 12/23/2022]
Abstract
Vertebrates have multiple genes encoding Type I interferons (IFN), for reasons that are not fully understood. The Type I IFN appear to bind to the same heterodimeric receptor and the subtypes have been shown to have different potencies in various experimental systems. To put this concept on a quantitative basis, we have determined the binding affinities and rate constants of 12 human Alpha-IFN subtypes to isolated interferon receptor chains 1 and 2. Alpha-IFNs bind IFNAR1 and IFNAR2 at affinities of 0.5-5 μM and 0.4-5 nM respectively (except for IFN-alpha1 - 220 nM). Additionally we have examined the biological activity of these molecules in several antiviral and antiproliferative models. Particularly for antiproliferative potency, the binding affinity and activity correlate. However, the EC50 values differ significantly (1.5 nM versus 0.1 nM for IFN-alpha2 in WISH versus OVCAR cells). For antiviral potency, there are several instances where the relationship appears to be more complicated than simple binding. These results will serve as a point of reference for further understanding of this multiple ligand/receptor system.
Collapse
Affiliation(s)
- Thomas B Lavoie
- PBL InterferonSource, 131 Ethel Road West, Piscataway, NJ 08554, United States.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS, Nolan GP, Piehler J, Schreiber G, Garcia KC. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 2011; 146:621-32. [PMID: 21854986 PMCID: PMC3166218 DOI: 10.1016/j.cell.2011.06.048] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/17/2011] [Accepted: 06/15/2011] [Indexed: 11/16/2022]
Abstract
Type I Interferons (IFNs) are important cytokines for innate immunity against viruses and cancer. Sixteen human type I IFN variants signal through the same cell-surface receptors, IFNAR1 and IFNAR2, yet they can evoke markedly different physiological effects. The crystal structures of two human type I IFN ternary signaling complexes containing IFNα2 and IFNω reveal recognition modes and heterotrimeric architectures that are unique among the cytokine receptor superfamily but conserved between different type I IFNs. Receptor-ligand cross-reactivity is enabled by conserved receptor-ligand "anchor points" interspersed among ligand-specific interactions that "tune" the relative IFN-binding affinities, in an apparent extracellular "ligand proofreading" mechanism that modulates biological activity. Functional differences between IFNs are linked to their respective receptor recognition chemistries, in concert with a ligand-induced conformational change in IFNAR1, that collectively control signal initiation and complex stability, ultimately regulating differential STAT phosphorylation profiles, receptor internalization rates, and downstream gene expression patterns.
Collapse
Affiliation(s)
- Christoph Thomas
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ignacio Moraga
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Doron Levin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Peter O. Krutzik
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yulia Podoplelova
- Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Angelica Trejo
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Choongho Lee
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ganit Yarden
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Susan E. Vleck
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P. Nolan
- Department of Microbiology and Immunology, Baxter Lab in Stem Cell Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob Piehler
- Division of Biophysics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - K. Christopher Garcia
- Howard Hughes Medical Institute, Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
50
|
Stochastic receptor expression determines cell fate upon interferon treatment. Mol Cell Biol 2011; 31:3252-66. [PMID: 21690295 DOI: 10.1128/mcb.05251-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons trigger diverse biological effects by binding a common receptor, composed of IFNAR1 and IFNAR2. Intriguingly, while the activation of an antiviral state is common to all cells, antiproliferative activity and apoptosis affect only part of the population, even when cells are stimulated with saturating interferon concentrations. Manipulating receptor expression by different small interfering RNA (siRNA) concentrations reduced the fraction of responsive cells independent of the interferon used, including a newly generated, extremely tight-binding variant. Reduced receptor numbers increased 50% effective concentrations (EC(50)s) for alpha interferon 2 (IFN-α2) but not for the tight-binding variant. A correlation between receptor numbers, STAT activation, and gene induction is observed. Our data suggest that for a given cell, the response is binary (+/-) and dependent on the stochastic expression levels of the receptors on an individual cell. A low number of receptors suffices for antiviral response and is thus a robust feature common to all cells. Conversely, a high number of receptors is required for antiproliferative activity, which allows for fine-tuning on a single-cell level.
Collapse
|