1
|
Dang Do AN, Chang IJ, Jiang X, Wolfe LA, Ng BG, Lam C, Schnur RE, Allis K, Hansikova H, Ondruskova N, O’Connor SD, Sanchez-Valle A, Vollo A, Wang RY, Wolfenson Z, Perreault J, Ory DS, Freeze HH, Merritt JL, Porter FD. Elevated oxysterol and N-palmitoyl-O-phosphocholineserine levels in congenital disorders of glycosylation. J Inherit Metab Dis 2023; 46:326-334. [PMID: 36719165 PMCID: PMC10023375 DOI: 10.1002/jimd.12595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3β,5α,6β-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.
Collapse
Affiliation(s)
- An N. Dang Do
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
- Correspondence An Ngoc Dang Do, MD PhD, , 10 Center Drive, MSC 1103, Bethesda, MD 20892
| | - Irene J. Chang
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Xutian Jiang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Lynne A. Wolfe
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Christina Lam
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | | | - Hana Hansikova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nina Ondruskova
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Shawn D. O’Connor
- Department of Pediatrics, Washington University School of Medicine in St. Louis, Saint Louis, MO, USA
| | | | - Arve Vollo
- Department of Paediatrics, Sykehuset Ostfold HF, Fredrikstad, Norway
| | - Raymond Y. Wang
- Children’s Hospital of Orange County, Orange County, CA, USA
- University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Zoe Wolfenson
- Undiagnosed Diseases Program, Common Fund, National Institutes of Health, Bethesda, MD, USA
| | - John Perreault
- Office of the Clinical Director, NICHD, NIH, Bethesda, MD, USA
| | - Daniel S. Ory
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Children’s Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Lawrence Merritt
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, NICHD, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Russo-Abrahão T, Cosentino-Gomes D, Gomes MT, Alviano DS, Alviano CS, Lopes AH, Meyer-Fernandes JR. Biochemical properties of Candida parapsilosis ecto-5'-nucleotidase and the possible role of adenosine in macrophage interaction. FEMS Microbiol Lett 2011; 317:34-42. [PMID: 21241359 DOI: 10.1111/j.1574-6968.2011.02216.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida parapsilosis is considered to be an emerging fungal pathogen because it is associated with an increasing range of infections. In this work, we biochemically characterized ecto-5'-nucleotidase activity on the surface of living, intact C. parapsilosis cells. At a pH of 4.5, intact cells were able to hydrolyze 5'-AMP at a rate of 52.44 ± 7.01 nmol Pi h(-1) 10(-7) cells. 5'-AMP, 5'-IMP and 5'-UMP were hydrolyzed at similar rates, whereas 5'-GMP and 5'-CMP hydrolyzed at lower rates. Enzyme activity was increased by about 42% with addition of Mg(2+) or Ca(2+), and the optimum pH was in the acidic range. An inhibitor of phosphatase activities, sodium orthovanadate, showed no effect on AMP hydrolysis; however, as expected, ammonium molybdate, a classical nucleotidase inhibitor, inhibited the activity in a dose-dependent manner. The results indicated that the existence of an ecto-5'-nucleotidase could play a role in the control of extracellular nucleotide concentrations.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, UFRJ, Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
Mittelman K, Ziv K, Maoz T, Kleinberger T. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae. PLoS One 2010; 5:e15539. [PMID: 21124936 PMCID: PMC2989921 DOI: 10.1371/journal.pone.0015539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/13/2010] [Indexed: 11/18/2022] Open
Abstract
The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.
Collapse
Affiliation(s)
- Karin Mittelman
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Keren Ziv
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tsofnat Maoz
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
| | - Tamar Kleinberger
- Department of Molecular Microbiology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
4
|
Jefferies KC, Forgac M. Subunit H of the vacuolar (H+) ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J Biol Chem 2007; 283:4512-9. [PMID: 18156183 DOI: 10.1074/jbc.m707144200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar (H+) ATPases (V-ATPases) are large, multimeric proton pumps that, like the related family of F1F0 ATP synthases, employ a rotary mechanism. ATP hydrolysis by the peripheral V1 domain drives rotation of a rotary complex (the rotor) relative to the stationary part of the enzyme (the stator), leading to proton translocation through the integral V0 domain. One mechanism of regulating V-ATPase activity in vivo involves reversible dissociation of the V1 and V0 domains. Unlike the corresponding domains in F1F0, the dissociated V1 domain does not hydrolyze ATP, and the free V0 domain does not passively conduct protons. These properties are important to avoid generation of an uncoupled ATPase activity or an unregulated proton conductance upon dissociation of the complex in vivo. Previous results (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767) showed that subunit H (part of the stator) inhibits ATP hydrolysis by free V1. To test the hypothesis that subunit H accomplishes this by bridging rotor and stator in free V1, cysteine-mediated cross-linking studies were performed. Unique cysteine residues were introduced over the surface of subunit H from yeast by site-directed mutagenesis and used as the site of attachment of the photo-activated cross-linking reagent maleimido benzophenone. After UV-activated cross-linking, cross-linked products were identified by Western blot using subunit-specific antibodies. The results indicate that the subunit H mutant S381C shows cross-linking between subunit H and subunit F (a rotor subunit) in the free V1 domain but not in the intact V1V0 complex. These results indicate that subunits H and F are proximal in free V1, supporting the hypothesis that subunit H inhibits free V1 by bridging the rotary and stator domains.
Collapse
Affiliation(s)
- Kevin C Jefferies
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
5
|
Qi J, Wang Y, Forgac M. The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation. J Bioenerg Biomembr 2007; 39:423-6. [DOI: 10.1007/s10863-007-9116-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Schöneberg T, Hermsdorf T, Engemaier E, Engel K, Liebscher I, Thor D, Zierau K, Römpler H, Schulz A. Structural and functional evolution of the P2Y(12)-like receptor group. Purinergic Signal 2007; 3:255-68. [PMID: 18404440 PMCID: PMC2072910 DOI: 10.1007/s11302-007-9064-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 07/19/2007] [Indexed: 12/11/2022] Open
Abstract
Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Johannisallee 30, 04103, Leipzig, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Uccelletti D, Anticoli S, Palleschi C. The apyrase KlYnd1p of Kluyveromyces lactis affects glycosylation, secretion, and cell wall properties. FEMS Yeast Res 2007; 7:731-9. [PMID: 17425676 DOI: 10.1111/j.1567-1364.2007.00229.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Kluyveromyces lactis ORF r_klactIV3,463 on chromosome IV, hereafter named KlYND1, encodes an endoapyrase that has nucleoside phosphatase activity with a lumenal orientation. The enzyme showed equally high activity towards GDP/UDP and ADP, and also showed activity, although to a lesser extent, towards GTP. No activity was detected with the other triphosphates and all monophosphates. The overexpression of KlYND1 in Klgda1Delta cells of K. lactis, devoid of the encoded GDPase/UDPase activity, suppressed the loss of O-glycosylation and cell wall-related defects described in such mutants, and suggests a partial overlap of function between the two genes, and therefore some redundancy. The overexpression of KlYND1 in wild-type cells enhanced the secretion of the recombinant human serum albumin and glucoamylase employed as reporters.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Developmental and Cell Biology, University of Rome La Sapienza, Rome, Italy
| | | | | |
Collapse
|
8
|
Abstract
Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S. Wise Faculty of Life Sciences, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
9
|
Chavez C, Bowman EJ, Reidling JC, Haw KH, Bowman BJ. Analysis of Strains with Mutations in Six Genes Encoding Subunits of the V-ATPase. J Biol Chem 2006; 281:27052-62. [PMID: 16857684 DOI: 10.1074/jbc.m603883200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To address questions about the structure of the vacuolar ATPase, we have generated mutant strains of Neurospora crassa defective in six subunits, C, H, a, c, c', and c''. Except for strains lacking subunit c', the mutant strains were indistinguishable from each other in most phenotypic characteristics. They did not accumulate arginine in the vacuoles, grew poorly at pH 5.8 with altered morphology, and failed to grow at alkaline pH. Consistent with findings from Saccharomyces cerevisiae, the data indicate that subunits C and H are essential for generation of a functional enzyme. Unlike S. cerevisiae, N. crassa has a single isoform of the a subunit. Analysis of other fungal genomes indicates that only the budding yeasts have a two-gene family for subunit a. It has been unclear whether subunit c', a small proteolipid, is a component of all V-ATPases. Our data suggest that this subunit is present in all fungi, but not in other organisms. Mutation or deletion of the N. crassa gene encoding subunit c' did not completely eliminate V-ATPase function. Unlike other V-ATPase null strains, they grew, although slowly, at alkaline pH, were able to form conidia (asexual spores), and were inhibited by concanamycin, a specific inhibitor of the V-ATPase. The phenotypic character in which strains differed was the ability to go through the sexual cycle to generate mature spores and viable mutant progeny. Strains lacking the integral membrane subunits a, c, c', and c'' had more severe defects than strains lacking subunits C or H.
Collapse
Affiliation(s)
- Christopher Chavez
- Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | | | | | |
Collapse
|
10
|
Robson SC, Sévigny J, Zimmermann H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal 2006; 2:409-30. [PMID: 18404480 PMCID: PMC2254478 DOI: 10.1007/s11302-006-9003-5] [Citation(s) in RCA: 718] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 01/23/2006] [Indexed: 12/17/2022] Open
Abstract
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases.
Collapse
Affiliation(s)
- Simon C. Robson
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Université Laval, Québec, Québec Canada
| | - Herbert Zimmermann
- Institut fuer Zellbiologie und Neurowissenschaft, Biozentrum der J.W. Goethe-Universitaet, Marie-Curie-Str. 9, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Wu Y, Sun X, Kaczmarek E, Dwyer K, Bianchi E, Usheva A, Robson S. RanBPM associates with CD39 and modulates ecto-nucleotidase activity. Biochem J 2006; 396:23-30. [PMID: 16478441 PMCID: PMC1449986 DOI: 10.1042/bj20051568] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CD39/ecto-NTPDase 1 (nucleoside triphosphate diphosphohydrolase 1) is an ecto-nucleotidase that influences P2 receptor activation to regulate vascular and immune cell adhesion and signalling events pivotal in inflammation. Whether CD39 interacts with other membrane or cytoplasmic proteins has not been established to date. Using the yeast two-hybrid system, we note that the N-terminus of CD39 binds to RanBPM (Ran binding protein M; also known as RanBP9), a multi-adaptor scaffolding membrane protein originally characterized as a binding protein for the small GTPase Ran. We confirm formation of complexes between CD39 and RanBPM in transfected mammalian cells by co-immunoprecipitation studies. Endogenous CD39 and RanBPM are also found to be co-expressed and abundant in cell membranes of B-lymphocytes. NTPDase activity of recombinant CD39, but not of N-terminus-deleted-CD39 mutant, is substantially diminished by RanBPM co-expression in COS-7 cells. The conserved SPRY [repeats in splA and RyR (ryanodine receptor)] moiety of RanBPM is insufficient alone for complete physical and functional interactions with CD39. We conclude that CD39 associations with RanBPM have the potential to regulate NTPDase catalytic activity. This intermolecular interaction may have important implications for the regulation of extracellular nucleotide-mediated signalling.
Collapse
Affiliation(s)
- Yan Wu
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Xiaofeng Sun
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Elzbieta Kaczmarek
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Karen M. Dwyer
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Elisabetta Bianchi
- †Laboratory of Immunoregulation, Department of Immunology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, France
| | - Anny Usheva
- ‡Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
| | - Simon C. Robson
- *Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, U.S.A
- To whom correspondence should be addressed, at Room 301, Research North, 99 Brookline Avenue, Beth Israel Deaconess Medical Center, Boston, MA 02215, U.S.A. (email )
| |
Collapse
|
12
|
Collopy-Junior I, Kneipp LF, da Silva FC, Rodrigues ML, Alviano CS, Meyer-Fernandes JR. Characterization of an ecto-ATPase activity in Fonsecaea pedrosoi. Arch Microbiol 2006; 185:355-62. [PMID: 16528535 DOI: 10.1007/s00203-006-0100-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/16/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5'-triphosphate (ATP) at a rate of 84.6 +/- 11.3 nmol Pi h(-1) mg(-1) mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 +/- 27.6 nmol Pi h(-1) mg(-1)) in the presence of 5 mM MgCl2, with values of Vmax and apparent Km for Mg-ATP(2-) corresponding to 541.9 +/- 48.6 nmol Pi h(-1) mg(-1) cellular dry weight and 1.9 +/- 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1(V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+ -stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4'-diisothiocyanostylbene-2,2'-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.
Collapse
Affiliation(s)
- Italo Collopy-Junior
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Cidade Universitária, Ilha do Fundão, 21541-590, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
13
|
Zhang Z, Inoue T, Forgac M, Wilkens S. Localization of subunit C (Vma5p) in the yeast vacuolar ATPase by immuno electron microscopy. FEBS Lett 2006; 580:2006-10. [PMID: 16546180 DOI: 10.1016/j.febslet.2006.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 02/20/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
Vacuolar ATPases (V1V0 -ATPases) function in proton translocation across lipid membranes of subcellular compartments. We have used antibody labeling and electron microscopy to define the position of subunit C in the vacuolar ATPase from yeast. The data show that subunit C is binding at the interface of the ATPase and proton channel, opposite from another stalk density previously identified as subunit H [Wilkens S., Inoue T., and Forgac M. (2004) Three-dimensional structure of the vacuolar ATPase - Localization of subunit H by difference imaging and chemical cross-linking. J. Biol. Chem. 279, 41942-41949]. A picture of the vacuolar ATPase stalk domain is emerging in which subunits C and H are positioned to play a role in reversible enzyme dissociation and activity silencing.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
14
|
A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005; 36:109-26. [PMID: 15629643 DOI: 10.1016/j.micron.2004.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Vacuolar ATPases (V-ATPases) are large, membrane bound, multisubunit protein complexes which function as ATP hydrolysis driven proton pumps. V-ATPases and related enzymes are found in the endomembrane system of eukaryotic organsims, the plasma membrane of specialized cells in higher eukaryotes, and the plasma membrane of prokaryotes. The proton pumping action of the vacuolar ATPase is involved in a variety of vital intra- and inter-cellular processes such as receptor mediated endocytosis, protein trafficking, active transport of metabolites, homeostasis and neurotransmitter release. This review summarizes recent progress in the structure determination of the vacuolar ATPase focusing on studies by transmission electron microscopy. A model of the subunit architecture of the vacuolar ATPase is presented which is based on the electron microscopic images and the available information from genetic, biochemical and biophysical experiments.
Collapse
|
15
|
Abstract
The F-, V-, and A-adenosine triphosphatases (ATPases) represent a family of evolutionarily related ion pumps found in every living cell. They either function to synthesize adenosine triphosphate (ATP) at the expense of an ion gradient or they act as primary ion pumps establishing transmembrane ion motive force at the expense of ATP hydrolysis. The A-, F-, and V-ATPases are rotary motor enzymes. Synthesis or hydrolysis of ATP taking place in the three catalytic sites of the membrane extrinsic domain is coupled to ion translocation across the single ion channel in the membrane-bound domain via rotation of a central part of the complex with respect to a static portion of the enzyme. This chapter reviews recent progress in the structure determination of several members of the family of F-, A-, and V-ATPases and our current understanding of the rotary mechanism of energy coupling.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
16
|
Abstract
The structure of the proton-pumping vacuolar ATPase (V-ATPase) from bovine brain clathrin coated vesicles was analyzed by electron microscopy and single molecule image analysis. A three-dimensional structural model of the complex was calculated by the angular reconstitution method at a resolution of 27 A. Overall, the appearance of the V(0) and V(1) domains in the three-dimensional model of the intact bovine V-ATPase resembles the models of the isolated bovine V(0) and yeast V(1) domains determined previously. To determine the binding position of subunit H in the V-ATPase, electron microscopy and cysteine-mediated photochemical cross-linking were used. Difference maps calculated from projection images of intact bovine V-ATPase and a V-ATPase preparation in which the two H subunit isoforms were removed by treatment with cystine revealed less protein density at the bottom of the V(1) in the subunit H-depleted enzyme, suggesting that subunit H isoforms bind at the interface of the V(1) and V(0) domains. A comparison of three-dimensional models calculated for intact and subunit H-depleted enzyme indicated that at least one of the subunit H isoforms, although poorly resolved in the three-dimensional electron density, binds near the putative N-terminal domain of the a subunit of the V(0). For photochemical cross-linking, unique cysteine residues were introduced into the yeast V-ATPase B subunit at sites that were localized based on molecular modeling using the crystal structure of the mitochondrial F(1) domain. Cross-linking was performed using the photoactivatable sulfhydryl reagent 4-(N-maleimido)benzophenone. Cross-linking to subunit H was observed from two sites on subunit B (E494 and T501) predicted to be located on the outer surface of the subunit closest to the membrane. Results from both electron microscopy and cross-linking analysis thus place subunit H near the interface of the V(1) and V(0) domains and suggest a close structural similarity between the V-ATPases of yeast and mammals.
Collapse
Affiliation(s)
- Stephan Wilkens
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA.
| | | | | |
Collapse
|
17
|
Armbrüster A, Svergun DI, Coskun U, Juliano S, Bailer SM, Grüber G. Structural analysis of the stalk subunit Vma5p of the yeast V-ATPase in solution. FEBS Lett 2004; 570:119-25. [PMID: 15251451 DOI: 10.1016/j.febslet.2004.06.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 06/09/2004] [Accepted: 06/10/2004] [Indexed: 12/01/2022]
Abstract
Vma5p (subunit C) of the yeast V-ATPase was produced in Escherichia coli and purified to homogeneity. Analysis of secondary structure by circular dichroism spectroscopy showed that Vma5p comprises 64% alpha-helix and 17% beta-sheet content. The molecular mass of this subunit, determined by gel filtration analysis and small angle X-ray scattering (SAXS), was approximately 51+/-4 kDa, indicating a high hydration level of the protein in solution. The radius of gyration and the maximum size of Vma5p were determined to be 3.74+/-0.03 and 12.5+/-0.1 nm, respectively. Using two independent ab initio approaches, the first low-resolution shape of the protein was determined. Vma5p is an elongated boot-shaped particle consisting of two distinct domains. Co-reconstitution of Vma5p to V1 without C from Manduca sexta resulted in a V1-Vma5p hybrid complex and a 20% increase in ATPase hydrolysis activity.
Collapse
Affiliation(s)
- Andrea Armbrüster
- Universität des Saarlandes, Fachrichtung 2.5 - Biophysik, Universitätsbau 76, D-66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The yeast V-ATPase belongs to a family of V-type ATPases present in all eucaryotic organisms. In Saccharomyces cerevisiae the V-ATPase is localized to the membrane of the vacuole as well as the Golgi complex and endosomes. The V-ATPase brings about the acidification of these organelles by the transport of protons coupled to the hydrolysis of ATP. In yeast, the V-ATPase is composed of 13 subunits consisting of a catalytic V1 domain of peripherally associated proteins and a proton-translocating V0 domain of integral membrane proteins. The regulatory subunit, Vma13p, was the first V-ATPase subunit to have its crystal structure determined. In addition to proteins forming the functional V-ATPase complex, three ER-localized proteins facilitate the assembly of the V0 subunits following their translation and insertion into the membrane of the ER. Homologues of the Vma21p assembly factor have been identified in many higher eukaryotes supporting a ubiquitous assembly pathway for this important enzyme complex.
Collapse
Affiliation(s)
- Laurie A Graham
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | |
Collapse
|
19
|
Uccelletti D, O'Callaghan C, Berninsone P, Zemtseva I, Abeijon C, Hirschberg CB. ire-1-dependent Transcriptional Up-regulation of a Lumenal Uridine Diphosphatase from Caenorhabditis elegans. J Biol Chem 2004; 279:27390-8. [PMID: 15102851 DOI: 10.1074/jbc.m402624200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lumenal ecto-nucleoside tri- and di-phosphohydrolases (ENTPDases) of the secretory pathway of eukaryotes hydrolyze nucleoside diphosphates resulting from glycosyltransferase-mediated reactions, yielding nucleoside monophosphates. The latter are weaker inhibitors of glycosyltransferases than the former and are also antiporters for the transport of nucleotide sugars from the cytosol to the endoplasmic reticulum (ER) and Golgi apparatus (GA) lumen. Here we describe the presence of two cation-dependent nucleotide phosphohydrolase activities in membranes of Caenorhabditis elegans: one, UDA-1, is a UDP/GDPase encoded by the gene uda-1, whereas the other is an apyrase encoded by the gene ntp-1. UDA-1 shares significant amino acid sequence similarity to yeast GA Gda1p and mammalian UDP/GDPases and has a lumenal active site in vesicles displaying an intermediate density between those of the ER and GA when expressed in S. cerevisiae. NTP-1 expressed in COS-7 cells appeared to localize to the GA. The transcript of uda-1 but not those of two other C. elegans ENTPDase mRNAs (ntp-1 and mig-23) was induced up to 3.5-fold by high temperature, tunicamycin, and ethanol. The same effectors triggered the unfolded protein response as shown by the induction of expression of green fluorescent protein under the control of the BiP chaperone promoter and the UDP-glucose:glycoprotein glucosyltransferase. Up-regulation of uda-1 did not occur in ire-1-deficient mutants, demonstrating the role of this ER stress sensor in this event. We hypothesize that up-regulation of uda-1 favors hydrolysis of the glucosyltransferase inhibitory product UDP to UMP, and that the latter product then exits the lumen of the ER or pre-GA compartment in a coupled exchange with the entry of UDP-glucose, thereby further relieving ER stress by favoring protein re-glycosylation.
Collapse
Affiliation(s)
- Daniela Uccelletti
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhang Z, Charsky C, Kane PM, Wilkens S. Yeast V1-ATPase: affinity purification and structural features by electron microscopy. J Biol Chem 2003; 278:47299-306. [PMID: 12960158 DOI: 10.1074/jbc.m309445200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
V1-ATPase from the yeast Saccharomyces cerevisiae was purified via a FLAG affinity tag introduced into the N terminus of the G subunit. The preparation migrated as a single band in native gel electrophoresis and contained subunits ABCDEFGH (with subunit C present at substoichiometric amounts) as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The initial specific Ca-ATPase activity was approximately 6 micromol/min/mg. The structure of the yeast V1-ATPase was studied by electron microscopy of negatively stained and frozen hydrated samples. A 25-A resolution three-dimensional model of the complex was calculated from two-dimensional projections by the angular reconstitution technique. The model shows six elongated densities arranged in pseudo-3-fold symmetry around a large central cavity. At the top of the molecule, various protrusions can be seen. At the bottom of the complex, two large masses are visible that are connected to the main body of the molecule. Comparison of the yeast V1 structure with the structure of the intact V1V0-ATPase from bovine brain clathrin-coated vesicles (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804-31810) indicates that the structure of the isolated V1 from yeast is very similar to the structure of the V1 domain in the intact V-ATPase complex.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Biochemistry, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
21
|
Zhong X, Malhotra R, Guidotti G. ATP uptake in the Golgi and extracellular release require Mcd4 protein and the vacuolar H+-ATPase. J Biol Chem 2003; 278:33436-44. [PMID: 12807869 DOI: 10.1074/jbc.m305785200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular nucleotides signal via a large group of purinergic receptors. Although much is known about these receptors, the mechanism of nucleotide transport out of the cytoplasm is unknown. We developed a functional screen for ATP release to the extracellular space and identified Mcd4p, a 919-amino acid membrane protein with 14 putative transmembrane domains, as a participant in glucose-dependent ATP release from Saccharomyces cerevisiae. This release occurred through the vesicular trafficking pathway initiated by ATP uptake into the Golgi compartment. Both the compartmental uptake and the extracellular release of ATP were regulated by the activity of the vacuolar H+-ATPase. It is likely that the Mcd4p pathway is generally involved in non-mitochondrial ATP movement across membranes, it is essential for Golgi and endoplasmic reticulum function, and its occurrence led to the appearance of P2 purinergic receptors.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
22
|
Herrero AB, Uccelletti D, Hirschberg CB, Dominguez A, Abeijon C. The Golgi GDPase of the fungal pathogen Candida albicans affects morphogenesis, glycosylation, and cell wall properties. EUKARYOTIC CELL 2002; 1:420-31. [PMID: 12455990 PMCID: PMC118022 DOI: 10.1128/ec.1.3.420-431.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell wall mannoproteins are largely responsible for the adhesive properties and immunomodulation ability of the fungal pathogen Candida albicans. The outer chain extension of yeast mannoproteins occurs in the lumen of the Golgi apparatus. GDP-mannose must first be transported from the cytosol into the Golgi lumen, where mannose is transferred to mannans. GDP is hydrolyzed by a GDPase, encoded by GDA1, to GMP, which then exits the Golgi lumen in a coupled, equimolar exchange with cytosolic GDP-mannose. We isolated and disrupted the C. albicans homologue of the Saccharomyces cerevisiae GDA1 gene in order to investigate its role in protein mannosylation and pathogenesis. CaGda1p shares four apyrase conserved regions with other nucleoside diphosphatases. Membranes prepared from the C. albicans disrupted gda1/gda1 strain had a 90% decrease in the ability to hydrolyze GDP compared to wild type. The gda1/gda1 mutants showed a severe defect in O-mannosylation and reduced cell wall phosphate content. Other cell wall-related phenotypes are present, such as elevated chitin levels and increased susceptibility to attack by beta-1,3-glucanases. Our results show that the C. albicans organism contains beta-mannose at their nonreducing end, differing from S. cerevisiae, which has only alpha-linked mannose residues in its O-glycans. Mutants lacking both alleles of GDA1 grow at the same rate as the wild type but are partially blocked in hyphal formation in Lee solid medium and during induction in liquid by changes in temperature and pH. However, the mutants still form normal hyphae in the presence of serum and N-acetylglucosamine and do not change their adherence to HeLa cells. Taken together, our data are in agreement with the hypothesis that several pathways regulate the yeast-hypha transition. Gda1/gda1 cells offer a model for discriminating among them.
Collapse
Affiliation(s)
- Ana B Herrero
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The pH of intracellular compartments in eukaryotic cells is a carefully controlled parameter that affects many cellular processes, including intracellular membrane transport, prohormone processing and transport of neurotransmitters, as well as the entry of many viruses into cells. The transporters responsible for controlling this crucial parameter in many intracellular compartments are the vacuolar (H+)-ATPases (V-ATPases). Recent advances in our understanding of the structure and regulation of the V-ATPases, together with the mapping of human genetic defects to genes that encode V-ATPase subunits, have led to tremendous excitement in this field.
Collapse
Affiliation(s)
- Tsuyoshi Nishi
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
24
|
Keenan Curtis K, Kane PM. Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J Biol Chem 2002; 277:2716-24. [PMID: 11717306 DOI: 10.1074/jbc.m107777200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vacuolar H(+)-ATPase (V-ATPase) is a multisubunit complex composed of two sectors: V(1), a peripheral membrane sector responsible for ATP hydrolysis, and V(0), an integral membrane sector that forms a proton pore. Vma5p and Vma13p are V(1) sector subunits that have been implicated in the structural and functional coupling of the V-ATPase. Cells overexpressing Vma5p and Vma13p demonstrate a classic Vma(-) growth phenotype. Closer biochemical examination of Vma13p-overproducing strains revealed a functionally uncoupled V-ATPase in vacuolar vesicles. The ATP hydrolysis rate was 72% of the wild-type rate; but there was no proton translocation, and two V(1) subunits (Vma4p and Vma8p) were present at lower levels. Vma5p overproduction moderately affected both V-ATPase activity and proton translocation without affecting enzyme assembly. High level overexpression of Vma5p and Vma13p was lethal even in wild-type cells. In the absence of an intact V(0) sector, overproduction of Vma5p and Vma13p had a more detrimental effect on growth than their deletion. Overproduced Vma5p associated with cytosolic V(1) complexes; this association may cause the lethality.
Collapse
Affiliation(s)
- Kelly Keenan Curtis
- Department of Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
25
|
Zhong X, Malhotra R, Woodruff R, Guidotti G. Mammalian plasma membrane ecto-nucleoside triphosphate diphosphohydrolase 1, CD39, is not active intracellularly. The N-glycosylation state of CD39 correlates with surface activity and localization. J Biol Chem 2001; 276:41518-25. [PMID: 11546800 DOI: 10.1074/jbc.m104415200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CD39 is a member of the membrane-bound ecto-nucleoside triphosphate diphosphohydrolase family. The active site for native CD39 is located on the outer surface of the cellular plasma membrane; however, it is not yet known at what stage this enzyme becomes active along the secretory pathway to the plasma membrane. In this study, sucrose density fractionations performed on CD39-transfected COS-7 cell membranes suggest that CD39 activity resides primarily in the plasma membrane. Furthermore, we have created recombinant, soluble versions of CD39, one that is secreted and others that are retained in the endoplasmic reticulum, to demonstrate that CD39 is not active until it reaches the plasma membrane both in yeast and COS-7 cells. Moreover, the secreted active soluble CD39 in COS-7 cells is found to receive a higher degree of N-glycan addition than the inactive form retained intracellularly. When COS-7 cells were treated with tunicamycin to prevent N-glycosylation, soluble CD39 was not detected in the extracellular medium and remained inactive intracellularly. Surface biotinylation analysis also revealed that surface-expressed wild type CD39 receives a higher degree of N-glycosylation than intracellular forms and that inhibition of N-glycosylation prevents its plasma membrane localization. In addition, both intact and digitonin-permeablized COS-7 cells transfected with CD39 possess similar ecto-ATPase activities, further supporting the conclusion that only surface-expressed CD39 is enzymatically active. All of these data suggest that intracellular CD39 is inactive and that only a fully glycosylated CD39 has apyrase activity and is localized at the cell surface.
Collapse
Affiliation(s)
- X Zhong
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
26
|
Sagermann M, Stevens TH, Matthews BW. Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2001; 98:7134-9. [PMID: 11416198 PMCID: PMC34635 DOI: 10.1073/pnas.131192798] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2001] [Indexed: 11/18/2022] Open
Abstract
In contrast to the F-type ATPases, which use a proton gradient to generate ATP, the V-type enzymes use ATP to actively transport protons into organelles and extracellular compartments. We describe here the structure of the H-subunit (also called Vma13p) of the yeast enzyme. This is the first structure of any component of a V-type ATPase. The H-subunit is not required for assembly but plays an essential regulatory role. Despite the lack of any apparent sequence homology the structure contains five motifs similar to the so-called HEAT or armadillo repeats seen in the importins. A groove, which is occupied in the importins by the peptide that targets proteins for import into the nucleus, is occupied here by the 10 amino-terminal residues of subunit H itself. The structural similarity suggests how subunit H may interact with the ATPase itself or with other proteins. A cleft between the amino- and carboxyl-terminal domains also suggests another possible site of interaction with other factors.
Collapse
Affiliation(s)
- M Sagermann
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403-1229, USA
| | | | | |
Collapse
|
27
|
Current Awareness. Yeast 2001. [DOI: 10.1002/yea.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
28
|
Zimmermann H. Ectonucleotidases: Some recent developments and a note on nomenclature. Drug Dev Res 2001. [DOI: 10.1002/ddr.1097] [Citation(s) in RCA: 325] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|